EP2282889A1 - Vitrage anti-feu - Google Patents

Vitrage anti-feu

Info

Publication number
EP2282889A1
EP2282889A1 EP09735205A EP09735205A EP2282889A1 EP 2282889 A1 EP2282889 A1 EP 2282889A1 EP 09735205 A EP09735205 A EP 09735205A EP 09735205 A EP09735205 A EP 09735205A EP 2282889 A1 EP2282889 A1 EP 2282889A1
Authority
EP
European Patent Office
Prior art keywords
glazing
intumescent
glass sheets
layers
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09735205A
Other languages
German (de)
English (en)
Inventor
Pierre Goelff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
Original Assignee
AGC Glass Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Glass Europe SA filed Critical AGC Glass Europe SA
Priority to EP09735205A priority Critical patent/EP2282889A1/fr
Publication of EP2282889A1 publication Critical patent/EP2282889A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10311Intumescent layers for fire protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • B32B17/10045Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10908Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin in liquid form
    • B32B17/10917Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin in liquid form between two pre-positioned glass layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials

Definitions

  • the present invention relates to transparent glazing having fire resistant qualities.
  • the glazing according to the invention concerns in particular those which, by their quality, meet the characteristics of those qualified as EI 60.
  • These glazings have the particularity of presenting in fireproof tests standardized to EN 1364-1, a tightness against flames and smoke, and a thermal insulation such that the temperature behind this glazing during the test does not increase by more than 140 ° C. on average and more than 180 ° C. locally, and this for a period which is not less than at 60 minutes. Glazing with this strength is commercially available.
  • They present different structures. They have in common to associate a number of glass sheets with intumescent layers based on hydrated alkali silicates. They are distinguished from each other by their construction and by some of their properties including mechanical.
  • tempered glass sheets Some are made with tempered glass sheets, to increase their resistance to both mechanical and thermal shock. This resistance allows, if necessary the implementation of intumescent layers that do not necessarily have a good mechanical resistance to the fire test.
  • the counterpart to the use of tempered glass is that the glazing in question must be made directly to the final dimensions of use. It is not possible to cut them after quenching.
  • annealed glasses For other glazing, to achieve the mechanical qualities while maintaining the possibility of cutting windows from large volumes, the choice is to use simply annealed glasses.
  • the choice of annealed glasses usually involves the use of more complex structures. This is for example the replacement of monolithic glass sheets, or at least some of them by laminated glasses.
  • laminates including, for example, a traditional polyvinyl butyral (PVB) sheet, substantially improves the mechanical strength under ambient temperature conditions.
  • PVB polyvinyl butyral
  • organic constituents has disadvantages in the fire tests, these constituents decomposing from temperatures that are not very high.
  • the presence of at least two laminated sheets ensures that at least one that is not exposed directly to the fire, and which is protected by the intumescent layer, gives all the necessary stability in these tests.
  • intumescent layers of a nature such that, during the fire test, these layers are not subject to creep even when they are no longer enclosed between sheets of glass, unlike the structures envisaged previously.
  • intumescent material intervene various criteria including that of the water content of the silicates used. This water content is related to the method of preparation.
  • the water content must be relatively low. Obtaining silicates with a low water content in turn involves until now the formation of the intumescent layers comprising a more or less thorough drying step from a liquid composition.
  • the inventors have shown that it is possible to obtain fire-resistant glazing which at least partly combines the advantages of prior glazing without accumulating the disadvantages peculiar to the latter.
  • the substantially transparent fireproof glazing according to the invention consists of glass sheets and layers of alkali silicates hydrated between the glass sheets.
  • the composition of the hydrated alkali silicates is such that it is applicable without drying, the setting taking place spontaneously after mixing the constituents.
  • the silicates have a water content of not more than 44% by weight, and a molar ratio SiO 2 / M 2 O at least equal to 3.5, the choice of water content and molar ratio parameters being such that the ratio of the minimum fire performance expressed by the duration in minutes of the "EI" class, by the thickness of the glazing e expressed in millimeters, is at least equal to 3.
  • the traditional fireproof classes EI are determined for periods of resistance time of 30, 60, 90, and 120 minutes. From these times, according to the invention taking into account the E / E ratio indicated above, the highest thicknesses corresponding to each of these classes are respectively: - 30/3 or 10mm for the EI 30
  • the glazings according to the invention are such that 3.2 ⁇ El / e.
  • a difficulty of preparation is the desire to avoid drying the silicate solutions while maintaining a sufficiently high molar ratio. It is known that when the water content is limited, the silicate solutions are stable, that is, they do not tend to spontaneously form a gel, unless the molar ratio is very low. These conditions do not correspond to those necessary for the constitution of the layers meeting the conditions of the invention.
  • the inventors have previously shown that the preparation of the silicate compositions should follow a very specific process including in particular the incorporation of colloidal silica.
  • the modalities concerning the appropriate compositions and those relating to their method of preparation are recalled below.
  • the water content of commercial solutions of alkali silicates is of the order of 65% by weight for a molar ratio of 3.3, and of the order of 45% for a molar ratio of 2. These industrial solutions are adjusted to maintain adequate viscosity for their users. At the values indicated above, the viscosity is about 100 mPa.s.
  • the intumescent layers produced and used in fire-resistant glazings advantageously have an SiO 2 / M 2 O molar ratio of between 3 and 8, and preferably of between 3.5 and 6, and particularly preferably of 3, 5 and 5, and their water content is between 30 and 48% and preferably between 3 and 43%, and particularly preferably between 35 and 40% by weight.
  • the water content may be more or less important.
  • the compositions obtained by reaction of these suspensions with the alkaline hydroxide may have a substantially lower water content than industrial silicates and this with molar ratios SiO 2 / M 2 O much higher.
  • the reproducibility of the compositions and the regularity of the properties of the products obtained are all the better ensured by this method of preparation.
  • the preparation of the alkali silicate compositions used in the formation of the intumescent layers without drying passes through the use of colloidal silica suspensions.
  • the proportion of silica from these suspensions of colloidal silica in the intumescent material is preferably at least 50%, preferably at least 60%, and particularly preferably at least 70%.
  • the silica present can come entirely from colloidal suspensions.
  • the hardening of the alkali silicate solutions in which the use of silica suspension is composition being otherwise identical, depends for part at least on the size of the silica particles used.
  • compositions in which the silica particle size is increased can have a reduced water content compared to prior art compositions, while maintaining the required fluidity for a time sufficient for use in the art. the usual conditions. If the prior compositions usable did not allow to go below a water content of 44%, and in practice did not fall below 47-48%, the use of silica having particles of dimensions as indicated below, achieves much lower water content, up to 30% by weight, while retaining the necessary rheological properties.
  • the silica particles used for the formation of the alkali silicate compositions have an average diameter of not less than 40 nm and preferably not less than 50 nm. These particles also have average dimensions which do not exceed advantageously 150 nm and preferably not 130 nm. The particularly preferred average diameter is between 60 and 120 nm.
