EP2288832A1 - Assembly comprising a seal interposed between two components with different mean thermal expansion coefficients, associated seal, application to the sealing of eht electrolyzers and sofc fuel cells - Google Patents

Assembly comprising a seal interposed between two components with different mean thermal expansion coefficients, associated seal, application to the sealing of eht electrolyzers and sofc fuel cells

Info

Publication number
EP2288832A1
EP2288832A1 EP09769222A EP09769222A EP2288832A1 EP 2288832 A1 EP2288832 A1 EP 2288832A1 EP 09769222 A EP09769222 A EP 09769222A EP 09769222 A EP09769222 A EP 09769222A EP 2288832 A1 EP2288832 A1 EP 2288832A1
Authority
EP
European Patent Office
Prior art keywords
seal
components
component
end portion
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09769222A
Other languages
German (de)
French (fr)
Inventor
Gatien Fleury
Patrick Le Gallo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2288832A1 publication Critical patent/EP2288832A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0887Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates generally to the realization of the seal between two components of different thermal expansion coefficient, chosen for example from metal components and ceramic components.
  • EHT electrolysers of water vapor at high temperature
  • SOFC Solid Oxide Fuel CeIl
  • EHT electrochemical systems designed to produce hydrogen from the electrolysis of water between 600 0 C and 1000 0 C. They represent one of the most promising hydrogen production processes.
  • the Applicant plans to rapidly produce electrolysers coupled to thermal sources that do not generate greenhouse gases, especially of nuclear, geothermal or solar origin.
  • One of the options for achieving competitive production costs is to electrolyze water in the vapor phase and at high temperature. For this technology, the management of gases and the maintenance of watertightness over time is one of the major obstacles.
  • an electrochemical cell consisting of a mainly tri-layer ceramic stack
  • one disadvantage of which is its fragility. This can limit the forces applicable to the joints.
  • the electrolyte materials having low ionic conduction properties at low temperature it is necessary, therefore, to raise the operating temperature above 600 0 C to limit the ohmic losses. This causes difficulties for the holding of metal materials, including bipolar plates and seals. If oxidation appears as the major disadvantage of high temperatures for bipolar plates, the mechanical strength of the joints is even more penalizing.
  • the cell used in SOFC fuel cell or EHT electrolyser comprises fragile materials, such as ceramic electrolyte and porous electrodes. These fragile materials can not withstand significant clamping forces mentioned above.
  • US 7,226,687 discloses a stack of fuel cells in which the anode of a cell and the cathode of the adjacent cell are separated by metal spacers acting as a seal.
  • Each spacer is made by a process of stamping and rolling edges.
  • Each rolled edge spacer only acts in axial compression. This document does not address the sealing between two different materials with different thermal expansion coefficient.
  • the object of the invention is then to propose a new type of connection between two components of different thermal expansion coefficient whose sealing is effectively provided at high temperature, typically greater than 500 ° C., from a low effort clamping and holding thermal cycles performed in EHT and / or SOFC.
  • the invention relates to an assembly between two different components of different thermal expansion coefficient comprising a seal member interposed between the two components, the average thermal expansion coefficient is different from a value of at least 1.10 ⁇ 6 K "1 with that of at least one of the two components and whose continuous shape comprises planar surfaces separated from one another and at least one end portion located outside the portions formed between the surfaces.
  • the solution according to the invention therefore consists of a combination of compression orthogonal to the components obtained by initial clamping and radial compression obtained by sliding the seal due to the difference in thermal expansion until the radial compression of the seal by the (s) component (s).
  • Creep is a well-understood phenomenon and is a function of time. It occurs when a visco-plastic material is subjected to a constant force over time. Those skilled in the art will thus ensure to define a seal such that its breaking limit is never reached during thermal cycling on the duration of use of the assembly. Similarly, if the seal works at a constant height, that is to say under a variable force over time (since the material relaxes), a suitable material and thickness will be selected so that its relaxation remains sufficiently low and thus maintain a sufficient contact force to ensure the desired seal.
  • the table illustrated in FIG. 1 is given by UGINE and concerns ferritic steel AISI 430 or F17. It shows the rupture limit (in MPa) of the creep of this material as a function of the temperature to which it is subjected and the number of hours of use.
  • the rupture limit of a ferritic steel joint F17 suitable for the invention will be less than 45 MPa.
  • commercial simulation software can be used to select materials and their thickness.
  • the joint has an average coefficient of thermal expansion different from that of one of the components of a value between 0 and 10 ⁇ 6 K -1 and a continuous shape comprising three separate flat surfaces one of on the other and an end portion located outside the portions formed between the surfaces, the sealing being achieved: - below the threshold temperature, by the constant tightening which puts one of the three flat surfaces in abutment with the component of the least difference coefficient with that of the joint, the two other plane surfaces with the coefficient component of greater difference with that of the seal while leaving the free end portion of any contact,
  • the least-difference thermal average expansion coefficient component is a metal component and the larger-difference thermal average expansion coefficient component is a ceramic component.
  • the metal component and the seal may be a one-piece member.
  • the two components are flat substrates, at least one of them comprising a groove in which is housed a flat surface connected to the end portion, the placing in radial compression of the latter being performed against an edge of this groove.
  • the radial compression of the end portion s' performing against an edge of one of the substrates.
  • the invention also relates to a seal, intended to be inserted in an assembly described above, comprising at least one continuous shape comprising planar surfaces separated from one another and an end portion located outside portions formed between the surfaces, the shape being obtained by a single stamping operation of a metal strip.
  • One embodiment of such a seal may advantageously comprise two continuous shapes each obtained by a single stamping operation of a metal strip and fixed together by welding or brazing at one of their flat surfaces.
  • the two continuous forms are substantially identical and fixed to each other in a head-to-tail manner so that the two end portions are not facing each other.
  • This embodiment of the joint can be advantageous in the case where the two components to be assembled have different average thermal expansion coefficients ⁇ with each a difference at least equal to 1.10 ⁇ 6 K ⁇ 1- with that of the joint but only the coefficient one of the components is smaller than the seal.
  • the two continuous shapes are substantially identical and fixed together in a symmetrical manner with respect to a plane defined by the plane surface in common. This embodiment of the seal may be advantageous in the case where the two components to be assembled have different coefficients of thermal expansion and both lower than that of the joint with differences at least equal to 10 ⁇ 6 K "1 .
  • a seal intended to be inserted in an assembly described above, whose continuous shape comprises a first portion comprising planar surfaces separated from one another and obtained by a single stamping operation of a metal strip, and a second portion comprising an end portion located outside the portions formed between the surfaces and fixed to the first part by welding and / or soldering .
  • the metal strip to be stamped to achieve the shape of the joint can advantageously comprise a ferritic steel or an austenitic steel or a nickel-based alloy of the Inconel 600 or Haynes 230 type. Where it is necessary to provide concomitant electrical insulation to the seal, the metal strip may be coated with an electrically insulating material.
  • This coating can be made by growing an oxide on the surface of the stamped metal strip, or by a conventional layer deposition, advantageously from a aluminoformer alloy.
  • the insulating layer may be obtained by thermal oxidation in air at 1000 ° C. or more, prior to forming by stamping. A consolidation annealing under similar conditions is recommended following stamping.
  • a layer of ductile material may advantageously be deposited, after stamping the metal strip, on at least one end portion, or on a contact zone, either with direct contact or on the coating of electrically insulating material. It can be a layer of silver or a silver compound and preferably comprising one of the following elements: Cu, Sn, Bi, Si, Co.
  • This additional ductile layer can be applied by deposit electrolytic or screen printing, these two deposition methods advantageously using a masking, which allows to locate precisely this layer. It may have a thickness of between 1 and 10 ⁇ m.
  • the end portion is a simple curvature connected directly to one of the flat surfaces.
