EP2289139A2 - Device and method for coupling two parts in a dc network of an aircraft - Google Patents

Device and method for coupling two parts in a dc network of an aircraft

Info

Publication number
EP2289139A2
EP2289139A2 EP09769495A EP09769495A EP2289139A2 EP 2289139 A2 EP2289139 A2 EP 2289139A2 EP 09769495 A EP09769495 A EP 09769495A EP 09769495 A EP09769495 A EP 09769495A EP 2289139 A2 EP2289139 A2 EP 2289139A2
Authority
EP
European Patent Office
Prior art keywords
network
transistor
diode
voltage
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09769495A
Other languages
German (de)
French (fr)
Inventor
Olivier Langlois
Lucien Prisse
Marc Aiximeno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations SAS
Original Assignee
Airbus Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations SAS filed Critical Airbus Operations SAS
Publication of EP2289139A2 publication Critical patent/EP2289139A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • the invention relates to a device and a method for coupling two parts of a DC network, in particular in an aircraft.
  • HVDC high voltage direct current
  • capacitors are installed in various parts of it.
  • the capacities involved thus constitute distributed energy reserves.
  • the operation of the aircraft leads to more or less frequent reconfigurations of the DC network. Different parts are then coupled or decoupled automatically during the service of the aircraft.
  • FIGS. 1A and 1B illustrate the coupling, thanks to a coupling member 12, of two parts 10 and 11 of a continuous network (continuous buses) on which capacitors C1 and C2 are present.
  • the distinction is made between a network with a single voltage (Figure IA) and a network with differential voltages with midpoint (Figure IB), but the principle remains the same.
  • the capacitors of a dc network are thus present on each part of this network.
  • various points of the network are at different potentials (or voltages)
  • the coupling members traditionally used are electromechanical contactors. These contactors make straightforward couplings, the part of the most robust network imposing its voltage violently at the weakest part. Such a technical problem remains intact with an electronic coupling member (thyristor for example).
  • the object of the invention is to reduce the over-currents occurring during such couplings by proposing a device and a coupling method enabling two parts of a DC network to be connected together in a gentle manner, without any risk of material deterioration, acting by limiting the intensity of the current.
  • the invention relates to a device for coupling between a first and a second portion of a high-voltage dc edge network, at least two capacitors being installed in various places of this network to ensure the good quality of voltage thereof.
  • the network is a high voltage network.
  • the coupling member is a power electronics coupling device comprising at least one IGBT, MOSFET, or bipolar type transistor and a diode.
  • the controller comprises at least one transistor in series with a diode.
  • the control member comprises a first transistor in series with a first diode, and a second transistor in series with a second diode, the first transistor and the second diode being antiparallelly connected, and the second transistor and the first diode being antiparallelly connected.
  • the invention also relates to a method of coupling between a first and a second portion of a high-voltage dc edge network, at least two capacitors being installed in various parts of this network to ensure the good quality of voltage of the latter.
  • a first and a second capacitor being respectively present in this first and second parts characterized in that it comprises the following steps: - progressively precharging at least one of the first and second capacitors using a voltage-reducing static converter arranged between this first and second capacitors, this converter being formed by at least one power electronics coupling device, comprising at least one transistor and a diode, associated with an inductor and controlled by a control signal to progressively increase the voltage across this at least one capacitor, - the switching of this converter when this at least one capacitor is charged leaving the transistor in the on state permanently.
  • the at least one capacitor is precharged by the slow charge of the at least one capacitor of one of the two parts of the capacitor. network. It is also possible to charge slowly a load, (for example a user terminal) or a set of charges, which can be connected (s) to one of the two parts of the network, when they are powered up.
  • a load for example a user terminal
  • a set of charges which can be connected (s) to one of the two parts of the network, when they are powered up.
  • overcurrent protection is provided by protecting the electrical conductors, and / or limiting the current absorbed by one of the two network parts, or a load or a user terminal.
  • a protection against instabilities is realized by the management of any instabilities occurring on the part of the downstream network.
  • the invention finally relates to an aircraft comprising at least one such device.
  • This device can be arranged on a DC network, both on the positive and negative terminals.
  • the electronic power components in a high-voltage DC network, allow a long service life despite frequent use.
  • the inductance of the wiring used may be sufficient to obtain good performance, which avoids adding an inductance coil, resulting in a gain in mass.
  • the coupling member is compact.
  • the preload duration is adjustable and reconfigurable by the control without hardware change.
  • This device can have a protection function against overcurrent and short circuits, limiting the current to a value defined by the command.
  • the protection is adjustable and reconfigurable without hardware change.
  • This device can be fully reversible power, voltage and current.
  • a passive protection element such as a fuse guarantees the safety of the network even in case of failure of the device.
  • FIGS. 1A and 1B illustrate the coupling of two parts of a DC network, respectively for a single network and for an array with +/- differential voltages.
  • FIGS. 2A and 2B illustrate the device of the invention, respectively for a simple DC network and for an array with +/- differential voltages.
  • FIGS. 3A, 3B and 3C illustrate the standardization of the preload coupling converter of the device of the invention.
  • Figure 4 illustrates the paralleling of two devices according to the invention.
  • Figure 5 illustrates last-bus protection of continuous buses by passive elements, such as fuses.
  • FIGS. 6A, 6B and 6C illustrate exemplary embodiments according to the invention allowing a reversibility of the preloads, respectively of the first part of the network towards the second part, of the second part towards the first part, or indifferently.
  • FIGS. 7, 8 and 9 illustrate operating strategies according to the invention, respectively a constant current ripple strategy ( ⁇ l), a constant frequency strategy (f ma ⁇ ) and a priority current ripple strategy ( ⁇ l). but limited frequency (f max ) •
  • FIG. 10 illustrates an exemplary embodiment, in which a user terminal is connected to an electric core.
  • Figures HA and HB illustrate the speeds of the voltages and currents during the charging of the capacitor of a user terminal, in this embodiment.
  • the invention relates to a device for coupling the two parts 10 and 11 of a DC network, for example a high-voltage network, in which two capacitors C1 and C2 are installed, in a gentle manner by the progressive preload (slow) of these two capacitors C1 and C2.
  • FIGS. 2A and 2B illustrate the principle of producing such a device, which implements a coupling device 20 with transistor power electronics (IGBT, MOSFET, bipolar, etc.).
  • transistors of the IGBT Insulated Gate Bipolar Transistor
  • This coupling member 20 conventionally composed of a transistor T and a diode D, is associated with an inductance L, and constitutes a static voltage-reducing converter ("buck") in the direction of the first part 10 of the network towards the second part 11.
  • the transistor T is an IGBT transistor connected between the supply voltage (+) and the voltage O in series with a diode D, its collector being connected to the potential (+) and the anode of the diode D being connected to the potential O, the inductance L being connected to the point of connection of the emitter of the transistor T and the cathode of the diode D.
  • the coupling of the first part 10 to the second part 11 requires a precharge of the capacitor C2.
  • the converter (electronic coupling member 20 and inductance L) is controlled by a control signal applied to the gate of the transistor IBGT T, obviously for a person skilled in the art (see example of embodiment at the end of the description) to progressively increase the voltage across the capacitor C2.
  • FIG. 2A This operating principle illustrated in FIG. 2A is identical for an array with differential voltages, as illustrated in FIG. 2B.
  • a coupling member is then inserted on each potential: a coupling member 20 on the positive terminal (+) and a coupling member 20 'on the negative terminal (-).
  • Preloading is active, ie it does not require passive dissipative elements such as resistors.
  • the device of the invention offers several advantages:
  • the electronics allow a long life despite frequent use.
  • the inductance of the wiring used may be sufficient to obtain good performance, which avoids adding an inductance coil, resulting in a gain in mass.
  • the coupling member 20 (20 ') power electronics is compact. The control of this coupling member 20 (20 ') makes it possible to adapt the duration of the precharging according to the need.
  • the control of the coupling member 20 (20 ') allows the device of the invention to include a protection function against overcurrent and short circuits.
  • the transistor T can be controlled conventionally so as to set a precharge time, and / or not to pass a current greater than a determined value.
  • the electronic coupling member 30 is completed by a second transistor T ', in order to improve the control possibility and the functionalities. It is then constituted by a complete arm with two transistors T, T 'and two diodes D, D', which makes it possible to operate the converter in voltage booster ("boost") from the second part to the first part.
  • the first transistor T and the first diode D are connected as shown in FIG. 2.
  • the second transistor T 'and the second diode D' are, on the one hand, respectively connected in series with the first transistor T and the first diode D, and on the other hand connected antiparallel respectively with the first diode D and the first transistor T.
  • a standardization of the converter structure is carried out, which makes it possible to use the same component 30, 30 'for the positive (+) and negative (-) terminal, as illustrated in Figures 3B and 3C, which respectively correspond to Figures 2B and 2C.
  • FIG. 4 In a second variant embodiment illustrated in FIG. 4, several coupling members of the invention 32 and 33, such as that illustrated in FIG. 3A, are coupled in parallel, which makes it possible to multiply the current rating of the device of FIG. the invention by the number of coupling members in parallel.
  • identical devices are connected in parallel with interconnection inductances L1, L2 at the output.
  • Figure 5 illustrates such conversion members 32 and 33 with a protection of last aid.
  • a passive element such as a fuse 30 or 31, is then placed in series with the positive (+) or negative (-) terminal, and protects against any short-circuiting of the DC bus in the event of converter failure.
  • the device of the invention as illustrated in FIGS. 3A, 3B and 3C and in FIG. 5, can only be used to connect the second part 11 to the first part 10.
  • the precharging of the first part can not be performed by the second part. But a power transfer from the second part to the first part is possible thanks to the diode D 'connected in antiparallel with the transistor T for the positive part and at the diode D with the transistor T' for the negative part.
  • This structure does not ensure the reversibility of the preload, but ensures power reversibility.
  • FIGS. 6A, 6B and 6C Certain electronic structures, illustrated in FIGS. 6A, 6B and 6C, allow complete reversibility for coupling the second part indifferently to the first part and vice versa, the advantages of the invention then remaining valid.
  • FIG. 6A two cells 35 and 35 'are used, such as the one illustrated in FIG. 3A, each connected to one of the two parts 10 and 11 of the network and interconnected at their midpoint by the inductance L.
  • the two parts 10 and 11 are interconnected by a coupling member 36 comprising a first transistor and a first diode connected in series antiparallel with a second transistor and a second diode in series, and an inductor L .
  • the two parts 10 and 11 are interconnected by a coupling member 37 comprising a first transistor on which is connected, in an antiparallel manner, a first diode, and a second transistor on which is connected, of antiparallel way, a second diode; the two transistors being connected in series, but in opposite directions, and an inductance L.
  • the device of the invention thus makes it possible to control the voltage of the second part of the network or of a load (user) or of a set of charges, during the precharging of the capacitor or capacitors of this same part of the network or load (user) or set of charges.
  • the device of the invention also makes it possible to control the line current in the second part of the network or in a load (user) or in a set of charges, during the precharging of the capacitor (s), and during the overcurrents generated by this same part of the network or load (user) or set of loads.
  • the device of the invention consists essentially of electronic power components, to which are added a miniature control electronics. If it is digital and programmable, the entire device of the invention then constitutes a generic whole, programmable and reconfigurable as needed. It is then possible to implement a command adapted to control the part of the network concerned.
  • the maximum operating frequency f max and the maximum operating time ⁇ t max of the device of the invention must be compatible with the thermal performance thereof, to prevent excessive heating and premature aging of the device.
  • a constant current ripple strategy ⁇ l illustrated in FIG. 7 when the line current I reaches the maximum permissible value I max , the limitation of this current acts in such a way as to maintain a constant current ripple within a given range ⁇ l .
  • the switching frequency of the device of the invention varies according to the parameters of the network.
  • a constant frequency f max strategy illustrated in FIG. 8 when the line current I reaches the maximum permissible value I max , the limitation of this current acts in such a way as to keep the switching frequency constant equal to the maximum reasonable value; f max In this case, the current ripple ⁇ l varies as a function of the network parameters.
  • the switching frequency of the device varies according to the parameters of the network, but it is limited to its maximum allowed value f max . When the frequency is limited, it is then the current ripple ⁇ l which varies according to the network parameters.
  • the heating of the device is also related to the operating time of the latter in active mode ( ⁇ t max ). That's why we monitor this duration. Thus, if the current has not returned to a nominal operating range after a determined time ⁇ t max , a fault is declared and the device is opened.
  • a bus bar 43 is powered by a DC high voltage generation (HVDC) system 45.
  • the electronic coupling member 44 (power electronics arm) is placed near of the bar bus 43 in an electric core 42.
  • the user terminal 40 is located several meters from the electric core 41.
  • the inductance L of the cables is then sufficient to act as switching inductance of the converter.
  • a first capacitor C1 of significant value is present on the bus 43, in the electric core 42.
  • a second capacitor C2 is located at the input of the user terminal 40.
  • bus voltage curves 50, user 51 and coupling member 52 are illustrated.
  • FIG. HB shows current limit 53 and user 54 curves.
  • the coupling of the user terminal 40 to the network (bus bar HVDC 43) is ordered.
  • the coupling member 44 comes into action.
  • Transistor T becomes on, increasing current 54 flowing at the user terminal input.
  • the voltage 51 at the terminals of the user terminal also grows by the load of its internal capacitor C2.
  • the predefined limit value 53 for example 75 A
  • the transistor T is blocked.
  • the user current 54 decreases while the user voltage 51 is maintained by the capacitor C2.
  • a certain time allowing not to exceed a given switching frequency for example 5 kHz
  • the transistor T becomes on again, again causing an increase in the load of the capacitor C2.
  • the phenomenon is repeated until capacitor C2 is almost completely charged, reaching almost 100% of the grid voltage (for example 270 V).
  • the user terminal After this precharging phase of the user capacitor C2, the user terminal can then go into operation.
  • the strategy used here is the current ( ⁇ l) priority but limited frequency (f max ) current ripple strategy, illustrated in FIG. 9.
  • f max current ripple strategy
  • the precharging time is very short: less than 5 ms. This time is well below that required for a simple electromechanical contactor to close.
  • the primary function of the device of the invention is well-filled: the line current does not exceed the predefined maximum value, and the precharging of the user capacitor C2 is correctly performed.