  • the particle sizes of the same silica suspension are ordinarily well homogeneous. A share of not less than 80% by weight of the particles is within ⁇ 10% of the average diameter.
  • the dimensions of the silica particles in the suspensions used appear well defined in the observation in electronic optics. The measurement of these dimensions, apart from optical observation, can still be made by electroacoustic examination (using for example an "Acoustosizer” type apparatus), by photon correlation spectroscopy (using for example a "Coulter Delsa 440SX” type apparatus), or else by centrifugation. Depending on the method of preparation adopted, and depending on the desired water content in the final composition, once the mixture of constituents has been produced, it may be necessary to adjust the water content.
  • dehydration can be implemented.
  • the water content in the composition as prepared is not greater than 50% by weight.
  • dehydration it is advantageously made by subjecting the product to evaporation under partial pressure. Dehydration in this case has the advantage of simultaneously leading to degassing of the product. This prevents the risk of bubble entrainment in the layer prepared from this composition.
  • Dehydration can be done at room temperature. A slightly higher temperature can accelerate the removal of water. However, this warming of the composition must remain very limited to avoid any risk of early en masse. In practice the temperature does not exceed 60 ° C.
  • the composition may be stored for several hours or even days at room temperature prior to use.
  • the composition may be stored for at least 48 hours. If the shelf life needs to be extended well beyond, it is best to avoid any risk of caking, refrigerate the composition for example at around 4 ° C. At these temperatures the pot life can be greatly increased.
  • the intumescent layer is mainly composed of alkaline silicates and water.
  • the silicates are those potassium, sodium and lithium. It is possible to have a mixture of these silicates, however such a mixture is not preferred because it leads to layers whose softening temperature is lowered.
  • Potassium silicates are preferred. They advantageously represent at least 60% by weight of all the silicates, and preferably at least 80%. In a particularly preferred manner, all the silicates used, with inevitable impurities, in other words, more than 95% by weight, is composed of potassium silicate.
  • additives may be introduced into the composition, in particular polyols, and in particular ethylene glycol or glycerol.
  • the introduction of these polyols is intended in particular to compensate for the lack of plasticity of the products whose water content is very low (from 20 to 25%).
  • the polyol content can then be up to 18-20% by weight in the layer formed.
  • the intumescent layers considered here when polyols are present, their content remains much lower. It is advantageously not greater than 10% by weight of the composition, and preferably not greater than 8%.
  • Preferred levels of glycols are between 2 and 6% by weight of the final layer.
  • intumescent compositions also comprise other additives in small proportions. These are nitrogen products (urea, amines ...) or surfactants.
  • the compositions contain tetra-methyl ammonium hydroxide (TMAH) at a content which is not greater than 2% by weight.
  • TMAH tetra-methyl ammonium hydroxide
  • the prepared solution is sufficiently stable at ordinary ambient temperature conditions. It can be stored for several hours, or even several days, if necessary by cooling, without the risk of forming a gel. It is possible to use this stability to eliminate bubbles that may have appeared in the mixing of the mixture. The removal can take place simply by leaving the solution at rest or by any known technique such as the use of ultrasound or degassing under partial pressure, for example.
  • the use of intumescent compositions that do not require drying allows the constitution of intumescent layers whose thickness is not limited. Previously this thickness took into account the length of the drying time. In practice this increasing time as the square of the thickness, to remain within industrially acceptable limits the thickness of the dried layers did not ordinarily exceed 2mm.
  • glazings it may be useful to form layers with a thickness of up to 8mm, or even 10mm or more.
  • the structure of the glazing according to the invention is described in detail hereinafter in comparison with glazing of the prior art of the same class EI.
  • a glazing of the prior art formed from a silicate composition which is not dried and whose glass sheets are tempered;
  • FIG. 4 a glazing according to the invention.
  • the windows in the figures are representative of those of class EI 60.
  • the glazing of the prior art of FIG. 1 consists of three sheets of glass 1, 2 and 3. These sheets have thicknesses of approximately 5 mm each. Between these glass sheets two intumescent layers of hydrated alkali silicate are introduced in the form of a cast solution which optionally gels by addition of a specific agent.
  • the solutions in question have a water content of about 47% by weight.
  • the thickness of the intumescent composition is also of the order of 5 mm for each of the layers 4 and 5.
  • the total thickness of the prior glazing is of the order of 25 mm.
  • compositions with such a high content of water tend to flow before expanding under the effect of heat.
  • the sheet exposed to fire must withstand the time necessary to achieve the expansion of the intumescent layer.
  • the glass sheets are made of toughened glass. The disadvantage is, as indicated above, to have to produce the glazing directly to the final dimensions of use.
  • the glazing of Figure 2 is also a glazing previously marketed.
  • This glazing also comprises three sheets of glass and two intumescent layers, the latter of similar composition to that of the glazing of Figure 1.
  • the glass sheets are laminated. These sheets each comprise two sheets of glass 6 and 8, or 9 and 11, joined by means of a polyvinyl butyral sheet 7 and 10. The thicknesses of the glass sheets 6, 8, 9 and 11 are of the order of 2 , 1mm. PVB sheets are traditionally 0.38 or
  • the central leaf is monolithic, and 5mm thick.
  • the overall thickness as before is about 25mm.
  • the glass sheets are annealed and are therefore suitable for cutting in the usual conditions for laminated glasses.
  • the presence of PVB spacers allows at least the maintenance of all in the first moments of the fire test, until the expansion of at least one intumescent layer.
  • the presence of PVB gives these windows, apart from fire tests, interesting properties of resistance to soft impact.
  • the front glazing shown in FIG. 3 is a glazing unit consisting of dried alkali silicate layers 20, 21, 22 and 23.
  • the layers in question have a water content of 23% by weight with a molar ratio of SiO 2 / M 2 O of 3.3.
  • Each intumescent layer is about 1.5mm thick.
  • the composition of the glazing is 5 sheets of glass 15, 16, 17,
  • the leaves are all annealed glass.
  • the central sheet 18 has a thickness of 8mm.
  • the other leaves are 3mm thick.
  • the total thickness of the glazing is 25mm.
  • the glazing of Figure 3 differs from the previous ones, firstly by the high number of glass sheets and intumescent layers, but especially by the fact that these layers are obtained by drying.
  • the assembly from identical sheets a 3mm glass sheet and an intumescent layer of 1.5mm
  • Figure 4 shows a glazing according to the invention. It consists of two sheets of annealed glass, 12 and 14, each 6mm thick.
  • a sealing bead is disposed at the periphery. This cord keeps the leaves spaced 6mm apart.
  • the mixture is carried out gradually, at a temperature maintained at 25 ° C. It is followed by dehydration for 1h30 under reduced pressure (between 5 and 10 hPa) and at 30 ° C. Final degassing is carried out at 25 ° C. under a pressure of 40 hPa for 3 hours.
  • the formed solution which is fluid and free of bubbles, has a water content of 38% by weight and a molar ratio of 4.6. It is poured between the two sheets of glass.
  • the finish of the glazing comprises a pressure autoclave passage of the order of 13.10 3 hPa, at a temperature that does not exceed 70 0 C.
  • the fire resistance tests are carried out according to the conditions of the EN 1364-1 standard. The thermal insulation is maintained beyond 60 minutes and the sealing of the glazing continues for at least 120 minutes.
  • the glazings according to the invention show the great advantage compared to previous glazing of a great flexibility of production, but especially to present, with equal performances, lightened structures and less thick.
  • Glazing class EI 90 may consist for example of 3 sheets of glass 5mm thick each separated by two intumescent layers also 5mm thick.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

