EP2288712A1 - Regulation der expression eines proteins in einer säugerzelle - Google Patents
Regulation der expression eines proteins in einer säugerzelleInfo
- Publication number
- EP2288712A1 EP2288712A1 EP09766872A EP09766872A EP2288712A1 EP 2288712 A1 EP2288712 A1 EP 2288712A1 EP 09766872 A EP09766872 A EP 09766872A EP 09766872 A EP09766872 A EP 09766872A EP 2288712 A1 EP2288712 A1 EP 2288712A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- seq
- nucleotide sequence
- protein
- cell
- nucleic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 157
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 100
- 210000004962 mammalian cell Anatomy 0.000 title claims abstract description 55
- 230000014509 gene expression Effects 0.000 title claims description 54
- 230000033228 biological regulation Effects 0.000 title description 5
- 210000004027 cell Anatomy 0.000 claims abstract description 170
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 102
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 81
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 81
- 238000000034 method Methods 0.000 claims abstract description 44
- 210000005260 human cell Anatomy 0.000 claims abstract description 12
- 125000003729 nucleotide group Chemical group 0.000 claims description 150
- 239000002773 nucleotide Substances 0.000 claims description 146
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 88
- 229920001184 polypeptide Polymers 0.000 claims description 76
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 76
- 235000018102 proteins Nutrition 0.000 description 79
- 239000013598 vector Substances 0.000 description 57
- 108020004414 DNA Proteins 0.000 description 35
- 108091028043 Nucleic acid sequence Proteins 0.000 description 29
- 235000001014 amino acid Nutrition 0.000 description 27
- 229940024606 amino acid Drugs 0.000 description 24
- 150000001413 amino acids Chemical class 0.000 description 24
- 108020004999 messenger RNA Proteins 0.000 description 22
- 239000013612 plasmid Substances 0.000 description 22
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 20
- 238000001890 transfection Methods 0.000 description 19
- 101001002709 Homo sapiens Interleukin-4 Proteins 0.000 description 18
- 102000055229 human IL4 Human genes 0.000 description 18
- 238000013518 transcription Methods 0.000 description 17
- 230000035897 transcription Effects 0.000 description 17
- 230000009261 transgenic effect Effects 0.000 description 17
- 239000003550 marker Substances 0.000 description 15
- 230000014616 translation Effects 0.000 description 15
- 238000009396 hybridization Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 14
- 241000700605 Viruses Species 0.000 description 13
- 239000003623 enhancer Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000013603 viral vector Substances 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 108091026890 Coding region Proteins 0.000 description 10
- 239000002299 complementary DNA Substances 0.000 description 10
- 230000001177 retroviral effect Effects 0.000 description 10
- 241000701161 unidentified adenovirus Species 0.000 description 10
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 9
- 230000001105 regulatory effect Effects 0.000 description 9
- 238000010899 nucleation Methods 0.000 description 8
- 238000004806 packaging method and process Methods 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 7
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 7
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 7
- 125000003275 alpha amino acid group Chemical group 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000008488 polyadenylation Effects 0.000 description 7
- 241000701022 Cytomegalovirus Species 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 108060001084 Luciferase Proteins 0.000 description 6
- 229930193140 Neomycin Natural products 0.000 description 6
- 241000700584 Simplexvirus Species 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- 239000000411 inducer Substances 0.000 description 6
- 230000000977 initiatory effect Effects 0.000 description 6
- 229960004927 neomycin Drugs 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 241001430294 unidentified retrovirus Species 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- 108091005461 Nucleic proteins Proteins 0.000 description 5
- 108700009124 Transcription Initiation Site Proteins 0.000 description 5
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 235000008979 vitamin B4 Nutrition 0.000 description 5
- 102100024321 Alkaline phosphatase, placental type Human genes 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 108091092195 Intron Proteins 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 241000714474 Rous sarcoma virus Species 0.000 description 4
- 108010022394 Threonine synthase Proteins 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 102000004419 dihydrofolate reductase Human genes 0.000 description 4
- -1 e.g. Proteins 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 108010031345 placental alkaline phosphatase Proteins 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 108091093037 Peptide nucleic acid Proteins 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 108020004566 Transfer RNA Proteins 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 239000012737 fresh medium Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003362 replicative effect Effects 0.000 description 3
- 210000004708 ribosome subunit Anatomy 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000010474 transient expression Effects 0.000 description 3
- 230000014621 translational initiation Effects 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 2
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 102000003792 Metallothionein Human genes 0.000 description 2
- 108090000157 Metallothionein Proteins 0.000 description 2
- 241000713869 Moloney murine leukemia virus Species 0.000 description 2
- 241000125945 Protoparvovirus Species 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 101150003725 TK gene Proteins 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 102000005936 beta-Galactosidase Human genes 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 108010006025 bovine growth hormone Proteins 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 108700004025 env Genes Proteins 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229940028334 follicle stimulating hormone Drugs 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 108700004026 gag Genes Proteins 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000001744 histochemical effect Effects 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 2
- 229940097277 hygromycin b Drugs 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229960000951 mycophenolic acid Drugs 0.000 description 2
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 102000042567 non-coding RNA Human genes 0.000 description 2
- 108091027963 non-coding RNA Proteins 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 108700004029 pol Genes Proteins 0.000 description 2
- 229920002704 polyhistidine Polymers 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 238000002331 protein detection Methods 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- BEJKOYIMCGMNRB-GRHHLOCNSA-N (2s)-2-amino-3-(4-hydroxyphenyl)propanoic acid;(2s)-2-amino-3-phenylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1.OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 BEJKOYIMCGMNRB-GRHHLOCNSA-N 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- 108010011619 6-Phytase Proteins 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 230000005730 ADP ribosylation Effects 0.000 description 1
- 101001082110 Acanthamoeba polyphaga mimivirus Eukaryotic translation initiation factor 4E homolog Proteins 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 101710152845 Arabinogalactan endo-beta-1,4-galactanase Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108700003860 Bacterial Genes Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102100032487 Beta-mannosidase Human genes 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 101100069857 Caenorhabditis elegans hil-4 gene Proteins 0.000 description 1
- 241000220450 Cajanus cajan Species 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 108090000746 Chymosin Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 108700023317 Coronavirus Receptors Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N D-aspartic acid Chemical compound OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- 101001082109 Danio rerio Eukaryotic translation initiation factor 4E-1B Proteins 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 101001096557 Dickeya dadantii (strain 3937) Rhamnogalacturonate lyase Proteins 0.000 description 1
- 101100125027 Dictyostelium discoideum mhsp70 gene Proteins 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 101710147028 Endo-beta-1,4-galactanase Proteins 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 108010014863 Eukaryotic Initiation Factors Proteins 0.000 description 1
- 102000002241 Eukaryotic Initiation Factors Human genes 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108091092584 GDNA Proteins 0.000 description 1
- 101150108358 GLAA gene Proteins 0.000 description 1
- 208000005577 Gastroenteritis Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 108050002220 Green fluorescent protein, GFP Proteins 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 101150031823 HSP70 gene Proteins 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000938351 Homo sapiens Ephrin type-A receptor 3 Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 102000010445 Lactoferrin Human genes 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 241001599018 Melanogaster Species 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 241000714209 Norwalk virus Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 108010034634 Repressor Proteins Proteins 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102000002262 Thromboplastin Human genes 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 108091006088 activator proteins Proteins 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000010516 arginylation Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 108010055059 beta-Mannosidase Proteins 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229930189065 blasticidin Natural products 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 229940080701 chymosin Drugs 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 101150052825 dnaK gene Proteins 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- LIYGYAHYXQDGEP-UHFFFAOYSA-N firefly oxyluciferin Natural products Oc1csc(n1)-c1nc2ccc(O)cc2s1 LIYGYAHYXQDGEP-UHFFFAOYSA-N 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000006251 gamma-carboxylation Effects 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 102000057382 human EPHA3 Human genes 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000014726 immortalization of host cell Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- GNOLWGAJQVLBSM-UHFFFAOYSA-N n,n,5,7-tetramethyl-1,2,3,4-tetrahydronaphthalen-1-amine Chemical compound C1=C(C)C=C2C(N(C)C)CCCC2=C1C GNOLWGAJQVLBSM-UHFFFAOYSA-N 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 231100000065 noncytotoxic Toxicity 0.000 description 1
- 230000002020 noncytotoxic effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- JJVOROULKOMTKG-UHFFFAOYSA-N oxidized Photinus luciferin Chemical compound S1C2=CC(O)=CC=C2N=C1C1=NC(=O)CS1 JJVOROULKOMTKG-UHFFFAOYSA-N 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 210000004777 protein coat Anatomy 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000009712 regulation of translation Effects 0.000 description 1
- 102000021501 regulatory RNA binding proteins Human genes 0.000 description 1
- 108091011116 regulatory RNA binding proteins Proteins 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002924 silencing RNA Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 210000002437 synoviocyte Anatomy 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- OFVLGDICTFRJMM-WESIUVDSSA-N tetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O OFVLGDICTFRJMM-WESIUVDSSA-N 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000011514 vinification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/01—Animal expressing industrially exogenous proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
Definitions
- the invention relates to the regulation of the expression of a protein in a mammalian cell using a specific nucleic acid sequence.
