EP2292806A1 - Method for producing components from titanium or titanium alloy using MIM technology - Google Patents

Method for producing components from titanium or titanium alloy using MIM technology Download PDF

Info

Publication number
EP2292806A1
EP2292806A1 EP09167195A EP09167195A EP2292806A1 EP 2292806 A1 EP2292806 A1 EP 2292806A1 EP 09167195 A EP09167195 A EP 09167195A EP 09167195 A EP09167195 A EP 09167195A EP 2292806 A1 EP2292806 A1 EP 2292806A1
Authority
EP
European Patent Office
Prior art keywords
powder
titanium
titanium alloy
boron
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09167195A
Other languages
German (de)
French (fr)
Other versions
EP2292806B1 (en
Inventor
Orley Milagres Ferri
Thomas Ebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Original Assignee
GKSS Forshungszentrum Geesthacht GmbH
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKSS Forshungszentrum Geesthacht GmbH, Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH filed Critical GKSS Forshungszentrum Geesthacht GmbH
Priority to EP09167195A priority Critical patent/EP2292806B1/en
Priority to US12/849,360 priority patent/US20110033334A1/en
Publication of EP2292806A1 publication Critical patent/EP2292806A1/en
Application granted granted Critical
Publication of EP2292806B1 publication Critical patent/EP2292806B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides

Definitions

  • the present invention relates to a method for producing a titanium or titanium alloy component by MIM technology.
  • MIM stands for "Metal Injection Molding” and is a highly efficient manufacturing process for the production of small, complex and precise metal parts.
  • the MIM technology is one of the so-called powder metallurgical processes, in which no solid metal body, but fine powder is used as the starting material for the component to be produced. This powder is mixed with a plastic-containing binder and kneaded into the so-called "feedstock".
  • the feedstock is pressed under pressure on an injection molding machine into the injection mold (tool).
  • the resulting green part already has the final geometry, but must be freed from the binder in the following steps to obtain a pure metal part.
  • the binder is removed in a chemical and / or thermal process and "sintered" the component via sintering. According to current knowledge, it is mainly used for the production of stainless steel components.
  • Titanium and titanium alloys offer an excellent strength-to-weight ratio. These metals are absolutely non-magnetic, corrosion-resistant and seawater-proof. In addition, they are biocompatible and are very well suited for implants. This combination of properties leads to the use of titanium in aerospace, marine and medical engineering. However, titanium and titanium alloys are very difficult to process.
  • Titanium alloy powders are only occasionally commercially processed by means of MIM and are limited to applications which involve only a low component load since the fatigue strength is significantly lower than in the case of components produced from TiAl6V4 semi-finished products. It is believed that the existence of pores in the MIM components and a coarser microstructure are responsible for the lower fatigue strength of the titanium alloy powder components produced by MIM technology.
  • the object of the present invention is to provide a method for the production of components made of titanium or titanium alloy powders by means of MIM, which can be exposed to a high alternating load.
  • the object is achieved by a method in which a homogeneous mixture of boron powder having a particle size of less than 10 microns, preferably less than 5 microns, more preferably less than 2 microns and titanium powder and / or titanium alloy powder is prepared and binder with the homogeneous mixture of Boron and titanium powder and / or titanium alloy powder and optionally an aggregate are mixed in a kneader, the mixture is brought by injection molding to produce a green part in the form, the chemically and / or thermally debindered shaped mass for producing a brown part and the debindered mass is sintered at a temperature between 1000 ° C and 1600 ° C.
  • the amount of boron powder is chosen so that in the component, based on its total weight after sintering 0.05 wt.% To 1.5 wt.%, More preferably 0.1 wt.% To 1.0 wt.% Boron present is.
  • the sintering temperature is between 1000 ° C and 1600 ° C, more preferably between 1200 ° C and 1500 ° C, more preferably between 1300 ° C and 1450 ° C. In particular, at a temperature between 1300 ° C and 1450 ° C, a residual porosity of the component of less than 3%, based on the component volume achieved.
  • the residual porosity can be determined by measuring the density in relation to the density of the solid material or by geometric analysis of microstructures by microstructures.
  • the uptake of oxygen during the process should preferably be limited so that the sintered components have an oxygen content of less than 0.3% by weight, based on the total weight of the component, since otherwise the ductility of the components is impaired.
  • the mixing of boron powder and titanium powder and / or titanium alloy powder preferably takes place under a protective gas atmosphere.
  • the mixing of the binder with the homogeneous mixture of boron and titanium powder and / or titanium alloy powder and optionally an additive takes place under a protective gas atmosphere.
  • the protective gas used is preferably argon or helium, more preferably argon.
  • the sintering is preferably carried out in a high vacuum.
  • a getter material such as titanium may be present. The latter measures serve to minimize oxygen uptake during sintering by the brown parts.
  • the oxygen content of the sintered component is preferably determined by melt extraction analysis.
  • the titanium powder and / or titanium alloy powder typically has a particle size of less than 45 ⁇ m.
  • TiAl6V4 which was preferably produced by means of inert gas atomization, can be used as the titanium alloy powder.
  • the binder is preferably selected from thermoplastic or thermosetting polymers, thermo-gelling substances, waxes or surface-active substances or mixtures obtained therefrom. Preference is given to polyamides, polyoxymethylene, polycarbonate, styrene-acrylonitrile copolymers, polyimides, natural waxes and / or oils, thermosets, cyanates, polypropylenes, polyacetates, polyethylenes, ethylene-vinyl acetate copolymers, polyvinyl alcohols, polyvinyl chlorides, polystyrene, polymethyl methacrylates, anilines, mineral oils, agar , Glycerol, polyvinyl butyryls, polybutyl methacrylates, cellulose, oleic acids, phthalates, paraffin waxes, carnauba wax, ammonium polyacrylates, diglyceride stearates and oleates, glyceryl monostearates, irpropyl titanates, lithium ste
  • the binder comprises polyethylene, stearic acid, paraffin and carnauba wax.
  • the binder contains a polyethylene copolymer such as polyethylene-ethylene vinyl acetate copolymer (PEVA) or polyethylene-butylene-methyl acrylate copolymer (PBMA) and paraffin.
  • PEVA polyethylene-ethylene vinyl acetate copolymer
  • PBMA polyethylene-butylene-methyl acrylate copolymer
  • the green part in step (d) for producing a brown part is debindered chemically in a hydrocarbon, preferably hexane and / or heptane, and then preferably thermally at a temperature of preferably 300 ° C to 600 ° C, more preferably 400 ° C to 500 ° C.
  • the chemical debinding usually takes place at temperatures between ambient temperature and 60 ° C, preferably between 40 ° C and 50 ° C.
  • the invention will now be illustrated by the following non-limiting example.
  • the particle sizes are, unless stated otherwise, to maximum particle sizes.
  • the titanium alloy powder used was recovered by sieving.
  • This is homogeneously mixed under argon atmosphere with an amorphous boron powder having a particle size of less than 2 microns.
  • the powder mixture is further kneaded and granulated under argon atmosphere with the binder components PEVA and paraffin in a Z-blade kneader at a temperature of 120 ° C for 2 h to the feedstock.
  • the feedstock is processed on an Arburg 320S injection molding machine at a melt temperature between 100 ° C and 160 ° C to produce sample parts (here rods for tensile tests).
  • the green parts are chemically debinded in heptane at 40 ° C for 20 hours, while the wax content of the binder system is dissolved out.
  • the brown parts are placed in a high vacuum oven with ceramic-free lining and tungsten heater.
  • the residual binder is first thermally decomposed by a suitable temperature program under argon atmosphere and sucked by means of a vacuum pump, before the sintering of the metal powder takes place directly afterwards.
  • the sintering preferably takes place under vacuum at a pressure of 10 -4 mbar.
  • the sintering temperature is typically 1400 ° C, the sintering time 2 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

