EP2297540B1 - Capacitive device and method for the electrostatic transport of dielectric and ferroelectric fluids - Google Patents

Capacitive device and method for the electrostatic transport of dielectric and ferroelectric fluids Download PDF

Info

Publication number
EP2297540B1
EP2297540B1 EP09779702.1A EP09779702A EP2297540B1 EP 2297540 B1 EP2297540 B1 EP 2297540B1 EP 09779702 A EP09779702 A EP 09779702A EP 2297540 B1 EP2297540 B1 EP 2297540B1
Authority
EP
European Patent Office
Prior art keywords
fluid
electrodes
electrode
permittivity
advancing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09779702.1A
Other languages
German (de)
French (fr)
Other versions
EP2297540A1 (en
Inventor
Thomas Proepper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2297540A1 publication Critical patent/EP2297540A1/en
Application granted granted Critical
Publication of EP2297540B1 publication Critical patent/EP2297540B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/16Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying an electrostatic field to the body of the heat-exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a device and a method for conveying fluid media.
  • the driven by pumps or blowers (forced) coolant circulation requires compared to the passive heat transfer by thermal diffusion increased design effort.
  • electrical or mechanical drive power is absorbed and thus increases the total power loss.
  • Cooling of power electronic components such as output stage transistors and voltage transformers and highly integrated microcomputers and other digital circuits (ASICs) is widely used in operation at high clock rates by circulation of air or water by means of positive displacement or turbopumps (blowers), especially in the case of high local power dissipation densities and thermally unfavorable operating environments , Be beside water or air
  • turbopumps blowwers
  • the passive fluid circulation according to the principle of self-sustaining convection, especially the widespread in the field of computer electronics "heat pipe". It is a hermetic system for heat transfer by means of evaporative cooling and self-sustaining coolant convection.
  • the boiling temperature of the fluid used is in the thermal operating range of the heat source to be cooled.
  • the liquid phase wets the inner wall of a thin tube, the gas phase can flow driven by the vapor pressure inside the tube to the heat sink and transfer the heat of vaporization there by condensation on a heat exchanger.
  • the thickness of the liquid layer wetting the inner tube wall is limited by the capillary effect, which allows only relatively small tube diameter and thus limits the heat flow cross section of the heat pipe.
  • thermoelectric Peltier elements based on the thermoelectric Peltier effect
  • Such elements consist of two interconnected semiconductors whose conduction band lower edges are at different energy levels. If an electrical voltage is present across the boundary layer between the semiconductors, so that an electric current flows from the semiconductor with the energetically higher conduction band edge (heat source) to the semiconductor with the energetically lower conduction band edge (heat sink), a heat flow from the heat source also comes with the electrical conduction current sinking. The electrons that pass from the heat source into the heat sink transmit a part of their in the. By relaxation to the lower conduction band lower edge Heat source absorbed thermal excitation energy on the crystal lattice of the heat sink.
  • thermoelectrically induced heat flow counteracts the heat diffusion, in addition, unavoidable ohmic losses heat the semiconducting materials.
  • the thermal efficiency of Peltier elements is therefore low in relation to other known cooling mechanisms. In addition, they may take up more space than the electronic components to be cooled themselves. Peltier elements are also relatively expensive and are therefore generally not suitable for widespread use.
  • the publication US 4,396,055 A relates to an apparatus according to the preamble of claim 10 for conveying a dielectric fluid in a heat pipe along a flow path.
  • an apparatus for conveying at least one heat exchange medium having at least a first fluid having a first permittivity and at least a second fluid having a second permittivity different from the permittivity of the first fluid wherein the first fluid in the liquid phase does not mix with the second fluid in the liquid phase, whereby at least one dielectric interface is established between the first and second fluids.
  • the at least two fluids of different permittivity thus form a layered dielectric and may consist of homogeneous substances or substance mixtures or be composed of inhomogeneous mixtures such as emulsions or suspensions.
  • the device according to the invention comprises a capacitive arrangement which has at least two adjacent electrodes, in whose interspaces at least one flow channel extends, in which the at least one heat exchange medium flows.
  • each electrode is provided with exactly one electrical voltage source of a voltage control device or with exactly one electric charge source of a charge control device each electrode can be charged and discharged independently of the other electrodes.
  • the excitation of at least one electric field is provided by means of the electrode arrangement according to the invention in at least one flow channel, wherein the field is excited in the heat exchange medium in particular in the environments of dielectric interfaces of at least two fluids of different permittivity.
  • the electric field induces feed forces in the environments of the dielectric interfaces which act in the direction of increasing the capacitance of the field-exciting electrodes.
  • the fluid portions of higher permittivity seek into the field-filled interstices of the electrodes and displace the fluid portions of lower permittivity whereby the heat exchange medium advances in the direction of advancing forces due to cohesive forces in the fluids as a whole.
  • This effect is achieved both with the voltage and charge of the field-conducting electrodes being fixed and is independent of the local orientation of the electric field vector, since the molecular dipole moments of dielectric fluids and ferroelectric colloids are preferably parallel to the local electric field apart from thermal fluctuations (orientation polarization) ).
  • a method for determining the capacitance of field-exciting electrodes (capacitance matrix) and furthermore for determining the position of dielectric interfaces between fluids of different permittivity is provided.
  • a capacitive measuring device is connected, such as a capacitive measuring bridge.
  • the movement of a dielectric interface due to the electric feed field changes the capacitance of those field-exciting electrodes, in the influence of which the dielectric interface lies.
  • the voltage control device the voltages applied to the field-exciting electrodes are varied. If this changes the capacitance of the electrodes, then there is a dielectric interface in the electrode gap.
  • the capacity (capacitance matrix) of the field-exciting electrodes with a homogeneous and layered dielectric can be found empirically or by numerical methods, in the case of a simple or symmetrical electrode geometry as in the case of a plate capacitor or circular cylindrical capacitor also be known analytically.
  • the method by means of progressive, voltage or charge controlled charging and discharging of the electrode assembly according to the invention causes a propagating in the advancing direction excitation of an electric field in at least one flow channel of the at least one heat exchange medium, in particular in areas of dielectric interfaces between the at least two Fluids of different permittivity contained in the heat exchange medium.
  • the electrode assembly maintains an electrical field excitation leading the dielectric interfaces in the advancing direction until the advancing forces have decayed and the capacitance of the field-exciting electrodes no longer increases.
  • the charges are now transferred with the voltage or charge control device to the adjacent electrodes in the feed direction, which may be connected in parallel to increase their capacity, and carried out the next feed step.
  • the feed method by means of a voltage or charge control device progressively charges only those electrodes in whose interstices dielectric interfaces are found with the above-described method for determining the capacitance.
  • the electrical field excitation is energetically favorable limited to the environments of the interfaces, since only there act feed forces on the heat exchange medium.
  • the electric feed field is locally energized and maintained until the capacitance of the field-exciting electrodes no longer increases and the affected dielectric interface no longer progresses, thus ending the feed step.
  • the feed steps with temporarily held voltages to the Electrode terminals or temporarily held charges carried on the electrodes.
  • the voltage or charge control device superimposed on the progressively excited electric feed field a static electric field, which counteracts the escape of the dielectric fluids contained in the heat exchange medium from the device according to the invention, if the permittivity of the medium surrounding the device according to the invention is less than the permittivity the fluids in the heat exchange medium.
  • At least one of the fluids of the heat exchange medium consists of a homogeneous ferroelectric substance, in particular a ferroelectric liquid crystal, or of a suspension or emulsion containing ferroelectric colloids.
  • the heat exchange medium has at least one first fluid section, which consists of the liquid phase of a dielectric fluid, and at least one further fluid section, which consists of the vapor phase of this first fluid.
  • the boiling temperature of at least one of the fluids contained in the heat exchange medium is in the thermal operating range of the at least one heat source to be cooled or the at least one heat sink to be heated.
  • a method for determining the flow velocity of at least one dielectric interface between fluid sections of different permittivity, wherein the temporal change of the capacitance of field-exciting electrodes, in the interspace of which is a flowing with the heat exchange medium dielectric interface is determined.
  • a method which by means of temporal correlation of the capacitance variation of different electrodes, in whose interspaces dielectric interfaces between fluid sections of different permittivity have penetrated, the length of homogeneous fluid sections is determined.
  • a method for determining the fluid density and fluid temperature is provided.
  • those field-exciting electrodes are found whose interspace fills a homogeneous fluid section of the heat exchange medium.
  • the measured capacitance depends only on the temperature-dependent dielectric orientation polarization of the fluid.
  • the relationship between temperature and polarization in fluids with permanent molecular dipole moment, such as water, is known by the Debye equation, for those with induced dipole moment by the Clausius-Mossotti equation.
  • the functional relationship between the measured capacitance of the electrodes and the dielectric polarization and temperature of the dielectric fluid is shown as a numerical algorithm in the program of a microcomputer.
  • the numerical algorithm in the program sequence of this computer determines the heat flow through the field-generating electrode arrangement from the measured capacitance and the temperature of the homogeneous fluid section enclosed by the electrodes together with the flow velocity determined according to the invention and the known specific heat capacity of the fluid.
  • the embodiments of the device according to the invention are particularly suitable for electrostatic convection drive dielectric and ferroelectric fluids and are advantageous for use in convection circuits for cooling or heating of electrical, electronic or micromechanical assemblies in engine and transmission control units of Motor vehicles and machinery that must meet high standards of robustness, maintenance and durability.
  • the embodiments of the device according to the invention are suitable for use in mobile, electronic terminals such as laptops, PDAs, etc., whose batteries have low charge capacity and do not allow a power-consuming, electrically drivenméungskonvetation using pumps or blowers.
  • the invention is suitable as an additional drive for circulating the liquid phase of the heat exchange medium in a heat pipe (heat pipe) with self-sustaining convection.
  • the electrodes and flow channels of the device according to the invention are suitable in miniaturized form for embedding in multilayer electronic printed circuit boards or ceramic substrates; the electrodes may be interconnected with the electronic assemblies and used as capacitors of variable capacitance in the microelectronic or mechanical assemblies to be cooled or heated.
  • Embodiments of the invention with a one-piece outer electrode which is designed as a closed outer wall of the flow channel, are completely shielded electromagnetically.
  • the signal integrity of electronic components and interconnects is not affected, there is no electromagnetic interference at the electrodes during the transient excitation of the electric feed field.
  • Figures 1 to 23 each show sections of embodiments of the device according to the invention in longitudinal section along the feed direction of the heat exchange medium again.
  • illustration 1 shows a first embodiment 1 of the device according to the invention for conveying a heat exchange medium 2, the first dielectric fluid portion 3 'with a first permittivity ⁇ 1 , a second dielectric fluid portion 4' with a second permittivity ⁇ 2 and a third dielectric fluid portion 5 'with a third Permittivity ⁇ 3 , wherein the second permittivity ⁇ 2 of the third and first permittivity ⁇ 3 , ⁇ 1 is different.
  • the non-mixing fluids 3, 4 and 5 form dielectric interfaces 16 and thus in the flow direction of the heat exchange medium second layered dielectric.
  • a one-piece, closed outer electrode 12 is provided, which is formed as an outer wall 12 'of a flow channel 6 and individual, separate inner electrodes 7, 8, 9 and 10 encloses, which are arranged along the feed direction and form a multi-part designed inner electrode 11.
  • the outer electrode 12 and the inner electrode 11 are galvanically separated from each other.
  • the outer electrode 12 and the inner electrodes 7, 8, 9, 10 of an electrode assembly 14 have gaps forming the flow channel 6 in which the heat exchange medium 2 flows.
  • a first plate-shaped outer electrode 12 and a second plate-shaped, separated from the outer electrode 12 outer electrode 13 are provided. Furthermore, the internal electrodes 7, 8, 9, 10 are plate-shaped and separated from the external electrodes 12 and 13.
  • the outer electrodes 12 and 13 are designed as outer walls 12 ', 13' of the flow channel 6, which receives the heat exchange medium 2. The other outer walls of the flow channel 6 parallel to the paper plane are in the sectional view illustration 1 not shown.
  • Figure 2 shows the first embodiment 1, wherein it is associated with an electronic voltage control device 17, which has independently controlled electrical voltage sources U 0 , U 1 , U 2 , U 3 and U 4 .
  • Each of these voltage sources U 0 , U 1 , U 2 , U 3 and U 4 is electrically connected via a single line 21 with exactly one of the internal electrodes 7, 8, 9, 10.
  • the electrodes 7, 8, 9, 10 can be charged and discharged independently of each other.
  • the outer electrodes 12 and 13 are electrically connected to a ground potential 18.
  • each of the internal electrodes 7, 8, 9, 10 is connected via separate individual lines 21 to exactly one of the charge sources of an electronic charge control device 20.
  • the electrode assembly 14 may be interconnected by means of the voltage control device 17 or the charge control device 20 to a capacitive capacitive network (capacitance matrix).
  • FIGS 3 to 8 show successive advancing steps 24, 25, 26 of a first embodiment of the method according to the invention in the first embodiment 1 of the device with the local excitation of an electric feed field 19 by means of voltage or charge controlled charging and discharging of the field exciting electrode assembly 14.
  • the local electrical field excitation 19 "remains at a fixed electrode voltages or electrode charges until a feed force 27 'has subsided on the interface 16.
  • a local electric field 19 ' which is ahead of the interface 16 in the feed direction 27 and the force acting on the interface 16 feed force 27' causes.
  • the fluid portion 4 'with the higher permittivity t ⁇ 2> ⁇ 1 aims in the field-filled space of the electrode assembly 14 and displaces fluid 3 with the lower permittivity ⁇ 1, whereby the heat exchange medium 2 'continues to flow due to the cohesive forces in the fluids 3, 4 in total through the flow channel 6 in the direction of the feed force 27 ,
  • the feed step 24, 25, 26 is completed; the next step is initiated by the field excitation by means of the voltage control device 17 or the charge control device 20 on in the feed direction 27 adjacent electrodes of the assembly 14 passes.
  • FIGS 3 to 5 show the advance of the heat exchange medium 2 in the first embodiment 1 at temporarily held, connected to the voltage control device 17 electrode voltages.
  • the inner electrode 8 and the outer electrode 12 excite a local electric field 19 'in their space by the voltage control device 17 applying a voltage U c between the inner electrode 8 and the outer electrode 12.
  • the feed field 19 draws the dielectric interface 16 into the interspace of the inner electrode 8 and the outer electrode 12.
  • the voltage control device 17 lowers in the conveying step 26 Figure 5 the voltage applied between the electrodes 8 and 12 to zero, the electric feed field 19 'is limited to the gap of the inner electrode 9 and outer electrode 12, where it exerts a feed force 27' on the heat exchange medium 2 in the vicinity of the advanced dielectric interface 16.
  • the electrode arrangement is cylindrical in sections, that is to say that the cross section and capacitance in this section remain constant along the direction of flow, the capacitance coating k and therefore the force F D are independent of the position of the dielectric interface 16.
  • FIGS 6 to 8 show advancing steps of the heat exchange medium 2 under progress of the electric field excitation 19 "in the first embodiment 1 with temporarily held electrode charges applied and removed with the charge control device 20.
  • the charge control device 20 applies the charge Qc from a charge source to the inner electrode 8, the outer electrode 12 is at ground potential 18.
  • the electrodes 8 and 12 excite a local electric field 19 'in their space into which the interface 16 pushes.
  • the charge control device 20 follows in the conveying step 25 Figure 7 on the inner electrode 9, the charge -Qc on. This results in the charge difference 2 * Qc on the internal electrodes 8 and 9 and the electric field 19 'draws the dielectric interface 16 into the interspace of the electrodes 8 and 9.
  • the charge control device 20 follows in the conveying step 26 Figure 8 the charge Qc from the inner electrode 8 from.
  • the electric feed field 19 is thus limited to the interspace of the inner electrode 9 and outer electrode 12, where it exerts a feed force 27 'on the heat exchange medium 2 in the region of the advanced dielectric interface 16.
  • the force F D decreases with increasing penetration depth h and capacity C (h).
  • Figure 9 shows a second embodiment 31 of the device according to the invention, which comprises a one-piece, in the flow direction 30 of the heat exchange medium 2 continuous inner electrode 11 and a one-piece, closed outer wall 40, which consists of an electrically insulating material.
  • Arranged along the flow direction 30 are isolated outer electrodes 32 which are electrically separated from one another and which are embedded in or attached to the outer wall 40.
  • the outer electrodes 32 and the inner electrode 11 are electrically separated from each other.
  • the space between the inner electrode 11 and the flow wall 40 'formed by the outer wall 40 and the outer electrodes 32 forms the flow channel 6 of the heat exchange medium 2.
  • the outer walls 40 and an outer wall 41 are plate-shaped made of electrically insulating material, the inner electrode 11 and outer electrodes 32 are also of plate-like shape.
  • the other lateral outer walls of the flow channel 6 are in Figure 9 not played.
  • the outer walls 40 and 41, the inner electrode 11 and the outer electrodes 32 may be of circular or rectangular cross-section.
  • Figure 10 3 shows a third embodiment 33 of the device according to the invention, which is evident from the second embodiment 31 in that the first embodiment 1 replaces the inner electrode 11 of the second embodiment 31.
  • the continuous, closed outer electrodes 12 and 13 of the embedded In Embodiment 1 in the embodiment 33, inner electrodes are opposed to the separated, separated outer electrodes 32.
  • an outer flow channel 60 in which another, the fluid sections 37 'and 38' having heat exchange medium 66 is driven independently and separately from the first heat exchange medium 2.
  • a first electric feed field 19 is excited in the inner flow channel 6 and a second electric feed field 19, which is independent of the first field 19, is excited in the outer flow channel 60.
  • FIG 11 shows a fourth embodiment 35 of the device according to the invention, which is apparent from the third embodiment 33 in that the internal electrodes 7, 8, 9 and 10 of the embedded first embodiment 1 omitted.
  • a gas phase 36 vapor phase
  • a heat pipe 34 heat pipe
  • Non-mixing liquid phases 37 and 38 of the heat exchange medium 66 flow as in the third embodiment 33 through the outer flow channel 60 opposite to the flow direction 30 of the gas phase 36.
  • FIG 12 shows a fifth embodiment 39 of the device according to the invention, wherein the inner electrode 11 as in the first embodiment 1 and the outer electrodes 32 and the outer walls 40 and 41 as in the second embodiment 31 are made in several parts and separated.
  • the electrodes 11 and 32 are aligned flush at their ends in the flow direction 30 and may be designed in sections as a closed tube or plate-shaped.
  • each of the electrodes 11 and 32 is electrically connected to exactly one independently controllable voltage source U A1 -U A4 , U B1 -U B4 , U E1 -U E4 of the voltage control device 17 or exactly one independently controllable charge source of the charge control device 20.
  • Figure 13 shows a sixth embodiment 43 of the device according to the invention, which is apparent from the fifth embodiment 39 in that the ends of the outer electrodes 32 and inner electrodes 11 are arranged offset in the flow direction 30.
  • Figure 14 shows a seventh embodiment 44 of the device according to the invention, which is apparent from the sixth embodiment 43 in that the internal electrodes 11 omitted together with the connected voltage control device 17 or charge control device 20.
  • Figure 15 shows an eighth embodiment 47 of the device according to the invention, which emerges from the seventh embodiment 44 in that the ends of the outer wall 40 embedded in the outer electrodes 32 opposite to the ends of the embedded outer wall in the outer wall 41 outer electrodes 32 are arranged offset in the flow direction 30 against each other.
  • Figures 16 to 19 show a second implementation of the method according to the invention in the eighth embodiment 44 of the device with an electrode-spanning and advancing in the direction 27 advancing field excitation 19 "by three electrodes 32.
  • the electric field lines deform the dielectric boundary layer 16 obliquely to the feed direction 27. Die Representation gives the field lines only qualitatively correct, surface tensions and capillary forces are disregarded.
  • Figures 20 to 23 show a third implementation of the method according to the invention in the eighth embodiment 44 of the device with progressive field excitation 19 "by means of a pair transverse to the feed direction 27 of oppositely disposed electrodes 32.
  • the electric field lines distort the dielectric interface 16 qualitatively similar shown in Figures 16 to 19.
  • FIGS. 24 and 25 show a ninth embodiment 47 and a tenth embodiment 48 of the device according to the invention, each in cross section, the paper plane of the illustration being orthogonal to the flow direction 30 or feed direction 27.
  • a high capacitance covering and thus a high feed force 27 ' are achieved in that the thin internal electrodes 49 are arranged in a layered or wound manner.
  • an electrolytic carrier film as used in electrolytic capacitors or a plastic dielectric, which occurs in film capacitors, a permeable in the feed direction 27 support film 50 is provided.
  • Figure 24 shows a layer arrangement of plate-shaped, individual electrodes 49, which are enclosed by a closed, electrically conductive flow wall 12 of rectangular cross section, which is at ground potential 18.
  • the electrodes 49 and the flow wall 12 are arranged separately from each other. Furthermore, the electrical connection of the internal electrodes 49 with an electric voltage source of the voltage control device 17 or a charge source of the charge control device 20 is provided.
  • Figure 25 shows a radial layer arrangement of circular, individual electrodes 49, which are enclosed by a closed, electrically conductive flow wall 12 of rectangular cross-section, which is at ground potential 18.
  • the electrodes 49 and the flow wall 12 are arranged separately from each other. Furthermore, the electrical connection of the internal electrodes 49 with an electric voltage source of the voltage control device 17 or a charge source of the charge control device 20 is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Förderung fluider Medien.The invention relates to a device and a method for conveying fluid media.