- the translation process in eukaryotes is a complex series of steps that involve a wide array of protein translation factors. These factors function in conjunction with the ribosome and tRNAs to decode an mRNA, thereby generating the encoded polypeptide chain.
- the translation process can be divided into three distinct stages: (i) initiation: the assembly of the ribosomal subunits at the initiation (AUG) codon of an mRNA; (ii) elongation: tRNA-dependend decoding of the mRNA to form a polypeptide chain; (iii) termination: a stop codon (UAA, UAG or UGA) signals the release of the polypeptide chain from the ribosome and subsequently the ribosomal subunits dissociate from the mRNA.
- Each of these stages requires a specific class of translation factors: eukaryotic initiation, elongation and termination factors (elF, eEF and eRF, respectively).
- Translation initiation is an important step in both global and mRNA-specific gene regulation and therefore constitutes the primary target for translational control.
- Global regulation of protein synthesis is generally achieved by the modification of eukaryotic initiation factors (elFs), several of which are phosphoproteins, e.g., eIF4E and eIF2.
- elFs eukaryotic initiation factors
- phosphoproteins e.g., eIF4E and eIF2.
- Translational control of individual mRNAs often depends upon the structural properties of the transcript itself. These may include properties in the 5 ' untranslated region of the mRNA that can affect initiation either directly, for example by impeding 4OS subunit binding or scanning, or indirectly by acting as receptors for a regulatory RNA- binding protein. The role of that sequence in the control of translation has been reviewed by Day and Tuite (1998, J. of Endocrinology 157;361-371).
- RNA secondary structure positioned between the cap structure and the AUG codon may typically be inhibitory to translation initiation (Kozak 1989, Molecular and Cellular Biology 9:5134-5142).
- the inhibition can be by steric hindrance preventing the binding of the 43 S preinitiation complex to the cap structure.
- RNA structural elements can provide sites for the binding of regulatory proteins and RNA molecules and, by forming a stable structure, they typically impede binding or scanning of the 4OS ribosomal subunit (Goossen et al. 1990, Goossen & Hentze 1992).
- operably linked refers to two or more nucleic acid sequence elements that are physically linked and are in a functional relationship with each other.
- a promoter is operably linked to a coding sequence if the promoter is able to initiate or regulate the transcription or expression of a coding sequence, in which case the coding sequence should be understood as being "under the control of the promoter.
- two nucleic acid sequences when operably linked, they will be in the same orientation and usually also in the same reading frame. They usually will be essentially contiguous, although this may not be required.
- promoter refers to a nucleic acid fragment that functions to control the transcription of one or more genes, located upstream with respect to the direction of transcription of the transcription initiation site of the gene, and is related to the binding site identified by the presence of a binding site for DNA- dependent RNA polymerase, transcription initiation sites and any other DNA sequences, including, but not limited to transcription factor binding sites, repressor and activator protein binding sites, and any other sequences of nucleotides known to one skilled in the art to act directly or indirectly to regulate the amount of transcription from the promoter.
- a promoter preferably ends at nucleotide -1 of the transcription start site (TSS).
- Any nucleotide molecule capable to hybridise to a nucleotide molecule represented by SEQ ID NO. 1 is defined as being part of the UNl (SEQ ID NO:2) of the invention. Any nucleotide molecule capable to hybridise to SEQ ID NO:2 or to regions of SEQ ID NO:1 as later identified herein or to SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9 is also encompassed by the present invention. Hybridisation conditions are preferable stringent.
- Stringent hybridisation conditions are herein defined as conditions that allow a nucleic acid sequence of at least 25, preferably 50, 75 or 100, and most preferably 150 or more nucleotides, to hybridise at a temperature of about 65 0 C in a solution comprising about 1 M salt, preferably 6 x SSC or any other solution having a comparable ionic strength, and washing at 65 0 C in a solution comprising about 0.1 M salt, or less, preferably 0.2 x SSC or any other solution having a comparable ionic strength.
- the hybridisation is performed overnight, i.e. at least for 10 hours and preferably washing is performed for at least one hour with at least two changes of the washing solution.
- Moderate hybridization conditions are herein defined as conditions that allow a nucleic acid sequence of at least 50, preferably 150 or more nucleotides, to hybridise at a temperature of about 45 0 C in a solution comprising about 1 M salt, preferably 6 x SSC or any other solution having a comparable ionic strength, and washing at room temperature in a solution comprising about 1 M salt, preferably 6 x SSC or any other solution having a comparable ionic strength.
- the hybridisation is performed overnight, i.e. at least for 10 hours, and preferably washing is performed for at least one hour with at least two changes of the washing solution.
- These conditions will usually allow the specific hybridisation of sequences having up to 50% sequence identity. The person skilled in the art will be able to modify these hybridisation conditions in order to specifically identify sequences varying in identity between 50% and 90%.
- nucleic acid or polypeptide molecule when used to indicate the relation between a given (recombinant) nucleic acid or polypeptide molecule and a given host organism or host cell, is understood to mean that in nature the nucleic acid or polypeptide molecule is produced by a host cell or organisms of the same species, preferably of the same variety or strain. If homologous to a host cell, a nucleic acid sequence encoding a polypeptide will typically be operably linked to another promoter sequence or, if applicable, another secretory signal sequence and/or terminator sequence than in its natural environment.
- the term "homologous" means that one single-stranded nucleic acid sequence may hybridise to a complementary single-stranded nucleic acid sequence.
- the degree of hybridisation may depend on a number of factors including the extent of identity between the sequences and the hybridisation conditions such as temperature and salt concentration as discussed later.
- the region of identity is greater than 5 bp, more preferably the region of identity is greater than 10 bp.
- heterologous when used with respect to a nucleic acid or polypeptide molecule refers to a nucleic acid or polypeptide from a foreign cell which does not occur naturally as part of the organism, cell, genome or DNA or RNA sequence in which it is present, or which is found in a cell or location or locations in the genome or DNA or RNA sequence that differ from that in which it is found in nature.
- Heterologous nucleic acids or proteins are not endogenous to the cell into which they are introduced, but have been obtained from another cell or synthetically or recombinantly produced.
- nucleic acids encode proteins that are not normally produced by the cell in which the DNA is transcribed or expressed
- similarly exogenous RNA codes for proteins not normally expressed in the cell in which the exogenous RNA is present.
- a heterologous protein or polypeptide can be composed of homologous elements arranged in an order and/or orientation not normally found in the host organism, tissue or cell thereof in which it is transferred, i.e. the nucleotide sequence encoding said protein or polypeptide originates from the same species but is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention.
- Heterologous nucleic acids and proteins may also be referred to as foreign nucleic acids or proteins.
- heterologous nucleic acid or protein Any nucleic acid or protein that one of skill in the art would recognise as heterologous or foreign to the cell in which it is expressed is herein encompassed by the term heterologous nucleic acid or protein.
- heterologous also applies to non-natural combinations of nucleic acid or amino acid sequences, i.e. combinations where at least two of the combined sequences are foreign with respect to each other.
- endogenous when used with respect to a nucleic acid or polypeptide molecule refers to a nucleic acid or polypeptide as natively expressed in a cell, preferably a mammalian cell as defined in the invention.
- Sequence identity is a relationship between two or more amino acid (polypeptide or protein) sequences or two or more nucleic acid (polynucleotide or nucleotide) sequences, as determined by comparing the sequences.
- the percentage of “identity” indicates the degree of sequence relatedness between amino acid or nucleic acid sequences as determined by the match between strings of such sequences.
- the percentage of identity is determined by comparing the whole SEQ ID NO as identified herein. However, part of a sequence may also be used. Two amino acid sequences are considered “similar” if the polypeptides only differ in conserved amino acid substitutions.
- amino acids having similar side chains are glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulphur-containing side chains is cysteine and methionine.
- Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, and asparagine-glutamine.