Abstract

The invention relates to a device and a method for coupling two portions of a direct-current network, in which two capacitors (C1, C2) are respectively provided, particularly onboard an aircraft. The device includes at least one static converter formed by at least one electronic coupling member that comprises at least one transistor (T) and a diode (D), and is combined with an inductor (L), and provided between said at least two capacitors (C1, C2).

Description

DISPOSITIF ET PROCEDE DE COUPLAGE DE DEUX PARTIES DEVICE AND METHOD FOR COUPLING TWO PARTS
D'UN RESEAU A COURANT CONTINUOF A CONTINUOUS CURRENT NETWORK
NOTAMMENT DANS UN AERONEFPARTICULARLY IN AN AIRCRAFT
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUE L'invention concerne un dispositif et un procédé de couplage de deux parties d'un réseau à courant continu, notamment dans un aéronef.TECHNICAL FIELD The invention relates to a device and a method for coupling two parts of a DC network, in particular in an aircraft.
Dans la suite, pour des raisons de simplification de la description, on considère, à titre d'exemple, un réseau de bord haute tension à courant continu dans un aéronef de type avion.In the following, for reasons of simplification of the description, it is considered, for example, a high-voltage dc edge network in an aircraft-type aircraft.
ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART
Sur les avions futurs, en cours de développement, les réseaux haute tension à courant continu (HVDC : "High Voltage Direct Current") sont de plus en plus répandus .On future aircraft, under development, high voltage direct current (HVDC) networks are becoming more and more common.
Afin d'assurer une bonne qualité de tension du réseau (filtrage, stabilité) , des condensateurs sont installés en divers endroits de celui-ci. Les capacités mises en jeu constituent ainsi des réserves d'énergie réparties .In order to ensure a good quality of network voltage (filtering, stability), capacitors are installed in various parts of it. The capacities involved thus constitute distributed energy reserves.
Par ailleurs, le fonctionnement des avions mène à des reconfigurations plus ou moins fréquentes du réseau à courant continu. Différentes parties sont alors couplées ou découplées automatiquement au cours du service de l'avion.Moreover, the operation of the aircraft leads to more or less frequent reconfigurations of the DC network. Different parts are then coupled or decoupled automatically during the service of the aircraft.
Les figures IA et IB illustrent le couplage, grâce à un organe de couplage 12, de deux parties 10 et 11 d'un réseau continu (bus continus) sur lesquelles sont présents des condensateurs Cl et C2. La distinction est faite entre un réseau avec une tension unique (figure IA) et un réseau avec des tensions différentielles avec point milieu (figure IB) , mais le principe reste identique.FIGS. 1A and 1B illustrate the coupling, thanks to a coupling member 12, of two parts 10 and 11 of a continuous network (continuous buses) on which capacitors C1 and C2 are present. The distinction is made between a network with a single voltage (Figure IA) and a network with differential voltages with midpoint (Figure IB), but the principle remains the same.
Les condensateurs d'un réseau de bord à courant continu sont ainsi présents sur chaque partie de ce réseau. Lorsque divers points du réseau sont à des potentiels (ou tensions) différents, il est préférable de prendre certaines précautions avant de les connecter ensemble, car la mise en parallèle de condensateurs chargés à des potentiels différents entraîne de fortes surintensités. Les organes de couplage traditionnellement utilisés sont des contacteurs électromécaniques. Ces contacteurs réalisent des couplages francs, la partie du réseau la plus robuste imposant violemment sa tension à la partie la plus faible. Un tel problème technique reste entier avec un organe de couplage électronique (thyristor par exemple) .The capacitors of a dc network are thus present on each part of this network. When various points of the network are at different potentials (or voltages), it is preferable to take certain precautions before connecting them together, because the paralleling of capacitors charged to different potentials leads to strong overcurrents. The coupling members traditionally used are electromechanical contactors. These contactors make straightforward couplings, the part of the most robust network imposing its voltage violently at the weakest part. Such a technical problem remains intact with an electronic coupling member (thyristor for example).
Des variations rapides de potentiel électrique engendrent des variations rapides de charges des condensateurs, et ainsi de fortes pointes de courant dans celles-ci. Naturellement, de telles surintensités se répercutent dans les éléments de couplage ainsi que les matériels environnant les condensateurs. Des surintensités trop importantes peuvent entraîner des disfonctionnements et même des détériorations matérielles. L'invention a pour objet de réduire les surintensités survenant lors de tels couplages, en proposant un dispositif et un procédé de couplage permettant de raccorder ensemble deux parties d'un réseau à courant continu d'une manière douce, sans risques de détérioration matérielle, en agissant par limitation de l'intensité du courant.Rapid variations in electrical potential generate rapid capacitor charge changes, and thus high current peaks therein. Naturally, such overcurrents are reflected in the coupling elements and the materials surrounding the capacitors. Excessive overcurrents can lead to malfunctions and even physical damage. The object of the invention is to reduce the over-currents occurring during such couplings by proposing a device and a coupling method enabling two parts of a DC network to be connected together in a gentle manner, without any risk of material deterioration, acting by limiting the intensity of the current.
EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION
L'invention concerne un dispositif de couplage entre une première et une seconde partie d'un réseau de bord haute tension à courant continu, au moins deux condensateurs étant installés en divers endroits de ce réseau pour assurer la bonne qualité de tension de celui-ci, un premier et un second condensateurs étant respectivement présents dans cette première et cette seconde parties ; caractérisé en ce qu'il comprend au moins un convertisseur statique abaisseur de tension formé par au moins un organe de couplage à électronique de puissance, comprenant au moins un transistor et une diode associé à une inductance, disposé entre ce premier et ce second condensateurs .The invention relates to a device for coupling between a first and a second portion of a high-voltage dc edge network, at least two capacitors being installed in various places of this network to ensure the good quality of voltage thereof. a first and a second capacitor respectively being present in this first and second part; characterized in that it comprises at least one voltage-reducing static converter formed by at least one power electronics coupling device, comprising at least one transistor and a diode associated with an inductor, arranged between this first and second capacitors.
Dans un mode de réalisation avantageux, le réseau est un réseau haute tension. L'organe de couplage est un organe de couplage à électronique de puissance comprenant au moins un transistor de type IGBT, MOSFET, ou bipolaire et une diode. L'organe de commande comprend au moins un transistor en série avec une diode. Avantageusement, l'organe de commande comprend un premier transistor en série avec une première diode, et un second transistor en série avec une seconde diode, le premier transistor et la seconde diode étant branchés de manière antiparallèle, et le second transistor et la première diode étant branchés de manière antiparallèle.In an advantageous embodiment, the network is a high voltage network. The coupling member is a power electronics coupling device comprising at least one IGBT, MOSFET, or bipolar type transistor and a diode. The controller comprises at least one transistor in series with a diode. Advantageously, the control member comprises a first transistor in series with a first diode, and a second transistor in series with a second diode, the first transistor and the second diode being antiparallelly connected, and the second transistor and the first diode being antiparallelly connected.
L'invention concerne également un procédé de couplage entre une première et une seconde partie d'un réseau de bord haute tension à courant continu, au moins deux condensateurs étant installés en divers endroits de ce réseau pour assurer la bonne qualité de tension de celui-ci, un premier et un second condensateurs étant respectivement présents dans cette première et cette seconde parties caractérisé en ce qu' il comprend les étapes suivantes : — on précharge progressivement au moins un de ce premier et de second condensateurs à l'aide d'un convertisseur statique abaisseur de tension disposé entre ce premier et ce second condensateurs, ce convertisseur étant formé par au moins un organe de couplage à électronique de puissance, comprenant au moins un transistor et une diode, associé à une inductance et commandé par un signal de commande, pour faire croître progressivement la tension aux bornes de cet au moins un condensateur, - on arrête les commutations de ce convertisseur lorsque cet au moins un condensateur est chargé en laissant le transistor à l'état passant en permanence .The invention also relates to a method of coupling between a first and a second portion of a high-voltage dc edge network, at least two capacitors being installed in various parts of this network to ensure the good quality of voltage of the latter. ci, a first and a second capacitor being respectively present in this first and second parts characterized in that it comprises the following steps: - progressively precharging at least one of the first and second capacitors using a voltage-reducing static converter arranged between this first and second capacitors, this converter being formed by at least one power electronics coupling device, comprising at least one transistor and a diode, associated with an inductor and controlled by a control signal to progressively increase the voltage across this at least one capacitor, - the switching of this converter when this at least one capacitor is charged leaving the transistor in the on state permanently.