La présente invention concerne un vitrage anti-feu essentiellement transparent comprenant des feuilles de verre et une ou plusieurs couches de composition intumescente de silicate alcalin hydraté entre ces feuilles de verre, les épaisseurs de ces différents constituants et la composition de la ou des couches intumescentes obtenues sans séchage étant tels que l'épaisseur e du vitrage, exprimée en millimètres, feuilles de verre et couche(s) intumescente (s), et la classe de résistance au feu EI, exprimée en minutes, répondent à la relation 3 ≤ E/7e.

Description

Vitrage anti-feu
La présente invention concerne les vitrages transparents présentant des qualités de résistance au feu.
Les vitrages selon l'invention concernent notamment ceux qui par leur qualité répondent aux caractéristiques de ceux qualifiés de EI 60. Ces vitrages ont pour particularité de présenter dans les épreuves au feu normalisées EN 1364-1, une étanchéité aux flammes et à la fumée, et une isolation thermique telle que la température derrière ce vitrage au cours de l'essai ne s'accroisse pas de plus de 1400C en moyenne et de plus de 1800C localement, et ceci pendant une durée qui n'est pas inférieure à 60 minutes. Des vitrages présentant cette résistance sont disponibles dans le commerce. Ils présentent différentes structures. Ils ont en commun d'associer un certain nombre de feuilles de verre avec des couches intumescentes à base de silicates alcalins hydratés. Ils se distinguent entre eux par leur construction et par certaines de leurs propriétés notamment mécaniques. Certains sont constitués avec des feuilles de verre trempées, pour accroître leur résistance à la fois mécanique et au choc thermique. Cette résistance permet, le cas échéant la mise en oeuvre de couches intumescentes qui ne présentent pas nécessairement une bonne tenue mécanique à l'épreuve au feu. La contrepartie de l'utilisation de verre trempé est que les vitrages en question doivent être constitués directement aux dimensions finales d'utilisation. Il n'est pas possible de les découper après la trempe.
Pour d'autres vitrages, pour parvenir aux qualités mécaniques en conservant la possibilité d'une découpe des vitrages à partir de volumes de grandes dimensions, le choix est fait d'utiliser des verres simplement recuits. Le choix des verres recuits implique généralement l'utilisation de structures plus complexes. II s'agit par exemple du remplacement des feuilles de verre monolithiques, ou au moins de certaines d'entre elles par des verres feuilletés. L'utilisation des feuilletés incluant par exemple une feuille traditionnelle de polyvinylbutyral (PVB), améliore sensiblement la résistance mécanique dans les conditions de température ambiante. La mise en oeuvre de constituants organiques présente cependant des inconvénients dans les épreuves au feu, ces constituants se décomposant à partir de températures qui ne sont pas très élevées. La présence d'au moins deux feuilles stratifiées permet de garantir qu'au moins celle qui n'est pas exposée directement au feu, et qui se trouve protégée par la couche intumescente, confère à l'ensemble la stabilité nécessaire dans ces épreuves.
Une autre voie dans la constitution de vitrages offrant toutes les qualités requises et permettant l'utilisation de verres recuits, consiste à utiliser des couches intumescentes de nature telle que, lors de l'épreuve au feu, ces couches ne risquent pas de fluage même lorsqu'elles ne sont plus enfermées entre des feuilles de verre, contrairement aux structures envisagées précédemment.
Dans le choix du type du matériau intumescent interviennent divers critères notamment celui de la teneur en eau des silicates utilisés. Cette teneur en eau est liée à la méthode de préparation.
Ainsi pour éviter le fluage du matériau intumescent à haute température, la teneur en eau doit être relativement faible. L'obtention de silicates à faible teneur en eau implique à son tour jusqu'à présent la formation des couches intumescentes comprenant une étape de séchage plus ou moins poussée à partir d'une composition liquide.
Les développements antérieurs dans ce domaine ont montré que ce séchage, s'il offre des avantages certains, se déroule dans un processus relativement long et donc coûteux. Il est d'autant plus long que le séchage est plus poussé et que l'épaisseur de la couche produite est plus importante. Pour ces raisons notamment, lorsque des couches intumescentes à teneur en eau réduite sont produites par séchage, leur épaisseur est en pratique relativement modeste. En conséquence encore, en raison même de cette faible épaisseur, pour garantir les qualités de résistance au feu recherchées, il est nécessaire d'accroître le nombre des couches intumescentes et celui des feuilles de verre qui les séparent. Encore une fois ceci conduit à des structures relativement complexes. Comme indiqué le choix de la nature des couches intumescentes est aussi un élément déterminant de la composition de ces vitrages. L'option permettant d'éviter les opérations de séchage a conduit antérieurement à des produits à teneur en eau élevée dont la tenue au feu modeste nécessite l'utilisation de feuilles de verre soit trempées soit feuilletées. L'autre solution consistant à l'utilisation de couches à faible teneur en eau permet de s'affranchir de certaines contraintes sur le choix des feuilles de verre mais, en contrepartie, nécessite un séchage des couches intumescentes et la multiplication de celles-ci.
Les contraintes de construction et/ou de préparation des vitrages obtenus antérieurement sont particulièrement sensibles lorsque ces vitrages doivent satisfaire à certaines performances. C'est le cas notamment pour ceux qui doivent atteindre des tenues au feu en terme d'isolation d'au moins 60 minutes dans la mesure où les solutions adoptées jusqu'à présent conduisent à des structures relativement épaisses et donc pesantes. Cette nécessité s'applique également aux vitrages offrant des performances de résistance au feu encore plus élevées. Pour les vitrages anti-feu dont la classe est EI 30, les avantages en terme d'épaisseur sont moins sensibles partant de vitrages qui dans tous les cas sont d'épaisseur relativement peu importante.
Les inventeurs ont montré qu'il était possible d'obtenir des vitrages anti-feu qui allient en partie au moins les avantages liés aux vitrages antérieurs, sans cumuler les inconvénients propres à ces derniers.
