EP2282002B1 - Procédé et dispositif de stimulation de plusieurs intervalles de formation - Google Patents

Procédé et dispositif de stimulation de plusieurs intervalles de formation Download PDF

Info

Publication number
EP2282002B1
EP2282002B1 EP10185217A EP10185217A EP2282002B1 EP 2282002 B1 EP2282002 B1 EP 2282002B1 EP 10185217 A EP10185217 A EP 10185217A EP 10185217 A EP10185217 A EP 10185217A EP 2282002 B1 EP2282002 B1 EP 2282002B1
Authority
EP
European Patent Office
Prior art keywords
wellbore
bha
coiled tubing
tubing
settable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP10185217A
Other languages
German (de)
English (en)
Other versions
EP2282002A2 (fr
EP2282002A3 (fr
Inventor
Randy Tolman
Lawrence Carlson
David Kinison
Kris Nygaard
Glenn Goss
William Sorem
Lee Shafer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
ExxonMobil Upstream Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Upstream Research Co filed Critical ExxonMobil Upstream Research Co
Publication of EP2282002A2 publication Critical patent/EP2282002A2/fr
Publication of EP2282002A3 publication Critical patent/EP2282002A3/fr
Application granted granted Critical
Publication of EP2282002B1 publication Critical patent/EP2282002B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/001Self-propelling systems or apparatus, e.g. for moving tools within the horizontal portion of a borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for displacing a cable or cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production

Definitions

  • This invention relates generally to the field of perforating and treating subterranean formations to increase the production of oil and gas therefrom. More specifically, the invention provides an apparatus and a method for perforating and treating multiple intervals without the necessity of removing equipment from the wellbore between steps or stages.
  • a wellbore penetrating a subterranean formation typically consists of a metal pipe (casing) cemented into the original drill hole. Holes (perforations) are placed to penetrate through the casing and the cement sheath surrounding the casing to allow hydrocarbon flow into the wellbore and, if necessary, to allow treatment fluids to flow from the wellbore into the formation.
  • Hydraulic fracturing consists of injecting fluids (usually viscous shear thinning, non-Newtonian gels or emulsions) into a formation at such high pressures and rates that the reservoir rock fails and forms a plane, typically vertical, fracture (or fracture network) much like the fracture that extends through a wooden log as a wedge is driven into it.
  • Granular proppant material such as sand, ceramic beads, or other materials, is generally injected with the later portion of the fracturing fluid to hold the fracture(s) open after the pressure is released.
  • Increased flow capacity from the reservoir results from the easier flow path left between grains of the proppant material within the fracture(s).
  • flow capacity is improved by dissolving materials in the formation or otherwise changing formation properties.
  • hydraulic fracturing as described above is a routine part of petroleum industry operations as applied to individual target zones of up to about 60 meters (200 feet) of gross, vertical thickness of subterranean formation.
  • individual target zones of up to about 60 meters (200 feet) of gross, vertical thickness of subterranean formation.
  • alternate treatment techniques are required to obtain treatment of the entire target zone.
  • the methods for improving treatment coverage are commonly known as "diversion" methods in petroleum industry terminology.
  • the deepest interval is first perforated and fracture stimulated, then the interval is typically isolated by a wireline-set bridge plug, and the process is repeated in the next interval up.
  • treating 300 meters (1,000 feet) of formation in this manner would typically require ten jobs over a time interval of ten days to two weeks with not only multiple fracture treatments, but also multiple perforating and bridge plug running operations.
  • a wellbore clean-out operation would be required to remove the bridge plugs and put the well on production.
  • the major advantage of using bridge plugs or other mechanical diversion agents is high confidence that the entire target zone is treated.
  • the major disadvantages are the high cost of treatment resulting from multiple trips into and out of the wellbore and the risk of complications resulting from so many operations in the well. For example, a bridge plug can become stuck in the casing and need to be drilled out at great expense.
  • a further disadvantage is that the required wellbore clean-out operation may damage some of the successfully fractured intervals.
  • bridge plugs filling the portion of wellbore associated with the just fractured interval with fracturing sand, commonly referred to as the Pine Island technique.
  • the sand column in the wellbore essentially plugs off the already fractured interval and allows the next interval to be perforated and fractured independently.
  • the primary advantage is elimination of the problems and risks associated with bridge plugs.
  • the disadvantages are that the sand plug does not give a perfect hydraulic seal and it can be difficult to remove from the wellbore at the end of all the fracture stimulations. Unless the well's fluid production is strong enough to carry the sand from the wellbore, the well may still need to be cleaned out with a work-over rig or coiled tubing unit. As before, additional wellbore operations increase costs, mechanical risks, and risks of damage to the fractured intervals.
  • Another method of diversion involves the use of particulate materials, granular solids that are placed in the treating fluid to aid diversion.
  • a temporary block forms in the zone accepting the fluid if a sufficiently high concentration of particulates is deployed in the flow stream.
  • the flow restriction then diverts fluid to the other zones.
  • the particulate is removed by produced formation fluids or by injected wash fluid, either by fluid transport or by dissolution.
  • Commonly available particulate diverter materials include benzoic acid, napthalene, rock salt (sodium chloride), resin materials, waxes, and polymers.
  • sand, proppant, and ceramic materials could be used as particulate diverters.
  • Other specialty particulates can be designed to precipitate and form during the treatment.
  • Another method for diverting involves using viscosified fluids, viscous gels, or foams as diverting agents. This method involves pumping the diverting fluid across and/or into the perforated interval.
  • These fluid systems are formulated to temporarily obstruct flow to the perforations due to viscosity or formation relative permeability decreases; and are also designed so that at the desired time, the fluid system breaks down, degrades, or dissolves (with or without adding chemicals or other additives to trigger such breakdown or dissolution) such that flow can be restored to or from the perforations.
  • These fluid systems can be used for diversion of matrix chemical stimulation treatments and fracture treatments. Particulate diverters and/or ball sealers are sometimes incorporated into these fluid systems in efforts to enhance diversion.
  • Another possible process is limited entry diversion in which the entire target zone of the formation to be treated is perforated with a very small number of perforations, generally of small diameter, so that the pressure loss across those perforations during pumping promotes a high, internal wellbore pressure.
  • the internal wellbore pressure is designed to be high enough to cause all of the perforated intervals to fracture simultaneously. If the pressure were too low, only the weakest portions of the formation would fracture.
  • the primary advantage of limited entry diversion is that there are no inside-the-casing obstructions like bridge plugs or sand to cause problems later.
  • the disadvantage is that limited entry fracturing often does not work well for thick intervals because the resulting fracture is frequently too narrow (the proppant cannot all be pumped away into the narrow fracture and remains in the wellbore), and the initial, high wellbore pressure may not last. As the sand material is pumped, the perforation diameters are often quickly eroded to larger sizes that reduce the internal wellbore pressure. The net result can be that not all of the target zone is stimulated. An additional concern is the potential for flow capacity into the wellbore to be limited by the small number of perforations.