Avantageusement, on réalise la précharge dudit au moins un condensateur par la charge lente de 1 ' au moins un condensateur de l'une des deux parties du réseau. On peut réaliser également la charge lente d'une charge, (par exemple un terminal utilisateur) ou d'un ensemble de charges, pouvant être connectée (s) sur l'une des deux parties du réseau, lors de leurs mises sous tension.Advantageously, the at least one capacitor is precharged by the slow charge of the at least one capacitor of one of the two parts of the capacitor. network. It is also possible to charge slowly a load, (for example a user terminal) or a set of charges, which can be connected (s) to one of the two parts of the network, when they are powered up.
Avantageusement, on réalise une protection contre les surintensités par la protection des conducteurs électriques, et/ou la limitation du courant absorbé par une des deux parties du réseau, ou une charge ou un terminal utilisateur.Advantageously, overcurrent protection is provided by protecting the electrical conductors, and / or limiting the current absorbed by one of the two network parts, or a load or a user terminal.
Avantageusement, on réalise une protection contre les instabilités par la gestion des instabilités éventuelles survenant sur la partie du réseau en aval.Advantageously, a protection against instabilities is realized by the management of any instabilities occurring on the part of the downstream network.
L'invention concerne enfin un aéronef comprenant au moins un tel dispositif.The invention finally relates to an aircraft comprising at least one such device.
Le dispositif de l'invention offre les avantages suivants :The device of the invention offers the following advantages:
- Ce dispositif peut être disposé sur un réseau en courant continu, aussi bien sur la borne positive que négative.This device can be arranged on a DC network, both on the positive and negative terminals.
- Il n'y a de dissipation d'énergie autre que les pertes intrinsèques du dispositif.- There is energy dissipation other than the intrinsic losses of the device.
- Les composants électroniques de puissance, dans un réseau haute tension à courant continu, permettent une durée de vie élevée malgré une utilisation fréquente .- The electronic power components, in a high-voltage DC network, allow a long service life despite frequent use.
- L' inductance du câblage utilisé peut être suffisante pour obtenir de bonnes performances, ce qui évite d'ajouter une bobine d'inductance, d'où un gain de masse.- The inductance of the wiring used may be sufficient to obtain good performance, which avoids adding an inductance coil, resulting in a gain in mass.
- L'organe de couplage est compact. - La durée de précharge est ajustable et reconfigurable par la commande sans changement matériel.- The coupling member is compact. - The preload duration is adjustable and reconfigurable by the control without hardware change.
- Ce dispositif peut posséder une fonction de protection contre les surintensités et les court- circuits, en limitant le courant à une valeur définie par la commande.- This device can have a protection function against overcurrent and short circuits, limiting the current to a value defined by the command.
- La protection est ajustable et reconfigurable sans changement matériel.- The protection is adjustable and reconfigurable without hardware change.
- Ce dispositif peut être entièrement réversible en puissance, en tension et en courant.- This device can be fully reversible power, voltage and current.
- Plusieurs dispositifs peuvent être mis en parallèle pour augmenter le calibre en courant.- Several devices can be paralleled to increase the current rating.
- Un élément de protection passif tel qu'un fusible garantit la sûreté de fonctionnement du réseau même en cas de défaillance du dispositif.- A passive protection element such as a fuse guarantees the safety of the network even in case of failure of the device.
- Ce dispositif permet de contrer le risque d'instabilités qui surviendraient en aval.- This device makes it possible to counter the risk of instabilities that would occur downstream.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
Les figures IA et IB illustrent le couplage de deux parties d'un réseau en courant continu, respectivement pour un réseau simple et pour un réseau avec tensions différentielles +/-.FIGS. 1A and 1B illustrate the coupling of two parts of a DC network, respectively for a single network and for an array with +/- differential voltages.
Les figures 2A et 2B illustrent le dispositif de l'invention, respectivement pour un réseau en courant continu simple et pour un réseau avec tensions différentielles +/-.FIGS. 2A and 2B illustrate the device of the invention, respectively for a simple DC network and for an array with +/- differential voltages.
Les figures 3A, 3B et 3C illustrent la standardisation du convertisseur de couplage par précharge du dispositif de l'invention. La figure 4 illustre la mise en parallèle de deux dispositifs selon l'invention. La figure 5 illustre une protection de dernier secours de bus continus par des éléments passifs, tels que des fusibles.FIGS. 3A, 3B and 3C illustrate the standardization of the preload coupling converter of the device of the invention. Figure 4 illustrates the paralleling of two devices according to the invention. Figure 5 illustrates last-bus protection of continuous buses by passive elements, such as fuses.
Les figures 6A, 6B et 6C illustrent des exemples de réalisation selon l'invention permettant une réversibilité des précharges, respectivement de la première partie du réseau vers la seconde partie, de la seconde partie vers la première partie, ou indifféremment . Les figures 7, 8 et 9 illustrent des stratégies de fonctionnement selon l'invention, respectivement une stratégie à ondulation du courant (Δl) constante, une stratégie à fréquence (fmaχ) constante et une stratégie à ondulation du courant (Δl) prioritaire mais à fréquence limitée (fmax) •FIGS. 6A, 6B and 6C illustrate exemplary embodiments according to the invention allowing a reversibility of the preloads, respectively of the first part of the network towards the second part, of the second part towards the first part, or indifferently. FIGS. 7, 8 and 9 illustrate operating strategies according to the invention, respectively a constant current ripple strategy (Δl), a constant frequency strategy (f ma χ) and a priority current ripple strategy (Δl). but limited frequency (f max ) •
La figure 10 illustre un exemple de réalisation, dans lequel un terminal utilisateur est connecté à un cœur électrique.FIG. 10 illustrates an exemplary embodiment, in which a user terminal is connected to an electric core.
Les figures HA et HB illustrent les allures des tensions et courants lors de la charge du condensateur d'un terminal utilisateur, dans cet exemple de réalisation.Figures HA and HB illustrate the speeds of the voltages and currents during the charging of the capacitor of a user terminal, in this embodiment.
EXEMPLE DETAILLE DE MODES DE REALISATION PARTICULIERS L'invention concerne un dispositif permettant le couplage des deux parties 10 et 11 d'un réseau à courant continu, par exemple haute tension, dans lesquelles sont installés deux condensateurs Cl et C2, de manière douce par la précharge progressive (lente) de ces deux condensateurs Cl et C2. Les figures 2A et 2B illustrent le principe de réalisation d'un tel dispositif, qui met en œuvre un organe de couplage 20 à électronique de puissance à transistors (IGBT, MOSFET, bipolaire, etc.). Dans ces figures et dans la suite de la description, on considère, à titre d'exemple, des transistors de type IGBT ("Insulated Gâte Bipolar Transistor" ou transistor bipolaire à grille isolée) .DETAILED EXAMPLE OF SPECIFIC EMBODIMENTS The invention relates to a device for coupling the two parts 10 and 11 of a DC network, for example a high-voltage network, in which two capacitors C1 and C2 are installed, in a gentle manner by the progressive preload (slow) of these two capacitors C1 and C2. FIGS. 2A and 2B illustrate the principle of producing such a device, which implements a coupling device 20 with transistor power electronics (IGBT, MOSFET, bipolar, etc.). In these figures and in the remainder of the description, transistors of the IGBT ("Insulated Gate Bipolar Transistor") type are considered by way of example.