  • the thickness of the metal strip is advantageously between 0.07 mm and 0.5 mm.
  • the height separating two flat surfaces corresponding to a depth of stamping of the metal strip is preferably between 0.2 mm and 1 mm.
  • the inclination of the segments between the plane surfaces can be between 30 and 80 °, advantageously between 30 and 55 °.
  • the invention relates to a high temperature fuel cell (SOFC) or high temperature electrolyser (EHT) comprising an assembly mentioned above.
  • SOFC high temperature fuel cell
  • EHT high temperature electrolyser
  • FIG. 1 is a table showing the value of the creep rupture limit for commercial ferritic steel F17 as a function of the temperature and the number of hours of use,
  • FIG. 2 shows an assembly according to a first embodiment of the invention as performed in a high temperature electrolyser EHT;
  • FIG. 2A shows an elementary electrolysis cell of ESC type (Electrolyte Supported cell) used in the electrolyser EHT of FIG. 2;
  • FIG. 3A is a sectional view of the seal according to FIG. the invention before its implantation in the assembly of FIGS. 2 and 3B,
  • FIG. 3B shows in detail the assembly of FIG. 2
  • FIG. 4 shows a variant of the assembly according to the first mode
  • FIG. 5 and 6 respectively show an assembly according to a second and a third embodiment of the invention.
  • the assembly according to the invention is carried out here in a high temperature electrolyser EHT.
  • the proposed sealing solution is achieved through a seal 5 as schematically shown in Figures 3 to 6.
  • orthogonal or axial direction X is the direction which extends in a cross section to the electrolysis cell 1 and to the components 2, 3.
  • the radial direction R is the direction which extends along a parallel section to the electrolysis cell 1 and to the components 2, 3.
  • the high temperature electrolyser EHT of FIG. 2 comprises an electrolysis cell 1 supported by a ceramic support 2 and sandwiched between a cathodic interconnector 3 and an anode interconnector 4 and a seal according to the invention (FIG. Figure 2). Only one part of the cell 1 is shown, the other part being symmetrical with respect to the axis shown on the right.
  • the electrolysis cell 1 as shown comprises an electrolyte 10 directly supported by the ceramic support 2, and taken into sandwich between an anode 11 and a cathode 12 (Figure 2A).
  • the cathodic interconnector 3 is a plane substrate, and the material in which it is made is a ferritic steel with about 22% of chromium designated commercially by Crofer 22APU (known for its uniform corrosion in SOFC atmosphere). Its average coefficient of thermal expansion ⁇ 3 is of the order of 12 ⁇ 10 -6 K -1 .
  • the cell holder 2 is a planar substrate made in a massive piece yttriée zirconia. Its coefficient of thermal expansion ⁇ 2 is of the order of 10 ⁇ 6 K -1 at room temperature.
  • the seal 5 according to the first embodiment of FIGS. 2, 3A and 3B has a shape continuous comprising three planar surfaces 50, 51, 52 separated from each other and an end portion 53 located outside the portions formed between the surfaces.
  • the end portion 53 is here a simple curvature connected directly to the flat surface 52. This continuous shape was obtained by a single stamping operation of a metal strip.
  • This metal strip is a ferritic steel type F17 (AISI 430) or austenitic (for example AISI 316 L) or a nickel-based alloy of Inconel type 600 or Haynes 230.
  • Their average thermal expansion coefficients ⁇ j are of the order respectively 11.10 “6 , 17.10 “ 6 , 15.10 “6 , 11.10 “ 6 K “1 .
  • the shape of the seal is provided so that the latter does not reach its creep rupture limit during a cycle of use of the assembly of a predetermined duration.
  • This predetermined time depends on the application envisaged for the EHT electrolyser: at least 5000 hours for nomadic application, of at least 50000 hours for a stationary application.
  • the seal 5 has, before its implantation in the assembly according to the invention, an average thickness e of the order of 0.1 mm, the stamping depth pi between the two flat parts is of the order of 0.3 mm, the stamping depth p2 separating the two other flat parts is of the order of 0.6 mm and the inclination ⁇ of the segments connecting the flat surfaces 50, 51 and 51, 52 is of the order of 45 °.
  • the flat surface 52 and the end portion 53 are housed in a groove 20 formed in the cell holder 2.
  • the assembly according to a first embodiment of the invention illustrated in FIGS. 2 and 3, seals between the cell carrier 2 and the metal interconnector 3 in the following manner.
  • the seal 5 is compressed in a direction X orthogonal to the components 2, 3 obtained by a constant tightening of the components 2, 3 towards each other.
  • This initial clamping engages fixed flat surface 51 fixed support with the metal interconnector 3 and the flat surfaces 51, 52 with the cell holder 2 while leaving free of contact the end portion 53 of the seal (see Figure 3 the free space between the end 53 and the vertical edge 200 of the groove 20).
  • the seal 5 remains compressed in the X direction always by clamping, and becomes compressed in the radial direction R to the components 2, 3. More specifically, during the rise in temperature, the surface plane 51 is held in fixed support with the interconnector 3, while following the difference in thermal expansion between the cell holder 2 and the seal 5, the flat surfaces 50 and 52 slide on the cell holder until the radial compression of the end portion 53 by the edge vertical 200 of the throat 20.
  • the threshold temperature is determined according to the radial dimensions of the assembly, the materials, their coefficient of expansion, as well as the operating temperature of the assembly.
  • arrows F1 represent the clamping force, less than 20 N / cm of joint 5, between the cell carrier 2 and the interconnector 3 which contributes to the axial compression along the direction X and by arrows F2 the radial compression exerted on the gasket 5 as a result of the difference in thermal expansion between the gasket 5 and the cell holder 2.
  • Elliptical zones are also represented by the zones where the watertightness according to the invention is established during the rise in temperature.
  • the seal 5 comprises two continuous forms 5a, 5b each obtained by a single stamping operation of a metal strip and fixed together by welding or brazing at one of their flat surfaces 52a, 52b.
  • the welding can be advantageously carried out by means of a laser.
  • This embodiment makes it possible in particular to avoid the production of a specific groove in a solid part such as the cell holder 2.
  • the radial compression of the end portion 53 is performed here against a vertical edge 2A of the cell holder 2.
  • This vertical edge 2A is the edge which is directed towards the inside of the electrolyser, that is to say the one with which the gases coming from the cell 1 are likely to be in contact.
  • the average thickness is of the order of 0.1 mm
  • the depth of embossing separating the surfaces 50 , 52 of the surface 51 is of the order of 0.3 mm
  • the surface 52a, 52b in common is of the order of 0.5 mm
  • the stamping depth separating the surface 52b of the intermediate surface 54 is of the order of 0.5 mm
  • the inclination ⁇ of the segments connecting the plane surfaces to each other is of the order of 45 °.
  • the embodiment of FIG. 6 corresponds to an assembly between two components 2, 3 in which the gasket 5 has a coefficient of average thermal expansion ⁇ j whose difference with each of the coefficients ⁇ 1 and ⁇ 2 is greater than at least 1.10 "6 K "1 .
  • the two continuous shapes 5a, 5b are substantially identical and fixed to each other symmetrically with respect to a plane P defined by the flat surface 51a, 51b in common.
  • a groove 30 is also practiced in component 3.
  • the embodiment of FIG. 7 corresponds to an assembly between two components 2, 3 in which the gasket 5 has the same architecture as that used in the embodiment of FIG. 5.
  • the gasket 5 has a coefficient of expansion. thermal average ⁇ j such that:
  • the difference ⁇ j - ⁇ 2 is greater than at least 1.10 ⁇ 6 K "1 ;
  • the difference ⁇ 3 - ⁇ j is greater than at least 1.10 "6 K " 1 .
  • the component 3 here has a coefficient of thermal expansion greater than that of the joint.
  • the two continuous shapes 5a, 5b are substantially identical and fixed to each other in a head-to-tail manner so that the two end portions 53a, 53b are not facing each other.
  • the seal 5 as shown in the EHT in FIG. 2 is generally annular in shape.
  • the assembly according to the invention is also particularly suitable for EHT electrolyser architectures or large SOFC fuel cells where the differences between the expansion coefficients induce large deformations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Gasket Seals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The invention relates to an assembly typically operating at above 500°C, between two components with different mean thermal expansion coefficients, and between which there is interposed a seal the coefficient of which differs by at least 1.10-6 K-1 from that of at least one of the two components. According to the invention: - below a threshold temperature, the seal experiences orthogonal compression obtained by constant pressing of the two components toward one another, - above the threshold temperature, the seal experiences the orthogonal pressing compression and a radial compression obtained by the sliding of the surfaces of the seal bearing against at least one of the components until an end portion of the seal comes under radial compression against that same component, this portion being free of any contact below the threshold temperature. The seal is designed not to reach its creep rupture limit during a cycle of use of predetermined duration.