  • Some of the problems resulting from failure to stimulate the entire target zone or using mechanical methods that require multiple wellbore operations and wellbore entries that pose greater risk and cost as described above may be alleviated by using limited, concentrated perforated intervals diverted by ball sealers.
  • the zone to be treated could be divided into sub-zones with perforations at approximately the center of each of those sub-zones, or sub-zones could be selected based on analysis of the formation to target desired fracture locations.
  • the fracture stages would then be pumped with diversion by ball sealers at the end of each stage. Specifically, 300 meters (1,000 feet) of gross formation might be divided into ten sub-zones of about 30 meters (about 100 feet) each.
  • the primary advantages of ball sealer diversion are low cost and low risk of mechanical problems. Costs are low because the process can typically be completed in one continuous operation, usually during just a few hours of a single day. Only the ball sealers are left in the wellbore to either flow out with produced hydrocarbons or drop to the bottom of the well in an area known as the rat (or junk) hole.
  • the primary disadvantage is the inability to be certain that only one set of perforations will fracture at a time so that the correct number of ball sealers are dropped at the end of each treatment stage. In fact, optimal benefit of the process depends on one fracture stage entering the formation through only one perforation set and all other open perforations remaining substantially unaffected during that stage of treatment.
  • an alternative mechanical diversion method involves the use of a coiled tubing stimulation system to sequentially stimulate multiple intervals with separate treatment.
  • all intervals to be treated are perforated prior to pumping the stimulation treatment.
  • coiled tubing is run into the wellbore with a mechanical "straddle-packer-like" diversion tool attached to the end. This diversion tool, when properly placed and actuated across the perforations, allows hydraulic isolation to be achieved above and below the diversion tool.
  • stimulation fluid is pumped down the interior of the coiled tubing and exits flow ports placed in the diversion tool between the upper and lower sealing elements.
  • the sealing elements contained on the diversion tool are deactivated or disengaged, and the coiled tubing is pulled upward to place the diversion tool across the second deepest set of perforations and the process is continued until all of the targeted intervals have been stimulated or the process is aborted due to operational upsets.
  • This type of coiled tubing stimulation apparatus and method have been used to hydraulically fracture multiple zones in wells with depths up to about 8,000 feet.
  • various technical obstacles including friction pressure losses, damage to sealing elements, depth control, running speed, and potential erosion of coiled tubing, currently limit deployment in deeper wells.
  • Erosion of the coiled tubing could also be a problem as proppant-laden fluid is pumped down the interior of the coiled tubing at high velocity, including the portion of the coiled tubing that remains wound on the surface reel.
  • the erosion concerns are exacerbated as the proppant-laden fluid impinges on the "continuous bend" associated with the portion of the coiled tubing placed on the surface reel.
  • seal elements e.g., "cup” seal technology
  • seals currently used in the coiled tubing stimulation operations described above could experience sealing problems or seal failure in deeper wells as the seals are run past a large number of perforations at the higher well temperatures associated with deeper wells. Since the seals run in contact with or at a minimal clearance from the pipe wall, rough interior pipe surfaces and/or perforation burrs can damage the sealing elements. Seals currently available in straddle-packer-like diversion tools are also constructed from elastomers which may be unable to withstand the higher temperatures often associated with deeper wells.
  • Running speed of the existing systems with cup seals is generally on the order of 4,57 to 9,14 m/min (15 to 30 feet-per-minute) running downhole to 9,14 to 18,3 m/min (30 to 60 feet-per-minute) coming uphole. For example, at the lower running speed, approximately 13 hours would be required to reach a depth of 3660 m (12,000 feet) before beginning the stimulation. Given safety issues surrounding nighttime operations, this slow running speed could result in multiple days being required to complete a stimulation job. If any problems are encountered during the job, tripping in and out of the hole could be very costly because of the total operation times associated with the slow running speeds.
  • Depth control of the coiled tubing system and straddle-packer-like diversion tool also becomes more difficult as depth increases, such that placing the tool at the correct depth to successfully execute the stimulation operation may be difficult.
  • This problem is compounded by shooting the perforations before running the coiled tubing system in the hole.
  • the perforating operation uses a different depth measurement device (usually a casing collar locator system) than is generally used in the coiled tubing system.
  • the coiled tubing method described above requires that all of the perforations be placed in the wellbore in a separate perforating operation prior to pumping the stimulation job.
  • the presence of multiple perforation sets open above the diversion tool can cause operational difficulties. For example, if the proppant fracture from the current zone were to grow vertically and/or poor quality cement is present behind pipe, the fracture could intersect the perforation sets above the diversion tool such that proppant could "dump" back into the wellbore on top of the diversion tool and prevent further tool movement.
  • a similar type of stimulation operation may also be performed using jointed tubing and a workover rig rather than a coiled tubing system.
  • Using a diversion tool deployed on jointed tubing may allow for larger diameter tubing to reduce friction pressure losses and allow for increased pump rates.
  • concerns over erosion and tubing integrity may be reduced when compared to coiled tubing since heavier wall thickness jointed tubing pipe may be used and jointed tubing would not be exposed to plastic deformation when run in the wellbore.
  • using this approach would likely increase the time and cost associated with the operations because of slower pipe running speeds than those possible with coiled tubing.
  • This invention provides an apparatus and method for perforating and treating multiple intervals of one or more subterranean formations intersected by a wellbore.
  • the apparatus consists of a deployment means (e.g., coiled tubing, jointed tubing, electric line, wireline, downhole tractor, etc.) with a bottomhole assembly ("BHA") comprised of at least a perforating device and a re-settable mechanical sealing mechanism that may be independently actuated via one or more signaling means (e.g., electronic signals transmitted via wireline; hydraulic signals transmitted via tubing, annulus, umbilicals; tension or compression loads; radio transmission; fiber-optic transmission; on-board BHA computer systems, etc.).
  • a deployment means e.g., coiled tubing, jointed tubing, electric line, wireline, downhole tractor, etc.
  • BHA bottomhole assembly
  • signaling means e.g., electronic signals transmitted via wireline; hydraulic signals transmitted via tubing, annulus, umbilicals; tension or compression loads; radio transmission; fiber-optic transmission; on-board BHA computer systems, etc.
  • the method includes the steps of deploying the BHA within the wellbore using a deployment means where the deployment means may be a tubing-string, cable, or downhole tractor.
  • the perforating device is positioned adjacent to the interval to be perforated and is used to perforate the interval.
  • the BHA is positioned within the wellbore using the deployment means, and the sealing mechanism is actuated so as to establish a hydraulic seal that positively directs fluid pumped down the wellbore to enter the perforated interval.
  • the sealing mechanism is released.
  • the process can then be repeated, without removing the BHA from the wellbore, for at least one additional interval of the one or more subterranean formations.
  • the deployment means can be a tubing string, including a coiled tubing or standard jointed tubing, a wireline, a slickline, or a cable.
  • the deployment means could also be a tractor system attached to the BHA.