Cet organe de couplage 20, composé de manière classique par un transistor T et une diode D, est associé à une inductance L, et constitue un convertisseur statique abaisseur de tension ("buck") dans le sens de la première partie 10 du réseau vers la seconde partie 11. Sur ces figures, le transistor T est un transistor IGBT connecté entre la tension d'alimentation (+) et la tension O en série avec une diode D, son collecteur étant relié au potentiel (+) et l'anode de la diode D étant reliée au potentiel O, l'inductance L étant relié au point de liaison de l'émetteur du transistor T et de la cathode de la diode D.This coupling member 20, conventionally composed of a transistor T and a diode D, is associated with an inductance L, and constitutes a static voltage-reducing converter ("buck") in the direction of the first part 10 of the network towards the second part 11. In these figures, the transistor T is an IGBT transistor connected between the supply voltage (+) and the voltage O in series with a diode D, its collector being connected to the potential (+) and the anode of the diode D being connected to the potential O, the inductance L being connected to the point of connection of the emitter of the transistor T and the cathode of the diode D.
Si l'on suppose la seconde partie 11 initialement hors tension, le couplage de la première partie 10 vers la seconde partie 11 nécessite une précharge du condensateur C2. Le convertisseur (organe de couplage électronique 20 et inductance L) est commandé par un signal de commande appliqué sur la grille du transistor IBGT T, de manière évidente pour un homme de métier (voir exemple de réalisation en fin de description) pour faire croître progressivement la tension aux bornes du condensateur C2. Une fois celui-ci chargé, l'équilibrage des tensions entre les deux parties 10 et 11 du réseau est obtenu, les commutations de ce convertisseur sont arrêtées, en laissant le transistor T à l'état passant en permanence.Assuming the second part 11 initially off, the coupling of the first part 10 to the second part 11 requires a precharge of the capacitor C2. The converter (electronic coupling member 20 and inductance L) is controlled by a control signal applied to the gate of the transistor IBGT T, obviously for a person skilled in the art (see example of embodiment at the end of the description) to progressively increase the voltage across the capacitor C2. Once it charged, the balancing of the voltages between the two parts 10 and 11 of the network is obtained, the commutations of this converter are stopped, leaving the transistor T in the permanently on state.
Ce principe de fonctionnement illustré sur la figure 2A est identique pour un réseau avec tensions différentielles, comme illustré sur la figure 2B. Un organe de couplage est alors inséré sur chaque potentiel : un organe de couplage 20 sur la borne positive (+) et un organe de couplage 20' sur la borne négative (-) . Afin d'obtenir un couplage dans les meilleures conditions, on utilise une commande communeThis operating principle illustrated in FIG. 2A is identical for an array with differential voltages, as illustrated in FIG. 2B. A coupling member is then inserted on each potential: a coupling member 20 on the positive terminal (+) and a coupling member 20 'on the negative terminal (-). In order to obtain a coupling in the best conditions, we use a common command
(synchronisée) pour ces deux organes de couplage 20 et 20' (signal de commande commun sur les grilles des deux transistors IGBT T et T').(synchronized) for these two coupling members 20 and 20 '(common control signal on the gates of the two IGBT transistors T and T').
La précharge s'effectue de manière active, c'est à dire qu'elle ne nécessite pas d'éléments passifs dissipatifs tels que des résistances. Le dispositif de l'invention offre plusieurs avantages :Preloading is active, ie it does not require passive dissipative elements such as resistors. The device of the invention offers several advantages:
- Il n'y a pas de dissipation d'énergie autre que les pertes intrinsèques du dispositif.- There is no energy dissipation other than the intrinsic losses of the device.
- L'électronique permet une durée de vie élevée malgré une utilisation fréquente.- The electronics allow a long life despite frequent use.
- L' inductance du câblage utilisé peut être suffisante pour obtenir de bonnes performances, ce qui évite d'ajouter une bobine d'inductance, d'où un gain de masse . - L'organe de couplage 20 (20') à électronique de puissance est compact. - La commande de cet organe de couplage 20 (20') permet d' adapter la durée de la précharge en fonction du besoin .- The inductance of the wiring used may be sufficient to obtain good performance, which avoids adding an inductance coil, resulting in a gain in mass. - The coupling member 20 (20 ') power electronics is compact. The control of this coupling member 20 (20 ') makes it possible to adapt the duration of the precharging according to the need.
- La commande de l'organe de couplage 20 (20') permet au dispositif de l'invention d'inclure une fonction de protection contre les surintensités et les court- circuits .- The control of the coupling member 20 (20 ') allows the device of the invention to include a protection function against overcurrent and short circuits.
Ces deux derniers avantages sont rendus possibles grâce à la possibilité de commande du convertisseur, le transistor T pouvant être commandé classiquement de manière à fixer un temps de précharge, et/ou ne pas laisser passer un courant supérieur à une valeur déterminée.These last two advantages are made possible thanks to the possibility of controlling the converter, the transistor T can be controlled conventionally so as to set a precharge time, and / or not to pass a current greater than a determined value.
Dans une première variante de réalisation illustrée sur la figure 3A, l'organe de couplage électronique 30 est complété par un second transistor T', afin d'améliorer la possibilité de commande et les fonctionnalités. Il est alors constitué par un bras complet à deux transistors T, T' et deux diodes D, D', qui permet de faire fonctionner le convertisseur en élévateur de tension ("boost") de la seconde partie vers la première partie. Le premier transistor T et la première diode D sont branchés comme illustré sur la figure 2. Le second transistor T' et la seconde diode D' sont d'une part branchés respectivement en série avec le premier transistor T et la première diode D, et d'autre part branchés de manière antiparallèle respectivement avec la première diode D et le premier transistor T. On réalise, ainsi, une standardisation de la structure du convertisseur ce qui permet d'employer un même composant 30, 30' pour la borne positive (+) et négative (-) , comme illustré sur les figures 3B et 3C, qui correspondent respectivement aux figures 2B et 2C.In a first embodiment illustrated in FIG. 3A, the electronic coupling member 30 is completed by a second transistor T ', in order to improve the control possibility and the functionalities. It is then constituted by a complete arm with two transistors T, T 'and two diodes D, D', which makes it possible to operate the converter in voltage booster ("boost") from the second part to the first part. The first transistor T and the first diode D are connected as shown in FIG. 2. The second transistor T 'and the second diode D' are, on the one hand, respectively connected in series with the first transistor T and the first diode D, and on the other hand connected antiparallel respectively with the first diode D and the first transistor T. Thus, a standardization of the converter structure is carried out, which makes it possible to use the same component 30, 30 'for the positive (+) and negative (-) terminal, as illustrated in Figures 3B and 3C, which respectively correspond to Figures 2B and 2C.
Une telle standardisation de l'organe de conversion présente plusieurs avantages :Such standardization of the conversion unit has several advantages:
- augmenter les fonctionnalités grâce au degré de commande supplémentaire ;- increase the functionality thanks to the additional degree of control;
- élargir le choix dans les gammes de composant des fabricants ; - réduire les coûts grâce à l'effet de quantité ;- expand the choice in the component ranges of manufacturers; - reduce costs thanks to the quantity effect;
- réduire le nombre de référence de composants utilisés .- reduce the number of reference components used.
Dans une seconde variante de réalisation illustrée sur la figure 4, plusieurs organes de couplage de l'invention 32 et 33, tels que celui illustré sur la figure 3A, sont couplés en parallèle, ce qui permet de multiplier le calibre en courant du dispositif de l'invention par le nombre d'organes de couplage mis en parallèle. Afin d'obtenir de bonnes performances et une bonne fiabilité, on réalise des mises en parallèle de dispositifs identiques avec des inductances d'interconnexion Ll, L2 en sortie.In a second variant embodiment illustrated in FIG. 4, several coupling members of the invention 32 and 33, such as that illustrated in FIG. 3A, are coupled in parallel, which makes it possible to multiply the current rating of the device of FIG. the invention by the number of coupling members in parallel. In order to obtain good performance and good reliability, identical devices are connected in parallel with interconnection inductances L1, L2 at the output.