Producing a component comprising titanium or titanium alloy comprises mixing a boron powder having a particle size of less than 10 mu m and titanium powder and/or titanium alloy powder to produce a homogeneous boron powder; mixing a binder with the homogeneous mixture of boron and titanium powder and/or titanium alloy powder and, optionally, an additive, in a kneader; molding the mixture by injection molding to produce a green part; subjecting the green part to chemical and/or thermal removal of the binder to produce a brown part; and sintering the brown part at 1000-1600[deg] C.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus Titan oder Titanlegierung mittels MIM-Technologie. MIM steht für "Metal Injection Moulding" und ist ein hoch effizientes Fertigungsverfahren für die Herstellung von kleinen, komplexen und präzisen Metallteilen. Die MIM-Technologie gehört zu den sogenannten pulvermetallurgischen Verfahren, bei denen kein massiver Metallkörper, sondern feines Pulver als Ausgangsmaterial für das herzustellende Bauteil verwendet wird. Dieses Pulver wird mit einem kunststoffhaltigen Binder vermischt und zum sogenannten "Feedstock" geknetet.The present invention relates to a method for producing a titanium or titanium alloy component by MIM technology. MIM stands for "Metal Injection Molding" and is a highly efficient manufacturing process for the production of small, complex and precise metal parts. The MIM technology is one of the so-called powder metallurgical processes, in which no solid metal body, but fine powder is used as the starting material for the component to be produced. This powder is mixed with a plastic-containing binder and kneaded into the so-called "feedstock".