  • the tractor system may be a self-propelled, computer-controlled, and carry on-board signaling systems such that it is not necessary to attach cable or tubing to control and actuate the BHA and/or tractor system.
  • the tractor system could be controlled and energized by cable or tubing umbilicals such the tractor system and BHA are controlled and actuated via signals transmitted downhole using the umbilicals.
  • Many different embodiments to the invention can exist depending on the suspension means and specific components of the BHA.
  • the BHA when the deployment means is a tubing string, once an interval has been perforated the BHA can be moved and the sealing mechanism actuated to establish a hydraulic seal below the perforated interval. Then treating fluid can be pumped down the annulus between the tubing string and the wellbore and into the perforated interval. And a second treating fluid, such as nitrogen, could also be pumped down the tubing string at the same time that the first treating fluid is pumped down the annulus between the tubing string and the wellbore.
  • a second treating fluid such as nitrogen, could also be pumped down the tubing string at the same time that the first treating fluid is pumped down the annulus between the tubing string and the wellbore.
  • the BHA when the suspension means is a tubing string, once an interval has been perforated the BHA can be moved and the sealing mechanism actuated to establish a hydraulic seal above the perforated interval. Then treating fluid can be pumped down the tubing string and into the perforated interval.
  • the BHA when the deployment means is a tubing string, the BHA can be moved and the sealing mechanism actuated to establish a hydraulic seal above and below the perforated interval (where the sealing mechanism consists of two seal elements spaced sufficient distance apart to straddle the perforated interval).
  • treating fluid can be pumped down the tubing string itself, through a flow port placed in-between the two seal elements of the sealing mechanism and into the perforated interval.
  • the BHA when the BHA is deployed in the wellbore using a wireline, slickline or cable, the BHA would be moved and the sealing mechanism actuated to establish a hydraulic seal below the perforated interval to be treated, and the treating fluid would be pumped down the annulus between the wireline, slickline, or cable, and the wellbore.
  • an "umbilical" is deployed as an additional means to actuate a BHA component.
  • the umbilical could take the form of a small diameter tubing or multiple tubing to provide hydraulic communication with BHA components; and/or the umbilical could take the form of a cable or multiple cables to provide electrical or electro-optical communication with BHA components.
  • the BHA when the deployment means is a tractor system attached to the BHA, the BHA can be moved and the sealing mechanism actuated to establish a hydraulic seal below the perforated interval.
  • the treating fluid can be pumped down the wellbore and into the perforated interval.
  • abrasive fluid-jet cutting technology is used for perforating and the BHA is suspended by tubing such that the BHA can be moved and the sealing mechanism actuated to establish a hydraulic seal below the perforated interval.
  • the treating fluid would then be pumped down the annulus between the tubing and wellbore.
  • the BHA including the sealing mechanism and the perforating device
  • the BHA does not need to be removed from the wellbore prior to treatment with the treating fluid and between treatment of multiple formation zones or intervals.
  • Another primary advantage of this apparatus and method is that each treatment stage is diverted using a mechanical diversion agent such that precise control of the treatment diversion process is achieved and each zone can be optimally stimulated.
  • inventive method and apparatus provide significant economic advantages over existing methods and equipment since the inventive method and apparatus allow for perforating and stimulating multiple zones with a single wellbore entry, and subsequent withdrawal, of a bottomhole assembly that provides dual functionality as both a mechanical diversion agent and perforating device.
  • the present invention provides a new method, new system, and a new apparatus for perforating and stimulating multiple formation intervals, which allows each single zone to be treated with an individual treatment stage while eliminating or minimizing the problems that are associated with existing coiled tubing or jointed tubing stimulation methods and hence providing significant economic and technical benefit over existing methods.
  • the invention involves suspending a bottomhole assembly in the wellbore to individually and sequentially perforate and treat each of the desired multiple zones while pumping the multiple stages of the stimulation treatment and to deploy a mechanical re-settable sealing mechanism to provide controlled diversion of each individual treatment stage.
  • wellbore will be understood to include below ground sealed components of the well and also all sealed equipment above ground level, such as the wellhead, spool pieces, blowout preventers, and lubricator.
  • the new apparatus consists of a deployment means (e.g., coiled tubing, jointed tubing, electric line, wireline, tractor system, etc.) with a bottomhole assembly comprised of at least a perforating device and a re-settable mechanical sealing mechanism that may be independently actuated from the surface via one or more signaling means (e.g., electronic signals transmitted via wireline; hydraulic signals transmitted via tubing, annulus, umbilicals; tension or compression loads; radio transmission; fiber-optic transmission; etc.) and designed for the anticipated wellbore environment and loading conditions.
  • a deployment means e.g., coiled tubing, jointed tubing, electric line, wireline, tractor system, etc.
  • a bottomhole assembly comprised of at least a perforating device and a re-settable mechanical sealing mechanism that may be independently actuated from the surface via one or more signaling means (e.g., electronic signals transmitted via wireline; hydraulic signals transmitted via tubing, annulus, umbilicals; tension or compression loads
  • bottomhole assembly is used to denote a string of components consisting of at least a perforating device and a re-settable sealing mechanism. Additional components including, but not limited to, fishing necks, shear subs, wash tools, circulation port subs, flow port subs, pressure equalization port subs, temperature gauges, pressure gauges, wireline connection subs, re-settable mechanical slips, casing collar locators, centralizer subs and/or connector subs may also be placed on the bottomhole assembly to facilitate other anticipated auxiliary or ancillary operations and measurements that may be desirable during the stimulation treatment.
  • the re-settable mechanical sealing mechanism performs the function of providing a "hydraulic seal", where hydraulic seal is defined as sufficient flow restriction or blockage such that fluid is forced to be directed to a different location than the location it would otherwise be directed to if the flow restriction were not present.
  • hydraulic seal is defined as sufficient flow restriction or blockage such that fluid is forced to be directed to a different location than the location it would otherwise be directed to if the flow restriction were not present.
  • this broad definition for "hydraulic seal” is meant to include a "perfect hydraulic seal” such that all flow is directed to a location different from the location the flow would be directed to if the flow restriction were not present; and an "imperfect hydraulic seal” such that an appreciable portion of flow is directed to a location different from the location the flow would be directed to if the flow restriction were not present.
  • a re-settable mechanical sealing that provides a perfect hydraulic seal to achieve optimal stimulation; a sealing mechanism that provides an imperfect hydraulic seal could be used and an economic treatment achieved even though the stimulation treatment may not be perfectly
  • coiled tubing is used as the deployment means and the new method involves sequentially perforating and then stimulating the individual zones from bottom to top of the completion interval, with the stimulation fluid pumped down the annular space between the production casing and the coiled tubing.
  • this embodiment of the new apparatus and method offer substantial improvements over existing coiled tubing and jointed tubing stimulation technology and are applicable over a wide range of wellbore architectures and stimulation treatment designs.
  • the first preferred embodiment of the new method and apparatus involves the deployment system, signaling means, bottomhole assembly, and operations as described in detail below, where the various components, their orientation, and operational steps are chosen, for descriptive purposes only, to correspond to components and operations that could be used to accommodate hydraulic proppant fracture stimulation of multiple intervals.