La figure 5 illustre de tels organes de conversion 32 et 33 avec une protection de dernier secours. Un élément passif, tel qu'un fusible 30 ou 31 est alors placé en série avec la borne positive (+) ou négative (-) , et protège d'une éventuelle mise en court-circuit du bus continu en cas de panne du convertisseur . Le dispositif de l'invention, tel qu'il est illustré sur les figures 3A, 3B et 3C et sur la figure 5, ne peut être utilisé que pour connecter la seconde partie 11 sur la première partie 10. La précharge de la première partie ne peut pas être effectuée par la seconde partie. Mais, un transfert de puissance de la seconde partie vers la première partie est possible grâce à la diode D' branchée en antiparallèle avec le transistor T pour la partie positive et à la diode D avec le transistor T' pour la partie négative. Cette structure n'assure donc pas la réversibilité de la précharge, mais assure la réversibilité en puissance.Figure 5 illustrates such conversion members 32 and 33 with a protection of last aid. A passive element, such as a fuse 30 or 31, is then placed in series with the positive (+) or negative (-) terminal, and protects against any short-circuiting of the DC bus in the event of converter failure. . The device of the invention, as illustrated in FIGS. 3A, 3B and 3C and in FIG. 5, can only be used to connect the second part 11 to the first part 10. The precharging of the first part can not be performed by the second part. But a power transfer from the second part to the first part is possible thanks to the diode D 'connected in antiparallel with the transistor T for the positive part and at the diode D with the transistor T' for the negative part. This structure does not ensure the reversibility of the preload, but ensures power reversibility.
Certaines structures électroniques, illustrées sur les figures 6A, 6B et 6C, permettent une réversibilité complète pour coupler indifféremment la seconde partie sur la première partie et inversement, les avantages de l'invention restant alors valables.Certain electronic structures, illustrated in FIGS. 6A, 6B and 6C, allow complete reversibility for coupling the second part indifferently to the first part and vice versa, the advantages of the invention then remaining valid.
Sur la figure 6A, on utilise deux cellules 35 et 35' telles que celle illustrée sur la figure 3A, connectées chacune à une des deux parties 10 et 11 du réseau et reliées entre elles, en leur point milieu, par l'inductance L.In FIG. 6A, two cells 35 and 35 'are used, such as the one illustrated in FIG. 3A, each connected to one of the two parts 10 and 11 of the network and interconnected at their midpoint by the inductance L.
Sur la figure 6B, les deux parties 10 et 11 sont reliées entre elles par un organe de couplage 36 comprenant un premier transistor et une première diode en série branchés de manière antiparallèle avec un second transistor et une seconde diode en série, et une inductance L.In FIG. 6B, the two parts 10 and 11 are interconnected by a coupling member 36 comprising a first transistor and a first diode connected in series antiparallel with a second transistor and a second diode in series, and an inductor L .
Sur la figure 6C, les deux parties 10 et 11 sont reliées entre elles par un organe de couplage 37 comprenant un premier transistor sur lequel est branchée, de manière antiparallèle, une première diode, et un second transistor sur lequel est branché, de manière antiparallèle, une seconde diode ; les deux transistors étant branchés en série, mais en sens contraire, et une inductance L.In FIG. 6C, the two parts 10 and 11 are interconnected by a coupling member 37 comprising a first transistor on which is connected, in an antiparallel manner, a first diode, and a second transistor on which is connected, of antiparallel way, a second diode; the two transistors being connected in series, but in opposite directions, and an inductance L.
Grâce à la possibilité de commande de cet organe de conversion, il est possible d'éviter les instabilités sur le réseau continu en aval du dispositif (seconde partie) . Trois fonctions peuvent donc être réalisées avec le dispositif de l'invention :Thanks to the possibility of controlling this conversion member, it is possible to avoid instabilities on the continuous network downstream of the device (second part). Three functions can therefore be realized with the device of the invention:
- Précharge, par la charge lente des condensateurs d'une partie du réseau, ou d'une charge (par exemple un terminal utilisateur), ou d'un ensemble de charges, pouvant être connectée (s) sur l'une des deux parties du réseau, lors de leurs mises sous tension.- Preloading, by the slow charge of the capacitors of a part of the network, or of a load (for example a user terminal), or of a set of charges, which can be connected to one of the two parts network when they are powered up.
- Protection contre les surintensités : par la protection des conducteurs électriques (fonction disjoncteur électronique) et/ou la limitation du courant absorbé par une partie du réseau, ou une charge (par exemple un terminal utilisateur) ou d'un ensemble de charges, pouvant être connectée (s) sur l'une des deux parties du réseau.- Overcurrent protection: by protecting the electrical conductors (electronic circuit-breaker function) and / or limiting the current absorbed by a part of the network, or a load (for example a user terminal) or a set of loads, which can be connected to one of the two parts of the network.
- Protection contre les instabilités : par la gestion des instabilités éventuelles survenant sur la partie du réseau en aval du dispositif (seconde partie) . En effet, la distribution d'un réseau électrique en courant continu pose la question des risques d'instabilités. La tension peut osciller et atteindre des valeurs excessives entraînant des détériorations matérielles. Grâce à la gestion de la tension et du courant sur la seconde partie du réseau (ou d'une charge ou d'un ensemble de charge), les transferts de puissance sont maîtrisés et ces instabilités peuvent être éliminées. .- Protection against instabilities: by the management of any instabilities occurring on the part of the network downstream of the device (second part). Indeed, the distribution of a DC electricity network raises the question of the risks of instabilities. The tension can oscillate and reach excessive values causing material damage. By managing the voltage and current on the second part of the network (or a load or set of load), transfers of power are controlled and these instabilities can be eliminated. .
Le dispositif de l'invention permet ainsi de contrôler la tension de la seconde partie du réseau ou d'une charge (utilisateur) ou d'un ensemble de charges, lors de la précharge du ou des condensateurs de cette même partie du réseau ou charge (utilisateur) ou ensemble de charges. Le dispositif de l'invention permet également de contrôler le courant de ligne dans la seconde partie du réseau ou dans une charge (utilisateur) ou dans un ensemble de charges, lors de la précharge du ou des condensateurs, et lors des surintensités engendrées par cette même partie du réseau ou charge (utilisateur) ou ensemble de charges.. Comme décrit ci-dessus, dans le cas d'un réseau haute tension à courant continu, le dispositif de l'invention est essentiellement constitué par des composants électroniques de puissance, auxquels viennent s'ajouter une électronique de commande miniature. Si celle-ci est numérique et programmable, l'ensemble du dispositif de l'invention constitue alors un tout générique, programmable et reconfigurable selon les besoins. Il est alors possible d'implanter une commande adaptée pour contrôler la partie du réseau concernée.The device of the invention thus makes it possible to control the voltage of the second part of the network or of a load (user) or of a set of charges, during the precharging of the capacitor or capacitors of this same part of the network or load (user) or set of charges. The device of the invention also makes it possible to control the line current in the second part of the network or in a load (user) or in a set of charges, during the precharging of the capacitor (s), and during the overcurrents generated by this same part of the network or load (user) or set of loads. As described above, in the case of a high-voltage DC network, the device of the invention consists essentially of electronic power components, to which are added a miniature control electronics. If it is digital and programmable, the entire device of the invention then constitutes a generic whole, programmable and reconfigurable as needed. It is then possible to implement a command adapted to control the part of the network concerned.
Il convient alors de respecter certaines précautions lors du paramétrage de la commande. Pour contrôler la tension et le courant utilisateur, plusieurs paramètres du dispositif de l'invention peuvent ainsi être ajustés :Some precautions must be observed when setting the command. To control the voltage and the user current, several parameters of the device of the invention can thus be adjusted:
- la valeur du courant à limiter (Imax) ; - l'ondulation du courant (Δl) que l'on peut définir comme une hystérésis ;the value of the current to be limited (Imax); current ripple (Δl) which can be defined as a hysteresis;
- le temps maximum (Δtmax) durant lequel on souhaite limiter le courant ; - la fréquence maximale (fmax) des commutations.the maximum time (Δt max ) during which it is desired to limit the current; - the maximum frequency (f max ) of the commutations.