Der Feedstock wird unter Druck auf einer Spritzgießmaschine in die Spritzform (Werkzeug) gepresst. Das entstehende Grünteil hat bereits die Endgeometrie, muss aber in den nun folgenden Schritten wieder vom Binder befreit werden, um ein reines Metallteil zu erhalten. Dazu wird in einem chemischen und/oder thermischen Prozess der Binder entfernt und über eine Sinterung das Bauteil "verbacken". Es wird nach derzeitiger Kenntnis überwiegend für die Herstellung von Edelstahlbauteilen verwendet.The feedstock is pressed under pressure on an injection molding machine into the injection mold (tool). The resulting green part already has the final geometry, but must be freed from the binder in the following steps to obtain a pure metal part. For this purpose, the binder is removed in a chemical and / or thermal process and "sintered" the component via sintering. According to current knowledge, it is mainly used for the production of stainless steel components.

Titan und Titanlegierungen bieten ein hervorragendes Verhältnis von Festigkeit zu Gewicht. Diese Metalle sind absolut unmagnetisch, korrosionsbeständig und seewasserfest. Zusätzlich sind sie biokompatibel und eignen sich sehr gut für Implantate. Diese Kombination von Eigenschaften führt zur Anwendung von Titan in der Luft- und Raumfahrt, Meerestechnik und Medizintechnik. Allerdings sind Titan und Titanlegierungen sehr schwer zu verarbeiten.Titanium and titanium alloys offer an excellent strength-to-weight ratio. These metals are absolutely non-magnetic, corrosion-resistant and seawater-proof. In addition, they are biocompatible and are very well suited for implants. This combination of properties leads to the use of titanium in aerospace, marine and medical engineering. However, titanium and titanium alloys are very difficult to process.

Die Verwendung der MIM-Technologie zur Herstellung von Titanbauteilen ist relativ neu und im Wesentlichen auf Reintitan beschränkt. Titanlegierungspulver werden nur vereinzelt kommerziell mittels MIM verarbeitet und sind dort auf Anwendungen beschränkt, die nur eine geringe Wechselbelastung des Bauteils beinhalten, da die Dauerfestigkeit deutlich geringer ist, als im Fall von spanend aus TiAl6V4-Halbzeug hergestellten Bauteilen ist. Es wird vermutet, dass die Existenz von Poren in den MIM-Komponenten und eine gröbere Mikrostruktur für die geringere Dauerfestigkeit der mittels MIM-Technologie hergestellten Bauteile aus Titanlegierungspulver verantwortlich sind.The use of MIM technology to make titanium components is relatively new and essentially limited to pure titanium. Titanium alloy powders are only occasionally commercially processed by means of MIM and are limited to applications which involve only a low component load since the fatigue strength is significantly lower than in the case of components produced from TiAl6V4 semi-finished products. It is believed that the existence of pores in the MIM components and a coarser microstructure are responsible for the lower fatigue strength of the titanium alloy powder components produced by MIM technology.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung von Bauteilen aus Titan oder Titanlegierungspulvern mittels MIM bereit zu stellen, die einer starken Wechselbelastung ausgesetzt werden können.The object of the present invention is to provide a method for the production of components made of titanium or titanium alloy powders by means of MIM, which can be exposed to a high alternating load.

Die Aufgabe wird durch ein Verfahren gelöst, bei dem eine homogene Mischung aus Borpulver mit einer Teilchengröße von weniger als 10 µm, vorzugsweise weniger als 5 µm, bevorzugter weniger als 2 µm und Titanpulver und/oder Titanlegierungspulver hergestellt wird und Bindemittel mit der homogenen Mischung von Bor und Titanpulver und/oder Titanlegierungspulver sowie gegebenenfalls einem Zuschlagstoff in einem Kneter vermischt werden, die Mischung durch Spritzgießen zur Herstellung eines Grünteils in Form gebracht wird, die in Form gebrachte Masse zur Herstellung eines Braunteils chemisch und/oder thermisch entbindert wird und die entbinderte Masse bei einer Temperatur zwischen 1000°C und 1600°C gesintert wird.The object is achieved by a method in which a homogeneous mixture of boron powder having a particle size of less than 10 microns, preferably less than 5 microns, more preferably less than 2 microns and titanium powder and / or titanium alloy powder is prepared and binder with the homogeneous mixture of Boron and titanium powder and / or titanium alloy powder and optionally an aggregate are mixed in a kneader, the mixture is brought by injection molding to produce a green part in the form, the chemically and / or thermally debindered shaped mass for producing a brown part and the debindered mass is sintered at a temperature between 1000 ° C and 1600 ° C.