- Substitutional variants of the amino acid sequence disclosed herein are those in which at least one residue in the disclosed sequences has been removed and a different residue inserted in its place.
- the amino acid change is conservative.
- Preferred conservative substitutions for each of the naturally occurring amino acids are as follows: Ala to ser; Arg to lys; Asn to gin or his; Asp to glu; Cys to ser or ala; GIn to asn; GIu to asp; GIy to pro; His to asn or gin; He to leu or val; Leu to ile or val; Lys to arg; Asn to gin or glu; Met to leu or ile; Phe to met, leu or tyr; Ser to thr; Thr to ser; Trp to tyr; Tyr to trp or phe; and, Val to ile or leu.
- Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include e.g. the GCG program package (Devereux, J., et al, Nucleic Acids Research 12 (1):387 (1984)), BestFit and FASTA (Altschul, S. F. et al., J. MoI. Biol. 215:403-410 (1990).
- the BLAST 2.0 family of programs which can be used for database similarity searches includes: BLASTN for nucleotide query sequences against nucleotide database sequences; BLASTX for nucleotide query sequences against protein database sequences; BLASTP for protein query sequences against protein database sequences; TBLASTN for protein query sequences against nucleotide database sequences; and TBLASTX for nucleotide query sequences against nucleotide database sequences.
- the BLASTX program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. MoL Biol. 215:403-410 (1990)).
- the well-known Smith Waterman algorithm may also be used to determine identity.
- Preferred parameters for polypeptide sequence comparison include the following: Algorithm: Needleman and Wunsch, J. MoI. Biol. 48:443-453 (1970); Comparison matrix: BLOSSUM62 from Hentikoff and Hentikoff, Proc. Natl. Acad. Sci. USA. 89:10915-10919 (1992); Gap Penalty: 12; and Gap Length Penalty: 4.
- a program useful with these parameters is publicly available as the "Ogap" program from Genetics Computer Group, located in Madison, WI.
- the aforementioned parameters are the default parameters for amino acid comparisons (along with no penalty for end gaps).
- Preferred parameters for nucleic acid comparison include the following:
- Gap_penalty is 10.0 and Extend_penalty is 0.5.
- nucleic acid refers to a naturally occurring or synthetic oligonucleotide or polynucleotide, whether DNA or RNA or DNA-RNA hybrid, single-stranded or double-stranded, sense or antisense, which is capable of hybridization to a complementary nucleic acid by Watson-Crick base-pairing.
- Nucleic acids of the invention can also include nucleotide analogs (e.g., BrdU), and non- phosphodiester internucleoside linkages (e.g., peptide nucleic acid (PNA) or thiodiester linkages).
- nucleic acids can include, without limitation, DNA, RNA, cDNA, gDNA, ssDNA, dsDNA, ssRNA, dsRNA, non coding RNAs or any combination thereof.
- Primers are a subset of probes which are capable of supporting some type of enzymatic manipulation and which can hybridize with a target nucleic acid such that the enzymatic manipulation can occur.
- a primer can be made from any combination of nucleotides or nucleotide derivatives or analogs available in the art which do not interfere with the enzymatic manipulation.
- Probes are molecules capable of interacting with a target nucleic acid, typically in a sequence specific manner, for example through hybridization. The hybridization of nucleic acids is well understood in the art and discussed herein. Typically a probe can be made from any combination of nucleotides or nucleotide derivatives or analogs available in the art.
- mRNA essential RNA
- mRNA essential RNA
- mRNA RNA of the antisense strand (anticoding strand or template) of protein coding DNA.
- pre-mRNA also called primary transcript or hnRNA
- hnRNA primary transcript or hnRNA
- the mature mRNA is then transported into the cytoplasm where it is translated into protein on the ribosome.
- an mRNA generally comprises on both the 5' and the 3' side sequences flanking the region that specifies the protein sequence.. These regions may be untranslated.
- Antisense nucleic acid a relatively long pre-mRNA (also called primary transcript or hnRNA) which is then processed, still within the nucleus, to remove introns. Further post-transcriptional modifications can also occur.
- the mature mRNA is then transported into the cytoplasm where it is translated into protein on the ribosome.
- an mRNA generally comprises on both the 5' and the 3' side sequences flanking the region that specifies the protein sequence.
- Antisense nucleic acid refers to a RNA, DNA or PNA molecule that is complementary to all or part of a target primary transcript or mRNA and that blocks the translation of a target nucleotide sequence.
- Polypeptide as used herein refers to any peptide, oligopeptide, polypeptide, gene product, expression product, or protein. A polypeptide is comprised of consecutive amino acids. The term “polypeptide” encompasses naturally occurring or synthetic molecules.
- polypeptide refers to amino acids joined to each other by peptide bonds or modified peptide bonds, e.g., peptide isosteres, etc. and may contain modified amino acids other than the 20 gene-encoded amino acids.
- the polypeptides can be modified by either natural processes, such as post-translational processing, or by chemical modification techniques which are well known in the art. Modifications can occur anywhere in the polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. The same type of modification can be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide can have many types of modifications.
- Modifications include, without limitation, acetylation, acylation, ADP-ribosylation, amidation, covalent cross-linking or cyclization, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of a phosphytidylinositol, disulfide bond formation, demethylation, formation of cysteine or pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristolyation, oxidation, pergylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, and transfer-RNA mediated addition of amino acids to protein such as arginylation.
- amino acid sequence refers to a list of abbreviations, letters, characters or words representing amino acid residues.
- the amino acid abbreviations used herein are conventional one letter codes for the amino acids and are expressed as follows: A, alanine; N, asparagine; C, cysteine; D aspartic acid; E, glutamate, glutamic acid; F, phenylalanine; G, glycine; H histidine; I isoleucine; K, lysine; L, leucine; M, methionine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophan; Y, tyrosine; Z, glutamine or glutamic acid.
- Vector or plasmid refers to a nucleic acid sequence capable of transporting into a cell another nucleic acid to which the vector sequence has been linked.
- expression vector includes any vector, (e.g., a plasmid, cosmid or phage chromosome) containing a gene construct in a form suitable for expression by a cell (e.g., linked to a transcriptional control element).
- Plasmid and vector are used interchangeably, as a plasmid is a commonly used form of vector.
- the invention is intended to include other vectors which serve equivalent functions.
- sequence of interest or "gene of interest” can mean a nucleic acid sequence (e.g., a therapeutic gene), that is partly or entirely heterologous, i.e., foreign, to a cell into which it is introduced.
- polypeptide of interest e.g., a therapeutic peptide
- protein of interest can mean a peptide sequence (e.g., a therapeutic peptide), that is partly or entirely heterologous, i.e., foreign, to a cell into which it is introduced.
- sequence of interest or “gene of interest” can also mean a nucleic acid sequence, that is partly or entirely homologous to an endogenous gene of the cell into which it is introduced, but which is designed to be inserted into the genome of the cell in such a way as to alter the genome (e.g., it is inserted at a location which differs from that of the natural gene or its insertion results in "a knockout”).
- a sequence of interest can be cDNA, DNA, or mRNA.
- sequence of interest or “gene of interest” can also mean a nucleic acid sequence, that is partly or entirely complementary to an endogenous gene of the cell into which it is introduced.
- sequence of interest can be micro RNA, shRNA, or siRNA.
- sequence of interest or “gene of interest” can also include one or more transcriptional regulatory sequences and any other nucleic acid, such as introns, that may be necessary for optimal expression of a selected nucleic acid.
- polypeptide of interest can also mean a peptide sequence that is partly or entirely homologous to an endogenous peptide of the cell into which it is introduced.
- polypeptide of interest can also mean a peptide or polypeptide sequence (e.g., a therapeutic protein), that is expressed from a sequence of interest or gene of interest.
- Transformation/transfection mean the introduction of a nucleic acid, e.g., an expression vector, into a recipient cell possibly including introduction of a nucleic acid to the chromosomal DNA of said cell.
- Isolated polypeptide/purified polypeptide By “isolated polypeptide” or “purified polypeptide” is meant a polypeptide (or a fragment thereof) that is substantially free from the materials with which the polypeptide is normally associated in nature.
- the polypeptides of the invention, or fragments thereof can be obtained, for example, by extraction from a natural source (for example, a mammalian cell), by expression of a recombinant nucleic acid encoding the polypeptide (for example, in a cell or in a cell-free translation system), or by chemically synthesizing the polypeptide.
- polypeptide fragments may be obtained by any of these methods, or by cleaving full length polypeptides.