La fréquence maximale fmax de fonctionnement ainsi que le temps maximum Δtmax de fonctionnement du dispositif de l'invention doivent être compatibles avec les performances thermiques de celui-ci, afin d'éviter un échauffement excessif et un vieillissement prématuré du dispositif.The maximum operating frequency f max and the maximum operating time Δt max of the device of the invention must be compatible with the thermal performance thereof, to prevent excessive heating and premature aging of the device.
Plusieurs stratégies de fonctionnement peuvent être utilisées, et notamment les trois stratégies suivantes qui jouent sur les paramètres précités :Several strategies of operation can be used, and in particular the following three strategies that play on the aforementioned parameters:
- Une stratégie à ondulation du courant Δl constante illustrée sur la figure 7 : lorsque le courant de ligne I atteint la valeur maximale permise Imax, la limitation de ce courant agit de façon à maintenir une ondulation de courant constante, dans une fourchette donnée Δl . Dans ce cas, la fréquence de commutation du dispositif de l'invention varie en fonction des paramètres du réseau.A constant current ripple strategy Δl illustrated in FIG. 7: when the line current I reaches the maximum permissible value I max , the limitation of this current acts in such a way as to maintain a constant current ripple within a given range Δl . In this case, the switching frequency of the device of the invention varies according to the parameters of the network.
- Une stratégie à fréquence fmax constante illustrée sur la figure 8 : lorsque le courant de ligne I atteint la valeur maximale permise Imax, la limitation de ce courant agit de façon à maintenir la fréquence de commutation constante, égale à la valeur maximale raisonnable fmax. Dans ce cas, l'ondulation du courant Δl varie en fonction des paramètres du réseau. - Une stratégie à ondulation du courant Δl prioritaire mais à fréquence limitée fmax illustrée sur la figure 9 : lorsque le courant de ligne I atteint la valeur maximale permise Imax, la limitation de ce courant agit de façon à maintenir une ondulation de courant constante, dans une fourchette donnée Δl . Comme dans la première stratégie illustrée sur la figure 7, la fréquence de commutation du dispositif varie en fonction des paramètres du réseau, mais elle est limitée à sa valeur maximale permise fmax. Lorsque la fréquence est limitée, c'est alors l'ondulation du courant Δl qui varie en fonction des paramètres du réseau .A constant frequency f max strategy illustrated in FIG. 8: when the line current I reaches the maximum permissible value I max , the limitation of this current acts in such a way as to keep the switching frequency constant equal to the maximum reasonable value; f max In this case, the current ripple Δl varies as a function of the network parameters. A current-biasing strategy Δl which is of priority but has a limited frequency f max, illustrated in FIG. 9: when the line current I reaches the maximum permissible value I max , the limitation of this current acts in such a way as to maintain a constant current ripple; within a given range Δl. As in the first strategy illustrated in FIG. 7, the switching frequency of the device varies according to the parameters of the network, but it is limited to its maximum allowed value f max . When the frequency is limited, it is then the current ripple Δl which varies according to the network parameters.
La dernière stratégie illustrée sur la figure 9 constitue un bon compromis. Elle permet de respecter la contrainte de fréquence de commutation visant à limiter les échauffements du dispositif.The last strategy shown in Figure 9 is a good compromise. It makes it possible to respect the switching frequency constraint aimed at limiting the heating of the device.
Par ailleurs, l' échauffement du dispositif est également lié à la durée de fonctionnement de celui-ci en mode actif (Δtmax) . C'est pourquoi on surveille cette durée. Ainsi, si le courant n'est pas revenu dans une plage de fonctionnement nominal après un temps Δtmax déterminée, on déclare un défaut et on ouvre le dispositif.Furthermore, the heating of the device is also related to the operating time of the latter in active mode (Δt max ). That's why we monitor this duration. Thus, if the current has not returned to a nominal operating range after a determined time Δt max , a fault is declared and the device is opened.
Exemple de réalisationExample of realization
Dans un exemple de réalisation illustré sur la figure 10, une barre bus 43 est alimentée par un système de génération haute tension à courant continu (HVDC) 45. L'organe de couplage électronique 44 (bras d'électronique de puissance) est placé près de la barre bus 43 dans un cœur électrique 42. Le terminal utilisateur 40 est situé à plusieurs mètres du cœur électrique 41. L'inductance L des câbles est alors suffisante pour jouer le rôle d'inductance de commutation du convertisseur. Un premier condensateur Cl de valeur importante est présent sur le bus 43, dans le cœur électrique 42. Un second condensateur C2 est situé en entrée du terminal utilisateur 40.In an exemplary embodiment illustrated in FIG. 10, a bus bar 43 is powered by a DC high voltage generation (HVDC) system 45. The electronic coupling member 44 (power electronics arm) is placed near of the bar bus 43 in an electric core 42. The user terminal 40 is located several meters from the electric core 41. The inductance L of the cables is then sufficient to act as switching inductance of the converter. A first capacitor C1 of significant value is present on the bus 43, in the electric core 42. A second capacitor C2 is located at the input of the user terminal 40.
Sur la figure HA, sont illustrées les courbes de tension bus 50, utilisateur 51 et organe de couplage 52. Sur la figure HB, sont illustrées des courbes de courant limite 53 et utilisateur 54.In FIG. 6A, bus voltage curves 50, user 51 and coupling member 52 are illustrated. FIG. HB shows current limit 53 and user 54 curves.
Ainsi, comme illustré sur ces figures, à l'instant t = 0 le couplage du terminal utilisateur 40 au réseau (barre bus HVDC 43) est ordonné. L'organe de couplage 44 entre en action. Le transistor T devient passant, faisant croître le courant 54 circulant à l'entrée de terminal utilisateur. La tension 51 aux bornes du terminal utilisateur croît également par la charge de son condensateur interne C2. Lorsque le courant utilisateur 54 atteint la valeur limite prédéfinie 53 (par exemple 75 A) , le transistor T se bloque. Le courant utilisateur 54 décroît alors que la tension utilisateur 51 est maintenue par la capacité C2. Après un certain temps permettant de ne pas dépasser une fréquence de commutation donnée (par exemple 5 kHz) , le transistor T redevient passant, provoquant à nouveau une augmentation de la charge du condensateur C2. Le phénomène se reproduit jusqu'à ce que le condensateur C2 soit presque complètement chargé, en atteignant presque 100 % de la tension du réseau (par exemple 270 V) .Thus, as illustrated in these figures, at time t = 0 the coupling of the user terminal 40 to the network (bus bar HVDC 43) is ordered. The coupling member 44 comes into action. Transistor T becomes on, increasing current 54 flowing at the user terminal input. The voltage 51 at the terminals of the user terminal also grows by the load of its internal capacitor C2. When the user current 54 reaches the predefined limit value 53 (for example 75 A), the transistor T is blocked. The user current 54 decreases while the user voltage 51 is maintained by the capacitor C2. After a certain time allowing not to exceed a given switching frequency (for example 5 kHz), the transistor T becomes on again, again causing an increase in the load of the capacitor C2. The phenomenon is repeated until capacitor C2 is almost completely charged, reaching almost 100% of the grid voltage (for example 270 V).
Après cette phase de précharge du condensateur utilisateur C2, le terminal utilisateur peut alors se mettre en fonctionnement.After this precharging phase of the user capacitor C2, the user terminal can then go into operation.
La stratégie utilisée ici est la stratégie à ondulation du courant (Δl) prioritaire mais à fréquence limitée (fmax) , illustrée en figure 9. Mais dans cette application, les faibles inductances L entre les deux parties du réseau imposent un mode permanent de fonctionnement en limitation de fréquence. Ceci n'est pas gênant et permet de bonnes performances.The strategy used here is the current (Δl) priority but limited frequency (f max ) current ripple strategy, illustrated in FIG. 9. However, in this application, the low inductances L between the two parts of the network impose a permanent mode of operation. in frequency limitation. This is not a problem and allows good performance.
Comme illustré sur les figures HA et HB, le temps de précharge est très court : moins de 5 ms . Ce temps est bien inférieur à celui nécessaire à un simple contacteur électromécanique pour se fermer.As illustrated in Figures HA and HB, the precharging time is very short: less than 5 ms. This time is well below that required for a simple electromechanical contactor to close.
Dans cet exemple de réalisation, la fonction première du dispositif de l'invention est bien remplie : le courant de ligne n'excède pas la valeur maximale prédéfinie, et la précharge du condensateur utilisateur C2 est correctement effectuée. In this exemplary embodiment, the primary function of the device of the invention is well-filled: the line current does not exceed the predefined maximum value, and the precharging of the user capacitor C2 is correctly performed.