Vorzugsweise wird die Menge an Borpulver so gewählt, dass in dem Bauteil, bezogen auf dessen Gesamtgewicht nach Sinterung 0,05 Gew.% bis 1,5 Gew.%, bevorzugter 0,1 Gew.% bis 1,0 Gew.% Bor vorhanden ist. Bevorzugt liegt die Sintertemperatur zwischen 1000°C und 1600°C, bevorzugter zwischen 1200°C und 1500°C, noch bevorzugter zwischen 1300°C und 1450°C. Insbesondere bei einer Temperatur zwischen 1300°C und 1450°C wird eine Restporosität des Bauteils von weniger als 3%, bezogen auf das Bauteilvolumen, erreicht.Preferably, the amount of boron powder is chosen so that in the component, based on its total weight after sintering 0.05 wt.% To 1.5 wt.%, More preferably 0.1 wt.% To 1.0 wt.% Boron present is. Preferably, the sintering temperature is between 1000 ° C and 1600 ° C, more preferably between 1200 ° C and 1500 ° C, more preferably between 1300 ° C and 1450 ° C. In particular, at a temperature between 1300 ° C and 1450 ° C, a residual porosity of the component of less than 3%, based on the component volume achieved.

Die Restporosität kann durch Messung der Dichte in Relation zur Dichte des Vollmaterials oder durch geometrische Analyse von Gefügeschliffen durch Mikroskopie bestimmt werden.The residual porosity can be determined by measuring the density in relation to the density of the solid material or by geometric analysis of microstructures by microstructures.

Die Aufnahme von Sauerstoff während des Verfahrens sollte vorzugsweise soweit begrenzt werden, dass die gesinterten Bauteile einen Sauerstoffgehalt von weniger als 0,3 Gew.%, bezogen auf das Gesamtgewicht des Bauteils, aufweisen, da ansonsten die Duktilität der Bauteile beeinträchtigt wird. Dazu findet die Vermischung von Borpulver und und Titanpulver und/oder Titanlegierungspulver vorzugsweise unter Schutzgasatmosphäre statt. Bevorzugt findet auch die Vermischung des Bindemittels mit der homogenen Mischung von Bor und Titanpulver und/oder Titanlegierungspulver sowie gegebenenfalls einem Zuschlagstoff unter Schutzgasatmosphäre statt. Als Schutzgas wird vorzugsweise Argon oder Helium verwendet, bevorzugter Argon. Die Sinterung wird vorzugsweise im Hochvakuum durchgeführt. Zusätzlich kann ein Gettermaterial wie Titan vorhanden sein. Letztere Maßnahmen dienen der Minimierung der Sauerstoffaufnahme während der Sinterung durch die Braunteile.The uptake of oxygen during the process should preferably be limited so that the sintered components have an oxygen content of less than 0.3% by weight, based on the total weight of the component, since otherwise the ductility of the components is impaired. For this purpose, the mixing of boron powder and titanium powder and / or titanium alloy powder preferably takes place under a protective gas atmosphere. Preferably, the mixing of the binder with the homogeneous mixture of boron and titanium powder and / or titanium alloy powder and optionally an additive takes place under a protective gas atmosphere. The protective gas used is preferably argon or helium, more preferably argon. The sintering is preferably carried out in a high vacuum. In addition, a getter material such as titanium may be present. The latter measures serve to minimize oxygen uptake during sintering by the brown parts.

Der Sauerstoffgehalt des gesinterten Bauteils wird vorzugsweise durch Schmelzextraktionsanalyse ermittelt.The oxygen content of the sintered component is preferably determined by melt extraction analysis.

Bevorzugt wird ein besonders sauerstoffarmes Ausgangspulver und ein ebenfalls sauerstoffarmes Bindemittel verwendet. Das Titanpulver und/oder Titanlegierungspulver hat typischerweise eine Teilchengröße von weniger als 45 µm. Als Titanlegierungspulver kann beispielsweise TiAl6V4 verwendet werden, das bevorzugt mittels Inertgas-Verdüsung hergestellt wurde.Preference is given to using a particularly low-oxygen starting powder and a likewise low-oxygen binder. The titanium powder and / or titanium alloy powder typically has a particle size of less than 45 μm. For example, TiAl6V4, which was preferably produced by means of inert gas atomization, can be used as the titanium alloy powder.