Stand der TechnikState of the art

Zur Kühlung elektrischer, elektronischer oder mikromechanischer Baugruppen und integrierter Schaltungen ist die mittels Turbo- oder Verdrängerpumpen angetriebene Konvektion flüssiger oder gasförmiger Fluide verbreitet. Das umgewälzte Fluid nimmt die Wärme an der heißen, kleinen Oberfläche des zu kühlenden Bauelements mittels thermischer Diffusion auf und überträgt sie auf einen Wärmetauscher mit großer Oberfläche in Gestalt dünner Lamellen oder Rippen auf der Systemoberfläche, in der Regel das gut wärmeleitende Gehäuse der Baugruppe. Günstig wirkt sich Medienströmung an der Außenoberfläche aus, sie wirkt Grenzschichteffekten entgegen, die den Wärmetransfer ungünstig beeinflussen.For cooling electrical, electronic or micromechanical assemblies and integrated circuits driven by turbo or positive displacement pumps convection of liquid or gaseous fluids is widespread. The recirculated fluid absorbs the heat at the hot, small surface of the component to be cooled by means of thermal diffusion and transfers it to a heat exchanger with a large surface in the form of thin fins or ribs on the system surface, usually the well-conductive housing of the assembly. Conveniently affects media flow on the outer surface, it counteracts boundary layer effects that adversely affect the heat transfer.

Die mittels Pumpen oder Gebläsen angetriebene (erzwungene) Kühlmittelumwälzung erfordert gegenüber dem passiven Wärmetransfer durch thermische Diffusion einen erhöhten konstruktiven Aufwand. Zudem wird elektrische oder mechanische Antriebsleistung aufgenommen und damit die Gesamtverlustleistung erhöht.The driven by pumps or blowers (forced) coolant circulation requires compared to the passive heat transfer by thermal diffusion increased design effort. In addition, electrical or mechanical drive power is absorbed and thus increases the total power loss.

Verbreitet ist die Kühlung leistungselektronischer Bauelemente wie Endstufen-Transistoren und Spannungswandler sowie hochintegrierter Mikrorechnern und anderer Digitalschaltungen (ASICs) im Betrieb mit hohen Taktraten durch Umwälzung von Luft oder Wasser mittels Verdränger- oder Turbopumpen (Gebläsen) insbesondere im Fall hoher lokaler Verlustleistungsdichten und thermisch ungünstiger Betriebsumgebungen. Neben Wasser oder Luft werden zur Kühlung elektronischer Steuergeräte in Maschinenanlagen oder Motor- und Getriebesteuergeräten von Kraftfahrzeugen auch Kraftstoffe oder Öle als Wärmeaustauschmedien verwendet.Cooling of power electronic components such as output stage transistors and voltage transformers and highly integrated microcomputers and other digital circuits (ASICs) is widely used in operation at high clock rates by circulation of air or water by means of positive displacement or turbopumps (blowers), especially in the case of high local power dissipation densities and thermally unfavorable operating environments , Be beside water or air For cooling electronic control units in machinery or engine and transmission control devices of motor vehicles also fuels or oils used as heat exchange media.

Die Kühlung elektronischer Motorsteuergeräte im Kraftfahrzeugbau etwa mittels Kraftstoff-Umwälzung stellt hohe, kostenträchtige Anforderungen an die Dauerhaltbarkeit und Dauerdichtheit der Rohrleitungen, Pumpen, Ventile und Wärmetauscher. Schon der Austritt kleiner Kraftstoffmengen aus dem Kühlkreislauf führt in der Regel zum Ausfall der Elektronik.The cooling of electronic engine control units in the automotive industry, for instance by means of fuel circulation, places high, costly demands on the durability and permanent tightness of the pipelines, pumps, valves and heat exchangers. Even the escape of small amounts of fuel from the cooling circuit usually leads to the failure of the electronics.

Bekannt ist weiterhin die passive Fluidumwälzung nach dem Prinzip der selbst aufrechterhaltenden Konvektion, insbesondere die im Bereich der Computerelektronik verbreitete "heat pipe". Sie ist ein hermetisch abgeschlossenes System zum Wärmetransfer mittels Verdampfungskühlung und selbst aufrechterhaltender Kühlmittelkonvektion. Die Siedetemperatur des verwendeten Fluids liegt im thermischen Betriebsbereich der zu kühlenden Wärmequelle. Die Flüssigphase benetzt die Innenwand eines dünnen Rohres, die Gasphase kann angetrieben vom Dampfdruck im Inneren des Rohres zur Wärmesenke strömen und die Verdampfungswärme dort durch Kondensation auf einen Wärmetauscher übertragen. Die Dicke der die Innenrohrwand benetzenden Flüssigkeitsschicht ist durch den Kapillareffekt begrenzt, der nur verhältnismäßig kleine Rohrdurchmesser zulässt und damit den Wärmestromquerschnitt der heat pipe einschränkt.Also known is the passive fluid circulation according to the principle of self-sustaining convection, especially the widespread in the field of computer electronics "heat pipe". It is a hermetic system for heat transfer by means of evaporative cooling and self-sustaining coolant convection. The boiling temperature of the fluid used is in the thermal operating range of the heat source to be cooled. The liquid phase wets the inner wall of a thin tube, the gas phase can flow driven by the vapor pressure inside the tube to the heat sink and transfer the heat of vaporization there by condensation on a heat exchanger. The thickness of the liquid layer wetting the inner tube wall is limited by the capillary effect, which allows only relatively small tube diameter and thus limits the heat flow cross section of the heat pipe.