Description

ASSEMBLAGE COMPORTANT UN JOINT D'ETANCHEITE INTERCALE ASSEMBLY COMPRISING AN INTERCONNECTING SEAL
ENTRE DEUX COMPOSANTS DE COEFFICIENT DE DILATATION MOYEN THERMIQUE DIFFERENT, JOINT D'ETANCHEITE ASSOCIE, APPLICATION A l'ETANCHEITE D'ELECTROLYSEURS EHT ET DES PILES A COMBUSTIBLE SOFCBETWEEN TWO DIFFERENT MEDIUM THERMAL EXPANSION COEFFICIENT COEFFICIENT COMPONENTS, SEAL SEAL, APPLICATION TO SEALING EHT ELECTROLYSIS AND SOFC FUEL CELLS
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
L' invention concerne généralement la réalisation de l'étanchéité entre deux composants de coefficient de dilatation thermique moyen différents, choisis par exemple parmi des composants métalliques et des composants céramiques.The invention relates generally to the realization of the seal between two components of different thermal expansion coefficient, chosen for example from metal components and ceramic components.
Elle s'applique généralement aux liaisons céramique-métal fonctionnant à haute température.It is generally applicable to ceramic-metal bonds operating at high temperature.
Elle s'applique avantageusement aux électrolyseurs de vapeur d'eau à haute température (désigné usuellement et ci-après par EHT) utilisés pour la production d'hydrogène. Elle peut également s'appliquer aux piles à combustibles fonctionnant à haute température (en anglais : Solid Oxyde Fuel CeIl désigné usuellement et ci-après par SOFC) .It is advantageously applied to electrolysers of water vapor at high temperature (usually referred to and hereinafter as EHT) used for the production of hydrogen. It can also be applied to fuel cells operating at high temperature (in English: Solid Oxide Fuel CeIl usually referred to and hereinafter SOFC).
ART ANTÉRIEURPRIOR ART
Les EHT sont des systèmes électrochimiques visant à produire de l'hydrogène à partir de l'électrolyse de l'eau entre 6000C et 10000C. Ils représentent un des procédés de production d'hydrogène les plus prometteurs. Ainsi, la demanderesse envisage de réaliser rapidement des électrolyseurs couplés à des sources thermiques non génératrices de gaz à effet de serre, notamment d'origine nucléaire, géothermique ou solaire. Pour parvenir à des coûts de production compétitifs, une des options est d' électrolyser l'eau en phase vapeur et à température élevée. Pour cette technologie, la gestion des gaz et le maintien de l'étanchéité dans le temps constituent un des verrous majeurs.EHT are electrochemical systems designed to produce hydrogen from the electrolysis of water between 600 0 C and 1000 0 C. They represent one of the most promising hydrogen production processes. Thus, the Applicant plans to rapidly produce electrolysers coupled to thermal sources that do not generate greenhouse gases, especially of nuclear, geothermal or solar origin. One of the options for achieving competitive production costs is to electrolyze water in the vapor phase and at high temperature. For this technology, the management of gases and the maintenance of watertightness over time is one of the major obstacles.
En effet, pour les températures envisagées, on utilise une cellule électrochimique constituée d'un empilement principalement tri-couche en céramique, dont un inconvénient est sa fragilité. Celle-ci peut limiter les efforts applicables sur les joints. De plus, les matériaux d' électrolyte présentant des propriétés de conduction ionique faibles à basse température, il est nécessaire, en conséquence, d'élever la température de fonctionnement au dessus de 6000C pour limiter les pertes ohmiques. Cela engendre des difficultés pour la tenue des matériaux métalliques, notamment les plaques bipolaires et les joints d' étanchéité . Si l'oxydation apparaît comme l'inconvénient majeur des hautes températures pour les plaques bipolaires, la tenue mécanique des joints est encore plus pénalisante.In fact, for the temperatures envisaged, an electrochemical cell consisting of a mainly tri-layer ceramic stack is used, one disadvantage of which is its fragility. This can limit the forces applicable to the joints. In addition, the electrolyte materials having low ionic conduction properties at low temperature, it is necessary, therefore, to raise the operating temperature above 600 0 C to limit the ohmic losses. This causes difficulties for the holding of metal materials, including bipolar plates and seals. If oxidation appears as the major disadvantage of high temperatures for bipolar plates, the mechanical strength of the joints is even more penalizing.
En effet, une étanchéité des joints insuffisante, c'est-à-dire qui générerait une perte de combustible (respectivement de produit final) supérieure à 1 %, ne permettrait pas aux EHT ou piles à combustibles fonctionnant à haute température (SOFC) d'avoir un rendement énergétique compétitif par rapport aux technologies matures à ce jour.Indeed, an insufficient sealing of the joints, that is to say that would generate a loss of fuel (or final product respectively) greater than 1%, would not allow the EHT or fuel cells operating at high temperature (SOFC) to have a competitive energy yield compared to mature technologies to date.
Les solutions de référence pour l'étanchéité de ces systèmes sont aujourd'hui à base de verre. Cependant, les verres possèdent de mauvaises propriétés de cyclage thermique.The reference solutions for the waterproofing of these systems are today based on glass. However, the glasses have poor thermal cycling properties.
Les solutions d'étanchéité à base de joints métalliques mis en compression actuellement commercialisées qui permettraient d'obtenir des performances suffisantes, nécessitent l'application d'une force de serrage importante, typiquement supérieur à 20 N/cm de joint.Sealing solutions based on metal seals put in compression currently marketed which would allow to obtain sufficient performance, require the application of a large clamping force, typically greater than 20 N / cm joint.
Or, comme mentionné plus haut, la cellule utilisée dans les piles à combustible de type SOFC ou électrolyseur EHT comporte des matériaux fragiles, tels que l' électrolyte en céramique et les électrodes poreuses. Ces matériaux fragiles ne peuvent supporter des efforts de serrage importants évoqués ci-dessus.However, as mentioned above, the cell used in SOFC fuel cell or EHT electrolyser comprises fragile materials, such as ceramic electrolyte and porous electrodes. These fragile materials can not withstand significant clamping forces mentioned above.
Aussi, de nombreux joints à faible force de compression sont développés depuis récemment. Certains joints sont, dès le développement, intégrés dans les entretoises séparant les cellules élémentaires dans un assemblage de pile à combustible.Also, many joints with low compressive strength have been developed since recently. Some joints are, from the development, integrated into the spacers separating the elementary cells in a fuel cell assembly.
On peut citer le document US 7,226,687 qui divulgue un empilement de cellules à combustible dans lequel l'anode d'une cellule et la cathode de la cellule adjacente sont séparées par des entretoises métalliques jouant le rôle de joint d'étanchéité.US 7,226,687 discloses a stack of fuel cells in which the anode of a cell and the cathode of the adjacent cell are separated by metal spacers acting as a seal.
Chaque entretoise est réalisée selon un procédé d'estampage et par roulage des bords. Chaque entretoise à bord roulé n'agit qu'en compression axiale. Ce document ne s'intéresse pas à l'étanchéité entre deux matériaux à coefficient de dilatation thermique moyen différents .Each spacer is made by a process of stamping and rolling edges. Each rolled edge spacer only acts in axial compression. This document does not address the sealing between two different materials with different thermal expansion coefficient.
Ainsi, peu de solutions d'étanchéité sont aujourd'hui proposées pour des joints applicables directement en SOFC et/ou EHT avec un faible effort de serrage, typiquement inférieur à 20 N/cm de joint.Thus, few sealing solutions are now proposed for seals directly applicable SOFC and / or EHT with a low clamping force, typically less than 20 N / cm joint.
Le but de l'invention est alors de proposer un nouveau type de liaison entre deux composants de coefficient de dilatation thermique moyen différent dont l'étanchéité est assurée efficacement à haute température, typiquement supérieure à 5000C, à partir d'un faible effort de serrage et qui tienne les cycles thermiques réalisés dans des EHT et/ou des SOFC.The object of the invention is then to propose a new type of connection between two components of different thermal expansion coefficient whose sealing is effectively provided at high temperature, typically greater than 500 ° C., from a low effort clamping and holding thermal cycles performed in EHT and / or SOFC.
EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION
A cet effet, l'invention a pour objet un assemblage entre deux composants de coefficient de dilatation thermique moyen différents comprenant un élément formant joint intercalé entre les deux composants, dont le coefficient de dilatation thermique moyen est différent d'une valeur d'au moins 1.10~6 K"1 avec celui d' au moins un des deux composants et dont la forme continue comprend des surfaces planes séparées l'une de l'autre et au moins une portion d'extrémité située à l'extérieur des portions formées entre les surfaces .To this end, the invention relates to an assembly between two different components of different thermal expansion coefficient comprising a seal member interposed between the two components, the average thermal expansion coefficient is different from a value of at least 1.10 ~ 6 K "1 with that of at least one of the two components and whose continuous shape comprises planar surfaces separated from one another and at least one end portion located outside the portions formed between the surfaces.
Selon l'invention, l'étanchéité de l'assemblage est réalisée :According to the invention, the tightness of the assembly is achieved:
- en dessous d'une température seuil prédéterminée, par compression du joint selon une direction orthogonale aux composants obtenue par un serrage constant des composants l'un vers l'autre, qui met en appui fixe une partie des surfaces planes avec l'un des composants et une autre partie des surfaces planes avec l'autre composant tout en laissant libre de tout contact la portion d'extrémité du joint,- below a predetermined threshold temperature, by compressing the seal according to a orthogonal direction to the components obtained by a constant tightening of the components towards each other, which fixes fixed part of the flat surfaces with one of the components and another part of the flat surfaces with the other component while leaving free of any contact the end portion of the joint,
- au-dessus de la température seuil, par compression orthogonale du joint toujours obtenue par le serrage, et par compression du joint selon une direction radiale aux composants obtenue par glissement d' au moins une partie des surfaces planes en appui sur un composant lors de la montée en température, jusqu'à la mise en compression radiale de la portion d'extrémité par le même composant. La solution selon l'invention consiste donc en une combinaison de compression orthogonale aux composants obtenue par serrage initial et par compression radiale obtenue par glissement du joint dû à la différence de dilatation thermique jusqu'à mise en compression radiale du joint par le (s) composant (s) .above the threshold temperature, by orthogonal compression of the joint still obtained by clamping, and by compressing the joint in a radial direction to the components obtained by sliding at least a portion of the flat surfaces resting on a component during the rise in temperature, until the radial compression of the end portion by the same component. The solution according to the invention therefore consists of a combination of compression orthogonal to the components obtained by initial clamping and radial compression obtained by sliding the seal due to the difference in thermal expansion until the radial compression of the seal by the (s) component (s).
Il faut par ailleurs tenir compte aussi des phénomènes de fluage et de relaxation dus aux propriétés visco-plastiques des matériaux.Creep and relaxation phenomena due to the visco-plastic properties of materials must also be taken into account.