  • the apparatus would consist of the BHA deployed in the wellbore by coiled tubing.
  • the BHA would include a perforating device; re-settable mechanical sealing mechanism; casing-collar-locator; circulation ports; and other ancillary components (as described in more detail below).
  • the perforating device would consist of a select-fire perforating gun system (using shaped-charge perforating charges); and the re-settable mechanical sealing mechanism would consist of an inflatable, re-settable packer; a mechanical re-settable slip device to prevent downward axial movement of the bottomhole assembly when set; and pressure equalization ports located above and below the inflatable re-settable packer.
  • a wireline would be placed interior to the coiled tubing and used to provide a signaling means for actuation of select-fire perforation charges and for transmission of electric signals associated with the casing-collar-locator used for BHA depth measurement.
  • an example of the type of surface equipment that could be utilized in the first preferred embodiment would be a rig up that used a very long lubricator 2 with the coiled tubing injector head 4 suspended high in the air by crane arm 6 attached to crane base 8.
  • the wellbore would typically comprise a length of a surface casing 78 partially or wholly within a cement sheath 80 and a production casing 82 partially or wholly within a cement sheath 84 where the interior wall of the wellbore is composed of the production casing 82.
  • the depth of the wellbore would preferably extend some distance below the lowest interval to be stimulated to accommodate the length of the bottomhole assembly that would be attached to the end of the coiled tubing 106.
  • Coiled tubing 106 is inserted into the wellbore using the coiled tubing injection head 4 and lubricator 2. Also installed to the lubricator 2 are blow-out-preventors 10 that could be remotely actuated in the event of operational upsets.
  • the crane base 8, crane arm 6, coiled tubing injection head 4, lubricator 2, blow-out-preventors 10 (and their associated ancillary control and/or actuation components) are standard equipment components well known to those skilled in the art that will accommodate methods and procedures for safely installing a coiled tubing bottomhole assembly in a well under pressure, and subsequently removing the coiled-tubing bottomhole assembly from a well under pressure.
  • the height to the top of the coiled tubing injection head 4 could be approximately 90 feet from ground level with the "goose-neck" 12 (where the coil is bent over to go down vertically into the well) approaching approximately 105 feet above the ground.
  • the crane arm 6 and crane base 8 would support the load of the injector head 4, the coiled tubing 106, and any load requirements anticipated for potential fishing operations (jarring and pulling).
  • the lubricator 2 must be of length greater than the length of the bottomhole assembly to allow the bottomhole assembly to be safely deployed in a wellbore under pressure.
  • guy-wires 14 could be attached at various locations on the coiled tubing injection head 4 and lubricator 2.
  • the guy wires 14 would be firmly anchored to the ground to prevent undue motion of the coiled tubing injection head 4 and lubricator 2 such that the integrity of the surface components to hold pressure would not be compromised.
  • alternative injection head/lubricator system suspension systems coiled tubing rigs or fit-for-purpose completion/workover rigs) could also be used.
  • FIG. 1 Also shown in Figure 1 are several different wellhead spool pieces which may be used for flow control and hydraulic isolation during rig-up operations, stimulation operations, and rig-down operations.
  • the crown valve 16 provides a device for isolating the portion of the wellbore above the crown valve 16 from the portion of the wellbore below the crown valve 16.
  • the upper master fracture valve 18 and lower master fracture valve 20 also provide valve systems for isolation of wellbore pressures above and below their respective locations. Depending on site-specific practices and stimulation job design, it is possible that not all of these isolation-type valves may actually be required or used.
  • the side outlet injection valves 22 shown in Figure 1 provide a location for injection of stimulation fluids into the wellbore.
  • the piping from the surface pumps and tanks used for injection of the stimulation fluids would be attached with appropriate fittings and/or couplings to the side outlet injection valves 22.
  • the stimulation fluids would then be pumped into the wellbore via this flow path.
  • fluid may also be produced from the wellbore using the side outlet injection valves 22.
  • the interior of the coiled tubing 146 can also be used as a flow conduit for fluid injection into the wellbore.
  • the bottomhole assembly storage wellbores 24 shown in Figure 1 provide a location for storage of spare or contingency bottom-hole assemblies 27, or for storage of bottomhole assemblies that have been used during previous operations.
  • the bottomhole assembly storage wellbores 24 may be drilled to a shallow depth such that a bottomhole assembly that may contain perforating charges may be safely held in place with surface slips 26 such that the perforating charges are located below ground level until the bottomhole assembly is ready to be attached to the coiled tubing 106.
  • the bottomhole assembly storage wellbores 24 may be drilled to accommodate placement of either cemented or uncemented casing string, or may be left uncased altogether.
  • the actual number of bottomhole assembly storage wellbores 24 required for a particular operation would depend on the overall job requirements.
  • the bottomhole assembly storage wellbores 24 could be located within the reach of the crane arm 6 to accommodate rapid change-out of bottomhole assemblies during the course of the stimulation operation without the necessity of physically relocating the crane base 8 to another location.
  • coiled tubing 106 is equipped with a coiled tubing connection 110 which may be connected to a shear-release/fishing neck combination sub 112 that contains both a shear-release mechanism and a fishing neck and allows for the passage of pressurized fluids and wireline 102.
  • the shear-release/fishing neck combination sub 112 may be connected to a sub containing a circulation port sub 114 that may provide a flow path to wash debris from above the inflatable, re-settable packer 120 or provide a flow path to inject fluid downhole using the coiled tubing 106.
  • the circulation port sub 114 contains a valve assembly that actuates the circulation port 114 and the upper equalization port 116.
  • the upper equalization port 116 may be connected to a lower equalization port 122 via tubing through the inflatable, re-settable packer 120. Both the circulation port 114 and the upper equalization port 116 would preferably be open in the "running position", thereby allowing pressure communication between the internal coiled-tubing pressure and the coiled tubing by casing annulus pressure.
  • running position refers to the situation where all components in the bottomhole assembly possess a configuration that permits unhindered axial movement up and down the wellbore.
  • the lower equalization port 122 located below the inflatable, re-settable packer 120 is always open and flow through the equalization ports is controlled by the upper equalization port 116.
  • the circulation and equalization ports can be closed simultaneously by placing a slight compressive load on the BHA.
  • a surface pressure can be applied to the coiled tubing 106 such that the pressure inside the circulation port 114 exceeds the wellbore pressure directly outside the circulation port 114.
  • the re-settable, inflatable packer 120 is hydraulically isolated from the internal coiled tubing pressure in the running position. The inflatable, re-settable packer 120 can gain pressure communication via internal valving with the internal coiled tubing pressure by placing a slight compressive load on the BHA.
  • Mechanically actuated, re-settable axial position locking devices, or "slips,” 124 may be placed below the inflatable, re-settable packer 120 to resist movement down the wellbore.
  • the mechanical slips 124 may be actuated through a "continuous J" mechanism by cycling the axial load between compression and tension.