Das Bindemittel ist vorzugsweise aus thermoplastischen oder duroplastischen Polymeren, thermogelierenden Substanzen, Wachsen oder oberflächenaktiven Substanzen oder daraus erhaltenen Mischungen ausgewählt. Bevorzugt werden Polyamide, Polyoxymethylen, Polycarbonat, Styrol-Acrylnitril-Copolymere, Polyimide, natürliche Wachse und/oder Öle, Duroplaste, Cyanate, Polypropylene, Polyacetate, Polyethylene, Ethylen-VinylacetatCopolymere, Polyvinylalkohole, Polyvinylchloride, Polystyrol, Polymethylmethacrylate, Aniline, Mineralöle, Agar, Glycerin, Polyvinyl-Butyryle, Polybutylmethacrylate, Cellulose, Ölsäuren, Phthalate, Paraffinwachse, Carnauba-Wachs, Ammonium-Polyacrylate, Diglycerid-Stearate und -Oleate, Glyceryl-Monostearate, Iropropyltitanate, Lithiumstearate, Monoglyceride, Formaldehyde, Octylsäre-Phosphate, Olefinsulfonate, Phosphatester oder Stearinsäure oder Mischungen davon als Bindemittel verwendet. Besonders bevorzugt enthält das Bindemittel aus Polyethylen, Stearinsäure, Paraffin und Carnauba-Wachs. Am meisten bevorzugt enthält das Bindemittel ein Polyethylen-Copolymer wie Polyethylen-Ethylenvinylacetat-Copolymer (PEVA) oder Polyethylen-Butylenmethylacrylat-Copolymer (PBMA) sowie Paraffin.The binder is preferably selected from thermoplastic or thermosetting polymers, thermo-gelling substances, waxes or surface-active substances or mixtures obtained therefrom. Preference is given to polyamides, polyoxymethylene, polycarbonate, styrene-acrylonitrile copolymers, polyimides, natural waxes and / or oils, thermosets, cyanates, polypropylenes, polyacetates, polyethylenes, ethylene-vinyl acetate copolymers, polyvinyl alcohols, polyvinyl chlorides, polystyrene, polymethyl methacrylates, anilines, mineral oils, agar , Glycerol, polyvinyl butyryls, polybutyl methacrylates, cellulose, oleic acids, phthalates, paraffin waxes, carnauba wax, ammonium polyacrylates, diglyceride stearates and oleates, glyceryl monostearates, irpropyl titanates, lithium stearates, monoglycerides, formaldehydes, octylseal phosphates, olefinsulfonates, Phosphate ester or stearic acid or mixtures thereof used as a binder. Most preferably, the binder comprises polyethylene, stearic acid, paraffin and carnauba wax. Most preferably, the binder contains a polyethylene copolymer such as polyethylene-ethylene vinyl acetate copolymer (PEVA) or polyethylene-butylene-methyl acrylate copolymer (PBMA) and paraffin.

Das Grünteil in Stufe (d) zur Herstellung eines Braunteils wird in einem Kohlenwasserstoff, vorzugsweise Hexan und/oder Heptan chemisch und bevorzugt anschließend thermisch bei einer Temperatur von vorzugsweise 300°C bis 600°C, bevorzugter 400°C bis 500°C entbindert. Die chemische Entbinderung findet üblicherweise bei Temperaturen zwischen Umgebungstemperatur und 60°C, bevorzugt zwischen 40°C und 50°C statt.The green part in step (d) for producing a brown part is debindered chemically in a hydrocarbon, preferably hexane and / or heptane, and then preferably thermally at a temperature of preferably 300 ° C to 600 ° C, more preferably 400 ° C to 500 ° C. The chemical debinding usually takes place at temperatures between ambient temperature and 60 ° C, preferably between 40 ° C and 50 ° C.

Die Erfindung wird nunmehr durch das folgende, nichteinschränkende Beispiel verdeutlicht. Die Teilchengrößen beziehen sich, soweit nicht anders angegeben, auf maximale Teilchengrößen. Das verwendete Titanlegierungspulver wurde durch Sieben gewonnen.The invention will now be illustrated by the following non-limiting example. The particle sizes are, unless stated otherwise, to maximum particle sizes. The titanium alloy powder used was recovered by sieving.

Beispiel:Example:

Es wird als Ausgangsmaterial gasverdüstes sphärisches Pulver der Zusammensetzung entsprechend des ASTM Grads 23 (TiAl6V4 ELI) mit einer Teilchengröße von weniger als 45 µm verwendet. Dieses wird unter Argon-Atmosphäre mit einem amorphen Borpulver mit einer Teilchengröße von weniger als 2 µm homogen vermengt. Die Pulvermischung wird weiterhin unter Argon-Atmosphäre mit den Binderbestandteilen PEVA und Paraffin in einem Z-Schaufelkneter bei einer Temperatur von 120°C für 2 h zum Feedstock geknetet und granuliert.It is used as starting material gas atomized spherical powder of composition according to the ASTM grade 23 (TiAl6V4 ELI) having a particle size of less than 45 microns. This is homogeneously mixed under argon atmosphere with an amorphous boron powder having a particle size of less than 2 microns. The powder mixture is further kneaded and granulated under argon atmosphere with the binder components PEVA and paraffin in a Z-blade kneader at a temperature of 120 ° C for 2 h to the feedstock.

Der Feedstock wird auf einer Spritzgießmaschine vom Typ Arburg 320S bei einer Massetemperatur zwischen 100°C und 160°C zur Erzeugung von Probeteilen (hier Stäbe für Zugversuche) verarbeitet. Die Grünteile werden in Heptan bei 40°C 20 Stunden chemisch entbindert, dabei wird der Wachsanteil des Bindersystems herausgelöst. Die Braunteile werden in einem Hochvakuumofen mit Keramik-freier Auskleidung und Wolframheizer plaziert.The feedstock is processed on an Arburg 320S injection molding machine at a melt temperature between 100 ° C and 160 ° C to produce sample parts (here rods for tensile tests). The green parts are chemically debinded in heptane at 40 ° C for 20 hours, while the wax content of the binder system is dissolved out. The brown parts are placed in a high vacuum oven with ceramic-free lining and tungsten heater.