Le fluage est un phénomène bien appréhendé et est fonction du temps. Il intervient lorsqu'un matériau visco-plastique est soumis à une force constante au cours du temps. L'homme du métier veillera ainsi à définir une forme de joint telle que sa limite de rupture ne soit jamais atteinte lors des cyclages thermiques sur la durée d'utilisation de l'assemblage. De même, si le joint travaille à hauteur constante, c'est-à-dire sous force variable au cours du temps (puisque le matériau se relaxe) , on sélectionnera un matériau et une épaisseur adaptés de manière à ce que sa relaxation reste suffisamment faible et garder ainsi une force de contact suffisante pour assurer l'étanchéité souhaitée.Creep is a well-understood phenomenon and is a function of time. It occurs when a visco-plastic material is subjected to a constant force over time. Those skilled in the art will thus ensure to define a seal such that its breaking limit is never reached during thermal cycling on the duration of use of the assembly. Similarly, if the seal works at a constant height, that is to say under a variable force over time (since the material relaxes), a suitable material and thickness will be selected so that its relaxation remains sufficiently low and thus maintain a sufficient contact force to ensure the desired seal.
Le tableau illustré en figure 1 est donné par la société UGINE et concerne l'acier ferritique AISI 430 ou F17. Il montre la limite de rupture (en MPa) au fluage de ce matériau en fonction de la température à laquelle il est soumis et du nombre d'heures d'utilisation. Ainsi, dans le cadre de l'invention, lorsque l'assemblage est soumis à un cycle d'utilisation supérieur à 10000 heures à une température de 6000C (par exemple dans le cas d'une application stationnaire d'un électrolyseur EHT), la limite de rupture d'un joint en acier ferritique F17 approprié à l'invention sera inférieure à 45 MPa. Pour tenir compte de tous ces problèmes, on peut utiliser des logiciels de simulation du commerce qui permettent de sélectionner les matériaux et leur épaisseur .The table illustrated in FIG. 1 is given by UGINE and concerns ferritic steel AISI 430 or F17. It shows the rupture limit (in MPa) of the creep of this material as a function of the temperature to which it is subjected and the number of hours of use. Thus, in the context of the invention, when the assembly is subjected to a duty cycle greater than 10000 hours at a temperature of 600 ° C. (for example in the case of a stationary application of an electrolyser EHT) , the rupture limit of a ferritic steel joint F17 suitable for the invention will be less than 45 MPa. To account for all these problems, commercial simulation software can be used to select materials and their thickness.
Selon un mode de réalisation avantageux, le joint a un coefficient de dilatation thermique moyen différent de celui d'un des composants d'une valeur comprise entre 0 et 10~6 K"1 et une forme continue comprenant trois surfaces planes séparées l'une de l'autre et une portion d'extrémité située à l'extérieur des portions formées entre les surfaces, l'étanchéité étant réalisée : - en dessous de la température seuil, par le serrage constant qui met en appui l'une des trois surfaces planes avec le composant de coefficient de moindre différence avec celui du joint, les deux autres surfaces planes avec le composant de coefficient de plus grande différence avec celui du joint tout en laissant la portion d'extrémité libre de tout contact,According to an advantageous embodiment, the joint has an average coefficient of thermal expansion different from that of one of the components of a value between 0 and 10 ~ 6 K -1 and a continuous shape comprising three separate flat surfaces one of on the other and an end portion located outside the portions formed between the surfaces, the sealing being achieved: - below the threshold temperature, by the constant tightening which puts one of the three flat surfaces in abutment with the component of the least difference coefficient with that of the joint, the two other plane surfaces with the coefficient component of greater difference with that of the seal while leaving the free end portion of any contact,
- au-dessus de la température seuil, par compression orthogonale du joint obtenue par le même serrage constant qui maintient en appui fixe la surface plane avec le composant de coefficient de moindre différence, et par compression du joint selon une direction radiale aux composants obtenue par glissement des deux autres surfaces planes sur le composant de coefficient de plus grande différence jusqu'à la mise en compression radiale de la portion d'extrémité par le même composant.above the threshold temperature, by orthogonal compression of the joint obtained by the same constant tightening which maintains the plane surface in fixed support with the least-difference coefficient component, and by compressing the joint in a radial direction to the components obtained by sliding of the two other planar surfaces on the coefficient component with greater difference until the radial portion of the end portion is compressed by the same component.
Selon un mode de réalisation, le composant de coefficient de dilatation moyen thermique de moindre différence est un composant métallique et le composant de coefficient de dilatation moyen thermique de plus grande différence est un composant céramique.According to one embodiment, the least-difference thermal average expansion coefficient component is a metal component and the larger-difference thermal average expansion coefficient component is a ceramic component.
Selon une variante, le composant métallique et le joint peuvent constituer un élément monobloc. Cela permet notamment d'intégrer le joint directement dans une pièce structurelle d'un empilement d' électrolyseur EHT ou de pile à combustible SOFC, telle qu'un interconnecteur ou un collecteur chargé de la distribution des gaz. Selon une configuration avantageuse, les deux composants sont des substrats plans, au moins l'un d'entre eux comprenant une gorge dans laquelle est logée une surface plane reliée à la portion d'extrémité, la mise en compression radiale de cette dernière s' effectuant contre un bord de cette gorge. Selon une autre configuration préférée, la mise en compression radiale de la portion d'extrémité s' effectuant contre un bord de l'un des substrats.Alternatively, the metal component and the seal may be a one-piece member. This allows in particular to integrate the seal directly into a structural part of a stack of EHT electrolyser or SOFC fuel cell, such as an interconnector or a manifold responsible for the distribution of gases. According to an advantageous configuration, the two components are flat substrates, at least one of them comprising a groove in which is housed a flat surface connected to the end portion, the placing in radial compression of the latter being performed against an edge of this groove. According to another preferred configuration, the radial compression of the end portion s' performing against an edge of one of the substrates.
L'invention concerne également un joint d' étanchéité, destiné à être intercalé dans un assemblage décrit précédemment, comprenant au moins une forme continue comprenant des surfaces planes séparées l'une de l'autre et une portion d'extrémité située à l'extérieur des portions formées entre les surfaces, la forme étant obtenue par une unique opération emboutissage d'un feuillard métallique.The invention also relates to a seal, intended to be inserted in an assembly described above, comprising at least one continuous shape comprising planar surfaces separated from one another and an end portion located outside portions formed between the surfaces, the shape being obtained by a single stamping operation of a metal strip.
Un mode de réalisation d'un tel joint peut comprendre avantageusement deux formes continues obtenues chacune par une unique opération d'emboutissage d'un feuillard métallique et fixées entre elles par soudage ou brasage au niveau d'une de leurs surfaces planes.One embodiment of such a seal may advantageously comprise two continuous shapes each obtained by a single stamping operation of a metal strip and fixed together by welding or brazing at one of their flat surfaces.
Selon une variante de réalisation, les deux formes continues sont sensiblement identiques et fixées entre elles de manière tête-bêche de sorte que les deux portions d'extrémité ne soient pas en regard. Cette variante de réalisation du joint peut être avantageuse dans le cas où les deux composants à assembler ont des coefficients de dilatation thermique moyens α différents avec chacun une différence au moins égale à 1.10~6 K~1-avec celui du joint mais seul le coefficient d'un des composant est inférieur à celui du joint. Selon une variante de réalisation, les deux formes continues sont sensiblement identiques et fixées entre elles de manière symétrique par rapport à un plan défini par la surface plane en commun. Cette variante de réalisation du joint peut être avantageuse dans le cas où les deux composants à assembler ont des coefficients de dilatation thermique différents et tous deux inférieurs à celui du joint avec des différences au moins égale à 10~6 K"1. L'invention concerne également un joint d' étanchéité, destiné à être intercalé dans un assemblage décrit précédemment, dont la forme continue comprend une première partie comprenant des surfaces planes séparées l'une de l'autre et obtenue par une unique opération d'emboutissage d'un feuillard métallique, et une deuxième partie comprenant une portion d'extrémité située à l'extérieur des portions formées entre les surfaces et fixée à la première partie par soudage et/ou brasage. Le feuillard métallique à emboutir pour parvenir à la forme du joint peut comprendre avantageusement un acier ferritique ou un acier austénitique ou un alliage à base de nickel du type Inconel 600 ou Haynes 230. Dans les applications où il est nécessaire de prévoir une isolation électrique concomitante à 1' étanchéité, le feuillard métallique peut être revêtu d'un matériau isolant électriquement. Ce revêtement peut être réalisé en faisant croitre un oxyde à la surface du feuillard métallique embouti, ou par un dépôt de couche usuel, avantageusement à partir d'un alliage aluminoformeur . De façon préférentielle, la couche isolante peut être obtenue par oxydation thermique sous air à 10000C ou plus, préalablement à la mise en forme par emboutissage. Un recuit de consolidation dans des conditions similaires est préconisé suite à l'emboutissage.According to an alternative embodiment, the two continuous forms are substantially identical and fixed to each other in a head-to-tail manner so that the two end portions are not facing each other. This embodiment of the joint can be advantageous in the case where the two components to be assembled have different average thermal expansion coefficients α with each a difference at least equal to 1.10 ~ 6 K ~ 1- with that of the joint but only the coefficient one of the components is smaller than the seal. According to an alternative embodiment, the two continuous shapes are substantially identical and fixed together in a symmetrical manner with respect to a plane defined by the plane surface in common. This embodiment of the seal may be advantageous in the case where the two components to be assembled have different coefficients of thermal expansion and both lower than that of the joint with differences at least equal to 10 ~ 6 K "1 . also relates to a seal, intended to be inserted in an assembly described above, whose continuous shape comprises a first portion comprising planar surfaces separated from one another and obtained by a single stamping operation of a metal strip, and a second portion comprising an end portion located outside the portions formed between the surfaces and fixed to the first part by welding and / or soldering .The metal strip to be stamped to achieve the shape of the joint can advantageously comprise a ferritic steel or an austenitic steel or a nickel-based alloy of the Inconel 600 or Haynes 230 type. Where it is necessary to provide concomitant electrical insulation to the seal, the metal strip may be coated with an electrically insulating material. This coating can be made by growing an oxide on the surface of the stamped metal strip, or by a conventional layer deposition, advantageously from a aluminoformer alloy. Preferably, the insulating layer may be obtained by thermal oxidation in air at 1000 ° C. or more, prior to forming by stamping. A consolidation annealing under similar conditions is recommended following stamping.