  • a wireline connection sub 126 is located above the casing collar locator 128 and select-fire perforating gun system.
  • a gun connection sub 130 connects the casing collar locator 128 to select-fire head 152.
  • the perforating gun system may be designed based on knowledge of the number, location, and thickness of the hydrocarbon-bearing sands within the target zones.
  • the gun system will be composed of one gun assembly (e.g., 134) for each zone to be treated.
  • the first (lowest) gun assembly will consist of a select-fire head 132 and a gun encasement 134 which will be loaded with perforating charges 136 and a select-fire detonating system.
  • a preferred embodiment of the new method involves the following steps, where the stimulation job is chosen, for descriptive purposes, to be a multi-stage, hydraulic, proppant-fracture stimulation.
  • the preferred suspension method when proppant-laden fluids are involved would be conventional jointed tubing or coiled tubing, preferably with one or more circulation ports so that proppant settling in the wellbore could easily be circulated out of the wellbore.
  • Treatments such as acid fracturing or matrix acidizing may not require such a capability and could readily be performed with a deployment system based on cable such as slickline or wireline, or based on a downhole tractor system.
  • various pumping systems could be used and could involve the following arrangements: (a) pumping down the annulus created between the cable or tubing (if the deployment method uses cable or tubing) and the casing wall; (b) pumping down the interior of the coiled tubing or jointed tubing if the suspension method involves the use of coiled tubing or jointed tubing and excess friction and proppant erosion were not of concern for the well depths considered; or (c) simultaneously pumping down the annulus created between the tubing (if the deployment method involves tubing) and the casing wall and the interior of the tubing if excess friction and proppant erosion were not of concern for the well depths considered.
  • Figure 5 illustrates a second embodiment where coiled tubing is used as the deployment means and excess friction is not of concern and either proppant is not pumped during the job or use of proppant is not of concern.
  • Figure 5 shows that coiled tubing 106 is used to suspend the BHA and BHA components.
  • the individual zones are treated in sequential order from shallower wellbore locations to deeper wellbore locations.
  • circulation port 114 is now placed below the inflatable, re-settable packer 120 such that treatment fluid may be pumped down the interior of coiled tubing 106, exit the circulation port 114, and be positively forced to enter the targeted perforations.
  • Figure 5 shows that the inflatable, re-settable packer 120 has been actuated and set below perforations 241 that are associated with a previous zone hydraulic fracture 242.
  • the inflatable, re-settable packer 120 provides hydraulic isolation such that when treatment fluid is subsequently pumped down the coiled tubing 106, the treating fluid is forced to enter previously placed perforations 230 and 231 and create new hydraulic fractures 232.
  • the operations are then continued and repeated as appropriate for the desired number of formation zones and intervals.
  • Figure 6 illustrates a third embodiment where coiled tubing is used as the deployment means and excess friction is not of concern and either proppant is not pumped during the job or use of proppant is not of concern.
  • Figure 6 shows that coiled tubing 106 is used to suspend the BHA and BHA components.
  • the individual zones may be treated in any order.
  • a straddle-packer inflatable sealing mechanism 125 is used as the re-settable sealing mechanism and the circulation port 114 is now placed between the upper inflatable sealing element 121 and the lower inflatable sealing element 123.
  • treatment fluid may be pumped down the interior of coiled tubing 106 to exit the circulation port 114, and then be positively forced to enter the targeted perforations.
  • Figure 6 shows that the upper inflatable sealing element 121 and the lower inflatable sealing element 123 have been actuated and set across perforations 241 that are associated with the next zone to be fractured.
  • the inflatable, re-settable packer 120 provides hydraulic isolation such that when treatment fluid is subsequently pumped down the coiled tubing 106, the treating fluid is forced to enter previously placed perforations 240 and 241 and create new hydraulic fractures 242.
  • the operations are then continued and repeated as appropriate for the desired number of formation zones and intervals.
  • Figure 7 illustrates a fourth embodiment where a wireline 102 is used as the deployment means to suspend the BHA and BHA components.
  • the individual zones are treated in sequential order from deeper wellbore locations to shallower wellbore locations.
  • treatment fluid may be pumped down the annulus between the wireline 102 and production casing wall 82 and be positively forced to enter the targeted perforations.
  • the inflatable re-settable packer 120 also contains an internal electrical pump system 117, powered by electrical energy transmitted downhole via the wireline, to inflate or deflate the inflatable, re-settable packer 120 using wellbore fluid.
  • Figure 7 shows that the inflatable, re-settable packer 120 has been actuated and set below the perforations 241 that are associated with the next zone to be fractured.
  • the inflatable, re-settable packer 120 provides hydraulic isolation such that when treatment fluid is subsequently pumped down the annulus between the wireline 102 and production casing 82, the treating fluid is forced to enter perforations 240 and 241 and create new hydraulic fractures 242. The operations are then continued and repeated as appropriate for the desired number of formation zones and intervals.
  • a fifth embodiment involves deployment of additional tubing strings or cables, hereinafter referred to as "umbilicals", interior and/or exterior to coiled tubing (or jointed tubing).
  • a tubing umbilical 104 is shown deployed in the interior of the coiled tubing 106.
  • the tubing umbilical 104 is connected to the re-settable sealing mechanism 120 and in this embodiment the re-settable sealing mechanism 120 is now actuated via hydraulic pressure transmitted via the umbilical 104.
  • multiple umbilicals can be deployed either in the interior of the coiled tubing and/or in the annulus between the coiled tubing and production casing.
  • the umbilicals can be used to perform several different operations, including but not limited to, providing (a) hydraulic communication for actuation of individual BHA components including, but not limited to, the sealing mechanism and/or perforating device; (b) flow conduits for downhole injection or circulation of additional fluids; and (c) for data acquisition from downhole measurement devices.
  • the BHA also includes centralizers 201, 203, and 205 that are used to keep the BHA centralized in the wellbore when BHA components are in the running position.
  • an umbilical(s) can provide the ability to hydraulically engage and/or disengage the re-settable mechanical sealing mechanism independent of the hydraulic pressure condition within the coiled tubing. This then allows the method to be extended to use of re-settable mechanical sealing mechanisms requiring independent hydraulic actuation for operation.
  • Perforating devices that require hydraulic pressure for selective-firing can be actuated via an umbilical. This may then allow the wireline, if deployed with the coiled tubing and BHA, to be used for transmission of an additional channel or channels of electrical signals, as may be desirable for acquisition of data from measurement gauges located on the bottomhole assembly; or actuation of other BHA components, for example, an electrical downhole motor-drive that could provide rotation/torque for BHA components.
  • an umbilical could be used to operate a hydraulic motor for actuation of various downhole components (e.g., a hydraulic motor to engage or disengage the re-settable sealing mechanism).
  • an umbilical(s) can provide the ability to inject or circulate any fluid downhole to multiple locations as desired with precise control.
  • umbilical(s) could be deployed and used to provide independent continuous or intermittent washing and circulation to keep proppant from accumulating on the sealing mechanism.