In dem Ofen wird durch ein geeignetes Temperaturprogramm zunächst unter Argon-Atmosphäre der Restbinder thermisch zersetzt und mit Hilfe einer Vakuumpumpe abgesaugt, bevor direkt anschließend die Sinterung des Metallpulvers erfolgt. Die Sinterung findet bevorzugt unter Vakuum bei einem Druck von 10-4 mbar statt. Die Sintertemperatur beträgt typischerweise 1400°C, die Sinterdauer 2 Stunden.In the oven, the residual binder is first thermally decomposed by a suitable temperature program under argon atmosphere and sucked by means of a vacuum pump, before the sintering of the metal powder takes place directly afterwards. The sintering preferably takes place under vacuum at a pressure of 10 -4 mbar. The sintering temperature is typically 1400 ° C, the sintering time 2 hours.

Die gemessenen mechanischen Eigenschaften der Sinterteile sind in der folgenden Tabelle beispielhaft für die Verwendung von Ti6Al4V ELI Pulver dargestellt, einmal ohne und einmal mit Zusatz von 0,5 Gew.% Bor. Verglichen wird mit der Norm für das entsprechende Material als Knetlegierung: Legierung Dehngrenze [MPa] Zugfestigkeit [MPa] Dehnung [%] Dauerfestigkeit [MPa] MIM-Ti-6Al-4V (Vergleich) 757 861 14 450 MIM-Ti-6Al-4V-0.5B (Erfindung) 790 902 11 640 Ti-6Al-4V Grade 23 (Vergleich) 759 828 mind. 10 500* * Alpha-Lamellen, Breite 12 µm, getemperter Zustand The measured mechanical properties of the sintered parts are shown in the following table by way of example for the use of Ti6Al4V ELI powder, once with and without addition of 0.5 wt.% boron. Compared with the standard for the corresponding material as wrought alloy: alloy Yield strength [MPa] Tensile strength [MPa] Strain [%] Fatigue strength [MPa] MIM-Ti-6Al-4V (comparative) 757 861 14 450 MIM-Ti-6Al-4V-0.5B (invention) 790 902 11 640 Ti-6Al-4V Grade 23 (comparative) 759 828 at least 10 500 * * Alpha lamellae, width 12 μm, annealed condition

Claims (15)