Les vitrages anti-feu essentiellement transparents selon l'invention sont constitués de feuilles de verre et de couches de silicates alcalins hydratés entre les feuilles de verre. La composition des silicates alcalins hydratés est telle qu'elle est applicable sans séchage, la prise en masse intervenant spontanément après mélange des constituants. Les silicates présentent une teneur en eau qui n'est pas supérieure à 44% en poids, et un rapport molaire SiO2/M2O au moins égal à 3,5, le choix des paramètres teneur en eau et rapport molaire étant tels que le rapport de la performance minimal au feu exprimée par la durée en minutes de la classe "EI", par l'épaisseur du vitrage e exprimée en millimètres, est au moins égal à 3. Les classes anti-feu traditionnelles EI sont déterminées pour des périodes de temps de résistance de 30, 60, 90, et 120 minutes. Partant de ces temps , selon l' invention en tenant compte du rapport El/e indiqué précédemment, les épaisseurs les plus fortes correspondant à chacune de ces classes sont en conséquence respectivement : - 30/3 soit 10mm pour le EI 30
- 60/3 soit 20mm pour le EI 60
- 90/3 soit 30mm pour le EI 90
- 120/3 soit 40mm pour le EI 120.
Avantageusement les vitrages selon l'invention sont tels que 3,2 ≤ El/e.
Des compositions intumescentes répondant aux conditions énoncées et leur mode de préparation sont décrits dans la demande de brevet européen non publiée n° 07 108 971 déposée le 25 mai 2007.
Une difficulté de préparation tient à la volonté d'éviter le séchage des solutions de silicates tout en conservant un rapport molaire suffisamment élevé. On sait en effet que lorsque que la teneur en eau est limitée, les solutions de silicates ne sont stables, autrement dit n'ont pas tendance à former spontanément un gel, que si le rapport molaire est très faible. Ces conditions ne correspondent pas à celles nécessaires pour la constitution des couches répondant aux conditions de l'invention.
Pour parvenir à des compositions adéquates les inventeurs ont montré précédemment que la préparation des compositions de silicates devait suivre un processus bien spécifique incluant notamment l'incorporation de silice colloïdale. Les modalités concernant les compositions adéquates et celles relatives à leur mode de préparation sont rappelées ci-après.
Le mode traditionnel de préparation des couches intumescentes, avec ou sans séchage comporte l'utilisation de solutions de silicates alcalins industriels comme composé de base. Ces solutions présentent des caractéristiques qui en limitent les possibilités d'utilisation. En particulier elles présentent des teneurs en eau relativement élevées, et ces teneurs sont d'autant plus importantes que le rapport molaire SiO2/M2O est lui-même plus important.
A titre indicatif la teneur en eau des solutions commerciales de silicates alcalins est de l'ordre de 65% en poids pour un rapport molaire de 3,3, et de l'ordre de 45% pour un rapport molaire de 2. Ces solutions industrielles sont ajustées pour maintenir une viscosité adéquate pour leurs utilisateurs. Aux valeurs indiquées ci-dessus, la viscosité se situe à environ lOOmPa.s.
Pour les vitrages anti-feu des rapports molaires plus importants sont préférables pour améliorer le caractère réfractaire. Il apparaît donc que les silicates alcalins du commerce ne sont pas utilisables, ou pas utilisables tels quels pour la préparation des compositions intumescentes, notamment lorsqu'il s'agit de produits dont on veut éviter le séchage, les teneurs en eau étant beaucoup trop élevées.
En pratique les couches intumescentes produites et utilisées dans les vitrages anti-feu, présentent avantageusement un rapport molaire SiO2/M2O compris entre 3 et 8, et de préférence entre 3,5 et 6, et de façon particulièrement préférée entre 3,5 et 5, et leur teneur en eau s'établit entre 30 et 48% et de préférence entre 3 3 et 43%, et de façon particulièrement préférée de 35 à 40% en poids.
Selon le mode d'application conduisant aux vitrages, à savoir soit par coulée entre deux feuilles constituant une sorte de récipient de la composition liquide, le durcissement s'effectuant entre les feuilles, soit en appliquant la solution sur une feuille horizontale, une seconde feuille de verre étant appliquée ultérieurement sur la couche intumescente lorsque le durcissement est commencé ou même achevé, la teneur en eau peut être plus ou moins importante.
Dans tous les cas, les solutions commerciales de silicates alcalins ne peuvent être utilisées telles quelles. Compte tenu des différences ό importantes existant entre ces compositions et celles qui sont mises en oeuvre pour la formation des couches selon l'invention, il peut être préférable de procéder à la préparation de ces dernières sans utiliser, même pour partie, les solutions industrielles. Pour préparer les compositions utilisées il est avantageux de partir de suspensions de silice colloïdale et d'hydroxyde alcalin. Ce dernier est soit sous forme de solution, soit au moins en partie sous forme de pastilles solides pour limiter le plus possible la teneur en eau du mélange. Les concentrations des solutions d'hydroxyde peuvent être relativement élevées. La teneur pondérale en oxydes métalliques peut atteindre 50% dans les solutions. Elle peut être de 85% dans les pastilles. Si les suspensions de silice ne dépassent pas ordinairement 50% en poids de silice, les compositions obtenues par réaction de ces suspensions avec l'hydroxyde alcalin peuvent présenter une teneur en eau sensiblement moindre que celle des silicates industriels et ceci avec des rapports molaires SiO2/M2O bien plus élevés. Par ailleurs la reproductibilité des compositions, et la régularité des propriétés des produits obtenus sont d'autant mieux assurées par ce mode de préparation.
S i néanmoins pour des raisons d'économie, il est préféré d'utiliser au moins partiellement des silicates industriels, il reste nécessaire de les modifier par un apport substantiel de silice colloïdale pour parvenir aux compositions présentant les rapports molaires recherchés sans avoir à éliminer une quantité d'eau excessive.
Dans tous les cas la préparation des compositions des silicates alcalins utilisée dans la formation des couches intumescentes sans séchage passe par l'utilisation de suspensions de silice colloïdale. La proportion de silice provenant de ces suspensions de silice colloïdale dans le matériau intumescent est avantageusement d'au moins 50%, de préférence d'au moins 60%, et de façon particulièrement préférée d'au moins 70%. La silice présente peut provenir en totalité de suspensions colloïdales. Le durcissement des solutions de silicates alcalins dans la préparation desquelles intervient l'utilisation de suspension de silice, la composition étant par ailleurs identique, dépend pour partie au moins de la dimension des particules de silice utilisées.