Weiterhin ist die elektrische Kühlung mittels Peltier-Elementen auf Grundlage des thermoelektrischen Peltier-Effekts bekannt. Solche Elemente bestehen aus zwei miteinander verbundenen Halbleitern, deren Leitungsbandunterkanten auf unterschiedlichen Energieniveaus liegen. Liegt über der Grenzschicht zwischen den Halbleitern eine elektrische Spannung an, sodass ein elektrischer Strom vom Halbleiter mit der energetisch höheren Leitungsbandkante (Wärmequelle) zum Halbleiter mit der energetisch niedrigeren Leitungsbandkante (Wärmesenke) fließt, kommt mit dem elektrischen Leitungsstrom auch ein Wärmestrom von der Wärmequelle zur -senke zustande. Die aus der Wärmequelle in die Wärmesenke übertretenden Elektronen übertragen durch Relaxation an die niedrigere Leitungsbandunterkante einen Teil ihrer in der Wärmequelle aufgenommenen thermischen Anregungsenergie auf das Kristallgitter der Wärmesenke.Furthermore, the electric cooling by means of Peltier elements based on the thermoelectric Peltier effect is known. Such elements consist of two interconnected semiconductors whose conduction band lower edges are at different energy levels. If an electrical voltage is present across the boundary layer between the semiconductors, so that an electric current flows from the semiconductor with the energetically higher conduction band edge (heat source) to the semiconductor with the energetically lower conduction band edge (heat sink), a heat flow from the heat source also comes with the electrical conduction current sinking. The electrons that pass from the heat source into the heat sink transmit a part of their in the. By relaxation to the lower conduction band lower edge Heat source absorbed thermal excitation energy on the crystal lattice of the heat sink.

Diesem thermoelektrisch induzierten Wärmestrom wirkt die Wärmediffusion entgegen, zudem erwärmen unvermeidliche ohmsche Verluste die halbleitenden Materialien. Der thermische Wirkungsgrad von Peltierelementen ist deshalb im Verhältnis zu anderen bekannten Kühlmechanismen gering. Zudem beanspruchen sie unter Umständen mehr Bauraum als die zu kühlenden elektronischen Bauelemente selbst. Peltierelemente sind zudem verhältnismäßig teuer und kommen deshalb für die breite Anwendung in der Regel nicht in Betracht.This thermoelectrically induced heat flow counteracts the heat diffusion, in addition, unavoidable ohmic losses heat the semiconducting materials. The thermal efficiency of Peltier elements is therefore low in relation to other known cooling mechanisms. In addition, they may take up more space than the electronic components to be cooled themselves. Peltier elements are also relatively expensive and are therefore generally not suitable for widespread use.

Die Druckschrift US 4,396,055 A betrifft eine Vorrichtung gemäß dem Oberbegriff von Anspruch 10 zum Fördern eines dielektrischen Fluids in einem Wärmerohr entlang eines Strömungspfads.The publication US 4,396,055 A relates to an apparatus according to the preamble of claim 10 for conveying a dielectric fluid in a heat pipe along a flow path.

Offenbarung der ErfindungDisclosure of the invention

Erfindungsgemäß sind eine Vorrichtung nach Anspruch 10 und ein Verfahren nach Anspruch 1 zur Förderung mindestens eines Wärmeaustauschmediums vorgesehen, das mindestens ein erstes Fluid aufweist mit einer ersten Permittivität und ein mindestens zweites Fluid aufweist mit einer zweiten Permittivität, die von der Permittivität des ersten Fluids verschieden ist, wobei sich das erste Fluid in der Flüssigphase nicht mit dem zweiten Fluid in der Flüssigphase mischt, wodurch zwischen dem ersten und dem zweiten Fluid mindestens eine dielektrische Grenzfläche zustande kommt. Die mindestens zwei Fluide verschiedener Permittivität bilden somit ein geschichtetes Dielektrikum und können aus homogenen Stoffen oder Stoffgemischen bestehen oder aus inhomogenen Gemischen wie Emulsionen oder Suspensionen zusammengesetzt sein.According to the invention, an apparatus according to claim 10 and a method according to claim 1 are provided for conveying at least one heat exchange medium having at least a first fluid having a first permittivity and at least a second fluid having a second permittivity different from the permittivity of the first fluid wherein the first fluid in the liquid phase does not mix with the second fluid in the liquid phase, whereby at least one dielectric interface is established between the first and second fluids. The at least two fluids of different permittivity thus form a layered dielectric and may consist of homogeneous substances or substance mixtures or be composed of inhomogeneous mixtures such as emulsions or suspensions.

Die erfindungsgemäße Vorrichtung umfasst eine kapazitive Anordnung, die mindestens zwei benachbarte Elektroden aufweist, in deren Zwischenräume sich mindestens ein Strömungskanal erstreckt, in dem das mindestens eine Wärmeaustauschmedium fließt. Erfindungsgemäß ist jede Elektrode mit genau einer elektrischen Spannungsquelle einer Spannungssteuervorrichtung oder mit genau einer elektrischen Ladungsquelle einer Ladungssteuervorrichtung verbunden, wobei jede Elektrode unabhängig von den übrigen Elektroden geladen und entladen werden kann.The device according to the invention comprises a capacitive arrangement which has at least two adjacent electrodes, in whose interspaces at least one flow channel extends, in which the at least one heat exchange medium flows. According to the invention, each electrode is provided with exactly one electrical voltage source of a voltage control device or with exactly one electric charge source of a charge control device each electrode can be charged and discharged independently of the other electrodes.

Weiterhin ist die Erregung mindestens eines elektrischen Felds mittels der erfindungsgemäßen Elektrodenanordnung im mindestens einen Strömungskanal vorgesehen, wobei das Feld insbesondere in den Umgebungen dielektrischer Grenzflächen der mindestens zwei Fluide unterschiedlicher Permittivität im Wärmeaustauschmedium erregt wird.Furthermore, the excitation of at least one electric field is provided by means of the electrode arrangement according to the invention in at least one flow channel, wherein the field is excited in the heat exchange medium in particular in the environments of dielectric interfaces of at least two fluids of different permittivity.

Das elektrische Feld ruft in den Umgebungen der dielektrischen Grenzflächen Vorschubkräfte hervor, die in Richtung zunehmender Kapazität der felderregenden Elektroden wirken. Die Fluidabschnitte höherer Permittivität streben in die felderfüllten Zwischenräume der Elektroden und verdrängen die Fluidabschnitte niedrigerer Permittivität, wodurch das Wärmeaustauschmedium aufgrund der Kohäsionskräfte in den Fluiden insgesamt in Richtung der Vorschubkräfte voranschreitet. Diese Wirkung stellt sich sowohl bei festgehaltener Spannung als auch festgehaltener Ladung der felderregenden Elektroden ein und ist unabhängig von der lokalen Orientierung des elektrischen Feldvektors, da sich die molekularen Dipolmomente dielektrischer Fluide und ferroelektrischer Kolloide abgesehen von thermischen Schwankungen vorzugsweise parallel zum lokalen elektrischen Feld ausrichten (Orientierungspolarisation).The electric field induces feed forces in the environments of the dielectric interfaces which act in the direction of increasing the capacitance of the field-exciting electrodes. The fluid portions of higher permittivity seek into the field-filled interstices of the electrodes and displace the fluid portions of lower permittivity whereby the heat exchange medium advances in the direction of advancing forces due to cohesive forces in the fluids as a whole. This effect is achieved both with the voltage and charge of the field-conducting electrodes being fixed and is independent of the local orientation of the electric field vector, since the molecular dipole moments of dielectric fluids and ferroelectric colloids are preferably parallel to the local electric field apart from thermal fluctuations (orientation polarization) ).

Ferner ist nach einer Weiterbildung der Erfindung ein Verfahren zur Bestimmung der Kapazität felderregender Elektroden (Kapazitanzmatrix) und weiterhin zur Lagebestimmung dielektrischer Grenzflächen zwischen Fluiden unterschiedlicher Permittivität vorgesehen. An den Klemmen der Elektrodenanordnung ist eine kapazitive Messvorrichtung angeschlossen, etwa eine kapazitive Messbrücke. Die Bewegung einer dielektrischen Grenzfläche aufgrund des elektrischen Vorschubfeldes verändert die Kapazität derjenigen felderregenden Elektroden, in deren Einflussbereich die dielektrische Grenzfläche liegt. Mit der Spannungssteuervorrichtung werden die an den felderregenden Elektroden anliegenden Spannungen variiert. Ändert sich dadurch die Kapazität der Elektroden, dann befindet sich eine dielektrische Grenzfläche im Elektrodenzwischenraum. Ändert sich hingegen die Kapazität der Elektroden nicht, so ist der Strömungskanalabschnitt im Elektrodenzwischenraum homogen mit einem einzigen Fluid ausgefüllt. Auf diese Weise wird die Lage aller dielektrischen Grenzflächen erkannt. Die Kapazität (Kapazitanzmatrix) der felderregenden Elektroden mit homogenem sowie geschichtetem Dielektrikum kann empirisch oder mittels numerischer Methoden gefunden werden, im Fall einer einfachen oder symmetrischen Elektrodengeometrie wie im Fall eines Plattenkondensators oder kreiszylindrischen Kondensators auch analytisch bekannt sein.Furthermore, according to a development of the invention, a method for determining the capacitance of field-exciting electrodes (capacitance matrix) and furthermore for determining the position of dielectric interfaces between fluids of different permittivity is provided. At the terminals of the electrode assembly, a capacitive measuring device is connected, such as a capacitive measuring bridge. The movement of a dielectric interface due to the electric feed field changes the capacitance of those field-exciting electrodes, in the influence of which the dielectric interface lies. With the voltage control device, the voltages applied to the field-exciting electrodes are varied. If this changes the capacitance of the electrodes, then there is a dielectric interface in the electrode gap. On the other hand, if the capacitance of the electrodes does not change, then the flow channel section in the electrode interstice is homogeneously filled with a single fluid. In this way, the position of all dielectric interfaces is detected. The capacity (capacitance matrix) of the field-exciting electrodes with a homogeneous and layered dielectric can be found empirically or by numerical methods, in the case of a simple or symmetrical electrode geometry as in the case of a plate capacitor or circular cylindrical capacitor also be known analytically.

Nach der Erfindung ist ferner vorgesehen, dass das Verfahren mittels fortschreitender, spannungs- oder ladungsgesteuerter Aufladung und Entladung der erfindungsgemäßen Elektrodenanordnung eine in Vorschubrichtung fortschreitende Erregung eines elektrischen Feldes im mindestens einen Strömungskanal des mindestens einen Wärmeaustauschmediums hervorruft, insbesondere in Bereichen dielektrischer Grenzflächen zwischen den mindestens zwei im Wärmeaustauschmedium enthaltenen Fluiden verschiedener Permittivität. In jedem der Vorschubschritte hält die Elektrodenanordnung eine den dielektrischen Grenzflächen in Vorschubrichtung vorauseilende elektrische Felderregung solange aufrecht, bis die Vorschubkräfte abgeklungen sind und die Kapazität der felderregenden Elektroden nicht mehr zunimmt. Erfindungsgemäß werden nun die Ladungen mit der Spannungs- oder Ladungssteuervorrichtung auf die in Vorschubrichtung benachbarten Elektroden übertragen, die parallelgeschaltet sein können, um ihre Kapazität zu erhöhen, und der nächste Vorschubschritt durchgeführt.According to the invention, it is further provided that the method by means of progressive, voltage or charge controlled charging and discharging of the electrode assembly according to the invention causes a propagating in the advancing direction excitation of an electric field in at least one flow channel of the at least one heat exchange medium, in particular in areas of dielectric interfaces between the at least two Fluids of different permittivity contained in the heat exchange medium. In each of the advancing steps, the electrode assembly maintains an electrical field excitation leading the dielectric interfaces in the advancing direction until the advancing forces have decayed and the capacitance of the field-exciting electrodes no longer increases. According to the invention, the charges are now transferred with the voltage or charge control device to the adjacent electrodes in the feed direction, which may be connected in parallel to increase their capacity, and carried out the next feed step.

Erfindungsgemäß lädt das Vorschubverfahren mittels Spannungs- oder Ladungssteuervorrichtung fortschreitend nur solche Elektroden auf, in deren Zwischenräumen mit dem vorangehend beschriebenen Verfahren zur Kapazitätsbestimmung dielektrische Grenzflächen aufgefunden werden. Somit ist die elektrische Felderregung energetisch günstig auf die Umgebungen der Grenzflächen beschränkt, da nur dort Vorschubkräfte auf das Wärmeaustauschmedium wirken. Das elektrische Vorschubfeld wird lokal erregt und solange aufrechterhalten, bis die Kapazität der felderregenden Elektroden nicht mehr zunimmt und die beeinflusste dielektrische Grenzfläche nicht mehr fortschreitet, womit der Vorschubschritt endet.According to the invention, the feed method by means of a voltage or charge control device progressively charges only those electrodes in whose interstices dielectric interfaces are found with the above-described method for determining the capacitance. Thus, the electrical field excitation is energetically favorable limited to the environments of the interfaces, since only there act feed forces on the heat exchange medium. The electric feed field is locally energized and maintained until the capacitance of the field-exciting electrodes no longer increases and the affected dielectric interface no longer progresses, thus ending the feed step.

Nach einer Weiterbildung des erfindungsgemäßen Verfahrens werden die Vorschubschritte mit zeitweise festgehaltenen Spannungen an den Elektrodenklemmen oder zeitweise festgehaltenen Ladungen auf den Elektroden durchgeführt.According to a development of the method according to the invention, the feed steps with temporarily held voltages to the Electrode terminals or temporarily held charges carried on the electrodes.

Nach einer Weiterbildung der Erfindung überlagert die Spannungs- oder Ladungssteuervorrichtung dem fortschreitend erregten elektrischen Vorschubfeld ein statisches elektrisches Feld, das dem Austritt der im Wärmeaustauschmedium enthaltenen dielektrischen Fluide aus der erfindungsgemäßen Vorrichtung entgegenwirkt, sofern die Permittivität des die erfindungsgemäße Vorrichtung umgebenden Mediums geringer ist als die Permittivität der Fluide im Wärmeaustauschmedium.According to a development of the invention, the voltage or charge control device superimposed on the progressively excited electric feed field a static electric field, which counteracts the escape of the dielectric fluids contained in the heat exchange medium from the device according to the invention, if the permittivity of the medium surrounding the device according to the invention is less than the permittivity the fluids in the heat exchange medium.