En outre, afin de garantir encore mieux l'étanchéité radiale, une couche de matériau ductile peut être avantageusement déposée, après emboutissage du feuillard métallique, sur au moins une portion d'extrémité, ou sur une zone de contact, soit avec contact direct soit sur le revêtement de matériau isolant électriquement. Il peut s'agir d'une couche d' argent ou de composé à base d' argent et comprenant de préférence l'un des éléments suivants : Cu, Sn, Bi, Si, Co. Cette couche ductile supplémentaire peut être appliquée par dépôt électrolytique ou sérigraphie, ces deux méthodes de dépôt utilisant avantageusement un masquage, ce qui permet de localiser précisément cette couche. Elle peut avoir une épaisseur comprise entre 1 et 10 μm.In addition, in order to further guarantee the radial seal, a layer of ductile material may advantageously be deposited, after stamping the metal strip, on at least one end portion, or on a contact zone, either with direct contact or on the coating of electrically insulating material. It can be a layer of silver or a silver compound and preferably comprising one of the following elements: Cu, Sn, Bi, Si, Co. This additional ductile layer can be applied by deposit electrolytic or screen printing, these two deposition methods advantageously using a masking, which allows to locate precisely this layer. It may have a thickness of between 1 and 10 μm.
Selon une variante, la portion d'extrémité est une simple courbure reliée directement à l'une des surfaces planes. Dans le cas d'assemblage de dimension de l'ordre de 100 mm, l'épaisseur du feuillard métallique est avantageusement comprise entre 0.07 mm et 0,5 mm.According to a variant, the end portion is a simple curvature connected directly to one of the flat surfaces. In the case of assemblies of the order of 100 mm, the thickness of the metal strip is advantageously between 0.07 mm and 0.5 mm.
La hauteur séparant deux surfaces planes correspondant à une profondeur d'embouti du feuillard métallique est comprise de préférence entre 0.2 mm et 1 mm. L' inclinaison des segments entre les surfaces planes peut être comprise entre 30 et 80°, avantageusement entre 30 et 55°.The height separating two flat surfaces corresponding to a depth of stamping of the metal strip is preferably between 0.2 mm and 1 mm. The inclination of the segments between the plane surfaces can be between 30 and 80 °, advantageously between 30 and 55 °.
L' invention concerne enfin une pile à combustible fonctionnant à haute température (SOFC) ou électrolyseur à haute température (EHT) comprenant un assemblage mentionné plus haut.Finally, the invention relates to a high temperature fuel cell (SOFC) or high temperature electrolyser (EHT) comprising an assembly mentioned above.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description détaillée faite en référence aux figures suivantes parmi lesquelles :Other features and advantages of the invention will be better understood on reading the detailed description given with reference to the following figures among which:
- la figure 1 est un tableau montrant la valeur de la limite de rupture au fluage pour de l'acier ferritique de désignation commerciale F17 en fonction de la température et du nombre d'heure d' utilisation,FIG. 1 is a table showing the value of the creep rupture limit for commercial ferritic steel F17 as a function of the temperature and the number of hours of use,
- la figure 2 montre un assemblage selon un premier mode de réalisation de l'invention tel que réalisé dans un électrolyseur à haute température EHT ;- Figure 2 shows an assembly according to a first embodiment of the invention as performed in a high temperature electrolyser EHT;
- la figure 2A montre une cellule d' électrolyse élémentaire, de type ESC (en anglais, Electrolyte Supported cell) , utilisée dans 1' électrolyseur EHT de la figure 2, - la figure 3A est une vue en coupe du joint d'étanchéité selon l'invention avant son implantation dans l'assemblage des figures 2 et 3B,FIG. 2A shows an elementary electrolysis cell of ESC type (Electrolyte Supported cell) used in the electrolyser EHT of FIG. 2; FIG. 3A is a sectional view of the seal according to FIG. the invention before its implantation in the assembly of FIGS. 2 and 3B,
- la figure 3B montre en détail l'assemblage de la figure 2, - la figure 4 montre une variante de l'assemblage selon le premier mode,FIG. 3B shows in detail the assembly of FIG. 2, FIG. 4 shows a variant of the assembly according to the first mode,
- les figures 5 et 6 montrent respectivement un assemblage selon un deuxième et un troisième mode de réalisation de l'invention.- Figures 5 and 6 respectively show an assembly according to a second and a third embodiment of the invention.
EXPOSÉ DÉTAILLÉ D'UN MODE DE RÉALISATION PARTICULIERDETAILED PRESENTATION OF A PARTICULAR EMBODIMENT
L'assemblage selon l'invention est réalisé ici dans un électrolyseur haute température EHT. La solution d'étanchéité proposée est réalisée grâce à un joint d'étanchéité 5 tel que représenté schématiquement aux figures 3 à 6.The assembly according to the invention is carried out here in a high temperature electrolyser EHT. The proposed sealing solution is achieved through a seal 5 as schematically shown in Figures 3 to 6.
On précise ici que la direction orthogonale ou axiale X est la direction qui s'étend selon une section transversale à la cellule d' électrolyse 1 et aux composants 2, 3. La direction radiale R est la direction qui s'étend selon une section parallèle à la cellule d' électrolyse 1 et aux composants 2, 3.It is specified here that the orthogonal or axial direction X is the direction which extends in a cross section to the electrolysis cell 1 and to the components 2, 3. The radial direction R is the direction which extends along a parallel section to the electrolysis cell 1 and to the components 2, 3.
L' électrolyseur haute température EHT de la figure 2 comprend une cellule d' électrolyse 1 supportée par un support en céramique 2 et prise en sandwich entre un interconnecteur cathodique 3 et un interconnecteur anodique 4 et un joint d'étanchéité selon l'invention 5 (figure 2) . Seule une partie de la cellule 1 est montrée, l'autre partie étant symétrique par rapport à l'axe représenté à droite.The high temperature electrolyser EHT of FIG. 2 comprises an electrolysis cell 1 supported by a ceramic support 2 and sandwiched between a cathodic interconnector 3 and an anode interconnector 4 and a seal according to the invention (FIG. Figure 2). Only one part of the cell 1 is shown, the other part being symmetrical with respect to the axis shown on the right.
La cellule d' électrolyse 1 telle que représentée comprend un électrolyte 10 supporté directement par le support en céramique 2, et pris en sandwich entre une anode 11 et une cathode 12 (figure 2A) .The electrolysis cell 1 as shown comprises an electrolyte 10 directly supported by the ceramic support 2, and taken into sandwich between an anode 11 and a cathode 12 (Figure 2A).
Dans le mode de réalisation illustré aux figures 2 et 2A, l' interconnecteur cathodique 3 est un substrat plan, et le matériau dans lequel il est réalisé est un acier ferritique à environ 22 % de Chrome désigné commercialement par Crofer 22APU (réputé pour sa tenue à la corrosion en atmosphère SOFC) . Son coefficient de dilatation thermique moyen α3 est de l'ordre de.12 x 10"6 K"1.In the embodiment illustrated in FIGS. 2 and 2A, the cathodic interconnector 3 is a plane substrate, and the material in which it is made is a ferritic steel with about 22% of chromium designated commercially by Crofer 22APU (known for its uniform corrosion in SOFC atmosphere). Its average coefficient of thermal expansion α3 is of the order of 12 × 10 -6 K -1 .
Par « coefficient de dilatation thermique moyen », il faut comprendre l'intégrale de la fonction représentant les valeurs de ce coefficient en fonction de la température, entre la température ambiante Tamb et la température de fonctionnement Tfonc, divisée par l'écart entre ces deux températures : τfγ f{τ)dτ By "average thermal expansion coefficient", it is necessary to understand the integral of the function representing the values of this coefficient as a function of the temperature, between the ambient temperature Tamb and the operating temperature Tfonc, divided by the difference between these two temperatures: τ f γ f {τ) dτ
De façon plus usuelle, une simple moyenne arithmétique entre les deux valeurs extrêmes (α (Tfonc) - α (Tamb)) divisée par l'écart de températureIn a more usual way, a simple arithmetic mean between the two extreme values (α (Tfunc) - α (Tamb)) divided by the difference in temperature
Δ = Tfonc - Tamb est suffisante pour dimensionner correctement le joint.Δ = Tfonc - Tamb is sufficient to correctly size the joint.
D'autres aciers inoxydables ou d'alliages à base de Nickel peuvent aussi être envisagés. Le porte-cellule 2, quant à lui, est un substrat plan réalisé dans une pièce massive en zircone yttriée. Son coefficient de dilatation thermique moyen α2 est de l'ordre de 10~6 K"1 à température ambiante.Other stainless steels or nickel-based alloys can also be considered. The cell holder 2, meanwhile, is a planar substrate made in a massive piece yttriée zirconia. Its coefficient of thermal expansion α2 is of the order of 10 ~ 6 K -1 at room temperature.
Le joint d'étanchéité 5 selon le premier mode de réalisation des figures 2, 3A et 3B a une forme continue comprenant trois surfaces planes 50, 51, 52 séparées l'une de l'autre et une portion d'extrémité 53 située à l'extérieur des portions formées entre les surfaces. La portion d'extrémité 53 est ici une simple courbure reliée directement à la surface plane 52. Cette forme continue a été obtenue par une unique opération emboutissage d'un feuillard métallique.The seal 5 according to the first embodiment of FIGS. 2, 3A and 3B has a shape continuous comprising three planar surfaces 50, 51, 52 separated from each other and an end portion 53 located outside the portions formed between the surfaces. The end portion 53 is here a simple curvature connected directly to the flat surface 52. This continuous shape was obtained by a single stamping operation of a metal strip.
Ce feuillard métallique est un acier ferritique de type F17 (AISI 430) ou austénitique (par exemple AISI 316 L) ou un alliage à base de nickel du type Inconel 600 ou Haynes 230. Leurs coefficients de dilatation thermique moyens αj sont de l'ordre respectivement de 11.10"6, 17.10"6, 15.10"6, 11.10"6 K"1.This metal strip is a ferritic steel type F17 (AISI 430) or austenitic (for example AISI 316 L) or a nickel-based alloy of Inconel type 600 or Haynes 230. Their average thermal expansion coefficients αj are of the order respectively 11.10 "6 , 17.10 " 6 , 15.10 "6 , 11.10 " 6 K "1 .
En outre, la forme du joint est prévue afin que ce dernier n'atteigne pas sa limite de rupture en fluage pendant un cycle d'utilisation de l'assemblage d'une durée prédéterminée. Cette durée prédéterminée est fonction de l'application envisagée pour l' électrolyseur EHT : d'au moins 5000 heures pour une application nomade, d'au moins 50000 heures pour une application stationnaire .In addition, the shape of the seal is provided so that the latter does not reach its creep rupture limit during a cycle of use of the assembly of a predetermined duration. This predetermined time depends on the application envisaged for the EHT electrolyser: at least 5000 hours for nomadic application, of at least 50000 hours for a stationary application.
En effet, à partir de la connaissance de la limite de rupture en fluage du joint 5 en acier ferritique AISI 430 en fonction de la température et du nombre d'heures d'utilisation visée pour l' électrolyseur (voir tableau en figure 1), il est possible de définir l'architecture du joint 5.In fact, from the knowledge of the creep rupture limit of the ferritic steel seal AISI 430 as a function of the temperature and the number of hours of use targeted for the electrolyser (see table in FIG. 1), it is possible to define the architecture of the joint 5.
Dans le mode de réalisation des figures 2, et 3A, pour une cellule de diamètre 120 mm, le joint 5 a, avant son implantation dans l'assemblage selon l'invention, une épaisseur e moyenne de l'ordre de 0,1 mm, la profondeur d'embouti pi séparant les deux parties planes est de l'ordre de 0,3 mm, la profondeur p2 d'embouti séparant les deux autres parties planes est de l'ordre de 0,6 mm et l'inclinaison θ des segments reliant les surfaces planes 50, 51 et 51, 52 est de l'ordre de 45°.In the embodiment of FIGS. 2 and 3A, for a 120 mm diameter cell, the seal 5 has, before its implantation in the assembly according to the invention, an average thickness e of the order of 0.1 mm, the stamping depth pi between the two flat parts is of the order of 0.3 mm, the stamping depth p2 separating the two other flat parts is of the order of 0.6 mm and the inclination θ of the segments connecting the flat surfaces 50, 51 and 51, 52 is of the order of 45 °.