De façon générale , il est apparu à l'expérience que l'accroissement des dimensions des particules, dans certaines limites, permet de retarder la prise en masse de la composition. Par voie de conséquence, les compositions dans lesquelles la dimension des particules de silice est accrue, peuvent présenter une teneur en eau réduite par rapport aux compositions de l'art antérieur, tout en conservant la fluidité requise pendant un temps suffisant pour l'utilisation dans les conditions habituelles. Si les compositions antérieures utilisables ne permettaient pas de descendre en dessous d'une teneur en eau de 44%, et en pratique ne descendaient pas en dessous de 47-48%, l'utilisation de silice présentant des particules de dimensions telles qu'indiqué ci-après, permet d'atteindre des teneurs en eau bien inférieures, pouvant aller jusqu'à 30% en poids, tout en conservant les propriétés rhéologiques nécessaires.
Il va de soi que l'accroissement des dimensions des particules est limité. Au-delà d'une certaine dimension les compositions ne présentent plus les propriétés optiques requises, et en particulier la transparence. Des dimensions trop importantes conduisent à une diffusion de la lumière, ou, selon les termes usuels, à la formation d'un voile ("haze").
En pratique les particules de silice utilisées pour la formation des compositions de silicates alcalins ont un diamètre moyen qui n'est pas inférieur à 40nm et de préférence pas inférieur à 50nm. Ces particules ont aussi des dimensions moyennes qui ne dépassent pas avantageusement 150nm et de préférence pas 130nm. Le diamètre moyen particulièrement préféré se situe entre 60 et 120nm.
Les dimensions des particules d'une même suspension de silice sont ordinairement bien homogènes. Une part qui n'est pas inférieure à 80% en poids des particules se situe dans l'intervalle de ±10% du diamètre moyen. Les dimensions des particules de silice dans les suspensions utilisées, apparaissent bien définies à l'observation en optique électronique. La mesure de ces dimensions, en dehors de l'observation optique, peut encore être faite par examen électro-acoustique (en utilisant par exemple un appareil de type "Acoustosizer"), par spectroscopie de corrélation de photons (en utilisant par exemple un appareil de type "Coulter Delsa 440SX"), ou encore par centrifugation. Selon le mode de préparation adopté, et selon la teneur en eau recherchée dans la composition finale, une fois le mélange des constituants réalisé, il peut être nécessaire de procéder à un ajustement de la teneur en eau. Pour cela, une déshydratation peut être mise en oeuvre. Dans tous les cas, il est bien entendu préférable de faire en sorte que le mélange des différents constituants aboutisse à une composition dont la teneur en eau soit celle de la composition de la couche intumescente finale, ou au moins soit aussi voisine que possible de celle-ci. Avantageusement, et pour limiter l'opération de déshydratation éventuelle, la teneur en eau dans la composition telle que préparée, n'est pas supérieure à 50% en poids. Lorsque la déshydratation est nécessaire, elle est faite avantageusement en soumettant le produit à une évaporation sous pression partielle. La déshydratation dans ce cas présente l'avantage de conduire simultanément au dégazage du produit. On prévient ainsi le risque d'entraînement de bulles dans la couche préparée à partir de cette composition.
La déshydratation peut être faite à température ambiante. Une température légèrement plus haute peut accélérer l'élimination de l'eau. Toutefois ce réchauffement de la composition doit rester très limité pour éviter tout risque de prise en masse anticipée. En pratique la température ne dépasse pas 600C.
Après ajustement de la teneur en eau, la composition peut être conservée pendant plusieurs heures ou même plusieurs jours à température ambiante avant son utilisation. Lorsque les conditions de préparation, et en particulier lorsque le choix des particules de silice est effectué comme indiqué ci-dessus, la composition peut être conservée au moins 48h. Si le temps de conservation doit être prolongé bien au-delà, il est préférable pour éviter tout risque de prise en masse, de réfrigérer la composition par exemple aux environs de 4°C. A ces températures le "pot life" peut être très largement accru.
La couche intumescente est principalement composée de silicates alcalins et d'eau. Les silicates sont ceux ce potassium, sodium et lithium. Il est possible d'avoir un mélange de ces silicates, néanmoins un tel mélange n'est pas préféré pour la raison qu'il conduit à des couches dont la température de ramollissement est abaissée.
Les silicates de potassium sont préférés. Ils représentent avantageusement au moins 60% en poids de l'ensemble des silicates, et de préférence au moins 80%. De façon particulièrement préférée, la totalité des silicates utilisés, aux impuretés inévitables près, autrement dit, plus de 95% en poids, est constituée de silicate de potassium.
En dehors des silicates et de l'eau, divers additifs peuvent être introduits dans la composition, notamment des polyols, et en particulier de l'éthylène glycol ou de la glycérine.
Dans les produits intumescents séchés de l'art antérieur, l'introduction de ces polyols est destinée notamment à compenser le manque de plasticité des produits dont la teneur en eau est très faible (de 20 à 25%). La teneur en polyols peut alors s'élever jusqu'à 18-20% en poids dans la couche formée. Dans les couches intumescentes considérées ici, lorsque des polyols sont présents, leur teneur reste beaucoup plus faible. Elle n'est avantageusement pas supérieure à 10% en poids de la composition, et de préférence pas supérieure à 8%.
Des teneurs préférées en glycols, notamment en éthylène-glycol ou glycérine, sont comprises entre 2 et 6% en poids de la couche finale.
Traditionnellement les compositions intumescentes comportent encore d'autres additifs en faibles proportions. Il s'agit de produits azotés (urée, aminés...) ou encore d'agents tensio-actifs.
Avantageusement les compositions contiennent de l'hydroxyde de tetra-methyl ammonium (TMAH) à une teneur qui n'est pas supérieure à 2% en poids. La soluti o n prép arée est suffisamment stab le aux conditions de température ambiante ordinaires. Elle peut être stockée pendant plusieurs heures, voire plusieurs j ours, au besoin en la refroidissant, sans risque de formation d'un gel. Il est possible de mettre à profit cette stabilité pour éliminer les bulles qui peuvent être apparues dans le brassage du mélange. L'élimination peut intervenir en laissant simplement la solution au repos ou par toute technique connue telle que l'utilisation d'ultrasons ou le dégazage sous pression partielle par exemple. L'utilisation de compositions intumescentes qui ne nécessitent aucun séchage, permet la constitution de couches intumescentes dont l'épaisseur n'est pas limitée. Précédemment cette épaisseur tenait compte de la longueur du temps de séchage. En pratique ce temps croissant comme le carré de l'épaisseur, pour rester dans des limites acceptables industriellement l'épaisseur des couches séchées ne dépassait pas ordinairement 2mm.