- isolated nucleic acid or “purified nucleic acid” is meant DNA that is free of the genes that, in the naturally-occurring genome of the organism from which the DNA of the invention is derived, flank the gene.
- the term therefore includes, for example, a recombinant DNA which is incorporated into a vector, such as an autonomously replicating plasmid or virus; or incorporated into the genomic DNA of a prokaryote or eukaryote (e.g., a transgene); or which exists as a separate molecule (for example, a cDNA or a genomic or cDNA fragment produced by PCR, restriction endonuclease digestion, or chemical or in vitro synthesis).
- isolated nucleic acid also refers to RNA, e.g., an mRNA molecule that is encoded by an isolated DNA molecule, or that is chemically synthesized, or that is separated or substantially free from at least some cellular components, for example, other types of RNA molecules or polypeptide molecules.
- the invention relates to a method for expressing a protein or polypeptide of interest in a mammalian cell comprising the steps of: a) providing a nucleic acid construct comprising a first nucleotide sequence that has at least 34 % nucleotide sequence identity with the nucleotide sequence of SEQ ID No.
- a nucleic acid construct comprises a first nucleotide sequence that has at least 34 % nucleotide sequence identity to the nucleotide sequence of SEQ ID No. 1 (using the Needleman-Wunsch algorithm of Needle; gap penalties: existence 10, extension 0.5).
- identity is calculated over the whole length of SEQ ID NO:1 or SEQ ID NO:2.
- identity is calculated by comparison to nucleotides 4-76 or 27-50 or 100-151 or 104- 151 of SEQ ID NO: 1.
- a nucleic acid construct according to the invention preferably comprises a first nucleotide sequence that has at least 34%, 35%, 36 %, more preferably at least 40 %, 45 %, 50 %, 55 %, 60 %, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99 % nucleotide sequence identity to the whole length of the nucleotide sequence of SEQ ID No. 1 or to each of the specified regions within SEQ ID NO:1 as identified above.
- a nucleic acid construct comprises or consists of a first nucleotide sequence that has 100% nucleotide sequence identity to the nucleotide sequence of SEQ ID No. 1.
- the invention relates to a method for expressing a protein of interest in a mammalian cell comprising the steps of: a) providing a nucleic acid construct comprising a first nucleotide sequence comprising a nucleotide sequence that has at least 46% nucleotide sequence identity to nucleotides 104 - 151 of the nucleotide sequence of SEQ ID No. 1 or a nucleotide sequence that has at least 51% nucleotide sequence identity to nucleotides 4 - 76 of the nucleotide sequence of SEQ ID No.
- said first nucleotide sequence comprises a nucleotide sequence that has at least 48%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% and particularly 100% nucleotide sequence identity to nucleotides 100-151 or 104 - 151 of the nucleotide sequence of SEQ ID No. 1 or a nucleotide sequence that has at least 55%, more preferably at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% and particularly 100% nucleotide sequence identity to nucleotides 4 - 76 of the nucleotide sequence of SEQ ID No. 1 or a combination thereof.
- a first nucleotide sequence comprises a nucleotide sequence that has at least 46%, 48%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% and particularly 100% nucleotide sequence identity to nucleotides 100-151 or 104 - 151 of the nucleotide sequence of SEQ ID No. 1 or a nucleotide sequence that has 100% nucleotide sequence identity to nucleotides 27 - 50 of the nucleotide sequence of SEQ ID No. 1 or a combination thereof.
- the nucleotides 27 - 50 of the nucleotide sequence of SEQ ID No. 1 consist of a repeat of 8 GAA-units.
- said first nucleotide sequence comprises a nucleotide sequence that consists of 7, 6, 5, 4 or 3 GAA units.
- a first nucleotide sequence comprises or consists of or has at least 34% nucleotide sequence identity to the SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9.
- the invention also encompasses a host cell, preferably a mammalian cell comprising said first nucleotide sequence. Accordingly, the invention also encompasses a nucleic acid construct comprising one of these sequences. Accordingly, the invention also encompasses each of these nucleotide sequences.
- the invention encompasses a nucleotide sequence defined by identity by comparison to SEQ ID NO:1, or SEQ ID NO:2 or specific regions of SEQ ID NO:1 as identified herein.
- the skilled person will understand that any sequence derived from SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, or from SEQ ID NO:9 and having the required identity with SEQ ID NOl, SEQ ID NO:2 or with a specific region of SEQ ID NO:1 as identified herein is considered to be encompassed by the present invention.
- a sequence is derived from SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, or from SEQ ID NO:9 by substituting, deleting and/or adding one, two, three, four or more nucleotides as present in the original sequence.
- the functionality of any sequence is checked using a control expression system as identified in example 1.
- a sequence is said functional when the expression of a given protein of interest in a system as identified in example 1 is increased of at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 150%, 200%, 300% or more after a given period of time and by comparison to a control cell not having the sequence in question.
- a nucleotide sequence according to the invention can be present in the form of
- RNA or in the form of DNA including genomic DNA i.e. DNA including the introns, cDNA or synthetic DNA.
- the DNA may be double-stranded or single-stranded and if single-stranded may be the coding strand or non-coding (anti-sense) strand.
- DNA or RNA with a backbone modified for stability or for other reasons are a further part of the invention.
- DNA or RNA comprising unusual bases, such as inosine, or modified bases, such as tritylated bases are also a part of the invention.
- a nucleotide sequence may also be a allelic variant of the nucleotide sequence according to the invention.
- nucleotide sequence can be prepared or altered synthetically so the known codon preferences of the intended expression host can advantageously be used. It has been shown for instance that the codon preferences and GC content preferences of monocotyledons and dicotyledons differ (Murray et al, Nucl. Acids Res. 17: 477-498 (1989)).
- a nucleic acid construct comprises a second nucleotide sequence encoding a protein or polypeptide of interest that is operably linked to any one of the first nucleotide sequences as defined above.
- a protein or polypeptide of interest can be a homologous or an endogenous or an heterologous protein or polypeptide Therefore it is to be understood that the invention protects the production of homologous, heterogenous or endogenous protein.
- the invention is not limited to a specific kind of protein to be produced. Any protein is preferably produced using a method of the invention.
- a second nucleotide sequence encoding an homologous, endogenous or heterologous protein or polypeptide may be derived in whole or in part from any source known to the art, including a bacterial or viral genome or episome, eukaryotic nuclear or plasmid DNA, cDNA or chemically synthesised DNA. Endogenous, homologous and heterologous are preferably defined by reference to the cell or host cell used.
- a second nucleotide sequence may constitute an uninterrupted coding region or it may include one or more introns bounded by appropriate splice junctions, it can further be composed of segments derived from different sources, naturally occurring or synthetic.
- a second nucleotide sequence encoding a protein or polypeptide of interest according to a method of the invention is preferably a full-length nucleotide sequence, but can also be a functionally active part or other part of said full-length nucleotide sequence.
- a protein or polypeptide of interest may be a protein or polypeptide conferring, for instance, disease resistance, immunity, an improved intake of nutrients, minerals, or a modified metabolism in a mammalian cell.
- a mammalian cell is used for overproduction of the protein or polypeptide of interest.
- a second nucleotide sequence encoding a protein or polypeptide of interest may also comprise signal sequences directing the protein or polypeptide of interest when expressed to a specific location in a cell or tissue.
- signal sequences include, but are not limited to, sequences directing the protein or polypeptide of interest to organelles within a mammalian cell or outside of a mammalian cell.
- a second nucleotide sequence encoding a protein or polypeptide of interest can also comprise sequences which facilitate protein purification and protein detection by for instance Western blotting and ELISA (e.g. c-myc or polyhistidine sequences).
- a protein or polypeptide of interest may have industrial or medicinal (pharmaceutical) applications.
- proteins or polypeptides with industrial applications include enzymes such as e.g. lipases (e.g. used in the detergent industry), proteases (used inter alia in the detergent industry, in brewing and the like), cell wall degrading enzymes (such as, cellulases, pectinases, beta. -1,3/4- and beta.