  • one umbilical could run to just above the re-settable mechanical sealing mechanism while another is run just below the re-settable mechanical sealing mechanism.
  • fluid e.g., nitrogen
  • fluid circulation it is noted that the umbilical size and fluid would be selected to ensure the desired rate is achieved and is not unduly limited by friction pressure in the umbilical.
  • one or more wireline or fiber-optic cables could be deployed in the wellbore to provide a electrical or electro-optical communication downhole as a signaling means for actuation of BHA components (or possibly as a signal transmission means for surface recording of downhole gauges).
  • Figure 9 illustrates a sixth embodiment of the invention where a tractor system, comprised of upper tractor drive unit 131 and lower tractor drive unit 133, is attached to the BHA and is used to deploy and position the BHA within the wellbore.
  • the individual zones are treated in sequential order from deeper wellbore locations to shallower wellbore locations.
  • the BHA also contains an internal electrical pump system 117, powered by electrical energy transmitted downhole via the wireline 102, to inflate or deflate the inflatable, re-settable packer 120 using wellbore fluid.
  • treatment fluid is pumped down the annulus between the wireline 102 and production casing wall 82 and is positively forced to enter the targeted perforations.
  • Figure 9 shows that the inflatable, re-settable packer 120 has been actuated and set below the perforations 241 that are associated with the next zone to be fractured.
  • the inflatable, re-settable packer 120 provides hydraulic isolation such that when treatment fluid is subsequently pumped down the annulus between the wireline 102 and production casing 82, the treating fluid is forced to enter perforations 240 and 241 and create new hydraulic fractures 242. The operations are then continued and repeated as appropriate for the desired number of formation zones and intervals.
  • the tractor system could be self-propelled, controlled by on-board computer systems, and carry on-board signaling systems such that it would not be necessary to attach cable or tubing for positioning, control, and/or actuation of the tractor system.
  • the various BHA components could also be controlled by on-board computer systems, and carry on-board signaling systems such that it is not necessary to attach cable or tubing for control and/or actuation of the components.
  • the tractor system and/or BHA components could carry on-board power sources (e.g., batteries), computer systems, and data transmission/reception systems such that the tractor and BHA components could either be remotely controlled from the surface by remote signaling means, or alternatively, the various on-board computer systems could be pre-programmed at the surface to execute the desired sequence of operations when the deployed in the wellbore.
  • on-board power sources e.g., batteries
  • computer systems e.g., batteries
  • data transmission/reception systems e.g., batteries
  • the tractor and BHA components could either be remotely controlled from the surface by remote signaling means, or alternatively, the various on-board computer systems could be pre-programmed at the surface to execute the desired sequence of operations when the deployed in the wellbore.
  • abrasive (or erosive) fluid jets are used as the means for perforating the wellbore.
  • Abrasive (or erosive) fluid jetting is a common method used in the oil industry to cut and perforate downhole tubing strings and other wellbore and wellhead components.
  • the use of coiled tubing or jointed tubing as the BHA suspension means provides a flow conduit for deployment of abrasive fluid-jet cutting technology.
  • the BHA is configured with a jetting tool. This jetting tool allows high-pressure high-velocity abrasive (or erosive) fluid systems or slurries to be pumped downhole through the tubing and through jet nozzles.
  • abrasive (or erosive) fluid cuts through the production casing wall, cement sheath, and penetrates the formation to provide flow path communication to the formation. Arbitrary distributions of holes and slots can be placed using this jetting tool throughout the completion interval during the stimulation job.
  • abrasive (or erosive) fluid cutting and perforating can be readily performed under a wide range of pumping conditions, using a wide-range of fluid systems (water, gels, oils, and combination liquid/gas fluid systems) and with a variety of abrasive solid materials (sand, ceramic materials, etc.), if use of abrasive solid material is required for the wellbore specific perforating application.
  • the jetting tool replaces the conventional select-fire perforating gun system described in the previous six embodiments, and since this jetting tool can be on the order of one-foot to four-feet in length, the height requirement for the surface lubricator system is greatly reduced (by possible up to 60-feet or greater) when compared to the height required when using conventional select-fire perforating gun assemblies as the perforating device. Reducing the height requirement for the surface lubricator system provides several benefits including cost reductions and operational time reductions.
  • Figure 10 illustrates in detail a seventh embodiment of the invention where a jetting tool 310 is used as the perforating device and jointed tubing 302 is used to suspend the BHA in the wellbore.
  • a mechanical compression-set, re-settable packer 316 is used as the re-settable sealing device;
  • a mechanical casing-collar-locator 318 is used for BHA depth control and positioning;
  • a one-way full-opening flapper-type check valve sub 304 is used to ensure fluid will not flow up the jointed tubing 302;
  • a combination shear-release fishing-neck sub 306 is used as a safety release device;
  • a circulation/equalization port sub 308 is used to provide a method for fluid circulation and also pressure equalization above and below the mechanical compression-set, re-settable packer 316 under certain circumstances;
  • a one-way ball-seat check valve sub 314 is used to ensure that fluid may only flow upward from below the mechanical compression-set, re-set
  • the jetting tool 310 contains jet flow ports 312 that are used to accelerate and direct the abrasive fluid pumped down jointed tubing 302 to jet with direct impingement on the production casing 82.
  • the mechanical casing collar locator 318 is appropriately designed and connected to the mechanical compression-set, re-settable packer 316 such as to allow for fluid flow upward from below mechanical compression-set, re-settable packer 316 to the circulation/equalization port sub 308.
  • the cross-sectional flow area associated with the flow conduits contained within the circulation/equalization port sub 308 are sized to provide a substantially larger cross-sectional flow area than the flow area associated with the jet flow ports 312 such that the majority of flow within the jointed tubing 302 or BHA preferentially flows through the circulation/equalization port sub 308 rather than the jet flow ports 312 when the circulation/equalization port sub 308 is in the open position.
  • the circulation/equalization port sub 308 is opened and closed by upward and downward axial movement of jointed pipe 302.
  • jointed tubing 302 is preferably used with the mechanical compression-set, re-settable packer 316 since the mechanical compression-set, re-settable packer 316 can be readily actuated and de-actuated by vertical movement and/or rotation applied via the jointed tubing 302.
  • Vertical movement and/or rotation is applied via the jointed tubing 302 using a completion rig-assisted snubbing unit with the aid of a power swivel unit as the surface means for connection, installation, and removal of the jointed tubing 302 in to and out of the wellbore.
  • the surface rig-up and plumbing configuration will include appropriate manifolds, piping, and valves to accommodate flow to, from, and between all appropriate surface components/facilities and the wellbore, including but not limited to, the jointed tubing, annulus between jointed tubing and production casing, pumps, fluid tanks, and flow-back pits.
  • jointed tubing 302 Since the mechanical compression-set, re-settable packer is actuated via jointed tubing 302 vertical movement and/or rotation, fluid can be pumped down the jointed tubing 302 without the necessity of additional control valves and/or isolation valves that may otherwise be required if an inflatable packer was used as the re-settable sealing device.