Nach einer Weiterbildung der Erfindung besteht mindestens eines der Fluide des Wärmeaustauschmediums aus einem homogenen ferroelektrischen Stoff, insbesondere einem ferroelektrischen Flüssigkristall, oder aus einer Suspension oder Emulsion, die ferroelektrische Kolloide enthält.According to a development of the invention, at least one of the fluids of the heat exchange medium consists of a homogeneous ferroelectric substance, in particular a ferroelectric liquid crystal, or of a suspension or emulsion containing ferroelectric colloids.

Nach einer Weiterbildung der Erfindung weist das Wärmeaustauschmedium mindestens einen ersten Fluidabschnitt auf, der aus der Flüssigphase eines dielektrischen Fluids besteht und mindestens einen weiteren Fluidabschnitt, der aus der Dampfphase dieses ersten Fluids besteht.According to a development of the invention, the heat exchange medium has at least one first fluid section, which consists of the liquid phase of a dielectric fluid, and at least one further fluid section, which consists of the vapor phase of this first fluid.

Nach einer Weiterbildung der Erfindung liegt die Siedetemperatur mindestens eines der im Wärmeaustauschmedium enthaltenen Fluide im thermischen Betriebsbereich der mindestens einen zu kühlenden Wärmequelle oder der mindestens einen zu erwärmenden Wärmesenke.According to a development of the invention, the boiling temperature of at least one of the fluids contained in the heat exchange medium is in the thermal operating range of the at least one heat source to be cooled or the at least one heat sink to be heated.

Nach einer Weiterbildung der Erfindung ist ein Verfahren zur Bestimmung der Strömungsgeschwindigkeit mindestens einer dielektrischen Grenzfläche zwischen Fluidabschnitten unterschiedlicher Permittivität vorgesehen, wobei die zeitliche Veränderung der Kapazität felderregender Elektroden, in deren Zwischenraum sich eine mit dem Wärmeaustauschmedium fließende dielektrische Grenzfläche befindet, bestimmt wird.According to a development of the invention, a method is provided for determining the flow velocity of at least one dielectric interface between fluid sections of different permittivity, wherein the temporal change of the capacitance of field-exciting electrodes, in the interspace of which is a flowing with the heat exchange medium dielectric interface is determined.

Nach einer Weiterbildung der Erfindung ist, ausgehend vom Verfahren zur Bestimmung der Strömungsgeschwindigkeit, ein Verfahren vorgesehen, das mittels zeitlicher Korrelation der Kapazitätsvariation verschiedener Elektroden, in deren Zwischenräume dielektrische Grenzflächen zwischen Fluidabschnitten verschiedener Permittivität eingedrungen sind, die Länge homogener Fluidabschnitte bestimmt.According to a development of the invention, starting from the method for determining the flow velocity, a method is provided which by means of temporal correlation of the capacitance variation of different electrodes, in whose interspaces dielectric interfaces between fluid sections of different permittivity have penetrated, the length of homogeneous fluid sections is determined.

Nach einer Weiterbildung der Erfindung ist ausgehend vom Verfahren zur Bestimmung der Elektrodenkapazität und Lagebestimmung dielektrischer Grenzflächen zwischen Fluidabschnitten unterschiedlicher Permittivität ein Verfahren zur Bestimmung der Fluiddichte und Fluidtemperatur vorgesehen. Hierin werden nach dem vorhergehend beschriebenen Verfahren diejenigen felderregenden Elektroden aufgefunden, deren Zwischenraum ein homogener Fluidabschnitt des Wärmeaustauschmediums ausfüllt. Die gemessene Kapazität hängt bei homogener dielektrischer Füllung nur von der temperaturabhängigen dielektrischen Orientierungspolarisation des Fluids ab. Der Zusammenhang zwischen Temperatur und Polarisation in Fluiden mit permanentem, molekularem Dipolmoment, wie zum Beispiel Wasser, ist durch die Debye-Gleichung, für solche mit induziertem Dipolmoment durch die Clausius-Mossotti-Gleichung bekannt. Erfindungsgemäß ist der funktionale Zusammenhang zwischen der gemessenen Kapazität der Elektroden sowie der dielektrischen Polarisation und Temperatur des dielektrischen Fluids als numerischer Algorithmus im Programm eines Mikrorechners dargestellt.According to a development of the invention, starting from the method for determining the electrode capacitance and determining the position of dielectric interfaces between fluid sections of different permittivity, a method for determining the fluid density and fluid temperature is provided. Herein, according to the method described above, those field-exciting electrodes are found whose interspace fills a homogeneous fluid section of the heat exchange medium. With homogeneous dielectric filling, the measured capacitance depends only on the temperature-dependent dielectric orientation polarization of the fluid. The relationship between temperature and polarization in fluids with permanent molecular dipole moment, such as water, is known by the Debye equation, for those with induced dipole moment by the Clausius-Mossotti equation. According to the invention, the functional relationship between the measured capacitance of the electrodes and the dielectric polarization and temperature of the dielectric fluid is shown as a numerical algorithm in the program of a microcomputer.

Erfindungsgemäß bestimmt der numerische Algorithmus im Programmablauf dieses Rechners aus der gemessenen Kapazität sowie der Temperatur des von den Elektroden eingeschlossenen homogenen Fluidabschnitts zusammen mit der erfindungsgemäß bestimmten Fließgeschwindigkeit und der bekannten spezifischen Wärmekapazität des Fluids den Wärmestrom durch die felderregende Elektrodenanordnung.According to the invention, the numerical algorithm in the program sequence of this computer determines the heat flow through the field-generating electrode arrangement from the measured capacitance and the temperature of the homogeneous fluid section enclosed by the electrodes together with the flow velocity determined according to the invention and the known specific heat capacity of the fluid.

Die Ausführungen der erfindungsgemäßen Vorrichtung eignen sich insbesondere zum elektrostatischen Konvektionsantrieb dielektrischer sowie ferroelektrischer Fluide und kommen vorteilhaft zur Anwendung in Konvektionskreisen zur Kühlung oder Erwärmung elektrischer, elektronischer oder mikromechanischer Baugruppen in Motor- und Getriebe-Steuergeräten von Kraftfahrzeugen sowie Maschinenanlagen, die hohen Anforderungen hinsichtlich Robustheit, Wartungsfreiheit und Dauerhaftigkeit genügen müssen.The embodiments of the device according to the invention are particularly suitable for electrostatic convection drive dielectric and ferroelectric fluids and are advantageous for use in convection circuits for cooling or heating of electrical, electronic or micromechanical assemblies in engine and transmission control units of Motor vehicles and machinery that must meet high standards of robustness, maintenance and durability.

Weiterhin eignen sich die Ausführungen der erfindungsgemäßen Vorrichtung zur Anwendung in mobilen, elektronischen Endgeräten wie Laptops, PDAs, etc., deren Akkumulatoren über geringe Ladungskapazität verfügen und eine leistungszehrende, elektrisch angetriebene Kühlmittelkonvektion mittels Pumpen oder Gebläsen nicht zulassen. Ferner eignet sich die Erfindung als Zusatzantrieb zur Umwälzung der Flüssigphase des Wärmeaustauschmediums in einem Wärmeleitrohr (heat pipe) mit selbst aufrechterhaltender Konvektion.Furthermore, the embodiments of the device according to the invention are suitable for use in mobile, electronic terminals such as laptops, PDAs, etc., whose batteries have low charge capacity and do not allow a power-consuming, electrically driven Kühlungskonvektion using pumps or blowers. Furthermore, the invention is suitable as an additional drive for circulating the liquid phase of the heat exchange medium in a heat pipe (heat pipe) with self-sustaining convection.

Die Elektroden und Strömungskanäle der erfindungsgemäßen Vorrichtung eignen sich in miniaturisierter Form zur Einbettung in mehrlagige elektronische Leiterplatten oder Keramiksubstrate; die Elektroden können mit den elektronischen Baugruppen zusammengeschaltet und in den zu kühlenden oder erwärmenden mikroelektronischen oder -mechanischen Baugruppen als Kondensatoren variabler Kapazität verwendet werden.The electrodes and flow channels of the device according to the invention are suitable in miniaturized form for embedding in multilayer electronic printed circuit boards or ceramic substrates; the electrodes may be interconnected with the electronic assemblies and used as capacitors of variable capacitance in the microelectronic or mechanical assemblies to be cooled or heated.

Ausführungen der Erfindungen mit einteiliger Außenelektrode, die als geschlossene Außenwandung des Strömungskanals ausgebildet ist, sind elektromagnetisch vollständig geschirmt. Die Signalintegrität elektronischer Bauelemente und Leitbahnen ist nicht beeinträchtigt, es tritt keinerlei elektromagnetische Störaussendung an den Elektroden während der transienten Erregung des elektrischen Vorschubfelds auf.Embodiments of the invention with a one-piece outer electrode, which is designed as a closed outer wall of the flow channel, are completely shielded electromagnetically. The signal integrity of electronic components and interconnects is not affected, there is no electromagnetic interference at the electrodes during the transient excitation of the electric feed field.

Kurzbeschreibung der AbbildungenBrief description of the pictures

Die Abbildungen 1 bis 23 veranschaulichen vorteilhafte Ausführungsbeispiele der erfindungsgemäßen Vorrichtung im Längsschnitt entlang der Vorschubrichtung, die Abbildungen 24 und 25 im Querschnitt, und zwar zeigen:

Abbildung 1
Schnittansicht einer ersten Ausführungsform der erfindungsgemäßen Vorrichtung,
Abbildung 2
erste Ausführungsform, der eine elektrische Spannungs- oder Ladungssteuerungsvorrichtung zugeordnet ist,
Abbildung 3
erste Ausführungsform in einem ersten Vorschubschritt einer ersten Durchführungsart des Verfahrens bei festgehaltener Elektrodenspannung,
Abbildung 4
erste Ausführungsform in einem zweiten Vorschubschritt einer ersten Durchführungsart des Verfahrens bei festgehaltener Elektrodenspannung,
Abbildung 5
erste Ausführungsform in einem dritten Vorschubschritt einer ersten Durchführungsart des Verfahrens bei festgehaltener Elektrodenspannung,
Abbildung 6
erste Ausführungsform in einem ersten Vorschubschritt einer ersten Durchführungsart des Verfahrens bei festgehaltener Elektrodenladung,
Abbildung 7
erste Ausführungsform in einem zweiten Vorschubschritt einer ersten Durchführungsart des Verfahrens bei festgehaltener Elektrodenladung,
Abbildung 8
erste Ausführungsform in einem dritten Vorschubschritt einer ersten Durchführungsart des Verfahrens bei festgehaltener Elektrodenladung,
Abbildung 9
zweite Ausführungsform der erfindungsgemäßen Vorrichtung mit einteiliger Innenelektrode,
Abbildung 10
dritte Ausführungsform mit einer eingebetteten ersten Ausführungsform und zwei getrennten Strömungskanälen,
Abbildung 11
vierte Ausführungsform in Verbindung mit einem Wärmeleitrohr (heat pipe),
Abbildung 12
fünfte Ausführungsform in Verbindung mit elektrischen Spannungs- oder Ladungsquellen,
Abbildung 13
sechste Ausführungsform in Verbindung mit elektrischen Spannungs- oder Ladungsquellen,
Abbildung 14
siebte Ausführungsform ohne Innenelektroden in Verbindung mit elektrischen Spannungs- oder Ladungsquellen,
Abbildung 15
achte Ausführungsform ohne Innenelektroden mit versetzten Außenelektroden in Verbindung mit elektrischen Spannungs- oder Ladungsquellen,
Abbildung 16
achte Ausführungsform in einem ersten Vorschubschritt und Zustand der elektrischen Felderregung einer zweiten Durchführungsart des Verfahrens,
Abbildung 17
achte Ausführungsform in einem zweiten Vorschubschritt und Zustand der elektrischen Felderregung einer zweiten Durchführungsart des Verfahrens,
Abbildung 18
achte Ausführungsform in einem dritten Vorschubschritt und Zustand der elektrischen Felderregung einer zweiten Durchführungsart des Verfahrens,
Abbildung 19
achte Ausführungsform in einem vierten Vorschubschritt und Zustand der elektrischen Felderregung einer zweiten Durchführungsart des Verfahrens,
Abbildung 20
achte Ausführungsform in einem ersten Vorschubschritt und Zustand der elektrischen Felderregung einer dritten Durchführungsart des Verfahrens,
Abbildung 21
achte Ausführungsform in einem zweiten Vorschubschritt und Zustand der elektrischen Felderregung einer dritten Durchführungsart des Verfahrens,
Abbildung 22
achte Ausführungsform in einem dritten Vorschubschritt und Zustand der elektrischen Felderregung einer dritten Durchführungsart des Verfahrens,
Abbildung 23
achte Ausführungsform in einem vierten Vorschubschritt und Zustand der elektrischen Felderregung einer dritten Durchführungsart des Verfahrens,
Abbildung 24
Querschnitt einer neunten Ausführungsform mit ineinandergreifenden, geschichteten Plattenelektroden und zugeordneter elektrischer Spannungsquelle und
Abbildung 25
Querschnitt einer zehnten Ausführungsform mit radial geschichteten oder gewickelten kreiszylindrischen Elektroden und zugeordneter elektrischer Spannungsquelle.
Figures 1 to 23 illustrate advantageous embodiments of the device according to the invention in a longitudinal section along the feed direction, Figures 24 and 25 in cross-section, namely:
illustration 1
Sectional view of a first embodiment of the device according to the invention,
Figure 2
first embodiment, which is associated with an electrical voltage or charge control device,
Figure 3
first embodiment in a first feed step of a first embodiment of the method with the electrode voltage held closed,
Figure 4
first embodiment in a second feed step of a first embodiment of the method with the electrode voltage held closed,
Figure 5
first embodiment in a third feed step of a first embodiment of the method with the electrode voltage held closed,
Figure 6
first embodiment in a first feed step of a first embodiment of the method with the electrode charge held,
Figure 7
first embodiment in a second feed step of a first embodiment of the method when the electrode charge is held,
Figure 8
first embodiment in a third feed step of a first embodiment of the method when the electrode charge is held,
Figure 9
second embodiment of the device according to the invention with one-piece inner electrode,
Figure 10
third embodiment with an embedded first embodiment and two separate flow channels,
Figure 11
fourth embodiment in connection with a heat pipe,
Figure 12
fifth embodiment in connection with electrical voltage or charge sources,
Figure 13
sixth embodiment in connection with electrical voltage or charge sources,
Figure 14
Seventh embodiment without internal electrodes in connection with electrical voltage or charge sources,
Figure 15
eighth embodiment without internal electrodes with staggered external electrodes in connection with electrical voltage or charge sources,
Figure 16
eighth embodiment in a first advancing step and state of electric field excitation of a second embodiment of the method,
Figure 17
eighth embodiment in a second feed step and state of the electric field excitation of a second embodiment of the method,
Figure 18
eighth embodiment in a third feed step and state of the electric field excitation of a second embodiment of the method,
Figure 19
eighth embodiment in a fourth feed step and state of the electric field excitation of a second embodiment of the method,
Figure 20
eighth embodiment in a first advancing step and state of the electric field excitation of a third embodiment of the method,
Figure 21
eighth embodiment in a second feed step and state of the electric field excitation of a third embodiment of the method,
Figure 22
eighth embodiment in a third feed step and state of the electric field excitation of a third embodiment of the method,
Figure 23
eighth embodiment in a fourth feed step and state of the electric field excitation of a third embodiment of the method,
Figure 24
Cross section of a ninth embodiment with interlocking, layered plate electrodes and associated electrical voltage source and
Figure 25
Cross-section of a tenth embodiment with radially layered or wound circular cylindrical electrodes and associated electrical voltage source.