- glucanases -1,6- glucanases, rhamnogalacturonases, mannanases, xylanases, pullulanases, galactanases, esterases and the like, used in fruit processing wine making and the like or in feed
- phytases phospholipases
- glycosidases such as amylases, beta.-glucosidases, arabinofuranosidases, rhamnosidases, apiosidases and the like
- dairy enzymes e.g. chymosin
- Mammalian, and preferably human, proteins or polypeptides and/or enzymes with therapeutic, cosmetic or diagnostic applications include, but are not limited to, insulin, human serum albumin (HSA), lactoferrin, hemoglobin ⁇ and ⁇ , tissue plasminogen activator (tPA), erythropoietin (EPO), tumor necrosis factors (TNF), BMP (Bone Morphogenic Protein), growth factors (G-CSF, GM-CSF, M-CSF, PDGF, EGF, and the like), peptide hormones (e.g., insulin, human serum albumin (HSA), lactoferrin, hemoglobin ⁇ and ⁇ , tissue plasminogen activator (tPA), erythropoietin (EPO), tumor necrosis factors (TNF), BMP (Bone Morphogenic Protein), growth factors (G-CSF, GM-CSF, M-CSF, PDGF, EGF, and the like), peptide hormones (e.g.
- bacterial and viral antigens e.g. for use as vaccines, including e.g. heat-labile toxin B-subunit, cholera toxin B- subunit, envelope surface protein Hepatitis B virus, capsid protein Norwalk virus, glycoprotein B Human cytomegalovirus, glycoprotein S, interferon, and transmissible gastroenteritis corona virusreceptors and the like. Further included are genes coding for mutants or analogues of the said proteins.
- a nucleic acid construct further comprises a promotor for control and initiation of transcription of a second nucleotide sequence.
- a promoter preferably is capable of causing expression of a second nucleotide sequence in a host cell of choice. Said promoter, e.g. homologous or heterologous for a mammalian cell and/or for a nucleotide sequence, is operably linked to any one of the nucleotide sequences mentioned above.
- a promoter is a promoter capable of initiating transcription in a mammalian cell. More preferably, such a promoter is a mammalian promoter.
- a mammalian promotor as used herein include tissue-specific, tissue-preferred, cell-type-specific, inducible and constitutive promotors.
- Tissue-specific promotors are promoters which initiate transcription only in certain tissues and refer to a sequence of DNA that provides recognition signals for RNA polymerase and/or other factors required for transcription to begin, and/or for controlling expression of the coding sequence precisely within certain tissues or within certain cells of that tissue. Expression in a tissue specific manner may be only in individual tissues or in combinations of tissues.
- promoters as used herein can include but are not limited to promoters that originate from the host cell that the constructs are introduced to.
- Promoters that may be used in a mammalian cell can include promoters such as metallothionein HA promoter (mouse), EFl alpha promoter (human), Cytomegalovirus (CMV), Rous sarcoma virus (RSV), simian virus 40 (SV40), Moloney murine leukemia, Tk promoter Herpes simplex virus (HSV).
- promoters such as metallothionein HA promoter (mouse), EFl alpha promoter (human), Cytomegalovirus (CMV), Rous sarcoma virus (RSV), simian virus 40 (SV40), Moloney murine leukemia, Tk promoter Herpes simplex virus (HSV).
- a cell-type-specific promoter is a promotor that primarily drives expression in a certain cell type.
- An inducible promoter is a promoter that is capable of activating transcription of one or more DNA sequences or genes in response to an inducer. The DNA sequences or genes will not be transcribed when the inducer is absent.
- Inducers known in the art include high salt concentrations, cold, heat or toxic elements and include pathogens or disease agents such as virusses.
- Inducers can be chemical agents such as proteins, growth regulators, metabolites or phenolic compounds.
- An inducer can also be an illumination agent such as darkness and light at various modalities including wavelength, intensity, fluence, direction and duration. Activation of an inducible promoter is established by application of the inducer.
- the group of generally inducible promotors includes, but is not limited to, the hsp70 heat shock promoter of Drosphilia melanogaster, a cold inducible promoter from Brassica napus and an alcohol dehydrogenase promoter which is induced by ethanol.
- Other inducible promoters include, but are not limited to the glaA promoter which is starch-inducible, the metallothionein HA promoter, and the tetracyclin inducible promoter.
- a constitutive promoter is a promoter that is active under many environmental conditions and in many different tissue types.
- Constitutive mammalian promoters include, but are not limited to the EFl alpha promoter (human), Cytomegalovirus (CMV), Rous sarcoma virus (RSV), simian virus 40 (SV40), Moloney murine leukemia, Tk promoter Herpes simplex virus (HSV).
- a nucleic acid construct as disclosed herein can also comprise one or more regulating elements.
- the one or more regulating elements can be operably linked to one or more of the nucleic acid sequences within the nucleic acid construct.
- regulating elements can refer to enhancers or other segments of a nucleic acid sequence that are involved in controlling gene expression.
- Enhancer generally refers to a sequence of DNA that functions at no fixed distance from the transcription start site and can be either 5' (Laimins, L. et al, Proc. Natl. Acad. Sci. 78: 993 (1981)), within, or 3' (Lusky, MX., et al, MoI. Cell Bio. 3: 1108 (1983)) to the transcription unit.
- a transcription unit is that part of the DNA that will be transcribed into RNA.
- enhancers can be within an intron (Banerji, J.L.
- Enhancers function to increase transcription from nearby promoters. Enhancers and promoters can also contain response elements that mediate the regulation of transcription. An enhancer often determines the regulation of expression of a gene.
- enhancer sequences are now known from mammalian genes (globin, elastase, albumin, ⁇ - fetoprotein and insulin), one will preferably use an enhancer from a eukaryotic cell- infecting virus for general expression.
- enhancers include, but are not limited to the SV40 enhancer on the late side of the replication origin, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
- regulating elements include, but are not limited to, elements present in the non coding and coding nucleotide sequences of homologous and/or heterologous nucleotide sequences, including the Iron Responsive Element (IRE), Translational cis-Regulatory Element (TLRE) or uORFs in 5 ' untranslated sequences and poly(U) stretches at the 3 ' end.
- IRE Iron Responsive Element
- TRE Translational cis-Regulatory Element
- uORFs in 5 ' untranslated sequences and poly(U) stretches at the 3 ' end.
- a regulating element can also contain sequences necessary for the termination of transcription which may affect mRNA expression. These regions are transcribed as polyadenylated segments in the untranslated portion of the mRNA encoding tissue factor protein. The 3' untranslated regions usually also include transcription termination sites. For protein coding sequences it is preferred that the transcription unit also contains a polyadenylation region. One benefit of this region is that it increases the likelihood that the transcribed unit will be processed and transported like mRNA. The identification and use of polyadenylation signals in expression constructs is well established. It is preferred that homologous polyadenylation signals be used in the transgene constructs. In certain transcription units, the polyadenylation region is derived from the SV40 early polyadenylation signal and consists of about 400 bases.
- a nucleic acid construct according to the invention is preferably a vector, in particular a plasmid, cosmid or phage or nucleotide sequence, linear or circular, of a single or double stranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing any one of the nucleotide sequences of the invention in sense or antisense orientation into a mammalian cell.
- the choice of vector is dependent on the recombinant procedures followed and the host cell used.
- a vector may be an autonomously replicating vector or may replicate together with the chromosome into which it has been integrated.
- General techniques for integration into the host genome include, for example, systems designed to promote homologous recombination with the host genome. These systems typically rely on sequence flanking the nucleic acid to be expressed that has enough homology with a target sequence within the host cell genome that recombination between the vector nucleic acid and the target nucleic acid takes place, causing the delivered nucleic acid to be integrated into the host genome. These systems and the methods necessary to promote homologous recombination are known to those of skill in the art.
- Suitable vectors which can be delivered using the presently known procedures include, but are not limited to, herpes simplex virus vectors, adenovirus vectors, papovavirus vectors (such as human papillomavirus vectors, polyomavirus vectors, SV40 vectors), adeno-associated virus vectors, retroviral vectors, pseudorabies virus, alpha-herpes virus vectors, Herpes virus, Vaccinia virus, Polio virus, AIDS virus, neuronal trophic virus, Sindbis and other RNA viruses, including these viruses with the HIV backbone and the like.
- herpes simplex virus vectors such as human papillomavirus vectors, polyomavirus vectors, SV40 vectors
- adeno-associated virus vectors retroviral vectors, pseudorabies virus, alpha-herpes virus vectors
- Herpes virus Vaccinia virus, Polio virus, AIDS virus, neuronal trophic virus, Sindbis and other RNA viruses,
- Retroviruses include Murine Maloney Leukemia virus, MMLV, and retroviruses that express the desirable properties of MMLV as a vector.
- Retroviral vectors are able to carry a larger genetic payload, i.e., a transgene or marker gene, than other viral vectors, and for this reason are a commonly used vector. However, they are not as useful in non-proliferating cells.
- Adenovirus vectors are relatively stable and easy to work with, have high titers, and can be delivered in aerosol formulation, and can transfect non-dividing cells.