  • the interior of the jointed tubing 302 is used in this fashion to provide an independent flow conduit between the surface and the jetting tool 310 such that abrasive fluid can be pumped down the jointed tubing 302 to the jetting tool 310.
  • the jet flow ports 312 located on the jetting tool 310 then create a high velocity abrasive fluid jet that is directed to perforate the production casing 82 and cement sheath 84 to establish hydraulic communication with the formation 86.
  • Figure 10 shows the jetting tool 310 has been used to place perforations 320 to penetrate the first formation interval of interest, and that the first formation interval of interest has been stimulated with hydraulic fractures 322.
  • Figure 10 further shows the jetting tool 310 has been repositioned within the wellbore and used to place perforations 324 in the second formation interval of interest, and that the mechanical compression-set, re-settable packer 316 has been actuated to provide a hydraulic seal within the wellbore in advance of stimulating perforations 324 with the second stage of the multi-stage hydraulic proppant fracture treatment.
  • jet flow ports 312 may be located within approximately six-inches to one-foot of the mechanical compression-set, re-settable packer 316 such that after pumping the second proppant fracture stage, should proppant accumulation on the top of the mechanical compression-set, re-settable packer 316 be of concern, non-abrasive and non-erosive fluid can be pumped down the jointed tubing 302 and through the jet flow ports 312 and/or the circulation/equalization port sub 308 as necessary to clean proppant from the top of the mechanical compression-set, re-settable packer 316.
  • the jetting tool 310 may be rotated (when the mechanical compression-set, re-settable packer 316 is not actuated) using the jointed tubing 302 which may be rotated with the surface power swivel unit to further help to clean proppant accumulation that may occur above the mechanical compression-set, re-settable packer 316. Since the perforations are created using a fluid jet, perforation burrs will not be created. Since perforation burrs are not present to potentially provide additional wear and tear on the elastomers of the mechanical compression-set re-settable packer 316, the longevity of the mechanical compression-set re-settable packer 316 may be increased when compared to applications where perforation burrs may exist.
  • the flow control provided by the one-way ball-seat check valve sub 314 and the one-way full-opening flapper-type check valve sub 304 only allows for pressure equalization above and below the mechanical compression-set, re-settable packer 316 when the pressure below the mechanical compression-set, re-settable packer 316 is larger than the pressure above the mechanical compression-set, re-settable packer 316.
  • the pressure above the mechanical compression-set, re-settable packer 316 may be larger than the pressure below the mechanical compression-set, re-settable packer 316, the pressure above the mechanical compression-set, re-settable packer 316 can be readily reduced by performing a controlled flow-back of the just stimulated zone using the annulus between the jointed tubing 302 and the production casing 82; or by circulation of lower density fluid (e.g., nitrogen) down the jointed tubing 302 and up the annulus between the jointed tubing 302 and production casing 82.
  • lower density fluid e.g., nitrogen
  • the one-way full-opening flapper-type check valve sub 304 is preferred as this type of design accommodates unrestricted pumping of abrasive (or erosive) fluid downhole, and furthermore allows for passage of control balls that, depending on the specific detailed design of individual BHA components, may be dropped from the surface to control fluid flow and hydraulics of individual BHA components or provide for safety release of the BHA.
  • many different valving configurations could be deployed to provide the functionality provided by the flow control valves described in this embodiment.
  • a sub containing a nipple could be included which could provide the capability of suspending and holding other measurement devices or BHA components.
  • This nipple could hold a conventional casing-collar-locator and gamma-ray tool that is deployed via wireline and seated in the nipple to provide additional diagnostics of BHA position and location of formation intervals of interest.
  • multiple abrasive jetting tools can be deployed as part of the BHA to control perforation cutting characteristics, such as hole/slot size, cutting rate, to accommodate various abrasive materials, and/or to provide system redundancy in the event of premature component failure.
  • the bottomhole assembly may be configured to contain instrumentation for measurement of reservoir, fluid, and wellbore properties as deemed desirable for a given application.
  • temperature and pressure gauges could be deployed to measure downhole fluid temperature and pressure conditions during the course of the treatment;
  • a densitometer could be used to measure effective downhole fluid density (which would be particularly useful for determining the downhole distribution and location of proppant during the course of a hydraulic proppant fracture treatment);
  • a radioactive detector system e.g., gamma-ray or neutron measurement systems
  • a radioactive detector system e.g., gamma-ray or neutron measurement systems
  • the bottomhole assembly could be configured with a "perforation burr removal” tool that would act to scrape and remove perforation burrs from the casing wall.
  • centralizer subs could be deployed on the bottomhole assembly to provide positive mechanical positioning of the assembly and prevent or minimize the potential for damage due to the assembly running in contact with the casing wall.
  • the bottomhole assembly may be configured with vibration/shock dampening subs that would eliminate or minimize any adverse effects on system performance due to perforation charge detonation.
  • perforating devices and any other desired BHA components may be positioned either above or below the re-settable sealing mechanism and in any desired order relative to each other.
  • the deployment system itself whether it be wireline, electric line, coiled tubing, conventional jointed tubing, or downhole tractor may be used to convey signals to activate the sealing mechanism and/or perforating device. It would also be possible to suspend such signaling means within conventional jointed tubing or coiled tubing used to suspend the sealing and perforating devices themselves.
  • the signaling means whether it be electric, hydraulic, or other means, could be run in the hole externally to the suspension means or even housed in or comprised of one or more separate strings of coiled tubing or conventional jointed tubing.
  • Friction pressure limitations are reduced or eliminated because the high viscosity fluid can be pumped down the annulus between the coiled tubing or other suspension means and production casing. Since friction pressure limitations can be reduced or eliminated from that experienced with pumping high viscosity fluid systems down the interior of coiled tubing, well depths where this technique can be applied are substantially increased.
  • the effective cross-sectional flow area is approximately equivalent to a 12,7 cm (5-inch) outer diameter casing string.
  • pump rates e.g., on the order of 10 to 30-barrels-per-minute or more
  • conventional fracturing fluids can be used, as opposed to special low-viscosity fluids (such as Dowell-Schlumberger's ClearFracTM fluid) used to reduce friction pressure drop through coiled tubing.
  • special low-viscosity fluids such as Dowell-Schlumberger's ClearFracTM fluid
  • Dowell-Schlumberger's ClearFracTM fluid used to reduce friction pressure drop through coiled tubing.
  • the use of conventional fracturing fluid technology would then allow treatment of formations with temperatures greater than 250°F, above which currently available higher-cost specialty fluids may begin to degrade.
  • the sealing mechanism used could be an inflatable device, a mechanical compression-set re-settable packer, a mechanical compression-set straddle-packer design, cup-seal devices, or any other alternative device that may be deployed via a suspension means and provides a re-settable hydraulic sealing capability or equivalent function.
  • Both inflatable and compression set devices exist that provide radial clearance between seals and casing wall (e.g., on the order of 0.25-inches to 1-inch for inflatable devices or 0.1 - 0.2 inches for compression-set devices) such that seal wear and tear would be drastically reduced or eliminated altogether.