Dans le mode de réalisation des figures 2, 3, la surface plane 52 ainsi que la portion d'extrémité 53 sont logées dans une gorge 20 pratiquée dans le porte-cellule 2.In the embodiment of Figures 2, 3, the flat surface 52 and the end portion 53 are housed in a groove 20 formed in the cell holder 2.
Ainsi, l'assemblage selon un premier mode de réalisation de l'invention, illustré des figures 2 et 3, réalise l'étanchéité entre le porte-cellule 2 et 1' interconnecteur métallique 3 de la manière suivante. 1) En dessous d'une température seuil prédéterminée, le joint 5 est compressé selon une direction X orthogonale aux composants 2, 3 obtenue par un serrage constant des composants 2, 3 l'un vers l'autre. Ce serrage initial met en appui fixe la surface plane 51 en appui fixe avec l' interconnecteur métallique 3 et les surfaces planes 51, 52 avec le porte-cellule 2 tout en laissant libre de tout contact la portion d'extrémité 53 du joint (voir figure 3 l'espace libre entre l'extrémité 53 et le bord vertical 200 de la gorge 20) .Thus, the assembly according to a first embodiment of the invention, illustrated in FIGS. 2 and 3, seals between the cell carrier 2 and the metal interconnector 3 in the following manner. 1) Below a predetermined threshold temperature, the seal 5 is compressed in a direction X orthogonal to the components 2, 3 obtained by a constant tightening of the components 2, 3 towards each other. This initial clamping engages fixed flat surface 51 fixed support with the metal interconnector 3 and the flat surfaces 51, 52 with the cell holder 2 while leaving free of contact the end portion 53 of the seal (see Figure 3 the free space between the end 53 and the vertical edge 200 of the groove 20).
2) au-dessus de la température seuil, le joint 5 reste compressé selon la direction X toujours par le serrage, et devient compressé selon la direction radiale R aux composants 2, 3. Plus précisément, lors de la montée en température, la surface plane 51 est maintenue en appui fixe avec l' interconnecteur 3, tandis que suite à la différence de dilatation thermique entre le porte-cellule 2 et le joint 5, les surfaces planes 50 et 52 glissent sur le porte-cellule jusqu'à la mise en compression radiale de la portion d'extrémité 53 par le bord vertical 200 de la gorge 20.2) above the threshold temperature, the seal 5 remains compressed in the X direction always by clamping, and becomes compressed in the radial direction R to the components 2, 3. More specifically, during the rise in temperature, the surface plane 51 is held in fixed support with the interconnector 3, while following the difference in thermal expansion between the cell holder 2 and the seal 5, the flat surfaces 50 and 52 slide on the cell holder until the radial compression of the end portion 53 by the edge vertical 200 of the throat 20.
La température seuil est déterminée en fonction des dimensions radiales de l'assemblage, des matériaux, de leur coefficient de dilatation, ainsi que de la température de fonctionnement de l'assemblage. Sur les figures, on a représenté par des flèches Fl l'effort de serrage, inférieur à 20N/cm de joint 5, entre le porte-cellule 2 et l' interconnecteur 3 qui contribue à la compression axiale selon la direction X et par des flèches F2 la compression radiale exercée sur le joint 5 par suite de la différence de dilatation thermique entre le joint 5 et le porte-cellule 2. On a représenté en outre par des ellipses les zones où l'étanchéité selon l'invention est établie lors de la montée en température. Dans le mode de réalisation de la figure 4, où le joint 5 comprend deux formes continues 5a, 5b obtenues chacune par une unique opération d'emboutissage d'un feuillard métallique et fixées entre elles par soudage ou brasage au niveau d'une de leurs surfaces planes 52a, 52b. La soudure peut être avantageusement réalisée au moyen d'un laser. Ce mode de réalisation permet notamment d'éviter la réalisation d'une gorge spécifique dans une pièce massive telle que le porte-cellule 2. La mise en compression radiale de la portion d'extrémité 53 s'effectue ici contre un bord vertical 2A du porte-cellule 2. Ce bord vertical 2A est le bord celui qui est dirigé vers l'intérieur de 1' électrolyseur, c'est-à-dire celui avec lequel les gaz issus de la cellule 1 sont susceptibles d'être en contact . Dans ce mode de réalisation de la figure 4, avant l'implantation du joint 5 dans l'assemblage selon l'invention, l'épaisseur moyenne est de l'ordre de 0,1 mm, la profondeur d'embouti séparant les surfaces 50, 52 de la surface 51 est de l'ordre de 0,3 mm, la surface 52a, 52b en commun est de l'ordre de 0,5 mm, la profondeur d'embouti séparant la surface 52b de la surface intermédiaire 54 est de l'ordre de 0,5 mm et l'inclinaison θ des segments reliant les surfaces planes entre elles est de l'ordre de 45°. Le joint 5 du mode de réalisation des figures 2, 3 et 3A peut être utilisé avec la même architecture dans le cas où l'assemblage doit être réalisé avec un composant 2 tel que la différence de coefficient de dilatation thermique moyen α2 - αj est supérieure à 1.10~6 K"1 et qui présente un coefficient α2 supérieur à celui du joint (figure 3A) .The threshold temperature is determined according to the radial dimensions of the assembly, the materials, their coefficient of expansion, as well as the operating temperature of the assembly. In the figures, arrows F1 represent the clamping force, less than 20 N / cm of joint 5, between the cell carrier 2 and the interconnector 3 which contributes to the axial compression along the direction X and by arrows F2 the radial compression exerted on the gasket 5 as a result of the difference in thermal expansion between the gasket 5 and the cell holder 2. Elliptical zones are also represented by the zones where the watertightness according to the invention is established during the rise in temperature. In the embodiment of Figure 4, wherein the seal 5 comprises two continuous forms 5a, 5b each obtained by a single stamping operation of a metal strip and fixed together by welding or brazing at one of their flat surfaces 52a, 52b. The welding can be advantageously carried out by means of a laser. This embodiment makes it possible in particular to avoid the production of a specific groove in a solid part such as the cell holder 2. The radial compression of the end portion 53 is performed here against a vertical edge 2A of the cell holder 2. This vertical edge 2A is the edge which is directed towards the inside of the electrolyser, that is to say the one with which the gases coming from the cell 1 are likely to be in contact. In this embodiment of FIG. 4, before the implantation of the gasket 5 in the assembly according to the invention, the average thickness is of the order of 0.1 mm, the depth of embossing separating the surfaces 50 , 52 of the surface 51 is of the order of 0.3 mm, the surface 52a, 52b in common is of the order of 0.5 mm, the stamping depth separating the surface 52b of the intermediate surface 54 is of the order of 0.5 mm and the inclination θ of the segments connecting the plane surfaces to each other is of the order of 45 °. The seal 5 of the embodiment of FIGS. 2, 3 and 3A may be used with the same architecture in the case where the assembly has to be made with a component 2 such that the difference in mean thermal expansion coefficient α2 - αj is greater to 1.10 ~ 6 K "1 and which has a coefficient α2 greater than that of the seal (Figure 3A).
Le mode de réalisation de la figure 6 correspond à un assemblage entre deux composants 2, 3 dans lequel le joint 5 présente un coefficient de dilatation thermique moyen αj dont la différence avec chacun des coefficients αl et α2 est supérieure d' au moins 1.10"6 K"1. Ici, les deux formes continues 5a, 5b sont sensiblement identiques et fixées entre elles de manière symétrique par rapport à un plan P défini par la surface plane 51a, 51b en commun. Ainsi, une gorge 30 est également pratiquée dans le composant 3. On a donc dans ce mode de réalisation, deux étanchéités combinées par compression axiale due à l'effort de serrage et par compression radiale due à la différence de dilatation thermique. Le mode de réalisation de la figure 7 correspond à un assemblage entre deux composants 2, 3 dans lequel le joint 5 a la même architecture que celui utilisé dans le mode de réalisation de la figure 5. Ici, le joint 5 présente un coefficient de dilatation thermique moyen αj tel que :The embodiment of FIG. 6 corresponds to an assembly between two components 2, 3 in which the gasket 5 has a coefficient of average thermal expansion αj whose difference with each of the coefficients α1 and α2 is greater than at least 1.10 "6 K "1 . Here, the two continuous shapes 5a, 5b are substantially identical and fixed to each other symmetrically with respect to a plane P defined by the flat surface 51a, 51b in common. Thus, a groove 30 is also practiced in component 3. In this embodiment, therefore, there are two seals combined by axial compression due to the clamping force and radial compression due to the difference in thermal expansion. The embodiment of FIG. 7 corresponds to an assembly between two components 2, 3 in which the gasket 5 has the same architecture as that used in the embodiment of FIG. 5. Here, the gasket 5 has a coefficient of expansion. thermal average αj such that:
- la différence αj - α2 est supérieure d'au moins 1.10~6 K"1 ;the difference αj - α2 is greater than at least 1.10 ~ 6 K "1 ;
- la différence α3 - αj est supérieure d'au moins 1.10"6 K"1. En d'autres termes, le composant 3 a ici un coefficient de dilatation thermique moyen supérieur à celui du joint. Ici, les deux formes continues 5a, 5b sont sensiblement identiques et fixées entre elles de manière tête-bêche de sorte que les deux portions d'extrémité 53a, 53b ne soient pas en regard. On a donc encore dans ce mode de réalisation de la figure 7, deux étanchéités combinées par compression axiale due à l'effort de serrage et par compression radiale due à la différence de dilatation thermique entre le joint 5 et chacun des composants 2, 3 mais comparativement au mode de réalisation de la figure 6, ici le composant 3 se dilate plus que le joint 5.the difference α3 - αj is greater than at least 1.10 "6 K " 1 . In other words, the component 3 here has a coefficient of thermal expansion greater than that of the joint. Here, the two continuous shapes 5a, 5b are substantially identical and fixed to each other in a head-to-tail manner so that the two end portions 53a, 53b are not facing each other. In this embodiment of FIG. 7, therefore, there are still two seals combined by axial compression due to the clamping force and by radial compression due to the difference in thermal expansion between the gasket 5 and each of the components 2, 3 but compared to the embodiment of FIG. 6, here the component 3 expands more than the seal 5.
D'autres améliorations peuvent être envisagées sans pour autant sortir du cadre de 1' invention . Ainsi, l'assemblage à haute température selon l'invention a été décrit en référence avec les figures pour étancher le compartiment cathodique et ne pas perdre l'hydrogène produit dans un EHT. Il peut tout aussi bien être reproduit côté anodique en réalisant ainsi l'étanchéité côté oxygène. Le joint d'étanchéité 5 tel que représenté dans l'EHT en figure 2 est de forme générale annulaire. Les dimensions d'un tel EHT sont de l'ordre de Rl = 60 mm, R2 = 70 mm et H = 10 mm. On peut tout aussi bien réaliser un joint d'étanchéité 5 de forme générale rectangulaire ou autre avec des dimensions de même grandeur ou différentes.Other improvements may be envisaged without departing from the scope of the invention. Thus, the high temperature assembly according to the invention has been described with reference to the figures to quench the cathode compartment and not lose the hydrogen produced in an EHT. It can just as easily be reproduced on the anodic side, thus achieving the oxygen side seal. The seal 5 as shown in the EHT in FIG. 2 is generally annular in shape. The dimensions of such an EHT are of the order of R1 = 60 mm, R2 = 70 mm and H = 10 mm. It is equally possible to produce a seal 5 of rectangular or other general shape with dimensions of the same size or different.
L'assemblage selon l'invention est en outre particulièrement adapté à des architectures d' électrolyseur EHT ou de piles à combustible SOFC de grandes dimensions où les différences entre les coefficients de dilatation induisent des déformations importantes . The assembly according to the invention is also particularly suitable for EHT electrolyser architectures or large SOFC fuel cells where the differences between the expansion coefficients induce large deformations.