De façon pratique, pour certains vitrages il peut être utile de former des couches d'une épaisseur allant jusqu'à 8mm, voire même 10mm ou plus. La structure des vitrages selon l'invention est décrite de façon détaillée dans la suite en comparaison avec des vitrages de l'art antérieur de la même classe EI.
Les planches de dessins annexées présentent :
- la figure 1, un vitrage de l'art antérieur formé à partir d'une composition de silicate qui n'est pas séchée et dont les feuilles de verre sont trempées ;
- la figure 2, un autre vitrage de l'art antérieur à feuilles de verre stratifiées ;
- la figure 3, un vitrage de l'art antérieur constitué à partir de couches de silicate séchées ;
- la figure 4, un vitrage selon l'invention. Les vitrages faisant l'objet des figures sont représentatifs de ceux de la classe EI 60.
Le vitrage de l'art antérieur de la figure 1 est constitué de trois feuilles de verre 1, 2 et 3. Ces feuilles ont des épaisseurs approximativement de 5mm chacune. Entre ces feuilles de verre deux couches intumescentes de silicate alcalin hydraté sont introduites sous forme d'une solution coulée qui gélifie éventuellement par addition d'un agent spécifique. Les solutions en question comportent une teneur en eau de l' ordre de 47% en poids.
L'épaisseur de composition intumescente est également de l'ordre de 5mm pour chacune des couches 4 et 5.
L'épaisseur totale du vitrage antérieur est de l'ordre de 25mm.
Les compositions à teneur aussi élevée en eau ont tendance à fluer avant de s'expanser sous l'effet de la chaleur. Pour que le vitrage puisse jouer son rôle, la feuille exposée au feu doit résister le temps nécessaire pour parvenir à l'expansion de la couche intumescente. Pour cette raison notamment, les feuilles de verre sont constituées de verre trempé. L'inconvénient est, comme indiqué précédemment, de devoir produire les vitrages directement aux dimensions finales d'utilisation.
Le vitrage de la figure 2 est aussi un vitrage commercialisé antérieurement. Ce vitrage comprend également trois feuilles de verre et deux couches intumescentes, ces dernières de composition analogue à celle du vitrage de la figure 1.
A la différence de la figure 1 les feuilles de verre, au moins sur les deux faces externes, sont stratifiées. Ces feuilles comprennent chacune deux feuilles de verre 6 et 8, ou 9 et 11, réunies au moyen d'une feuille de polyvinylbutyral 7 et 10. Les épaisseurs des feuilles de verre 6, 8, 9 et 11 sont de l'ordre de 2,1mm. Les feuilles de PVB sont traditionnellement de 0,38 ou
0,76mm. La feuille centrale est monolithique, et de 5mm d'épaisseur.
L'épaisseur d'ensemble comme précédemment est d'environ 25mm. Dans cette configuration les feuilles de verre sont recuites et se prêtent donc au découpage dans les conditions habituelles pour les verres feuilletés. La présence des intercalaires PVB permet au moins le maintien de l'ensemble dans les premiers instants de l'épreuve au feu, jusqu'à l'expansion d'au moins une couche intumescente. Par ailleurs la présence du PVB confère à ces vitrages, en dehors des épreuves au feu, des propriétés intéressantes de résistance au choc mou. Le vitrage antérieur représenté à la figure 3, est un vitrage constitué avec des couches de silicate alcalin séchées 20, 21, 22 et 23. Les couches en question ont un teneur en eau de 23% en poids avec un rapport molaire de SiO2/M2O de 3,3. Chaque couche intumescente est d'environ 1,5mm d'épaisseur. La composition du vitrage est de 5 feuilles de verre 15, 16, 17,
18, 19 entre lesquelles se situent les couches intumescentes. Les feuilles sont toutes en verre recuit. La feuille 18 centrale a une épaisseur de 8mm. Les autres feuilles ont une épaisseur de 3mm.
L'épaisseur totale du vitrage, toujours de classe EI 60, est de 25mm.
Le vitrage de la figure 3 se distingue des précédents, d'une part par le nombre élevé de feuilles de verre et de couches intumescentes, mais surtout par le fait que ces couches sont obtenues par séchage. L'assemblage à partir de feuilles identiques (une feuille de verre de 3mm et une couche intumescente de 1,5mm) facilite la constitution des ces vitrages. Néanmoins, même si les couches intumescentes sont d'épaisseur relativement faible la durée de séchage reste une contrainte importante de cette technique.
La figure 4 présente un vitrage selon l'invention. Il est constitué à partir de deux feuilles de verre recuit, 12 et 14, de 6mm d'épaisseur chacune.
Pour la production du vitrage, un cordon d'étanchéité est disposé à la périphérie. Ce cordon maintient les feuilles espacées de 6mm.
Dans l'espace entre les deux feuilles on coule une solution préalablement préparée d'un silicate alcalin (potassium). La solution est préparée avec les constituants suivants :
- suspension de silice colloïdale à 50% en poids de silice commercialisée sous le nom "Klébosol 50R50", 1218g ; - solution d'hydroxyde de potassium à 50% d'eau, 472g ;
- éthylène glycol à 99,5%, 58g ;
- TMAH en solution aqueuse à 25%, 60g.
Le mélange est effectué progressivement, à température maintenue à 25°C. Il est suivi d'une déshydratation pendant lh30 sous pression réduite (entre 5 et 10 hPa) et à 300C. Un dégazage final est effectué à 25°C sous pression de 4OhPa pendant 3 heures.
La solution formée, qui est fluide et dépourvue de bulles, présente une teneur en eau de 38% en poids et un rapport molaire de 4,6. Elle est coulée entre les deux feuilles de verre.
La finition du vitrage comporte un passage en autoclave sous pression de l'ordre de 13.103 hPa, à une température qui ne dépasse pas 700C.
Les tests de résistance au feu sont effectués selon les conditions de la norme EN 1364-1. L'isolation thermique est maintenue au-delà de 60 minutes et l'étanchéité du vitrage se poursuit au moins jusqu'à 120 minutes.
Les échantillons testés pour leur résistance au vieillissement à température ambiante, ou en vieillissement accéléré à 600C ou sous UV montrent une bonne stabilité. L'apparition de "haze" ou de bulles reste dans les limites requises pour les utilisations commerciales.
Les vitrages selon l'invention montrent le grand avantage par rapport aux vitrages antérieurs d'une grande souplesse de production, mais surtout de présenter, à performances égales, des structures allégées et moins épaisses.
Les résultats obtenus pour les vitrages EI 60, en termes de réduction de poids et d'épaisseur, se trouvent également pour les produits des autres classes. Des vitrages de classe EI 90 selon l'invention peuvent être constitués par exemple de 3 feuilles de verre de 5mm d'épaisseur chacune séparées par deux couches intumescentes également de 5mm d'épaisseur. Un vitrageEI120...