Claims

REVENDICATIONS
1. Dispositif de couplage entre une première et une seconde partie (10, 11) d'un réseau de bord haute tension à courant continu, au moins deux condensateurs (Cl, C2) étant installés en divers endroits de ce réseau pour assurer la bonne qualité de tension de celui-ci, un premier et un second condensateurs (Cl, C2) étant respectivement présents dans cette première et cette seconde parties (10,11) ; caractérisé en ce qu'il comprend au moins un convertisseur statique abaisseur de tension formé par au moins un organe de couplage à électronique de puissance, comprenant au moins un transistor (T) et une diode (D) associé à une inductance (L) , disposé entre ce premier et ce second condensateurs (Cl, C2) .1. A coupling device between a first and a second portion (10, 11) of a high-voltage dc edge network, at least two capacitors (C1, C2) being installed in various places of this network to ensure good a voltage quality thereof, first and second capacitors (C1, C2) being respectively present in said first and second portions (10, 11); characterized in that it comprises at least one voltage-reducing static converter formed by at least one power electronics coupling device, comprising at least one transistor (T) and a diode (D) associated with an inductor (L), disposed between this first and second capacitors (C1, C2).
2. Dispositif selon la revendication 1, dans lequel l'organe de couplage est un organe de couplage à électronique de puissance, comprenant au moins un transistor de type IGBT, MOSFET, ou bipolaire et une diode.2. Device according to claim 1, wherein the coupling member is a power electronics coupling member, comprising at least one type IGBT, MOSFET, or bipolar transistor and a diode.
3. Dispositif selon la revendication 2, dans lequel l'organe de commande comprend au moins un transistor (T) en série avec une diode (D) .3. Device according to claim 2, wherein the control member comprises at least one transistor (T) in series with a diode (D).
4. Dispositif selon la revendication 3, dans lequel l'organe de commande comprend un premier transistor (T) en série avec une première diode (D) , et un second transistor (T') en série avec une seconde diode (D' ) , le premier transistor (T) et la seconde diode (D' ) étant branchés de manière antiparallèle, et le second transistor (T') et la première diode (D) étant branchés de manière antiparallèle.4. Device according to claim 3, wherein the control member comprises a first transistor (T) in series with a first diode (D), and a second transistor (T ') in series with a second diode (D '), the first transistor (T) and the second diode (D') being antiparallelly connected, and the second transistor (T ') and the first diode (D) being connected antiparallel.
5. Procédé de couplage entre une première et une seconde partie (10, 11) d'un réseau de bord haute tension à courant continu, au moins deux condensateurs (Cl, C2) étant installés en divers endroits de ce réseau pour assurer la bonne qualité de tension de celui-ci, un premier et un second condensateurs (Cl, C2) étant respectivement présents dans cette première et cette seconde parties (10, 11) caractérisé en ce qu' il comprend les étapes suivantes : — on précharge progressivement au moins un de ce premier et de second condensateurs (Cl, C2) à l'aide d'un convertisseur statique abaisseur de tension disposé entre ce premier et ce second condensateurs, ce convertisseur étant formé par au moins un organe de couplage à électronique de puissance, comprenant au moins un transistor (T) et une diode, associé à une inductance et commandé par un signal de commande, pour faire croître progressivement la tension aux bornes de cet au moins un condensateur, - on arrête les commutations de ce convertisseur lorsque cet au moins un condensateur est chargé en laissant le transistor (T) à l'état passant en permanence.5. A method of coupling between a first and a second portion (10, 11) of a high-voltage dc edge network, at least two capacitors (C1, C2) being installed in various locations of this network to ensure the good voltage quality thereof, first and second capacitors (C1, C2) being respectively present in this first and second parts (10, 11) characterized in that it comprises the following steps: - progressively precharging at at least one of said first and second capacitors (C1, C2) by means of a voltage-reducing static converter disposed between said first and said second capacitors, said converter being formed by at least one power electronics coupling device , comprising at least one transistor (T) and a diode, associated with an inductor and controlled by a control signal, for progressively increasing the voltage across this at least one capacitor, - stopping the commutations of this converter when this at least one capacitor is charged leaving the transistor (T) in the on state permanently.
6. Procédé selon la revendication 5, dans lequel on réalise la précharge dudit au moins un condensateur par la charge lente d'au moins un condensateur de l'une des deux parties (10, 11) du réseau .6. The method of claim 5, wherein the precharging of said at least one capacitor by the slow charge of at least one capacitor of one of the two parts (10, 11) of the network.
7. Procédé selon la revendication 5, dans lequel on réalise la précharge dudit au moins un condensateur par la charge lente d'au moins un condensateur d'une charge, ou d'un ensemble de charges, pouvant être connectée (s) à l'une des deux parties du réseau, lors de leurs mises sous tension.7. Method according to claim 5, wherein the precharging of said at least one capacitor is carried out by the slow charge of at least one capacitor of a charge, or of a set of charges, which can be connected to the one of the two parts of the network, when they are switched on.
8. Procédé selon la revendication 5, dans lequel on réalise une protection contre les surintensités par la protection des conducteurs électriques, et/ou la limitation du courant absorbé par une des deux parties du réseau, ou une charge ou un terminal utilisateur.8. The method of claim 5, wherein there is provided overcurrent protection by the protection of the electrical conductors, and / or the limitation of the current absorbed by one of the two parts of the network, or a load or a user terminal.
9. Procédé selon la revendicationδ, dans lequel on réalise une protection contre les instabilités par la gestion des instabilités éventuelles survenant sur la partie du réseau en aval.9. The method of claimδ, wherein one carries out a protection against instabilities by the management of any instabilities occurring on the part of the network downstream.
10. Aéronef comprenant au moins un dispositif selon l'invention quelconque des revendications 1 à 4. 10. Aircraft comprising at least one device according to the invention any one of claims 1 to 4.
EP09769495A 2008-05-29 2009-05-28 Device and method for coupling two parts in a dc network of an aircraft Withdrawn EP2289139A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0853511A FR2932029B1 (en) 2008-05-29 2008-05-29 DEVICE AND METHOD FOR COUPLING TWO PARTS OF A CONTINUOUS CURRENT NETWORK, IN PARTICULAR IN AN AIRCRAFT
PCT/FR2009/051006 WO2009156654A2 (en) 2008-05-29 2009-05-28 Device and method for coupling two portions of a direct current network, particularly in an aircraft