- Pox viral vectors are large and have several sites for inserting genes, they are thermostable and can be stored at room temperature.
- Viral vectors can have higher transaction abilities (i.e., ability to introduce genes) than chemical or physical methods of introducing genes into cells.
- viral vectors contain nonstructural early genes, structural late genes, an RNA polymerase III transcript, inverted terminal repeats necessary for replication and encapsidation, and promoters to control the transcription and replication of the viral genome.
- viruses When engineered as vectors, viruses typically have one or more of the early genes removed and a gene or gene/promotor cassette is inserted into the viral genome in place of the removed viral DNA. Constructs of this type can carry up to about 8 kb of foreign genetic material.
- the necessary functions of the removed early genes are typically supplied by cell lines which have been engineered to express the gene products of the early genes in trans.
- Retroviral vectors in general, are described by Verma, LM. , Retroviral vectors for gene transfer. In Microbiology-1985, American Society for Microbiology, pp. 229- 232, Washington, (1985), which is incorporated by reference herein. Examples of methods for using retroviral vectors for gene therapy are described in U.S. Patent Nos. 4,868,116 and 4,980,286; PCT applications WO 90/02806 and WO 89/07136; and Mulligan, (Science 260:926-932 (1993)); the teachings of which are incorporated herein by reference in their entirety for their teaching of methods for using retroviral vectors for gene therapy.
- a retrovirus is essentially a package which has packed into it nucleic acid cargo.
- the nucleic acid cargo carries with it a packaging signal, which ensures that the replicated daughter molecules will be efficiently packaged within the package coat.
- a packaging signal In addition to the package signal, there are a number of molecules which are needed in cis, for the replication, and packaging of the replicated virus.
- a retroviral genome contains the gag, pol, and env genes which are involved in the making of the protein coat. It is the gag, pol, and env genes which are typically replaced by the foreign DNA that it is to be transferred to the target cell.
- Retrovirus vectors typically contain a packaging signal for incorporation into the package coat, a sequence which signals the start of the gag transcription unit, elements necessary for reverse transcription, including a primer binding site to bind the tRNA primer of reverse transcription, terminal repeat sequences that guide the switch of RNA strands during DNA synthesis, a purine rich sequence 5' to the 3' LTR that serves as the priming site for the synthesis of the second strand of DNA synthesis, and specific sequences near the ends of the LTRs that enable the insertion of the DNA state of the retrovirus to insert into the host genome.
- This amount of nucleic acid is sufficient for the delivery of one to many genes depending on the size of each transcript. It is preferable to include either positive or negative selectable markers along with other genes in the insert.
- a packaging cell line is a cell line which has been transfected or transformed with a retrovirus that contains the replication and packaging machinery but lacks any packaging signal.
- the vector carrying the DNA of choice is transfected into these cell lines, the vector containing the gene of interest is replicated and packaged into new retroviral particles, by the machinery provided in cis by the helper cell. The genomes for the machinery are not packaged because they lack the necessary signals.
- viruses have been shown to achieve high efficiency gene transfer after direct, in vivo delivery to airway epithelium, hepatocytes, vascular endothelium, CNS parenchyma and a number of other tissue sites (Morsy, J. Clin. Invest. 92:1580-1586 (1993); Kirshenbaum, J. Clin. Invest. 92:381-387 (1993); Roessler, J. Clin. Invest.
- adenoviruses achieve gene transduction by binding to specific cell surface receptors, after which the virus is internalized by receptor-mediated endocytosis, in the same manner as wild type or replication-defective adenovirus (Chardonnet and Dales, Virology 40:462-477 (1970); Brown and Burlingham, J. Virology 12:386-396 (1973); Svensson and Persson, J. Virology 55:442-449 (1985); Seth, et al., J. Virol.
- a viral vector can be one based on an adenovirus which has had the El gene removed and these virons are generated in a cell line such as the human 293 cell line.
- both the El and E3 genes are removed from the adenovirus genome.
- AAV adeno-associated virus
- This defective parvovirus is a preferred vector because it can infect many cell types and is nonpathogenic to humans.
- AAV type vectors can transport about 4 to 5 kb and wild type AAV is known to stably insert into chromosome 19. Vectors which contain this site specific integration property are preferred.
- An especially preferred embodiment of this type of vector is the P4.1 C vector produced by Avigen, San Francisco, CA, which can contain the herpes simplex virus thymidine kinase gene, HSV-tk, or a marker gene, such as the gene encoding the green fluorescent protein, GFP.
- the AAV contains a pair of inverted terminal repeats (ITRs) which flank at least one cassette containing a promoter which directs cell-specific expression operably linked to a heterologous gene.
- ITRs inverted terminal repeats
- Heterologous in this context refers to any nucleotide sequence or gene which is not native to the AAV or
- AAV and B 19 coding regions have been deleted, resulting in a safe, noncytotoxic vector.
- the AAV ITRs, or modifications thereof, confer infectivity and site-specific integration, but not cytotoxicity, and the promoter directs cell-specific expression.
- United States Patent No. 6,261,834 is herein incorproated by reference in its entirity for material related to the AAV vector.
- a nucleic acid construct as used herein contains a selection marker.
- Useful markers are dependent on the host cell of choice and are well known to persons skilled in the art.
- molecules encoded within the viral vector e.g., by a cDNA contained in the viral vector, are expressed efficiently in cells which have taken up viral vector nucleic acid.
- Preferred selection marker genes are extensively presented later on herein.
- a recombinant host cell such as a mammalian cell, preferably a human cell, containing one or more copies of a nucleic acid construct according to the invention is an additional aspect of the invention.
- host cell or recombinant host cell is meant a cell which contains a nucleic acid construct such as a vector and supports the replication and/or expression of the nucleic acid construct.
- a suitable expression system uses any mammalian cells such as CHO, Cos, CPK (porcine kidney), MDCK, BHK, and Vera cells.
- a suitable human cell or human cell line is an astrocyte, adipocyte, chondrocyte, endothelial, epithelial, fibroblast, hair, keratinocyte, melanocyte, osteoblast, skeletal muscle, smooth muscle, stem, synoviocyte cell or cell line.
- suitable human cell lines also include HEK 293 (human embryonic kidney), HeLa, Per.C ⁇ , and Bowes melanoma cells.
- a human cell is not an embryonic stem cell. Therefore, in another aspect of the invention relates to a mammalian cell that is genetically modified, preferably by a method of the invention, in that a mammalian cell comprises a nucleic acid construct as herein defined above.
- a nucleic acid construct preferably is a construct containing nucleic acid sequences that are manipulated or modified in vitro.
- a nucleic acid construct preferably provides a mammalian cell with a combination of nucleic acid sequences which is not found in nature.
- a nucleic acid construct preferably is stably maintained, either as a autonomously replicating element, or, more preferably, the nucleic acid construct is integrated into the mammalian cell's genome, in which case the construct is usually integrated at random positions in the mammalian cell's genome, for instance by non-homologuous recombination.
- Stably transformed mammalian cells are produced by known methods. The term stable transformation refers to exposing cells to methods to transfer and incorporate foreign DNA into their genome.
- a mammalian tissue can be regenerated from said transformed cell in a suitable medium, which optionally may contain antibiotics or biocides known in the art for the selection of transformed cells.
- Resulting transformed mammalian tissues are preferably identified by means of selection using a selection marker gene as present on a nucleic acid construct as defined herein.
- a nucleic acid construct according to the invention therefore preferably also comprises a marker gene which can provide selection or screening capability in a treated mammalian cell. Selectable markers are generally preferred for mammalian transformation events, but are not available for all mammalian species.
- a nucleic acid construct disclosed herein can also include a nucleic acid sequence encoding a marker product.
- a marker product can be used to determine if the construct or portion thereof has been delivered to the cell and once delivered is being expressed. Examples of marker genes include, but are not limited to the E. coli lacZ gene, which encodes ⁇ -galactosidase, and a gene encoding the green fluorescent protein.
- a marker may be a selectable marker.
- suitable selectable markers for mammalian cells include, but are not limited to dihydrofolate reductase (DHFR), thymidine kinase, neomycin, neomycin analog G418, hydromycin, and puromycin.
- Other suitable selectable markers include, but are not limited to antibiotic, metabolic, auxotrophic or herbicide resistant genes which, when inserted in a host cell in culture, would confer on those cells the ability to withstand exposure to an antibiotic. Metabolic or auxotrophic marker genes enable transformed cells to synthesize an essential component, usually an amino acid, which allows the cells to grow on media that lack this component.