Verfahren zur Herstellung eines Bauteils aus Titan oder Titanlegierung, bei dem (a) eine homogene Mischung aus Borpulver mit einer Teilchengröße von weniger als 10 µm und Titanpulver und/oder Titanlegierungspulver hergestellt wird, (b) Bindemittel mit der homogenen Mischung von Bor und Titanpulver und/oder Titanlegierungspulver sowie gegebenenfalls einem Zuschlagstoff in einem Kneter vermischt werden, (c) die Mischung durch Spritzgießen zur Herstellung eines Grünteils in Form gebracht wird, (d) die in Form gebrachte Masse zur Herstellung eines Braunteils chemisch und/oder thermisch entbindert wird und (e) die entbinderte Masse bei einer Temperatur zwischen 1000°C und 1600°C gesintert wird. Process for producing a titanium or titanium alloy component, in which (a) a homogeneous mixture of boron powder having a particle size of less than 10 μm and titanium powder and / or titanium alloy powder is produced, (B) binder are mixed with the homogeneous mixture of boron and titanium powder and / or titanium alloy powder and optionally an aggregate in a kneader, (c) shaping the mixture by injection molding to produce a green part, (d) the mass formed is chemically and / or thermally debinded to produce a brown part, and (E) the debindered mass is sintered at a temperature between 1000 ° C and 1600 ° C. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Menge an Borpulver so gewählt wird, dass in dem Bauteil, bezogen auf dessen Gesamtgewicht nach Sinterung 0,05 Gew.% bis 1,5 Gew.% Bor vorhanden ist.A method according to claim 1, characterized in that the amount of boron powder is chosen so that in the component, based on its total weight after sintering 0.05 wt.% To 1.5 wt.% Boron is present. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Borgehalt zwischen 0,1 Gew.% und 1,0 Gew.% liegt,Process according to Claim 2, characterized in that the boron content is between 0.1% by weight and 1.0% by weight, Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Sintertemperatur zwischen 1300°C und 1450°C liegt.Method according to one of the preceding claims, characterized in that the sintering temperature is between 1300 ° C and 1450 ° C. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Vermischung von Borpulver und Titanpulver und/oder Titanlegierungspulver unter Schutzgasatmosphäre stattfindet.Method according to one of the preceding claims, characterized in that the mixing of boron powder and titanium powder and / or titanium alloy powder takes place under a protective gas atmosphere. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Vermischung von Bindemittel mit der homogenen Mischung aus Borpulver und Titanpulver und/oder Titanlegierungspulver unter Schutzgasatmosphäre stattfindet.Method according to one of the preceding claims, characterized in that the mixing of binder with the homogeneous mixture of boron powder and titanium powder and / or titanium alloy powder takes place under a protective gas atmosphere. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass als Schutzgas Argon oder Helium verwendet wird.A method according to claim 5 or 6, characterized in that argon or helium is used as protective gas. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die Sinterung im Hochvakuum stattfindet.Method according to one of the preceding claims, characterized in that the sintering takes place in a high vacuum. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die gesinterten Bauteile einen Sauerstoffgehalt von weniger als 0,3 Gew.%, bestimmt durch Schmelzextraktionsanalyse, aufweisen.Method according to one of the preceding claims, characterized in that the sintered components have an oxygen content of less than 0.3 wt.%, Determined by melt extraction analysis. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass das Titanpulver und/oder Titanlegierungspulver eine Teilchengröße von weniger als 45 µm aufweist.Method according to one of the preceding claims, characterized in that the titanium powder and / or titanium alloy powder has a particle size of less than 45 microns. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass als Titanlegierungspulver TiAl6V4 verwendet wird.Method according to one of the preceding claims, characterized in that TiAl6V4 is used as titanium alloy powder. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass gasverdüstes TiAl6V4 verwendet wird.A method according to claim 11, characterized in that gas atomized TiAl6V4 is used. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass das Bindemittel aus thermoplastischen oder duroplastischen Polymeren, thermogelierenden Substanzen, Wachsen oder oberflächenaktiven Substanzen oder daraus erhaltenen Mischungen ausgewählt ist.Method according to one of the preceding claims, characterized in that the binder of thermoplastic or thermosetting polymers, thermogels, waxes or surface-active substances or mixtures obtained therefrom. Verfahren nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass das Grünteil in Stufe (d) zur Herstellung eines Braunteils in einem Kohlenwasserstoff, vorzugsweise Hexan und/oder Heptan chemisch entbindert wird.Method according to one of the preceding claims, characterized in that the green part in step (d) for the production of a brown part in a hydrocarbon, preferably hexane and / or heptane is chemically entbindert. Bauteil aus Titan oder Titanlegierung, das nach einem Verfahren gemäß einem der vorgehenden Ansprüche herstellbar ist.Component of titanium or titanium alloy, which can be produced by a method according to one of the preceding claims.
EP09167195A 2009-08-04 2009-08-04 Method for producing components from titanium or titanium alloy using MIM technology Not-in-force EP2292806B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09167195A EP2292806B1 (en) 2009-08-04 2009-08-04 Method for producing components from titanium or titanium alloy using MIM technology
US12/849,360 US20110033334A1 (en) 2009-08-04 2010-08-03 Process for producing components composed of titanium or titanium alloy by means of mim technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09167195A EP2292806B1 (en) 2009-08-04 2009-08-04 Method for producing components from titanium or titanium alloy using MIM technology

Publications (2)

Publication Number Publication Date
EP2292806A1 true EP2292806A1 (en) 2011-03-09
EP2292806B1 EP2292806B1 (en) 2012-09-19

Family

ID=41112481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09167195A Not-in-force EP2292806B1 (en) 2009-08-04 2009-08-04 Method for producing components from titanium or titanium alloy using MIM technology

Country Status (2)