Claims

REVENDICATIONS
1. Vitrage anti-feu essentiellement transparent comprenant des feuilles de verre et une ou plusieurs couches de composition intumescente de silicate alcalin hydraté entre ces feuilles de verre, les épaisseurs de ces différents constituants et la composition de la ou des couches intumescentes obtenues sans séchage étant tels que l'épaisseur e du vitrage, exprimée en millimètres, feuilles de verre et couche(s) intumescente (s), et la classe de résistance au feu EI, exprimée en minutes, répondent à la relation 3 ≤ El/e.
2. Vitrage selon la revendication 1 dans lequel les épaisseurs de ces différents constituants et la composition de la ou des couches intumescentes étant tels que l'épaisseur e du vitrage, exprimée en millimètres, feuilles de verre et couche(s) intumescente (s), et la classe de résistance au feu EI, exprimée en minutes, répondent à la relation 3,2 ≤ El/e.
3. Vitrage selon l'une des revendications précédentes dans lequel la (les) couche (s) intumescente (s) présentent une teneur en eau comprise entre 33 et 43% en poids, et un rapport molaire compris entre 3,5 et 5.
4. vitrage selon l'une des revendications précédentes dans lequel la (les) couche (s) intumescente (s) sont produites sans séchage à partir d'une composition préparée en incorporant des suspensions de silice colloïdales dans lesquelles les particules ont un diamètre moyen qui n'est pas inférieur à 50nm.
5. Vitrage selon la revendication 4 dans lequel les particules de silice colloïdale ont un diamètre moyen compris entre 60 et 120nm.
6. Vitrage selon l'une des revendications précédentes de classe anti-feu EI 60 comprenant une couche intumescente et deux feuilles de verre.
7. Vitrage selon l'une des revendications précédentes de classe anti-feu EI 90 comprenant trois feuilles de verre et deux couches intumescentes.
EP09735205A 2008-04-25 2009-04-23 Vitrage anti-feu Withdrawn EP2282889A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09735205A EP2282889A1 (fr) 2008-04-25 2009-04-23 Vitrage anti-feu