Ausführungsformen der ErfindungEmbodiments of the invention

Die Abbildungen 1 bis 23 geben jeweils Ausschnitte von Ausführungen der erfindungsgemäßen Vorrichtung im Längsschnitt entlang der Vorschubrichtung des Wärmeaustauschmediums wieder.Figures 1 to 23 each show sections of embodiments of the device according to the invention in longitudinal section along the feed direction of the heat exchange medium again.

Abbildung 1 zeigt eine erste Ausführung 1 der erfindungsgemäßen Vorrichtung zur Förderung eines Wärmeaustauschmediums 2, das einen ersten dielektrischen Fluidabschnitt 3' mit einer ersten Permittivität ε1, einen zweiten dielektrischen Fluidabschnitt 4' mit einer zweiten Permittivität ε2 und einen dritten dielektrischen Fluidabschnitt 5' mit einer dritten Permittivität ε3 aufweist, wobei die zweite Permittivität ε2 von der dritten und ersten Permittivität ε3, ε1 verschieden ist. Die nichtmischenden Fluide 3, 4 und 5 bilden dielektrische Grenzflächen 16 und damit ein in Fließrichtung des Wärmeaustauschmediums 2 geschichtetes Dielektrikum. Weiterhin ist eine einteilige, geschlossene Außenelektrode 12 vorgesehen, die als Außenwandung 12' eines Strömungskanals 6 ausgebildet ist und einzelne, voneinander getrennte Innenelektroden 7, 8, 9 und 10 umschließt, die entlang der Vorschubrichtrichtung angeordnet sind und eine mehrteilig ausgeführte Innenelektrode 11 bilden. Die Außenelektrode 12 und die Innenelektrode 11 sind galvanisch voneinander getrennt. Die Außenelektrode 12 und die Innenelektroden 7, 8, 9, 10 einer Elektrodenanordnung 14 weisen Zwischenräume auf, die den Strömungskanal 6 bilden, in dem das Wärmeaustauschmedium 2 fließt. illustration 1 shows a first embodiment 1 of the device according to the invention for conveying a heat exchange medium 2, the first dielectric fluid portion 3 'with a first permittivity ε 1 , a second dielectric fluid portion 4' with a second permittivity ε 2 and a third dielectric fluid portion 5 'with a third Permittivity ε 3 , wherein the second permittivity ε 2 of the third and first permittivity ε 3 , ε 1 is different. The non-mixing fluids 3, 4 and 5 form dielectric interfaces 16 and thus in the flow direction of the heat exchange medium second layered dielectric. Furthermore, a one-piece, closed outer electrode 12 is provided, which is formed as an outer wall 12 'of a flow channel 6 and individual, separate inner electrodes 7, 8, 9 and 10 encloses, which are arranged along the feed direction and form a multi-part designed inner electrode 11. The outer electrode 12 and the inner electrode 11 are galvanically separated from each other. The outer electrode 12 and the inner electrodes 7, 8, 9, 10 of an electrode assembly 14 have gaps forming the flow channel 6 in which the heat exchange medium 2 flows.

Nach einer Weiterbildung der ersten Ausführung 1 sind eine erste plattenförmige Außenelektrode 12 sowie eine zweite plattenförmige, von der Außenelektrode 12 getrennte Außenelektrode 13 vorgesehen. Weiterhin sind die Innenelektroden 7, 8, 9, 10 plattenförmig und von den Außenelektroden 12 und 13 getrennt ausgebildet. Die Außenelektroden 12 und 13 sind als Außenwandungen 12', 13' des Strömungskanals 6, der das Wärmeaustauschmedium 2 aufnimmt, ausgeführt. Die weiteren Außenwandungen des Strömungskanals 6 parallel zur Papierebene sind in der Schnittansicht nach Abbildung 1 nicht dargestellt.According to a development of the first embodiment 1, a first plate-shaped outer electrode 12 and a second plate-shaped, separated from the outer electrode 12 outer electrode 13 are provided. Furthermore, the internal electrodes 7, 8, 9, 10 are plate-shaped and separated from the external electrodes 12 and 13. The outer electrodes 12 and 13 are designed as outer walls 12 ', 13' of the flow channel 6, which receives the heat exchange medium 2. The other outer walls of the flow channel 6 parallel to the paper plane are in the sectional view illustration 1 not shown.

Abbildung 2 zeigt die erste Ausführung 1, wobei ihr eine elektronische Spannungssteuervorrichtung 17 zugeordnet ist, die über unabhängig gesteuerte elektrische Spannungsquellen U0, U1, U2, U3 und U4 verfügt. Jede dieser Spannungsquellen U0, U1, U2, U3 und U4 ist über eine Einzelleitung 21 mit genau einer der Innenelektroden 7, 8, 9, 10 elektrisch verbunden. Die Elektroden 7, 8, 9, 10 können unabhängig voneinander aufgeladen und entladen werden. Die Außenelektroden 12 und 13 sind elektrisch mit einem Massepotential 18 verbunden. Figure 2 shows the first embodiment 1, wherein it is associated with an electronic voltage control device 17, which has independently controlled electrical voltage sources U 0 , U 1 , U 2 , U 3 and U 4 . Each of these voltage sources U 0 , U 1 , U 2 , U 3 and U 4 is electrically connected via a single line 21 with exactly one of the internal electrodes 7, 8, 9, 10. The electrodes 7, 8, 9, 10 can be charged and discharged independently of each other. The outer electrodes 12 and 13 are electrically connected to a ground potential 18.

Nach einer Weiterbildung der ersten Ausführung 1 ist jede der Innenelektroden 7, 8, 9, 10 über getrennte Einzelleitungen 21 mit genau einer der Ladungsquellen einer elektronischen Ladungssteuervorrichtung 20 verbunden.According to a development of the first embodiment 1, each of the internal electrodes 7, 8, 9, 10 is connected via separate individual lines 21 to exactly one of the charge sources of an electronic charge control device 20.

Die Elektrodenanordnung 14 kann mittels der Spannungssteuervorrichtung 17 oder der Ladungssteuervorrichtung 20 zu einem kapazitiven Netzwerk variabler Kapazität (Kapazitanzmatrix) zusammengeschaltet werden.The electrode assembly 14 may be interconnected by means of the voltage control device 17 or the charge control device 20 to a capacitive capacitive network (capacitance matrix).

Die Abbildungen 3 bis 8 zeigen aufeinanderfolgende Vorschubschritte 24, 25, 26 einer ersten Durchführungsart des erfindungsgemäßen Verfahrens in der ersten Ausführung 1 der Vorrichtung unter fortschreitender lokaler Erregung eines elektrischen Vorschubfeldes 19 mittels spannungs- oder ladungsgesteuerter Aufladung und Entladung der felderregenden Elektrodenanordnung 14. In jedem der Vorschubschritte 24, 25 und 26 bleibt die lokale elektrische Felderregung 19" bei festgehaltenen Elektrodenspannungen oder Elektrodenladungen solange bestehen, bis eine Vorschubkraft 27' auf die Grenzfläche 16 abgeklungen ist. Im Bereich der dielektrischen Grenzfläche 16 zwischen Fluid 4 mit der Permittivität ε2 und Fluid 3 mit der Permittivität ε1 erregt die Elektrodenanordnung 14 ein lokales elektrisches Feld 19', das der Grenzfläche 16 in Vorschubrichtung 27 vorauseilt und die auf die Grenzfläche 16 einwirkende Vorschubkraft 27' hervorruft. Der Fluidabschnitt 4' mit der höheren Permittivität ε2 > ε1 strebt in den felderfüllten Zwischenraum der Elektrodenanordnung 14 und verdrängt Fluid 3 mit der niedrigeren Permittivität ε1, wodurch aufgrund der Kohäsionskräfte in den Fluiden 3, 4 das Wärmeaustauschmedium 2 insgesamt durch den Strömungskanal 6 in Richtung der Vorschubkraft 27' weiterfließt. Sobald die Vorschubkraft 27' zum Erliegen kommt, ist der Vorschubschritt 24, 25, 26 beendet; der nächste Schritt wird eingeleitet, indem die Felderregung mittels der Spannungssteuervorrichtung 17 oder der Ladungssteuervorrichtung 20 auf in Vorschubrichtung 27 benachbarte Elektroden der Anordnung 14 übergeht.Figures 3 to 8 show successive advancing steps 24, 25, 26 of a first embodiment of the method according to the invention in the first embodiment 1 of the device with the local excitation of an electric feed field 19 by means of voltage or charge controlled charging and discharging of the field exciting electrode assembly 14. In each of Feed steps 24, 25 and 26, the local electrical field excitation 19 "remains at a fixed electrode voltages or electrode charges until a feed force 27 'has subsided on the interface 16. In the region of the dielectric interface 16 between fluid 4 with the permittivity ε 2 and 3 fluid with the permittivity ε 1 excites the electrode assembly 14, a local electric field 19 ', which is ahead of the interface 16 in the feed direction 27 and the force acting on the interface 16 feed force 27' causes. the fluid portion 4 'with the higher permittivity t ε 2> ε 1 aims in the field-filled space of the electrode assembly 14 and displaces fluid 3 with the lower permittivity ε 1, whereby the heat exchange medium 2 'continues to flow due to the cohesive forces in the fluids 3, 4 in total through the flow channel 6 in the direction of the feed force 27 , Once the feed force 27 'comes to a halt, the feed step 24, 25, 26 is completed; the next step is initiated by the field excitation by means of the voltage control device 17 or the charge control device 20 on in the feed direction 27 adjacent electrodes of the assembly 14 passes.

Die Abbildungen 3 bis 5 zeigen den Vorschub des Wärmeaustauschmediums 2 in der ersten Ausführung 1 bei zeitweise festgehaltenen, mit der Spannungssteuervorrichtung 17 geschalteten Elektrodenspannungen.Figures 3 to 5 show the advance of the heat exchange medium 2 in the first embodiment 1 at temporarily held, connected to the voltage control device 17 electrode voltages.

Im Förderschritt 24 nach Abbildung 3 erregen die Innenelektrode 8 und Außenelektrode 12 in ihrem Zwischenraum ein lokales elektrisches Feld 19', indem die Spannungssteuervorrichtung 17 zwischen Innenelektrode 8 und Außenelektrode 12 eine Spannung Uc anlegt. Das Vorschubfeld 19 zieht die dielektrische Grenzfläche 16 in den Zwischenraum der Innenelektrode 8 und Außenelektrode 12.In the conveying step 24 after Figure 3 For example, the inner electrode 8 and the outer electrode 12 excite a local electric field 19 'in their space by the voltage control device 17 applying a voltage U c between the inner electrode 8 and the outer electrode 12. The feed field 19 draws the dielectric interface 16 into the interspace of the inner electrode 8 and the outer electrode 12.