- Another type of marker gene is one that can be screened by histochemical or biochemical assay, even though the gene cannot be selected for.
- a suitable marker gene found useful in such host cell transformation experience is a luciferase gene. Luciferase catalyzes the oxidation of luciferin, resulting in the production of oxyluciferin and light.
- a luciferase gene provides a convenient assay for the detection of the expression of introduced DNA in host cells by histochemical analysis of the cells.
- a nucleic acid sequence sought to be expressed in a host cell could be coupled in tandem with the luciferase gene. The tandem construct could be transformed into host cells, and the resulting host cells could be analyzed for expression of the luciferase enzyme.
- An advantage of this marker is the non-destructive procedure of application of the substrate and the subsequent detection.
- the transformed mammalian host cell can survive if placed under selective pressure.
- selective regimes There are two widely used distinct categories of selective regimes. The first category is based on a cell's metabolism and the use of a mutant cell line which lacks the ability to grow independent of a supplemented media. Two examples are CHO DHFR-cells and mouse LTK- cells. These cells lack the ability to grow without the addition of such nutrients as thymidine or hypoxanthine. Because these cells lack certain genes necessary for a complete nucleotide synthesis pathway, they cannot survive unless the missing nucleotides are provided in a supplemented media.
- An alternative to supplementing the media is to introduce an intact DHFR or TK gene into cells lacking the respective genes, thus altering their growth requirements. Individual cells which were not transformed with the DHFR or TK gene will not be capable of survival in non-supplemented media.
- the second category is dominant selection which refers to a selection scheme used in any cell type and does not require the use of a mutant cell line. These schemes typically use a drug to arrest growth of a host cell. Those cells which have a novel gene would express a protein conveying drug resistance and would survive the selection. Examples of such dominant selection use the drugs neomycin, (Southern P. and Berg, P., J. Molec. Appl. Genet. 1 : 327 (1982)), mycophenolic acid, (Mulligan, R.C. and Berg, P. Science 209: 1422 (1980)) or hygromycin, (Sugden, B. et al., MoI. Cell. Biol. 5: 410-413 (1985)).
- the three examples employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenolic acid) or hygromycin, respectively. Others include the neomycin analog G418 and puramycin. Other useful markers are dependent on the host cell of choice and are well known to persons skilled in the art.
- a transformed mammalian cell is subjected to conditions leading to expression of a protein or polypeptide of interest, and optionally recovering said protein or polypeptide. Recovering steps depend on the expressed protein or polypeptide and the host cell used but can comprise isolation of the protein or polypeptide.
- the term "isolation" indicates that the protein is found in a condition other than its native environment.
- an isolated protein is substantially free of other proteins, particularly other homologous proteins. It is preferred to provide the protein in a greater than 40% pure form, more preferably greater than 60% pure form. Even more preferably it is preferred to provide the protein in a highly purified form, i.e., greater than 80% pure, more preferably greater than 95% pure, and even more preferably greater than 99% pure, as determined by SDS-PAGE.
- a second nucleotide sequence may be ligated to a heterologous nucleotide sequence to encode a fusion protein to facilitate protein purification and protein detection on for instance Western blot and in an ELISA.
- Suitable heterologous sequences include, but are not limited to, the nucleotide sequences encoding for proteins such as for instance glutathione-S-transferase, maltose binding protein, metal- binding polyhistidine, green fluorescent protein, luciferase and beta-galactosidase.
- the protein may also be coupled to non-peptide carriers, tags or labels that facilitate tracing of the protein, both in vivo and in vitro, and allow for the identification and quantification of binding of the protein to substrates.
- labels, tags or carriers are well-known in the art and include, but are not limited to, biotin, radioactive labels and fluorescent labels.
- the verb "to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded.
- the verb "to consist” may be replaced by "to consist essentially of meaning that a vector or a nucleic acid construct or a nucleotide molecule, a host cell respectively a method as defined herein may comprise additional component(s) respectively additional step(s) than the ones specifically identified, said additional component(s) respectively additional step(s) not altering the unique characteristic of the invention.
- reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
- the indefinite article “a” or “an” thus usually means “at least one".
- Example 1 CHO cell lines transgenic for SEAP containing the UNl sequence (SEQ ID NO :2) at a specific genomic location
- SEAP human placental alkaline phosphatase
- the secreted form of human placental alkaline phosphatase is a very stable reporter enzyme which is easily detectable in the cell medium of mammalian expression systems.
- SEAP production to study the yield effect of introducing the UNicTM technology in a controlled high expression CHO cell line.
- the Flp-InTM system was used to obtain transgenic CHO lines with the SEAP constructs integrated at a single specific genomic location by means of site-specific recombination.
- Two polyclonal stable lines were generated that differed only in the presence of the untranslated sequence of ntp303 (UNl sequence).
- the integration site in the CHO FIp-In strain is known to give a high and stable mRNA expression level.
- the pPNIC004 and pPNIC005 vectors used to transfect CHO FIp-In cells were constructed based on the expression vector pEF5/FRT/V5-dest (Invitrogen). Both vectors were constructed by insertion of the SEAP cDNA sequence, amplified by PCR using pSEAP2 (Invitrogen) as a template, between the constitutive EFl -alpha promoter and the bovine growth hormone poly-adenylation site.
- pPNIC004 contains an additional UNl sequence fused to the SEAP coding sequence by means of fusion PCR. The constructs were analyzed by sequencing before transfection.
- the CHO-pPNIC004 and CHO-pPNIC005 lines were generated using the pPNIC004 and pPNIC005 plasmids and CHO FIp-In cell line, according to the recommendations provided by the manufacturer of the FIp-In system (Invitrogen). Cells were maintained by transferring a 1 : 10 dilution in fresh medium.
- transgenic CHO lines were analyzed as follows. The cells were seeded at a density of 10 5 cells per ml, using 2 ml per well in 6-wells plates. Hygromycin was omitted from these plates to give similar growth for transgenic cells and the empty CHO FIp-In cell line that was used as a negative control. The three cell lines (CHO FIp-In, CHO- pPNIC004, and CHO-pPNIC005) were seeded. Two wells were used for measuring SEAP production in the supernatant and the same wells were used to determine the cell numbers.
- the SEAP concentration was determined using the Phospha-Light System (Applied Biosystems), using the manual provided with the kit. Luminescence was measured using a Victor3 plate reader (Perkin-Elmer).
- the growth curves show that both transgenic cell lines grow with a rate similar to the CHO FIp-In cell line.
- the presence of the SEAP gene or UNl sequence did not have a significant effect on cell growth, indicating that differences in protein production are not a result of differences in biomass.
- All cells have reached a maximum cell density around two days after seeding at a density of 1.2 to 1.5 million cells per well of 10 cm 2 . After one day the SEAP concentration still increased linearly in time.
- two independent experiments showed a two-fold increased SEAP production for the pPNIC004 line (+UN 1) compared to the pPNIC005 line (-UN1) at 48 hours after seeding.
- Example 2 Increase of human protein production in transgenic human cell line
- SEAP human placental alkaline phosphatase
- the integration site in the HEK FIp-In strain is known to give a high and stable mRNA expression level. Clonal variation and variation related to different insertion sites and copy number are eliminated by the use of polyclonal isogenic lines. This enables a proper comparison between the constructs with SEQ ID NO:2 and SEQ ID NO:3 sequence.
- the two SEAP expression lines were grown simultaneously and analyzed at different time points for cell growth and protein expression.
- the pPNIC136 and pPNIC147 vectors used to transfect CHO FIp-In cells were constructed based on the expression vector pEF5/FRT/V5-dest (Invitrogen). Both vectors were constructed by insertion of the SEAP cDNA sequence, amplified by PCR using pSEAP2 (Invitrogen) as a template, between the constitutive human cytomegalo virus (CMV) promoter and the bovine growth hormone poly-adenylation site.
- CMV human cytomegalo virus
- the SEQ ID NO: 1 and SEQ ID NO: 3 sequences were purchased as synthetic DNA and inserted as a fusion with the SEAP coding sequence resulting in the pPNIC135 and pPNIC147 plasmids, respectively. The constructs were analyzed by sequencing before transfection.
- the HEK-pPNIC136 and HEK-pPNIC147 lines were generated using the pPNIC136 and pPNIC147 plasmids and HEK FIp-In cell line, according to the recommendations provided by the manufacturer of the FIp-In system (Invitrogen).