Country Link
US (1) US20110033334A1 (en)
EP (1) EP2292806B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333752A (en) * 2020-03-03 2021-09-03 湖南省民鑫新材料股份有限公司 Titanium and titanium alloy injection molding feed product and preparation method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160263653A1 (en) * 2013-10-25 2016-09-15 Golden Intellectual Property, Llc Amorphous alloy containing feedstock for powder injection molding
CN105880583A (en) * 2016-04-18 2016-08-24 四川大学 Composite wire for manufacturing titanium product through 3D printing and preparation method of composite wire
US10851437B2 (en) 2016-05-18 2020-12-01 Carpenter Technology Corporation Custom titanium alloy for 3-D printing and method of making same
CN107876575A (en) * 2016-09-30 2018-04-06 珠海天威飞马打印耗材有限公司 Three-dimensionally shaped silk, manufacture method and forming method
EP3655558A4 (en) * 2017-07-18 2020-11-04 Carpenter Technology Corporation Custom titanium alloy, ti-64, 23+
CN107868878A (en) * 2017-12-28 2018-04-03 宁波俐辰新能源有限公司 A kind of essential abrasion-resistant titanium alloy and its manufacture method
EP3524280B1 (en) 2018-02-12 2020-01-08 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Method for producing a metallic implant
CN110421174A (en) * 2019-07-30 2019-11-08 中山市金瓷科技有限公司 A kind of iron-based feeding formula of metal powder injection molded stainless steel-and production method
CN111390185A (en) * 2020-04-14 2020-07-10 东莞市金材五金有限公司 Production method of titanium alloy part
CN113751708A (en) * 2021-09-15 2021-12-07 西安航空职业技术学院 Special material for titanium alloy powder injection molding and preparation method thereof
CN114472879B (en) * 2021-12-20 2023-04-25 中南大学 Adhesive for pure titanium powder injection molding and preparation method and application thereof
CN114951662B (en) * 2022-06-14 2023-05-05 浙江大学 Method for preparing high-strength porous titanium alloy material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664998A1 (en) * 1994-01-27 1995-08-02 Injex Corporation Dental care material and manufacturing method
EP1119429B1 (en) * 1998-07-29 2003-07-02 Gkss-Forschungszentrum Geesthacht Gmbh Method for producing components by metallic powder injection moulding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592695B1 (en) * 2000-11-16 2003-07-15 General Electric Company Binder system for ceramic arc discharge lamp
EP1697550A4 (en) * 2003-12-11 2008-02-13 Univ Ohio Titanium alloy microstructural refinement method and high temperature, high strain rate superplastic forming of titanium alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664998A1 (en) * 1994-01-27 1995-08-02 Injex Corporation Dental care material and manufacturing method
EP1119429B1 (en) * 1998-07-29 2003-07-02 Gkss-Forschungszentrum Geesthacht Gmbh Method for producing components by metallic powder injection moulding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F.H. FROES: "Advances in Titanium Metal Injection Moulding", POWDER METALLURGY AND METAL CERAMICS, vol. 46, no. 5-6, 2007, pages 303 - 310, XP002548354 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333752A (en) * 2020-03-03 2021-09-03 湖南省民鑫新材料股份有限公司 Titanium and titanium alloy injection molding feed product and preparation method thereof

Also Published As

Publication number Publication date
US20110033334A1 (en) 2011-02-10
EP2292806B1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
EP2292806B1 (en) Method for producing components from titanium or titanium alloy using MIM technology
EP2468436B1 (en) Method for manufacturing metal casings with structured surfaces
EP1119429B1 (en) Method for producing components by metallic powder injection moulding
DE69920621T2 (en) PROCESS FOR PRODUCING SINZER PARTS
DE10224671C1 (en) Making high porosity sintered moldings, mixes metal powder with place holder, presses and processes blank, then removes place holder before sintering
EP1625101B1 (en) Method for the production of near net-shaped metallic and/or ceramic parts
EP2552630B1 (en) Method for producing shaped bodies from aluminium alloys
EP2200768B1 (en) Method for producing semi-finished products from niti shape memory alloys
EP2709967A1 (en) Process for producing components by powder injection molding
EP3395476A2 (en) Method for manufacturing a thermoplastic moulding powder
EP3231536B1 (en) Method for producing components from titanium or titanium alloys with powder metallurgy
EP2739417B1 (en) Binder mixture for producing moulded parts using injection methods
DE112016001286T5 (en) MACHINE COMPONENT AND MANUFACTURING METHOD THEREFOR
WO2012071600A1 (en) Method for producing an object from a metal or an alloy by means of large plastic deformation, object produced therefrom, and pressing tool therefor
EP3427866A2 (en) Method for manufacturing a creep-resistant substance
WO2007085249A1 (en) Titanium material and method for production thereof
DE102008042047A1 (en) Producing articles made of powder-metallurgy materials, comprises mixing powdered metal oxide with binder, granulating mixture obtained in the mixing step, removing binder from metal oxide granules and then reducing metal oxide granules
EP1807550A1 (en) Method for producing metal components
DE10336701B4 (en) Process for the production of components
DE102004060023B4 (en) Method for producing a honeycomb seal segment
DE19722416B4 (en) Process for the production of high-density components based on intermetallic phases
EP4200264A1 (en) Process for producing shaped bodies by sintering
DE102011107827A1 (en) Process for producing a porous ceramic
DE102015206396A1 (en) Method for producing a composite component
WO2014040792A1 (en) Sinter-pressing part and method for the production thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUER MATERIAL

17Q First examination report despatched

Effective date: 20110513

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EBEL, THOMAS

Inventor name: MILAGRES FERRI, ORLEY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 576077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004768

Country of ref document: DE

Effective date: 20121115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121230

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

26N No opposition filed

Effective date: 20130620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009004768

Country of ref document: DE

Effective date: 20130620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

BERE Be: lapsed

Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUR MATERIAL

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130804

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 576077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 11

Ref country code: FR

Payment date: 20190822

Year of fee payment: 11

Ref country code: IT

Payment date: 20190821

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190827

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190826

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009004768

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200804

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200804