Publications (1)

Publication Number Publication Date
EP2289139A2 true EP2289139A2 (en) 2011-03-02

Family

ID=40518434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09769495A Withdrawn EP2289139A2 (en) 2008-05-29 2009-05-28 Device and method for coupling two parts in a dc network of an aircraft

Country Status (4)

Country Link
US (1) US8736099B2 (en)
EP (1) EP2289139A2 (en)
FR (1) FR2932029B1 (en)
WO (1) WO2009156654A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947245B1 (en) 2009-06-29 2012-12-14 Airbus France SYSTEM AND METHOD FOR ELECTRICALLY POWERING AN AIRCRAFT
FR2969861B1 (en) * 2010-12-28 2014-02-28 Hispano Suiza Sa VOLTAGE CONVERSION MODULE BETWEEN A HIGH VOLTAGE ELECTRICAL NETWORK OF AN AIRCRAFT AND AN ENERGY STORAGE ELEMENT
WO2013026477A1 (en) * 2011-08-24 2013-02-28 Abb Technology Ag Bidirectional unisolated dc-dc converter based on cascaded cells
JP5250818B1 (en) * 2012-05-22 2013-07-31 東洋システム株式会社 Full bridge power converter
US10300791B2 (en) * 2015-12-18 2019-05-28 Ge Global Sourcing Llc Trolley interfacing device having a pre-charging unit
EP4021149A1 (en) 2020-12-22 2022-06-29 Textron Systems Corporation Light appartus with parallel-arranged leds and per-led drivers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311736A (en) * 1993-04-19 1994-11-04 Fujitsu Ltd Dc/dc converter
US5982156A (en) * 1997-04-15 1999-11-09 The United States Of America As Represented By The Secretary Of The Air Force Feed-forward control of aircraft bus dc boost converter
EP1298781B1 (en) 2001-09-27 2009-11-04 ABB Schweiz AG Power converter device and method for adjusting a variable DC voltage
AT413914B (en) * 2004-02-12 2006-07-15 Felix Dipl Ing Dr Himmelstoss Conversion circuit changing input voltage into two symmetrical unipolar voltages
US7372319B1 (en) * 2005-09-16 2008-05-13 National Semiconductor Corporation Constant boosted voltage generator circuit for feedback switches in a switched capacitor circuit
JP5250751B2 (en) * 2006-10-11 2013-07-31 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Voltage generation circuit
FR2911442B1 (en) * 2007-01-16 2015-05-15 Airbus France POWER SUPPLY SYSTEM AND METHOD FOR ACTUATORS ON BOARD AN AIRCRAFT
US8193784B2 (en) * 2007-06-15 2012-06-05 Fisher Controls International Llc Bidirectional DC to DC converter for power storage control in a power scavenging application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009156654A2 *

Also Published As

Publication number Publication date
US20110175441A1 (en) 2011-07-21
WO2009156654A3 (en) 2010-06-03
FR2932029B1 (en) 2013-01-11
FR2932029A1 (en) 2009-12-04
WO2009156654A2 (en) 2009-12-30
US8736099B2 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
EP3105845B1 (en) Dc voltage supply system configured to precharge a smoothing capacitor before supplying a load
EP3053236B1 (en) Method of discharging at least one electrical energy storage unit, in particular a capacitor, of an electrical circuit
EP2532069B1 (en) Charge equalization system for batteries
EP2289139A2 (en) Device and method for coupling two parts in a dc network of an aircraft
EP2532068B1 (en) Charge equalization system for batteries
EP2781001B1 (en) Dc power supply including electrochemical cells with adaptable voltage level
EP2695279A1 (en) Charge transfer device and associated management method
EP2731229A1 (en) System for pre-charging a capacitance by a battery
EP3682525B1 (en) Vehicle charger comprising a dc/dc converter
EP3298686B1 (en) System and method for dissipating electric energy regenerated by actuators
FR3072519A1 (en) ENERGY CONVERSION METHOD BETWEEN TWO USB TYPE C DEVICES AND CORRESPONDING DEVICE
FR3083382A1 (en) ELECTRICAL SYSTEM AND METHOD FOR CHARGING A BATTERY, PARTICULARLY FOR A VEHICLE
EP3053247A2 (en) System and method for charging a traction battery limiting the current draw of parasitic capacitances
FR3038152A1 (en) METHOD FOR CHARGING AN ELECTRIC ENERGY STORAGE UNIT AND VOLTAGE CONVERTER
EP3966922B1 (en) Multi-level voltage converter with optimised additional energy storage
WO2008142332A2 (en) Electronic switch device for controlling a high power load supply in an automobile
EP1176692A1 (en) Device for smoothing voltage and current transients when connecting or disconnecting a battery
EP3804137A1 (en) Switch system comprising a voltage limiting circuit, switching arm and electrical converter
WO2023083761A1 (en) Dc short-circuit current booster
EP4315577A1 (en) Title: isolated voltage converter
WO2020074376A1 (en) Multilevel modular voltage converter for managing an isolation fault
FR2982096A1 (en) Electric brake system for e.g. three-phase permanent magnet synchronous machine, has switch connected between terminal of resistor and cathode, so that system is operated in surge current limiter and in braking circuit
FR2912850A1 (en) Public transportation vehicle e.g. tramcar, has step down transformer with sides connected to terminals of battery and direct current bus respectively, where transformer delivers electrical energy on bus
FR3029715A1 (en) CONTINUOUS-CONTINUOUS ELECTRIC CONVERTER COMPRISING A VOLTAGE LIMITING CIRCUIT
FR2988927A1 (en) Method for discharging electrical energy storage unit e.g. condenser of electrical circuit in electric vehicle, involves performing short circuit between positive and negative conductors to enable discharge current to flow

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101126

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141020

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171201