Claims

REVENDICATIONS
1. Assemblage entre deux composants (2,3) de coefficient de dilatation thermique moyens différents α2, α3 comprenant un élément formant joint (5) intercalé entre les deux composants, dont le coefficient de dilatation thermique moyen αD est différent d'une valeur d'au moins 1.10"6 K"1 avec celui d'au moins un des deux composants (2,3) et dont la forme continue comprend des surfaces planes (50, 51, 52) séparées l'une de l'autre et au moins une portion d'extrémité (53) située à l'extérieur des portions formées entre les surfaces, assemblage dans lequel l'étanchéité est réalisée : - en dessous d'une température seuil prédéterminée, par compression du joint selon une direction orthogonale (X) aux composants obtenue par un serrage constant des composants l'un vers l'autre, qui met en appui fixe une partie des surfaces planes (51) avec l'un des composant (3) et une autre partie des surfaces planes (50, 52) avec l'autre composant (2) tout en laissant libre de tout contact la portion d'extrémité (53) du joint,1. Assembly between two different components (2,3) thermal expansion coefficient different α2, α3 comprising a seal member (5) interposed between the two components, the average thermal expansion coefficient α D is different from a value at least 1.10 "6 K " 1 with that of at least one of the two components (2, 3) and whose continuous shape comprises plane surfaces (50, 51, 52) separated from one another and at least one end portion (53) located outside the portions formed between the surfaces, wherein the seal is made: - below a predetermined threshold temperature, by compression of the joint in an orthogonal direction ( X) to the components obtained by a constant tightening of the components towards each other, which fixedly bears a portion of the flat surfaces (51) with one of the component (3) and another part of the flat surfaces (50). , 52) with the other component (2) while leaving free all hasact the end portion (53) of the seal,
- au-dessus de la température seuil, par compression orthogonale du joint toujours obtenue par le serrage, et par compression du joint selon une direction radiale (R) aux composants obtenue par glissement d'au moins une partie des surfaces planes (50, 52) en appui sur un composant (2) lors de la montée en température, jusqu'à la mise en compression radiale de la portion d'extrémité (53) par le même composant .above the threshold temperature, by orthogonal compression of the joint always obtained by clamping, and by compressing the joint in a radial direction (R) to the components obtained by sliding at least a portion of the plane surfaces (50, 52 ) resting on a component (2) during the rise in temperature, until the compression radial portion of the end portion (53) by the same component.
2. Assemblage selon la revendication 1, dans lequel le joint (5) a un coefficient de dilatation thermique moyen αD différent de celui α3 d'un des composants (3) d'une valeur comprise entre 0 et 10~6 K"1 et une forme continue comprenant trois surfaces planes (50, 51, 52) séparées l'une de l'autre et une portion d'extrémité (53) située à l'extérieur des portions formées entre les surfaces, l'étanchéité étant réalisée :2. An assembly according to claim 1, wherein the seal (5) has a coefficient of thermal expansion α D different from that α3 of one of the components (3) with a value between 0 and 10 ~ 6 K "1 and a continuous shape comprising three planar surfaces (50, 51, 52) separated from one another and an end portion (53) located outside the portions formed between the surfaces, the sealing being achieved:
- en dessous de la température seuil, par le serrage constant qui met en appui l'une (51) des trois surfaces planes avec le composant (3) de coefficient α3 de moindre différence avec celui du joint, les deux autres surfaces planes (50, 52) avec le composant (2) de coefficient de plus grande différence avec celui αD du joint (5) tout en laissant la portion d'extrémité (53) libre de tout contact,- below the threshold temperature, by the constant tightening which puts in abutment one (51) of the three plane surfaces with the component (3) of coefficient α3 of least difference with that of the joint, the two other plane surfaces (50 , 52) with the component (2) of greater difference coefficient with that α D of the seal (5) while leaving the end portion (53) free of contact,
- au-dessus de la température seuil, par compression orthogonale du joint obtenue par le même serrage constant qui maintient en appui fixe la surface plane avec le composant (3) de coefficient α3 de moindre différence, et par compression du joint selon une direction radiale (R) aux composants obtenue par glissement des deux autres surfaces planes (50, 52) sur le composant (2) de coefficient α2 de plus grande différence jusqu'à la mise en compression radiale de la portion d'extrémité (53) par le même composant (2) . above the threshold temperature, by orthogonal compression of the joint obtained by the same constant tightening which maintains the plane surface in fixed support with the component (3) of coefficient α3 of least difference, and by compressing the joint in a radial direction (R) to the components obtained by sliding the two other flat surfaces (50, 52) on the component (2) of coefficient α2 of greater difference until the radial compression of the end portion (53) by the same component (2).
3. Assemblage selon la revendication 1 ou 2, dans lequel le composant de coefficient de dilatation moyen thermique de moindre différence α3 est un composant métallique (3) et le composant de coefficient de dilatation moyen thermique de plus grande différence α2 est un composant céramique (2) .An assembly according to claim 1 or 2, wherein the least-difference thermal average thermal expansion coefficient component α3 is a metal component (3) and the mean thermal expansion coefficient component of greater difference α2 is a ceramic component ( 2).
4. Assemblage selon la revendication précédente, dans lequel le composant métallique et le joint constituent un élément monobloc.4. Assembly according to the preceding claim, wherein the metal component and the seal constitute a monobloc element.
5. Assemblage selon l'une des revendications précédentes, dans lequel les deux composants (2, 3) sont des substrats plans, au moins l'un d'entre eux comprenant une gorge (20, 30) dans laquelle est logée une surface plane (52) reliée à la portion d'extrémité (53), la mise en compression radiale de cette dernière s' effectuant contre un bord5. Assembly according to one of the preceding claims, wherein the two components (2, 3) are flat substrates, at least one of them comprising a groove (20, 30) in which is housed a flat surface (52) connected to the end portion (53), the radial compression of the latter being performed against an edge
(200, 300) de cette gorge.(200, 300) of this gorge.
6. Assemblage selon l'une quelconque des revendications 1 à 5, dans lequel les deux composants sont des substrats plans, la mise en compression radiale de la portion d'extrémité s' effectuant contre un bord (2A) de l'un des substrats (2) .6. An assembly according to any one of claims 1 to 5, wherein the two components are flat substrates, the radial compression of the end portion being carried out against an edge (2A) of one of the substrates (2).
7. Joint d'étanchéité (5) dans un assemblage selon les revendications précédentes, présentant au moins une forme continue comprenant des surfaces planes (50, 51, 52) séparées l'une de l'autre et une portion d'extrémité (53) située à l'extérieur des portions formées entre les surfaces, la forme étant obtenue par une unique opération emboutissage d'un feuillard métallique.7. Seal (5) in an assembly according to the preceding claims, having at least one continuous shape comprising planar surfaces (50, 51, 52) separated from one another and an end portion (53 ) located outside portions formed between the surfaces, the shape being obtained by a single stamping operation of a metal strip.
8. Joint d'étanchéité (5) selon la revendication 7, comprenant deux formes continues (5a, 5b) obtenues chacune par une unique opération d'emboutissage d'un feuillard métallique et fixées entre elles par soudage ou brasage au niveau d'une de leurs surfaces planes (52a, 52b) .8. Gasket (5) according to claim 7, comprising two continuous shapes (5a, 5b) each obtained by a single stamping operation of a metal strip and fixed together by welding or brazing at a of their planar surfaces (52a, 52b).
9. Joint d'étanchéité (5) selon la revendication 8, dans lequel les deux formes continues sont sensiblement identiques et fixées entre elles de manière tête-bêche de sorte que les deux portions d'extrémité (53a, 53b) ne soient pas en regard.The gasket (5) according to claim 8, wherein the two continuous shapes are substantially identical and fixed to each other head to tail so that the two end portions (53a, 53b) are not in contact with each other. look.
10. Joint d'étanchéité (5) selon la revendication 8, dans lequel les deux formes continues sont sensiblement identiques et fixées entre elles de manière symétrique par rapport à un plan (P) défini par la surface plane en commun.10. Gasket (5) according to claim 8, wherein the two continuous forms are substantially identical and fixed together in a symmetrical manner with respect to a plane (P) defined by the flat surface in common.
11. Joint d'étanchéité (5), destiné à être intercalé dans un assemblage selon les revendications 1 à 6, dont la forme continue comprend une première partie comprenant des surfaces planes (50, 51, 52a) séparées l'une de l'autre et obtenue par une unique opération d'emboutissage d'un feuillard métallique, et une deuxième partie comprenant une portion d'extrémité11. Seal (5), intended to be inserted in an assembly according to claims 1 to 6, whose continuous shape comprises a first portion comprising planar surfaces (50, 51, 52a) separated from one of the other and obtained by a single stamping operation of a metal strip, and a second portion comprising an end portion
(53) située à l'extérieur des portions formées entre les surfaces et fixée à la première partie par soudage ou brasage.(53) located outside the portions formed between surfaces and attached to the first part by welding or brazing.
12. Joint d'étanchéité (5) selon l'une des revendications 7 à 11, dans lequel le feuillard métallique comprend un acier ferritique ou un acier austénitique ou un alliage à base de nickel du type Inconel 600 ou Haynes 230.12. Seal (5) according to one of claims 7 to 11, wherein the metal strip comprises a ferritic steel or an austenitic steel or a nickel-based alloy Inconel type 600 or Haynes 230.
13. Joint d'étanchéité (5) selon l'une des revendications 7 à 12, dans lequel le feuillard métallique est revêtu d'un matériau isolant électriquement produit avantageusement à partir d'un matériau aluminoformeur .13. A gasket (5) according to one of claims 7 to 12, wherein the metal strip is coated with an electrically insulating material advantageously produced from an aluminoformer material.
14. Joint d'étanchéité (5) selon l'une des revendications 7 à 13, dans lequel une couche de matériau ductile est déposée, après emboutissage du feuillard métallique, sur au moins une portion d'extrémité ou sur une zone de contact, soit avec contact direct soit sur le revêtement de matériau isolant électriquement.14. Gasket (5) according to one of claims 7 to 13, wherein a layer of ductile material is deposited, after stamping the metal strip, on at least one end portion or on a contact zone, either with direct contact or on the coating of electrically insulating material.
15. Joint d'étanchéité selon la revendication 14, dans lequel la couche ductile est une couche d' argent ou de composé à base d' argent et comprenant de préférence l'un des éléments suivants : Cu, Sn, Bi, Si, Co. A seal according to claim 14, wherein the ductile layer is a layer of silver or silver-based compound and preferably comprising one of the following: Cu, Sn, Bi, Si, Co .
16. Joint d'étanchéité selon l'une des revendications 7 à 15, dans lequel la portion d'extrémité (53) est une simple courbure reliée directement à l'une des surfaces planes (52).16. Seal according to one of claims 7 to 15, wherein the end portion (53) is a simple curvature connected directly to one of the flat surfaces (52).
17. Pile à combustible fonctionnant à haute température (SOFC) ou électrolyseur à haute température (EHT) comprenant un assemblage selon l'une quelconque des revendications 1 à 6. 17. High temperature fuel cell (SOFC) or high temperature electrolyser (EHT) comprising an assembly according to any one of claims 1 to 6.
EP09769222A 2008-06-25 2009-06-23 Assembly comprising a seal interposed between two components with different mean thermal expansion coefficients, associated seal, application to the sealing of eht electrolyzers and sofc fuel cells Withdrawn EP2288832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0854232A FR2933160B1 (en) 2008-06-25 2008-06-25 ASSEMBLY COMPRISING AN INTERCAL SEAL SEAL BETWEEN TWO COMPONENTS OF DIFFERENT MEDIUM THERMAL EXPANSION COEFFICIENT, SEAL SEAL, APPLICATION TO THE SEALING OF EHT ELECTROLYSIS AND FUEL CELLS
PCT/EP2009/057764 WO2009156373A1 (en) 2008-06-25 2009-06-23 Assembly comprising a seal interposed between two components with different mean thermal expansion coefficients, associated seal, application to the sealing of eht electrolyzers and sofc fuel cells