Sobald der Fluidabschnitt 4' mit der höheren Permittivität ε2 den Zwischenraum der Innenelektrode 8 und Außenelektrode 12 ausfüllt und die erfindungsgemäß bestimmte Elektrodenkapazität nicht mehr zunimmt, legt die Spannungssteuervorrichtung 17 im Förderschritt 25 nach Abbildung 4 zusätzlich zur Spannung UA = UC zwischen den Elektroden 8 und 12 eine Spannung UB = - UC zwischen der Innenelektrode 9 und Außenelektrode 12. Damit entsteht zwischen den Innenelektroden 8 und 9 die Potentialdifferenz 2·UC, das elektrische Feld 19' zieht die dielektrische Grenzfläche 16 in den Zwischenraum der Innenelektroden 8 und 9.As soon as the fluid section 4 'with the higher permittivity ε 2 fills the intermediate space of the inner electrode 8 and outer electrode 12 and the electrode capacity determined according to the invention no longer increases, the voltage control device 17 buckles in the conveying step 25 Figure 4 in addition to the voltage U A = U C between the electrodes 8 and 12, a voltage U B = - U C between the inner electrode 9 and outer electrode 12. Thus, between the inner electrodes 8 and 9, the potential difference 2 · U C , the electric field 19 ' pulls the dielectric interface 16 into the gap of the internal electrodes 8 and 9.

Sobald die Vorschubkraft 27' auf den Bereich der dielektrischen Grenzfläche 16 abklingt und die erfindungsgemäß bestimmte Kapazität des Elektrodenpaares 8 und 9 nicht mehr zunimmt, senkt die Spannungssteuervorrichtung 17 im Förderschritt 26 nach Abbildung 5 die zwischen den Elektroden 8 und 12 liegende Spannung auf null, das elektrische Vorschubfeld 19' ist auf den Zwischenraum der Innenelektrode 9 und Außenelektrode 12 beschränkt, wo es eine Vorschubkraft 27' auf das Wärmeaustauschmedium 2 in der Umgebung der fortgeschrittenen dielelektrischen Grenzfläche 16 ausübt.As soon as the feed force 27 'fades to the area of the dielectric interface 16 and the capacity of the electrode pair 8 and 9 determined according to the invention no longer increases, the voltage control device 17 lowers in the conveying step 26 Figure 5 the voltage applied between the electrodes 8 and 12 to zero, the electric feed field 19 'is limited to the gap of the inner electrode 9 and outer electrode 12, where it exerts a feed force 27' on the heat exchange medium 2 in the vicinity of the advanced dielectric interface 16.

In Abhängigkeit von der anliegenden Spannung U und der Kapazität C beträgt die elektrostatische Energie in der felderregenden Elektrodenanordnung 14. W e = 1 2 C U 2

Figure imgb0001
Depending on the applied voltage U and the capacitance C, the electrostatic energy in the field-exciting electrode arrangement 14 is. W e = 1 2 CU 2
Figure imgb0001

Dringt ein Fluidabschnitt höherer Permittivität ε2 > ε1 die Wegstrecke s in den Zwischenraum der felderregenden Elektroden ein, so nimmt die Kapazität C(s) zu, der Kapazitätsbelag k s : = dC / ds

Figure imgb0002
ist größer null. Mit der Kapazitätsvariation δC = k δs entlang der infinitesimalen Wegstrecke δs ändert sich We gemäß δ W e = 1 2 U 2 δ C = 1 2 U 2 k δ s
Figure imgb0003
If a fluid section of higher permittivity ε 2 > ε 1 penetrates the distance s into the interspace of the field-exciting electrodes, then the capacitance C (s) increases, the capacitance surface area k s : = dC / ds
Figure imgb0002
is greater than zero. With the capacitance variation δC = k δs along the infinitesimal path δs, W e changes according to δ W e = 1 2 U 2 δ C = 1 2 U 2 k δ s
Figure imgb0003

Unter konstanter Spannung U fließt die Ladungsmenge δQ = U δC bzw. -δQ auf die Elektroden, der Spannungsquelle wird die Energie δ W q = U δ Q = U 2 δ C = 2 δ W e

Figure imgb0004
entnommen. Ist FD die auf die dielektrische Grenzfläche 16 wirkende Kraft 27 und δWm = FD δs die verrichtete mechanische Arbeit, so lautet die Energiebilanz Wq = We + Wm und daraus folgt: δ W q = δ W e + δ W m
Figure imgb0005
δ W m = δ W e = 1 2 U 2 k δ s F D = 1 2 U 2 k
Figure imgb0006
Under constant voltage U, the charge quantity δQ = U δC or -δQ flows to the electrodes, the voltage source becomes the energy δ W q = U δ Q = U 2 δ C = 2 δ W e
Figure imgb0004
taken. If F D is the force 27 acting on the dielectric interface 16 and δW m = F D δs is the mechanical work done, the energy balance W q = W e + W m and from this follows: δ W q = δ W e + δ W m
Figure imgb0005
δ W m = δ W e = 1 2 U 2 k δ s F D = 1 2 U 2 k
Figure imgb0006

Ist die Elektrodenanordnung abschnittsweise zylindrisch, Querschnitt und Kapazitätsbelag in diesem Abschnitt entlang der Strömungsrichtung also gleichbleibend, so sind der Kapazitätsbelag k und damit die Kraft FD von der Lage der dielektrischen Grenzfläche 16 unabhängig.If the electrode arrangement is cylindrical in sections, that is to say that the cross section and capacitance in this section remain constant along the direction of flow, the capacitance coating k and therefore the force F D are independent of the position of the dielectric interface 16.

Die Abbildungen 6 bis 8 zeigen Vorschubschritte des Wärmeaustauschmediums 2 unter fortschreitender elektrischer Felderregung 19" in der ersten Ausführung 1 bei zeitweise festgehaltenen Elektrodenladungen, die mit der Ladungssteuervorrichtung 20 aufgebracht und entfernt werden.Figures 6 to 8 show advancing steps of the heat exchange medium 2 under progress of the electric field excitation 19 "in the first embodiment 1 with temporarily held electrode charges applied and removed with the charge control device 20.

Im Förderschritt 24 nach Abbildung 6 bringt die Ladungssteuervorrichtung 20 aus einer Ladungsquelle die Ladung Qc auf die Innenelektrode 8, die Außenelektrode 12 liegt auf Massepotential 18. Die Elektroden 8 und 12 erregen ein lokales elektrisches Feld 19' in ihrem Zwischenraum, in den die Grenzfläche 16 hineindrängt. Sobald der Fluidabschnitt 4' mit der höheren Permittivität ε2 den Zwischenraum der Innenelektrode 8 und Außenelektrode 12 ausfüllt und die erfindungsgemäß bestimmte Elektrodenkapazität nicht mehr zunimmt, trägt die Ladungssteuervorrichtung 20 im Förderschritt 25 nach Abbildung 7 auf der Innenelektrode 9 die Ladung -Qc auf. Damit entsteht auf den Innenelektroden 8 und 9 die Ladungsdifferenz 2 · Qc und das elektrische Feld 19' zieht die dielektrische Grenzfläche 16 in den Zwischenraum der Elektroden 8 und 9.In the conveying step 24 after Figure 6 For example, the charge control device 20 applies the charge Qc from a charge source to the inner electrode 8, the outer electrode 12 is at ground potential 18. The electrodes 8 and 12 excite a local electric field 19 'in their space into which the interface 16 pushes. As soon as the fluid section 4 'with the higher permittivity ε 2 fills the interspace of the inner electrode 8 and outer electrode 12 and the electrode capacity determined according to the invention no longer increases, the charge control device 20 follows in the conveying step 25 Figure 7 on the inner electrode 9, the charge -Qc on. This results in the charge difference 2 * Qc on the internal electrodes 8 and 9 and the electric field 19 'draws the dielectric interface 16 into the interspace of the electrodes 8 and 9.

Sobald die Vorschubkraft 27' auf die Umgebung der dielektrischen Grenzfläche 16 abklingt und die erfindungsgemäß bestimmte Kapazität des Elektrodenpaares 8 und 9 nicht mehr zunimmt, führt die Ladungssteuervorrichtung 20 im Förderschritt 26 nach Abbildung 8 die Ladung Qc von der Innenelektrode 8 ab. Das elektrische Vorschubfeld 19 ist somit auf den Zwischenraum der Innenelektrode 9 und Außenelektrode 12 beschränkt, wo es eine Vorschubkraft 27' auf das Wärmeaustauschmedium 2 im Bereich der fortgeschrittenen dielelektrischen Grenzfläche 16 ausübt.As soon as the feed force 27 'decays to the surroundings of the dielectric interface 16 and the capacity of the electrode pair 8 and 9 determined according to the invention no longer increases, the charge control device 20 follows in the conveying step 26 Figure 8 the charge Qc from the inner electrode 8 from. The electric feed field 19 is thus limited to the interspace of the inner electrode 9 and outer electrode 12, where it exerts a feed force 27 'on the heat exchange medium 2 in the region of the advanced dielectric interface 16.

In Abhängigkeit von der Ladung Q beträgt die elektrostatische Energie der felderregenden Elektrodenanordnung 14 W e = 1 2 Q 2 / C

Figure imgb0007
Depending on the charge Q, the electrostatic energy of the field exciting electrode assembly 14 W e = 1 2 Q 2 / C
Figure imgb0007

Die Kapazitätsvariation δC = k δs bei festgehaltener Elektrodenladung Q ändert We gemäß δ W e = 1 2 Q 2 / C 2 k δ s

Figure imgb0008
The capacitance variation δC = k δs with the electrode charge Q held fixed changes W e in accordance with δ W e = - 1 2 Q 2 / C 2 k δ s
Figure imgb0008

Der Spannungsquelle wird bei offenen Elektrodenklemmen keine Energie entnommen: δ W q = U δ Q = 0

Figure imgb0009
No power is drawn from the voltage source when the electrode terminals are open: δ W q = U δ Q = 0
Figure imgb0009

Somit bleibt die Energie We + Wm der Elektrodenanordnung 14 mitsamt Dielektrikum erhalten: δ W e + δ W m = 0 δ W m = δ W e = 1 2 Q 2 / C 2 k δ s

Figure imgb0010
Thus, the energy W e + W m of the electrode assembly 14, including the dielectric, is maintained: δ W e + δ W m = 0 δ W m = - δ W e = 1 2 Q 2 / C 2 k δ s
Figure imgb0010

Auf die dielektrische Grenzfläche 16 wirkt die Kraft F D = 1 2 Q 2 / C 2 k

Figure imgb0011
On the dielectric interface 16, the force acts F D = 1 2 Q 2 / C 2 k
Figure imgb0011

Ist die Elektrodenanordung 14 entlang eines Abschnitts der Länge H zylindrisch und h < H die Eindringtiefe der dielektrischen Grenzfläche 16, so entsteht ein zylindrischer Kondensator mit in Längsrichtung geschichtetem Dielektrikum und der Kapazität C h = k 0 ε 2 h + H h ε 1 = k 0 ε 2 ε 1 h + H ε 1

Figure imgb0012
worin k0 der konstante Kapazitätsbelag des Kondensators ohne Dielektrikum ist. Der Kapazitätsbelag des axial geschichteten Zylinderkondensators ist somit unter Vernachlässigung von Rand- und Streufeldern k = dC / dh = k 0 ε 2 ε 1
Figure imgb0013
If the electrode assembly 14 is cylindrical along a portion of length H and h <H is the penetration depth of the dielectric interface 16, a cylindrical capacitor with a longitudinally layered dielectric and capacitance results C H = k 0 ε 2 H + H - H ε 1 = k 0 ε 2 - ε 1 H + H ε 1
Figure imgb0012
where k 0 is the constant capacitance of the capacitor without dielectric. The capacity of the axially stacked cylinder capacitor is thus neglecting marginal and stray fields k = dC / ie = k 0 ε 2 - ε 1
Figure imgb0013

Die Kraft FD = ½ U2 k02 - ε1) beziehungsweise FD = ½ (Q/C)2 k02 - ε1) auf die dielektrische Grenzfläche 16 ist bei festgehaltener Spannung im homogenen Feld unabhängig von der Eindringtiefe h < H. Bei festgehaltener Ladung Q nimmt die Kraft FD mit zunehmender Eindringtiefe h und Kapazität C(h) ab. Für Plattenelektroden der Breite b im Abstand d ist k 0 = ε 0 b / d Dielektrizitätskonstante ε 0 = 8,85 10 12 F / m

Figure imgb0014
und für die kreiszylindrische Innen- und Außenelektrode mit Radien rA (Innenradius der Außenelektrode) und rB (Außenradius Innenelektrode) k 0 = 2 π ε 0 / ln r A / r B .
Figure imgb0015
The force F D = ½ U 2 k 021 ) or F D = ½ (Q / C) 2 k 021 ) on the dielectric interface 16 is independent when the voltage is kept in the homogeneous field from the penetration depth h <H. When charge Q is held, the force F D decreases with increasing penetration depth h and capacity C (h). For plate electrodes of width b at a distance d k 0 = ε 0 b / d permittivity ε 0 = 8.85 10 - 12 F / m
Figure imgb0014
and for the circular cylindrical inner and outer electrodes with radii r A (inner radius of the outer electrode) and r B (outer radius inner electrode) k 0 = 2 π ε 0 / ln r A / r B ,
Figure imgb0015

Abbildung 9 zeigt eine zweite Ausführung 31 der erfindungsgemäßen Vorrichtung, die eine einteilige, in Strömungsrichtung 30 des Wärmeaustauschmediums 2 durchgehende Innenelektrode 11 und eine einteilige, geschlossene Außenwandung 40, die aus einem elektrisch isolierendem Material besteht, aufweist. Entlang der Strömungsrichtung 30 sind vereinzelte, elektrisch voneinander getrennte Außenelektroden 32 angeordnet, die in die Außenwandung 40 eingebettet oder darauf angebracht sind. Die Außenelektroden 32 und die Innenelektrode 11 sind elektrisch voneinander getrennt. Der Raum zwischen der Innenelektrode 11 und der von der Außenwandung 40 und den Außenelektroden 32 gebildeten Strömungswandung 40' bildet den Strömungskanal 6 des Wärmeaustauschmediums 2. Figure 9 shows a second embodiment 31 of the device according to the invention, which comprises a one-piece, in the flow direction 30 of the heat exchange medium 2 continuous inner electrode 11 and a one-piece, closed outer wall 40, which consists of an electrically insulating material. Arranged along the flow direction 30 are isolated outer electrodes 32 which are electrically separated from one another and which are embedded in or attached to the outer wall 40. The outer electrodes 32 and the inner electrode 11 are electrically separated from each other. The space between the inner electrode 11 and the flow wall 40 'formed by the outer wall 40 and the outer electrodes 32 forms the flow channel 6 of the heat exchange medium 2.