- Cells were maintained by transferring a 1 :10 dilution in fresh medium. Briefly, cells were washed with PBS, detached with trypsin/EDTA solution, diluted in fresh selective DMEM medium (DMEM medium containing 10% fetal bovine serum and 50 microgram/ml Hygromycin B), and diluted to a final dilution of 1 : 10 in selective DMEM medium (DMEM medium containing 10% fetal bovine serum and 50 microgram/ml Hygromycin B), and diluted to a final dilution of 1 : 10 in selective DMEM medium (DMEM medium containing 10% fetal bovine serum and 50 microgram/ml Hygromycin B), and diluted to a final dilution of 1 : 10 in selective DMEM medium (DMEM medium containing 10% fetal bovine serum and 50 microgram/ml Hygromycin B), and diluted to a final dilution of 1 : 10 in selective DMEM medium (DMEM medium containing 10% fetal bovine serum
- the transgenic HEK lines were analyzed as follows. The cells were seeded at a density of 10E5 cells per ml, using 2 ml per well in 6-wells plates. Hygromycin was omitted from these plates to give similar growth for transgenic cells and the empty HEK FIp-In cell line that was used as a negative control. The three cell lines (HEK FIp-In, HEK- pPNIC136, and HEK-pPNIC147) were seeded. Two wells were used for measuring
- SEAP activity assay The SEAP concentration was determined using the Phospha-Light System (Applied Biosystems), using the manual provided with the kit. Luminescence was measured using a Victor3 plate reader (Perkin-Elmer). Results
- the supernatants of the pPNIC136 lines contained at least 50 percent more SEAP than the pPNIC147 lines at these time points, which is shown in Figure 2 .
- Example 3 Improvement of transient human IL-4 expression in human cell line by UN1.52 (SEQ ID NO:4)
- the human IL-4 (hIL-4) protein is a cytokine with anti- inflammatory properties and a key regulator in humoral and adaptive immunity. Cells that express the protein secrete it into the culture medium. It is easily detected by means of a commercial ELISA kit.
- hIL-4 production was used to study the yield effect of introducing the UNl .52 after transfection of HEK cells. Expression constructs were generated that differed only in the expression of UNl.52 messenger RNA. The two constructs were transfected in parallel to enable a proper comparison between the constructs with and without UNl .52 sequence.
- the pPNIC144 and pPNIC145 expression vectors used to transfect HEK cells were constructed based on the expression vector pCMV6-neo (OriGene). Both vectors were constructed by insertion of the hIL-4 cDNA sequence, derived from the pCMV6-
- XL5mod_IL4_NM_000589 plasmid (OriGene).
- the neomycin resistance cassette of the pCMV6-neo plasmid was replaced by the blasticidin resistance cassette derived from the pUB/Bsd plasmid (Invitrogen).
- the resulting hIL-4 expression plasmid is pPNIC144.
- the sequence for UNl.52 was purchased as synthetic DNA and inserted as a fusion with the hIL-4 coding sequence resulting in the pPNIC145 plasmid.
- the constructs were analyzed by sequencing before transfection. Plasmid concentrations and purity were checked using a Nanodrop spectrophotometer (Thermo Scientific).
- HEK cells were grown in DMEM/F12 medium containing 10% FBS at 37°C, 5% CO2. Cells were seeded in 6-well plates to reach a density of half a million cells per well at the day of transfection. Transfections were performed in triplicate reactions using Fugene-6 reagent (Roche) according to the manufacturer's instructions. Medium was replaced by fresh medium at 24, 48, and 72 hours post transfection and samples were collected for protein analysis. At each time point the cells of one well of each transfection were detached using trypsin/EDTA and used to count the number of cells by using a CASY Cell Counter as described by the manufacturer. hIL-4 yield
- ELISA kit (eBioscience) was used to determine the concentration of hIL-4 in the medium samples. Each sample was assayed in triplicate wells and a dilution series of rhIL-4 (eBioscience) was used as a standard. The colorimetric ELISA assay was measured using a Victor3 plate reader (Perkin-Elmer).
- HEK cells transfected with plasmids pPNIC144 and pPNIC145 secreted an easily detectable amount of hIL4 into the culture medium.
- the density of cells transfected with either pPNIC144 or pPNIC145 was not significantly different.
- the amount of hlL- 4 produced per cell increased between 24 and 48 hours after transfection, but remained constant between 48 and 72 hours after transfection.
- the supernatants of the HEK cells transfected with pPNIC145 contained 6 to 7 times more hIL-4 than the cells transfected with pPNIC144 at all time points, which is shown in Figure 3 for 48 hours after transfection.
- FIG. 3 HEK cells transiently expressing hIL-4 after transfection. Expression with or without UNl.52. The concentration of hIL-4 in the cell supernatant was determined at 48 hours after transfection.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09766872A EP2288712A1 (de) | 2008-06-18 | 2009-06-18 | Regulation der expression eines proteins in einer säugerzelle |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08158460 | 2008-06-18 | ||
PCT/NL2009/050354 WO2009154454A1 (en) | 2008-06-18 | 2009-06-18 | Regulation of the expression of a protein in a mammalian cell |
EP09766872A EP2288712A1 (de) | 2008-06-18 | 2009-06-18 | Regulation der expression eines proteins in einer säugerzelle |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2288712A1 true EP2288712A1 (de) | 2011-03-02 |
Family
ID=40902092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09766872A Withdrawn EP2288712A1 (de) | 2008-06-18 | 2009-06-18 | Regulation der expression eines proteins in einer säugerzelle |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2288712A1 (de) |
WO (1) | WO2009154454A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130239236A1 (en) | 2010-10-01 | 2013-09-12 | R1 B3 Holdings B.V. | Regulation of translation of expressed genes |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1432808T3 (da) * | 2001-10-05 | 2011-08-29 | H1 H4 Holding B V | Regulering af translation af heterologt udtrykte gener |
-
2009
- 2009-06-18 WO PCT/NL2009/050354 patent/WO2009154454A1/en active Application Filing
- 2009-06-18 EP EP09766872A patent/EP2288712A1/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2009154454A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2009154454A1 (en) | 2009-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102699584B1 (ko) | 대안적 스플라이싱의 압타머 매개 조절에 의한 유전자 발현 제어 | |
US8470797B2 (en) | Inducible small RNA expression constructs for targeted gene silencing | |
US20220282261A1 (en) | Construct and sequence for enhanced gene expression | |
KR101738438B1 (ko) | 아데노-관련 바이러스 벡터의 생산세포 | |
ES2543730T3 (es) | Sistema mejorado de expresión de proteína | |
Terenzi et al. | The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors | |
WO2017109039A1 (en) | Endothelium-specific nucleic acid regulatory elements and methods and use thereof | |
US20230304003A1 (en) | Expression control using a regulatable intron | |
EP2288712A1 (de) | Regulation der expression eines proteins in einer säugerzelle | |
Tepfer et al. | Transient expression in mammalian cells of transgenes transcribed from the Cauliflower mosaic virus 35S promoter | |
KR102645079B1 (ko) | 폴리아데닐화 신호의 압타머-매개된 접근성에 의한 유전자 발현의 조절 | |
Zhang et al. | A vector based on the chicken hypersensitive site 4 insulator element replicates episomally in mammalian cells | |
JP6436908B2 (ja) | 外因性遺伝子発現ベクター、形質転換体判別マーカー及び形質転換体 | |
Paek et al. | The orientation-dependent expression of angiostatin-endostatin hybrid proteins and their characterization for the synergistic effects of antiangiogenesis | |
WO2024133740A1 (en) | Synthetic transcription factors | |
Tomberg et al. | Intronization enhances expression of S-protein and other transgenes challenged by cryptic splicing | |
Spector et al. | 129. Does Transcription Influence AAV-Mediated Homologous Recombination? | |
Johnston et al. | 128. Targeting a High-Expression FVIII Transgene to Exogenous Locations in the Genome without Disrupting Endogenous Gene Expression | |
WO2000053773A2 (en) | Methods for mitochondrial gene therapy | |
Class et al. | Patent application title: Regulation of translation of expressed genes Inventors: Raymond Michael Dimphena Verhaert (Breda, NL) Pieter Victor Schut (Leiden, NL) Sharief Barends (Voorschoten, NL) Maurice Wilhelmus Van Der Heijden (Gouda, NL) Assignees: R1 B3 Holdings BV | |
Howarth et al. | Use of Viral Gene Delivery Systems to Investigate the Neuroprotective Roles of Hsp70 and Hsp40 Proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101220 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17Q | First examination report despatched |
Effective date: 20110822 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130910 |