Publications (1)

Publication Number Publication Date
EP2288832A1 true EP2288832A1 (en) 2011-03-02

Family

ID=40331465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09769222A Withdrawn EP2288832A1 (en) 2008-06-25 2009-06-23 Assembly comprising a seal interposed between two components with different mean thermal expansion coefficients, associated seal, application to the sealing of eht electrolyzers and sofc fuel cells

Country Status (6)

Country Link
US (1) US20110079966A1 (en)
EP (1) EP2288832A1 (en)
JP (1) JP5438102B2 (en)
KR (1) KR20110033192A (en)
FR (1) FR2933160B1 (en)
WO (1) WO2009156373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528466B2 (en) 2015-02-27 2016-12-27 Federal-Mogul Corporation Cylinder head gasket

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967695B1 (en) * 2010-11-23 2012-12-21 Commissariat Energie Atomique DEVICE FORMING SEAL BETWEEN TWO REACTIVE GAS SPACES BETWEEN THEM, APPLICATION TO HIGH TEMPERATURE WATER VAPOR ELECTROLYSERS (EVHT) AND TO SOFC-TYPE FUEL CELLS
US8556578B1 (en) * 2012-08-15 2013-10-15 Florida Turbine Technologies, Inc. Spring loaded compliant seal for high temperature use
DE202014002512U1 (en) 2014-03-18 2015-06-25 Reinz-Dichtungs-Gmbh Electrochemical system
RU2581346C2 (en) * 2014-04-17 2016-04-20 Открытое Акционерное Общество "Государственное Машиностроительное Конструкторское Бюро "Радуга" Имени А.Я. Березняка" Metal seal and cylindrical sealing device with work medium by-pass
JP6700597B2 (en) * 2016-06-22 2020-05-27 トヨタ紡織株式会社 Fuel cell

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285632A (en) * 1964-03-09 1966-11-15 Johns Manville Conduit joint construction
US3751048A (en) * 1972-06-02 1973-08-07 Temper Corp Seal element
US4185858A (en) * 1978-06-28 1980-01-29 The United States Of America As Represented By The Secretary Of The Air Force Secondary seal for tubing joined via V-band couplings
US4602795A (en) * 1985-12-06 1986-07-29 United Technologies Corporation Thermally expansive slip joint for formed sheet metal seals
US4813692A (en) * 1987-01-22 1989-03-21 Eg&G Pressure Science, Inc. Pressure balanced S-seal
US4854600A (en) * 1987-01-22 1989-08-08 Eg&G Pressure Science, Inc. Pressure balanced metallic S-seal
DE69720739T2 (en) * 1996-08-29 2003-10-16 Flexitallic Investments Inc GASKET AND SEALING METHOD OF TWO COMPONENTS WITH SUCH A GASKET
US5799954A (en) * 1997-01-13 1998-09-01 Eg&G Pressure Science, Inc. Coaxial sealing ring
US5730445A (en) * 1997-03-10 1998-03-24 Eg&G Pressure Science, Inc. Pressure energized metalic sealing ring
US6299178B1 (en) * 1999-04-29 2001-10-09 Jetseal, Inc. Resilient seals with inflection regions and/or ply deformations
US6968615B1 (en) * 2000-10-24 2005-11-29 The Advanced Products Company High temperature metallic seal
US6648333B2 (en) * 2001-12-28 2003-11-18 General Electric Company Method of forming and installing a seal
US6568903B1 (en) * 2001-12-28 2003-05-27 General Electric Company Supplemental seal for the chordal hinge seals in a gas turbine
JP2003286808A (en) * 2002-03-28 2003-10-10 Hitachi Ltd Casing-sealing structure
JP2004060842A (en) * 2002-07-31 2004-02-26 Nichias Corp Gasket
US6733234B2 (en) * 2002-09-13 2004-05-11 Siemens Westinghouse Power Corporation Biased wear resistant turbine seal assembly
JP3999616B2 (en) * 2002-09-24 2007-10-31 本田技研工業株式会社 Plug-in structure
US7938407B2 (en) * 2003-11-04 2011-05-10 Parker-Hannifin Corporation High temperature spring seals
DE102004010422A1 (en) * 2004-03-01 2005-09-22 Alstom Technology Ltd seal body
US7226687B2 (en) * 2004-05-08 2007-06-05 Meacham G B Kirby Fuel cell assemblies using metallic bipolar separators
DE102004039473A1 (en) * 2004-08-14 2006-03-23 Ihi Charging Systems International Gmbh Sealing system for exhaust gas turbines comprises sealing ring with S- or Z-shaped cross-section whose ends rest against seatings on turbine housing, central, flexible section of ring being at angle to axis of rotation of turbine
CA2580651C (en) * 2004-10-01 2011-07-05 Bell Helicopter Textron Inc. Free floating bellows
JP2007120340A (en) * 2005-10-26 2007-05-17 Mitsubishi Heavy Ind Ltd Combustor tail pipe seal structure of gas turbine
JP2007126734A (en) * 2005-11-07 2007-05-24 Mitsubishi Materials Corp Electrochemical reaction apparatus, oxygen enrichment device and hydrogen enrichment device
US7316402B2 (en) * 2006-03-09 2008-01-08 United Technologies Corporation Segmented component seal
JP2008010357A (en) * 2006-06-30 2008-01-17 Hitachi Ltd Sealing method and sealing structure between materials with different coefficients of thermal expansion as well as solid oxide fuel cell module
CH698036B1 (en) * 2006-09-12 2011-11-15 Parker Hannifin Corp Seal assembly.
US8016297B2 (en) * 2008-03-27 2011-09-13 United Technologies Corporation Gas turbine engine seals and engines incorporating such seals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528466B2 (en) 2015-02-27 2016-12-27 Federal-Mogul Corporation Cylinder head gasket

Also Published As

Publication number Publication date
US20110079966A1 (en) 2011-04-07
WO2009156373A1 (en) 2009-12-30
JP5438102B2 (en) 2014-03-12
KR20110033192A (en) 2011-03-30
JP2011526329A (en) 2011-10-06
FR2933160A1 (en) 2010-01-01
FR2933160B1 (en) 2010-09-10

Similar Documents

Publication Publication Date Title
EP2288832A1 (en) Assembly comprising a seal interposed between two components with different mean thermal expansion coefficients, associated seal, application to the sealing of eht electrolyzers and sofc fuel cells
EP3078071B1 (en) Seal for an electrochemical device, process for manufacturing and fitting the seal and this device
CA2624979C (en) Hydrogen separation membrane with a carrier, fuel cell and hydrogen separation apparatus having same, and method of manufacturing same
EP2071216A1 (en) Superplastic seal, preferably for a system with electrochemical cells
EP2699827B1 (en) Metal seal having ceramic core
CA2778007A1 (en) Joint entre deux elements ayant des coefficients de dilatation thermique differents
CA3063286A1 (en) Reactor (soec) for electrolysis or co-electrolysis of water or fuel cell (sofc) operating in a pressurized operating mode and comprising a clamping system suitable for such an ope rating mode
EP3516721B1 (en) Water electrolysis reactor (soec) or fuel cell (sofc) with an increased rate of water vapour use or fuel use, respectively
CA2979099A1 (en) Metal strip or sheet having a chromium-nitride coating, bipolar plate and associated manufacturing method
EP2231901B1 (en) Sealed flexible link between a metal substrate and a ceramic substrate, method of producing such a link, and application of the method to sealing high-temperature electrolyzers and fuel cells
EP3836267B1 (en) Process of manufacturing a component constituting an interconnect of electrolyzer soec or a fuel cell sofc
JP5205721B2 (en) Method for producing hydrogen separation membrane fuel cell
FR2975228A1 (en) FUEL CELL WITH INDIVIDUAL INJECTOR JOINTS
EP1220346A1 (en) Composite basic element and seal thereof for a fuel cell and method for fabricating of said assembly
FR2967695A1 (en) DEVICE FORMING SEAL BETWEEN TWO REACTIVE GAS SPACES BETWEEN THEM, APPLICATION TO HIGH TEMPERATURE WATER VAPOR ELECTROLYSERS (EVHT) AND TO SOFC-TYPE FUEL CELLS
FR2911219A1 (en) BIPOLAR PLATE FOR FUEL CELL WITH POLYMERIC MEMBRANE
FR2911218A1 (en) SOFT METAL-GRAPHITE DISPENSING PLATE FOR A FUEL CELL.
EP3729548B1 (en) Interconnector with degraded surface state for maintaining the sealing
EP1356135A2 (en) Large-dimension electrode
EP2211382A2 (en) Watertight barrier for a microcomponent and method for manufacturing such a barrier
FR2932612A1 (en) Separator plate for proton exchange membrane fuel cell, in e.g. hospital, has grooves provided on edges of crest so that flexible material partially spreads on both sides of tightening support surfaces during tightening of semi-plates
CA3201967A1 (en) Method for manufacturing an electrical conductor, such as a current rod, for a high-temperature electrochemical device
FR2879825A1 (en) METHOD OF MANUFACTURING A SOLID OXIDE FUEL CELL IN THE FORM OF THIN LAYERS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150112

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150523