Nach einer Weiterbildung der zweiten Ausführung 31 sind die Außenwandungen 40 und eine Außenwandung 41 plattenförmig aus elektrisch isolierendem Material ausgeführt, die Innenelektrode 11 und Außenelektroden 32 sind ebenso von plattenförmiger Gestalt. Die weiteren seitlichen Außenwandungen des Strömungskanals 6 sind in Abbildung 9 nicht wiedergegeben. Technisch vorteilhaft können die Außenwandungen 40 und 41, die Innenelektrode 11 sowie die Außenelektroden 32 von kreisförmigem oder rechteckigem Querschnitt sein.According to a development of the second embodiment 31, the outer walls 40 and an outer wall 41 are plate-shaped made of electrically insulating material, the inner electrode 11 and outer electrodes 32 are also of plate-like shape. The other lateral outer walls of the flow channel 6 are in Figure 9 not played. Technically advantageous, the outer walls 40 and 41, the inner electrode 11 and the outer electrodes 32 may be of circular or rectangular cross-section.

Abbildung 10 gibt eine dritte Ausführung 33 der erfindungsgemäßen Vorrichtung wieder, die aus der zweiten Ausführung 31 dadurch hervorgeht, dass die erste Ausführung 1 die Innenelektrode 11 der zweiten Ausführung 31 ersetzt. Die durchgehenden, geschlossenen Außenelektroden 12 und 13 der eingebetteten ersten Ausführung 1 wirken in der Ausführung 33 als Innenelektroden gegenüber den vereinzelten, getrennten Außenelektroden 32. Zusätzlich zum inneren Strömungskanal 6 der eingebetteten ersten Ausführung 1, in dem die Fluidabschnitte 4' und 5' fließen, kommt im Raum zwischen den geschlossenen Außenelektroden 12 und 13 einerseits und den Außenwandungen 40 und 41 andererseits ein äußerer Strömungskanal 60 zustande, in dem ein weiteres, die Fluidabschnitte 37' und 38' aufweisendes Wärmeaustauschmedium 66 unabhängig und getrennt vom ersten Wärmeaustauschmedium 2 vorangetrieben wird. Erfindungsgemäß wird im inneren Strömungskanal 6 ein erstes elektrisches Vorschubfeld 19 und im äußeren Strömungskanal 60 ein zweites, vom ersten Feld 19 unabhängiges elektrisches Vorschubfeld 19 erregt. Figure 10 3 shows a third embodiment 33 of the device according to the invention, which is evident from the second embodiment 31 in that the first embodiment 1 replaces the inner electrode 11 of the second embodiment 31. The continuous, closed outer electrodes 12 and 13 of the embedded In Embodiment 1, in the embodiment 33, inner electrodes are opposed to the separated, separated outer electrodes 32. In addition to the inner flow channel 6 of the embedded first embodiment 1, in which the fluid sections 4 'and 5' flow, there is space between the closed outer electrodes 12 and 13 on the one hand and the outer walls 40 and 41 on the other hand, an outer flow channel 60 in which another, the fluid sections 37 'and 38' having heat exchange medium 66 is driven independently and separately from the first heat exchange medium 2. According to the invention, a first electric feed field 19 is excited in the inner flow channel 6 and a second electric feed field 19, which is independent of the first field 19, is excited in the outer flow channel 60.

Abbildung 11 zeigt eine vierte Ausführung 35 der erfindungsgemäßen Vorrichtung, die aus der dritten Ausführung 33 dadurch hervorgeht, dass die Innenelektroden 7, 8, 9 und 10 der eingebetteten ersten Ausführung 1 entfallen. Im Innenraum der einteiligen, geschlossenen Elektrode 12 oder im Zwischenraum der getrennten, plattenförmigen Elektroden 12 und 13 strömt eine Gasphase 36 (Dampfphase) des Wärmeaustauschmediums 66 eines Wärmeleitrohrs 34 (heat pipe). Nichtmischende Flüssigphasen 37 und 38 des Wärmeaustauschmediums 66 fließen wie in der dritten Ausführung 33 durch den äußeren Strömungskanal 60 entgegengesetzt zur Strömungsrichtung 30 der Gasphase 36. Figure 11 shows a fourth embodiment 35 of the device according to the invention, which is apparent from the third embodiment 33 in that the internal electrodes 7, 8, 9 and 10 of the embedded first embodiment 1 omitted. In the interior of the one-piece, closed electrode 12 or in the space of the separate, plate-shaped electrodes 12 and 13 flows a gas phase 36 (vapor phase) of the heat exchange medium 66 of a heat pipe 34 (heat pipe). Non-mixing liquid phases 37 and 38 of the heat exchange medium 66 flow as in the third embodiment 33 through the outer flow channel 60 opposite to the flow direction 30 of the gas phase 36.

Abbildung 12 zeigt eine fünfte Ausführung 39 der erfindungsgemäßen Vorrichtung, worin die Innenelektrode 11 wie in der ersten Ausführung 1 und die Außenelektroden 32 sowie die Außenwandungen 40 und 41 wie in der zweiten Ausführung 31 mehrteilig und voneinander getrennt ausgeführt sind. Die Elektroden 11 und 32 sind an ihren Enden in Strömungsrichtung 30 bündig ausgerichtet und können abschnittsweise als geschlossenes Rohr oder plattenförmig ausgeführt sein. Weiterhin ist jede der Elektroden 11 und 32 elektrisch mit genau einer unabhängig steuerbaren Spannungsquelle UA1 - UA4, UB1 - UB4, UE1 - UE4 der Spannungssteuervorrichtung 17 oder genau einer unabhängig steuerbaren Ladungsquelle der Ladungssteuervorrichtung 20 verbunden. Figure 12 shows a fifth embodiment 39 of the device according to the invention, wherein the inner electrode 11 as in the first embodiment 1 and the outer electrodes 32 and the outer walls 40 and 41 as in the second embodiment 31 are made in several parts and separated. The electrodes 11 and 32 are aligned flush at their ends in the flow direction 30 and may be designed in sections as a closed tube or plate-shaped. Furthermore, each of the electrodes 11 and 32 is electrically connected to exactly one independently controllable voltage source U A1 -U A4 , U B1 -U B4 , U E1 -U E4 of the voltage control device 17 or exactly one independently controllable charge source of the charge control device 20.

Abbildung 13 zeigt eine sechste Ausführung 43 der erfindungsgemäßen Vorrichtung, die aus der fünften Ausführung 39 dadurch hervorgeht, dass die Enden der Außenelektroden 32 und Innenelektroden 11 in Strömungsrichtung 30 versetzt angeordnet sind. Figure 13 shows a sixth embodiment 43 of the device according to the invention, which is apparent from the fifth embodiment 39 in that the ends of the outer electrodes 32 and inner electrodes 11 are arranged offset in the flow direction 30.

Abbildung 14 zeigt eine siebte Ausführung 44 der erfindungsgemäßen Vorrichtung, die aus der sechsten Ausführung 43 dadurch hervorgeht, dass die Innenelektroden 11 mitsamt der angeschlossenen Spannungssteuervorrichtung 17 oder Ladungssteuervorrichtung 20 entfallen. Figure 14 shows a seventh embodiment 44 of the device according to the invention, which is apparent from the sixth embodiment 43 in that the internal electrodes 11 omitted together with the connected voltage control device 17 or charge control device 20.

Abbildung 15 zeigt eine achte Ausführung 47 der erfindungsgemäßen Vorrichtung, die aus der siebten Ausführung 44 dadurch hervorgeht, dass die Enden der in die Außenwandung 40 eingebetteten Außenelektroden 32 gegenüber den Enden der in die gegenüberliegende Außenwandung 41 eingebetteten Außenelektroden 32 in Strömungsrichtung 30 gegeneinander versetzt angeordnet sind. Figure 15 shows an eighth embodiment 47 of the device according to the invention, which emerges from the seventh embodiment 44 in that the ends of the outer wall 40 embedded in the outer electrodes 32 opposite to the ends of the embedded outer wall in the outer wall 41 outer electrodes 32 are arranged offset in the flow direction 30 against each other.

Die Abbildungen 16 bis 19 zeigen eine zweite Durchführungsart des erfindungsgemäßen Verfahrens in der achten Ausführung 44 der Vorrichtung mit einer elektrodenübergreifenden und in Vorschubrichtung 27 fortschreitenden Felderregung 19" durch jeweils drei Elektroden 32. Die elektrischen Feldlinien verformen die dielektrische Grenzschicht 16 schräg zur Vorschubrichtung 27. Die Darstellung gibt die Feldlinien nur qualitativ richtig wieder, Oberflächenspannungen und Kapillarkräfte sind außer Acht gelassen.Figures 16 to 19 show a second implementation of the method according to the invention in the eighth embodiment 44 of the device with an electrode-spanning and advancing in the direction 27 advancing field excitation 19 "by three electrodes 32. The electric field lines deform the dielectric boundary layer 16 obliquely to the feed direction 27. Die Representation gives the field lines only qualitatively correct, surface tensions and capillary forces are disregarded.

Die Abbildungen 20 bis 23 zeigen eine dritte Durchführungsart des erfindungsgemäßen Verfahrens in der achten Ausführung 44 der Vorrichtung mit fortschreitender Felderregung 19" mittels je eines Paares quer zur Vorschubrichtung 27 gegenüberliegender, versetzt angeordneter Elektroden 32. Die elektrischen Feldlinien verziehen die dielektrische Grenzfläche 16 qualitativ ähnlich wie in den Abbildungen 16 bis 19 wiedergegeben.Figures 20 to 23 show a third implementation of the method according to the invention in the eighth embodiment 44 of the device with progressive field excitation 19 "by means of a pair transverse to the feed direction 27 of oppositely disposed electrodes 32. The electric field lines distort the dielectric interface 16 qualitatively similar shown in Figures 16 to 19.

Die Abbildungen 24 und 25 stellen eine neunte Ausführung 47 und zehnte Ausführung 48 der erfindungsgemäßen Vorrichtung jeweils im Querschnitt dar, die Papierebene der Darstellung liegt orthogonal zur Strömungsrichtung 30 beziehungsweise Vorschubrichtung 27. Wie bei herkömmlichen Schicht- oder Wickelkondensatoren wird ein hoher Kapazitätsbelag und damit eine hohe Vorschubkraft 27' dadurch erreicht, dass die dünnen Innenelektroden 49 geschichtet oder gewickelt angeordnet sind. Anstelle einer elektrolytischen Trägerfolie, wie sie in Elektrolytkondensatoren verwendet wird oder eines Kunststoff-Dielektrikums, das in Folienkondensatoren vorkommt, ist eine in Vorschubrichtung 27 durchlässige Stützfolie 50 vorgesehen.FIGS. 24 and 25 show a ninth embodiment 47 and a tenth embodiment 48 of the device according to the invention, each in cross section, the paper plane of the illustration being orthogonal to the flow direction 30 or feed direction 27. As in the case of conventional layered or wound capacitors, a high capacitance covering and thus a high feed force 27 'are achieved in that the thin internal electrodes 49 are arranged in a layered or wound manner. Instead of an electrolytic carrier film, as used in electrolytic capacitors or a plastic dielectric, which occurs in film capacitors, a permeable in the feed direction 27 support film 50 is provided.

Abbildung 24 zeigt eine Schichtanordnung plattenförmiger, vereinzelter Elektroden 49, die von einer geschlossenen, elektrisch leitfähigen Strömungswandung 12 von rechteckigem Querschnitt, die auf Massepotential 18 liegt, umschlossen werden. Die Elektroden 49 und die Strömungswandung 12 sind voneinander getrennt angeordnet. Weiterhin ist die elektrische Verbindung der Innenelektroden 49 mit einer elektrischen Spannungsquelle der Spannungssteuervorrichtung 17 oder einer Ladungsquelle der Ladungssteuervorrichtung 20 vorgesehen. Figure 24 shows a layer arrangement of plate-shaped, individual electrodes 49, which are enclosed by a closed, electrically conductive flow wall 12 of rectangular cross section, which is at ground potential 18. The electrodes 49 and the flow wall 12 are arranged separately from each other. Furthermore, the electrical connection of the internal electrodes 49 with an electric voltage source of the voltage control device 17 or a charge source of the charge control device 20 is provided.

Abbildung 25 zeigt eine radiale Schichtanordnung kreisringförmiger, vereinzelter Elektroden 49, die von einer geschlossenen, elektrisch leitfähigen Strömungswandung 12 von rechteckigem Querschnitt, die auf Massepotential 18 liegt, umschlossen werden. Die Elektroden 49 und die Strömungswandung 12 sind voneinander getrennt angeordnet. Weiterhin ist die elektrische Verbindung der Innenelektroden 49 mit einer elektrischen Spannungsquelle der Spannungssteuervorrichtung 17 oder einer Ladungsquelle der Ladungssteuervorrichtung 20 vorgesehen. Figure 25 shows a radial layer arrangement of circular, individual electrodes 49, which are enclosed by a closed, electrically conductive flow wall 12 of rectangular cross-section, which is at ground potential 18. The electrodes 49 and the flow wall 12 are arranged separately from each other. Furthermore, the electrical connection of the internal electrodes 49 with an electric voltage source of the voltage control device 17 or a charge source of the charge control device 20 is provided.