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08103722A EP2111977A1 (fr) 2008-04-25 2008-04-25 Vitrage anti-feu
EP09735205A EP2282889A1 (fr) 2008-04-25 2009-04-23 Vitrage anti-feu
PCT/EP2009/054891 WO2009130278A1 (fr) 2008-04-25 2009-04-23 Vitrage anti-feu

Publications (1)

Publication Number Publication Date
EP2282889A1 true EP2282889A1 (fr) 2011-02-16

Family

ID=39722593

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08103722A Withdrawn EP2111977A1 (fr) 2008-04-25 2008-04-25 Vitrage anti-feu
EP09735205A Withdrawn EP2282889A1 (fr) 2008-04-25 2009-04-23 Vitrage anti-feu

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08103722A Withdrawn EP2111977A1 (fr) 2008-04-25 2008-04-25 Vitrage anti-feu

Country Status (3)

Country Link
EP (2) EP2111977A1 (fr)
RU (1) RU2503543C2 (fr)
WO (1) WO2009130278A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019158866A1 (fr) 2018-02-16 2019-08-22 Saint-Gobain Glass France Procede de depot d'un revetement intumescent organique sur feuille de verre
WO2019158865A1 (fr) 2018-02-16 2019-08-22 Saint-Gobain Glass France Vitrage anti-feu
FR3119844A1 (fr) 2021-02-16 2022-08-19 Saint-Gobain Glass France Vitrage anti-feu comprenant une feuille de verre revêtue d’un revêtement intumescent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2213635A1 (fr) * 2009-01-29 2010-08-04 AGC Glass Europe Couches de silicates alcalins pour vitrages anti-feu
BE1019263A3 (fr) * 2010-03-29 2012-05-08 Agc Glass Europe Vitrage resistant au feu.
DE102010037966A1 (de) 2010-10-05 2012-04-05 Schott Ag Verbundscheibe

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9116057D0 (en) * 1991-07-24 1991-09-11 Glaverbel Light-transmitting fire-resistant panels
GB9208502D0 (en) * 1992-04-16 1992-06-03 Glaverbel Fire-retarding window assembly
DE19916506C1 (de) * 1999-04-13 2000-07-13 Flachglas Ag Brandschutzglas
GB0218672D0 (en) * 2002-08-10 2002-09-18 Pilkington Plc Fire resistant glazings
EP1577276A1 (fr) * 2004-03-05 2005-09-21 Glaverbel Panneau de vitrage
BE1016059A3 (fr) * 2004-05-27 2006-02-07 Glaverbel Vitrage anti-feu.
DE102004031785A1 (de) * 2004-07-01 2006-01-26 Degussa Ag Polyol enthaltende Siliciumdioxid-Dispersion
BE1016472A3 (fr) * 2005-03-02 2006-11-07 Glaverbel Vitrage anti-feu.
RU2288898C1 (ru) * 2005-03-24 2006-12-10 Закрытое акционерное общество "Соларекс" Огнестойкий многослойный стеклопакет и способ его изготовления
EA013608B1 (ru) * 2005-11-25 2010-06-30 Агк Флэт Гласс Юроп Са Огнестойкое остекление
EA014547B1 (ru) * 2006-03-20 2010-12-30 Агк Гласс Юроп Огнестойкое остекление

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009130278A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019158866A1 (fr) 2018-02-16 2019-08-22 Saint-Gobain Glass France Procede de depot d'un revetement intumescent organique sur feuille de verre
WO2019158865A1 (fr) 2018-02-16 2019-08-22 Saint-Gobain Glass France Vitrage anti-feu
FR3119844A1 (fr) 2021-02-16 2022-08-19 Saint-Gobain Glass France Vitrage anti-feu comprenant une feuille de verre revêtue d’un revêtement intumescent
WO2022175623A1 (fr) 2021-02-16 2022-08-25 Saint-Gobain Glass France Vitrage anti-feu

Also Published As

Publication number Publication date
WO2009130278A1 (fr) 2009-10-29
RU2503543C2 (ru) 2014-01-10
EP2111977A1 (fr) 2009-10-28
RU2010147858A (ru) 2012-05-27

Similar Documents

Publication Publication Date Title
EP2150404B1 (fr) Vitrage anti-feu
EP1993828B1 (fr) Vitrage anti-feu
EP2282889A1 (fr) Vitrage anti-feu
EP1960317B1 (fr) Vitrage anti-feu
EP1855878B1 (fr) Vitrage anti-feu
WO1994014716A1 (fr) Compositions de verre destinees a la fabrication de vitrages
EP1761381A1 (fr) Vitrage anti-feu
EP1161343B1 (fr) Vitrage de protection au feu
EP2480410B1 (fr) Couche de silicate alcalin "anti-feu"
EP2072247A1 (fr) Vitrage anti-feu
EP2010382B1 (fr) Vitrage anti-feu
BE1019472A3 (fr) Vitrage ant-feu.
EP2367683B1 (fr) Vitrage anti-feu
FR2679549A1 (fr) Vitrages transparents resistant au feu.
EP1230081B1 (fr) Vitrage coupe-feu transparent
BE1019263A3 (fr) Vitrage resistant au feu.
EP2694287B1 (fr) Vitrage resistant au feu
EP2130673A1 (fr) Vitrage anti-feu
EP3436414B1 (fr) Vitrage anti-feu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111222

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGC GLASS EUROPE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180724