Claims (16)

  1. Method for conveying at least one heat exchange medium (2, 66) which has at least one first fluid (3, 4, 5) which has a first permittivity and at least one second fluid (3, 4, 5) which does not mix with the first fluid (3, 4, 5) and has a second permittivity which is different from the first permittivity, at least one dielectric interface (16) being configured between the first and second fluid (3, 4, 5), which dielectric interface (16) is subjected to a progressively excited, electric advancing field (19) which exerts an advancing force (27') on the at least one dielectric interface (16), and the electric advancing field (19) being excited progressively by an electrode arrangement (14) which consists of at least two electrodes (7, 8, 9, 10, 11, 12, 13, 32, 49) which are adjacent, in particular in the advancing direction (27), each electrode (7, 8, 9, 10, 11, 12, 13, 32, 49) of the electrode arrangement (14) being assigned a voltage control apparatus (17) with independently controlled voltage sources or a charge control apparatus (20) with independently controlled charge sources.
  2. Method according to Claim 1, characterized in that a first liquid is used as first fluid (3, 4, 5), and a second liquid, the permittivity of which differs from the permittivity of the first liquid, is used as second fluid (3, 4, 5).
  3. Method according to either of the preceding claims, characterized in that a liquid is used as first fluid (3, 4, 5), and a gas is used as second fluid (3, 4, 5), in particular in that the gas is the gas phase (36) of the first fluid (3, 4, 5).
  4. Method according to one of the preceding claims, characterized in that the advancing forces (27') on the heat exchange medium (2, 66) to be conveyed are generated by way of an electric field (19') which is excited by way of an electrode arrangement (14), in particular, in regions of dielectric interfaces (16) between fluids (3, 4, 5) of different permittivity.
  5. Method according to one of the preceding claims, characterized in that the heat exchange medium (2, 66) is held together or forced together by means of a static electric field which is superimposed on the progressively excited electric advancing field (19).
  6. Method according to one of the preceding claims, characterized in that the electric advancing field (19) is excited progressively by way of movement of the electric charge to further electrodes (7, 8, 9, 10, 11, 12, 13, 32, 49) of the electrode arrangement (14) in the advancing direction (27).
  7. Method according to one of the preceding claims, characterized in that the position of at least one dielectric interface (16) in the heat exchange medium (2, 66) is determined by means of measurement of the capacitance of the field-exciting electrode arrangement (14), and the flow velocity of at least one fluid section (3', 4', 5') is determined from the temporal change of the position of at least one dielectric interface (16).
  8. Method according to one of the preceding claims, characterized in that the temperature of at least one of the fluid sections (3', 4', 5') which are contained in the heat exchange medium (2, 66) is determined using the measured capacitance and at least one further parameter, in particular the temperature dependence of the permittivity of the fluid (3, 4, 5).
  9. Method according to one of the preceding claims, characterized in that a heat flow is determined using the temperature, the flow velocity and the specific heat capacity of at least one fluid section (3', 4', 5') which is contained in the heat exchange medium (2, 66) .
  10. Apparatus for conveying at least one heat exchange medium (2, 66) which has at least one first fluid (3, 4, 5) which has a first permittivity and at least one second fluid (3, 4, 5) which does not mix with the first fluid (3, 4, 5) and has a second permittivity which differs from the first permittivity, at least one dielectric interface (16) being configured between the first and the second fluid (3, 4, 5), characterized by a capacitive electrode arrangement (14) which consists of at least two electrodes (7, 8, 9, 10, 11, 12, 13, 32, 49) which are adjacent, in particular in the advancing direction (27), each electrode (7, 8, 9, 10, 11, 12, 13, 32, 49) of the electrode arrangement (14) being assigned a voltage control apparatus (17) with independently controlled voltage sources or a charge control apparatus (20) with independently controlled charge sources, the voltage control apparatus (17) being configured to vary the electric voltages which prevail at the electrodes (7, 8, 9, 10, 11, 12, 13, 32, 49) of the electrode arrangement (14), in such a way that an electric advancing field (19) is excited progressively by the electrode arrangement (14) in such a way that the at least one dielectric interface (16) is subjected to the progressively excited, electric advancing field (19) in such a way that the advancing field (19) exerts an advancing force (27') on the at least one dielectric interface (16), the advancing force (27') acting in the direction of increasing capacitance of the electrode arrangement (14) which excites the advancing field (19).
  11. Apparatus according to Claim 10, characterized in that the conveying of the heat exchange medium (2, 66) takes place in a flow duct (6, 60) which extends into the intermediate spaces of the associated electrode arrangement (14).
  12. Apparatus according to either of the preceding Claims 10 and 11, characterized in that the outer electrode (12, 13, 32) is configured as a closed outer wall (12', 13', 40, 41) of the flow duct (6, 60).
  13. Apparatus according to Claim 12, characterized in that the further electrodes (7, 8, 9, 10, 11, 49) are enclosed completely by the outer electrode (12, 13, 32), the outer electrode (12, 13, 32) and the further electrodes (7, 8, 9, 10, 11, 49) being separated from one another.
  14. Apparatus according to either of the preceding Claims 10 and 11, characterized in that at least two of the electrodes (7, 8, 9, 10) are configured as outer electrodes (12, 13, 32) which are separated from one another, the outer electrodes (12, 13, 32) being separated electrically from one another and being embedded into an electrically insulating outer wall (40, 41) or being fastened on the inner side of the outer wall (40, 41).
  15. Apparatus according to Claim 14, characterized in that a further inner electrode (7, 8, 9, 10, 11, 49) is arranged in the interior of the flow duct (6, 60).
  16. Apparatus according to one of the preceding Claims 10 to 15, characterized in that the electrode arrangement (14) has an apparatus for measuring at least one capacitance.
EP09779702.1A 2008-07-07 2009-06-10 Capacitive device and method for the electrostatic transport of dielectric and ferroelectric fluids Active EP2297540B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008040225A DE102008040225A1 (en) 2008-07-07 2008-07-07 Capacitive device and method for the electrostatic transport of dielectric and ferroelectric fluids
PCT/EP2009/057159 WO2010003752A1 (en) 2008-07-07 2009-06-10 Capacitive device and method for the electrostatic transport of dielectric and ferroelectric fluids

Publications (2)

Publication Number Publication Date
EP2297540A1 EP2297540A1 (en) 2011-03-23
EP2297540B1 true EP2297540B1 (en) 2018-02-14

Family

ID=41055325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09779702.1A Active EP2297540B1 (en) 2008-07-07 2009-06-10 Capacitive device and method for the electrostatic transport of dielectric and ferroelectric fluids

Country Status (8)

Country Link
US (1) US8764410B2 (en)
EP (1) EP2297540B1 (en)
JP (1) JP5274658B2 (en)
KR (1) KR101579762B1 (en)
CN (1) CN102089613B (en)
BR (1) BRPI0912104B1 (en)
DE (1) DE102008040225A1 (en)
WO (1) WO2010003752A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9027342B2 (en) 2011-04-21 2015-05-12 Nicholas Frederick Foy Supplementary intercooler for internal combustion engines
US10537830B2 (en) * 2018-02-05 2020-01-21 Saudi Arabian Oil Company Method and apparatus for promoting droplets coalescence in oil continuous emulsions
DE102018204852A1 (en) * 2018-03-29 2019-10-02 Robert Bosch Gmbh Lubrication unit, guidance and procedures for a tour
US11041576B2 (en) * 2018-10-25 2021-06-22 Toyota Motor Engineering & Manufacturing North America, Inc. Actuator with static activated position
CN109307444B (en) * 2018-11-16 2024-04-02 上海海事大学 Maintenance-free multistage combined electrojet pump
CN114812874B (en) * 2022-05-10 2022-11-29 广州航海学院 Micro-nano force source device, control method, micro-nano force measuring equipment and storage medium

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2691303A (en) * 1950-06-19 1954-10-12 Phillips Petroleum Co Magnetic type flowmeter
DE1601184C3 (en) 1967-12-23 1974-07-04 Deutsche Forschungs- U. Versuchsanstalt Fuer Luft- Und Raumfahrt E.V., 5050 Porz-Wahn Intermediate heat carrier circulation system
US3906415A (en) * 1974-06-14 1975-09-16 Massachusetts Inst Technology Apparatus wherein a segmented fluid stream performs electrical switching functions and the like
US4220195A (en) * 1979-05-24 1980-09-02 The United States Of America As Represented By The Secretary Of The Navy Ion drag pumped heat pipe
US4396055A (en) * 1981-01-19 1983-08-02 The United States Of America As Represented By The Secretary Of The Navy Electrohydrodynamic inductively pumped heat pipe
US4774453A (en) * 1984-10-09 1988-09-27 Auburn International, Inc. Measuring flow of insulating fluids
DE4012268A1 (en) * 1990-04-17 1991-10-24 Joerg Fricke Pump for electro-viscous fluid - has three or more serial field zones producing travelling field variation in fluid
US6409975B1 (en) * 1999-05-21 2002-06-25 The Texas A&M University System Electrohydrodynamic induction pumping thermal energy transfer system and method
JP2004504797A (en) 2000-07-18 2004-02-12 イリノイ、インスティチュート、オブ、テクノロジー Electrohydrodynamic conduction pump
US6443704B1 (en) * 2001-03-02 2002-09-03 Jafar Darabi Electrohydrodynamicly enhanced micro cooling system for integrated circuits
US6856037B2 (en) * 2001-11-26 2005-02-15 Sony Corporation Method and apparatus for converting dissipated heat to work energy
US7004238B2 (en) * 2001-12-18 2006-02-28 Illinois Institute Of Technology Electrode design for electrohydrodynamic induction pumping thermal energy transfer system
WO2004001944A1 (en) 2002-06-21 2003-12-31 Illinois Institute Of Technology Electrode design for electrohydrodynamic conduction pumping
EP1882099A2 (en) * 2005-01-24 2008-01-30 Thorrn Micro Technologies, Inc. Electro-hydrodynamic pump and cooling apparatus comprising an electro-hydrodynamic pump
US7133786B1 (en) * 2005-06-08 2006-11-07 Roxar Flow Management As Method and apparatus for measuring nonhomogeneous flow phase velocities
WO2007009097A1 (en) * 2005-07-13 2007-01-18 Cidra Corporation Method and apparatus for measuring parameters of a fluid flow using an array of sensors
DE102005039290A1 (en) * 2005-08-19 2007-02-22 Robert Bosch Gmbh Apparatus for triboelectric mass flow measurement in fluid media
WO2007072914A1 (en) 2005-12-21 2007-06-28 Kyocera Corporation Electroosmotic flow pump, pumping system, microchemical chip and fuel cell
DE102007018752B4 (en) 2007-04-20 2011-09-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for the controlled transport of microfluidic samples

Also Published As

Publication number Publication date
US20110220330A1 (en) 2011-09-15
JP2011527175A (en) 2011-10-20
KR20110038025A (en) 2011-04-13
US8764410B2 (en) 2014-07-01
BRPI0912104B1 (en) 2019-09-10
CN102089613A (en) 2011-06-08
JP5274658B2 (en) 2013-08-28
EP2297540A1 (en) 2011-03-23
WO2010003752A1 (en) 2010-01-14
KR101579762B1 (en) 2015-12-23
BRPI0912104A2 (en) 2015-10-13
CN102089613B (en) 2014-03-05
DE102008040225A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
EP2297540B1 (en) Capacitive device and method for the electrostatic transport of dielectric and ferroelectric fluids
EP2361441B1 (en) Module for a thermoelectric generator and a thermoelectric generator
EP2668676B1 (en) Thermoelectric module comprising a heat conducting layer
EP1730996B1 (en) Electric fluid heater
DE102011084002A1 (en) Thermal transfer device, tempering plate and energy storage device
EP2917555A1 (en) Pre-heating device for a fuel injection system
DE10315039B4 (en) Gas sensor with a multilayer gas sensing element
EP2212688B1 (en) Method for determining a fuel portion in a motor oil of a motor vehicle
DE69716360T2 (en) PIEZOELECTRIC TRANSFORMER
DE102013112911A1 (en) Thermoelectric generator apparatus and method of manufacturing a thermoelectric generator apparatus
DE102018210551A1 (en) An electric machine having a plurality of closure means for closing respective gaps to an air gap and manufacturing processes
DE102005048100B4 (en) Electrical device, in particular electronic control device for motor vehicles
DE102008041808A1 (en) Particle sensor i.e. resistive particle sensor, for detecting soot particles in gas stream of vehicle, has electrodes with main surfaces that contact less than hundred percent of main surfaces of adjacent insulation layers
DE29515932U1 (en) Continuous heating device
WO2007110266A1 (en) Sensor element for determining a gas component having improved thermal properties
EP3651123A1 (en) Method for determining the life consumption of a fluid-flowing procedural apparatus
EP3714138B1 (en) Heating device, method for producing a heating device
DE2620052C3 (en) Method and device for determining an imminent phase change
DE102012025632B3 (en) Heat exchanger, exhaust system and internal combustion engine
AT524204B1 (en) Temperature control device for a gaseous medium
DE102005047636A1 (en) Compensation of lead resistance during temperature measurement with amperometric gas sensors
WO2004072633A1 (en) Solid-electrolyte sensing element provided with a hollow element for thermal expansion
WO2024115016A1 (en) Supporting device with pulsating heat pipe, power module and computer program product
DE102018214484A1 (en) Electric heater and manufacturing method
WO2017140608A1 (en) Heat exchanger system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009014729

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28F0013160000

Ipc: F04B0019000000

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 13/16 20060101ALI20170802BHEP

Ipc: F28D 15/00 20060101ALI20170802BHEP

Ipc: F04B 19/00 20060101AFI20170802BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170914

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014729

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 970017

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180515

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014729

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180610

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 970017

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090610

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240621

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240628

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240822

Year of fee payment: 16