  • the sealing mechanism in its deactivated state there would be sufficient clearance between the sealing mechanism in its deactivated state and the casing wall to allow rapid movement into and out of the wellbore without significant damage to the sealing mechanism or without pressure control issues related to surging/swabbing the well due to tool movement.
  • the increased clearance between the seal surface and the casing wall (when the seal is not actuated) would also allow the coiled tubing/BHA to be tripped in and out of the hole at much faster speeds than are possible with currently available coiled tubing systems.
  • the perforating device would accommodate perforating the casing wall such that a perforation hole with a relatively smooth edge would be achieved.
  • the mechanical re-settable sealing mechanism may not need to provide a perfect hydraulic seal and for ,example, could retain a small gap around the circumference of the device.
  • This small gap could be sized to provide a sealing mechanism (if desired) whereby proppant bridges across the small gap and provides a seal (if desired) that can be removed by fluid circulation.
  • a stimulation job could proceed in an economically viable fashion even if a perfect hydraulic seal was not obtained with the mechanical re-settable sealing mechanism.
  • the gross height of each of the individual perforated target intervals is not limited. This is in contrast to the problem that existing coiled tubing systems possess using a straddle-packer like device that limits application to 15 - 30 feet of perforated interval height.
  • coiled tubing is used as the deployment means, it is possible that the coiled tubing string used for the stimulation job could be hung-off in the wellhead and used as the production tubing string, which could result in significant cost savings by eliminating the need for rig mobilization to the well-site for installation of conventional production tubing string comprised of jointed tubing.
  • Controlling the sequence of zones to be treated allows the design of individual treatment stages to be optimized based on the characteristics of each individual zone. Furthermore, the potential for sub-optimal stimulation because multiple zones are treated simultaneously is essentially eliminated by having only one open set of perforations exposed to each stage of treatment. For example, in the case of hydraulic fracturing, this invention may minimize the potential for overflush or sub-optimal placement of proppant into the fracture. Also, if a problem occurs such that the treatment must be terminated, the up-hole zones to be stimulated have not been compromised, since they have yet to be perforated. This is in contrast to conventional ball sealer or coiled tubing stimulation methods, where all perforations must be shot prior to the job.
  • the entire treatment can be pumped in a single trip, resulting in significant cost savings over other techniques that require multiple wireline or rig work to trip in and out of the hole in between treatment stages.
  • the invention can be applied to multi-stage treatments in deviated and horizontal wellbores.
  • other conventional diversion technology in deviated and horizontal wellbores is more challenging because of the nature of the fluid transport of the diverter material over the long intervals typically associated with deviated or horizontal wellbores.
  • the invention provides a method for sand-laden fluid in the annulus to be immediately circulated out of the hole such that stimulation operations can be recommenced without having to trip the coiled tubing/BHA out of the hole.
  • the presence of the coiled tubing system provides a means to measure bottomhole pressure after perforating or during stimulation operations based on pressure calculations involving the coiled tubing string under shut-in (or low-flow-rate) conditions.
  • the presence of the coiled tubing or conventional jointed tubing system, if used as the deployment means, provides a means to inject fluid downhole independently from the fluid injected in the annulus. This may be useful, for example, in additional applications such as: (a) keeping the BHA sealing mechanism and flow ports clean of proppant accumulation (that could possibly cause tool sticking) by pumping fluid downhole at a nominal rate to clean off the sealing mechanism and flow ports; (b) downhole mixing applications (as discussed further below); (c) spotting of acid downhole during perforating to aid perforation hole cleanup and communication with the formation; and (d) independently stimulating two zones isolated from each other by the re-settable sealing mechanism.
  • downhole flow control valves may be operated by wireline actuation, hydraulic actuation, flow actuation, "j-latch” actuated, sliding-sleeve actuated, or by many other means known to those skilled in the art of operation and actuation of downhole flow control valves.
  • the coiled tubing system still allows for controlled flowback of individual treatment stages to aid clean up and assist fracture closure.
  • Flowback can be performed up the annulus between the coiled tubing and the production casing, or alternatively, flowback may even be performed up the coiled tubing string if excessive proppant flowback were not to be considered a problem.
  • the perforating device may be comprised of commercially-available perforating systems. These gun systems could include what will be referred to herein as a "select-fire" system such that a single perforation gun assembly is comprised of multiple charges or sets of perforation charges. Each individual set of one or more perforation charges can be remotely controlled and fired from the surface using electric, radio, pressure, fiber-optic or other actuation signals. Each set of perforation charges can be designed (number of charges, number of shots per foot, hole size, penetration characteristics) for optimal perforation of the individual zone that is to be treated with an individual stage. With current select-fire gun technology, commercial gun systems exist that could allow on the order of 30 to 40 intervals to be perforated sequentially in a single downhole trip. Guns can be pre-sized and designed to provide for firing of multiple sets of perforations. Guns can be located at any location on the bottomhole assembly, including either above or below the mechanical re-settable sealing mechanism.
  • Intervals may be grouped for treatment based on reservoir properties, treatment design considerations, or equipment limitations. After each group of intervals (preferably 5 to approximately 20), at the end of a workday (often defined by lighting conditions), or if difficulties with sealing one or more zones are encountered, a bridge plug or other mechanical device would preferably be used to isolate the group of intervals already treated from the next group to be treated.
  • One or more select-fire set bridge plugs or fracture baffles could be run in conjunction with the bottomhole assembly and set as desired during the course of the completion operation to provide positive mechanical isolation between perforated intervals and eliminate the need for a separate wireline run to set mechanical isolation devices or diversion agents between groups of fracture stages.
  • the method can be readily employed in production casings of 11,4 cm (4-1/2 inch) diameter to 17,8 cm (7-inch) diameter with existing commercially available perforating gun systems and mechanical re-settable sealing mechanisms.
  • the inventive method could be employed in smaller or larger casings with mechanical re-settable sealing mechanisms appropriately designed for the smaller or larger casings.
  • each individual gun may be on the order of 61 to 244 cm (2 to 8 feet) in length, and contain on the order of 8 to 20 perforating charges placed along the gun tube at shot density ranging between 1 and 6 shots per foot, but preferably 2 to 4 shots per foot.
  • shot density ranging between 1 and 6 shots per foot, but preferably 2 to 4 shots per foot.
  • as many as 15 to 20 individual guns could be stacked one on top of another such that the assembled gun system total length is preferably kept to less than approximately 24,4 to 30,5 m (80 to 100 feet).
  • This total gun length can be run into the wellbore using a readily-available surface crane and lubricator system. Longer gun lengths could also be used, but may require additional or special surface equipment depending on the total number of guns that would make up the complete perforating device. It is noted that in some unique applications, gun lengths, number of charges per gun, and shot density could be greater or less than as specified above as final perforating system design would be impacted by the specific formation characteristics present in the wellbore
  • each assembly could contain 15 guns, and total length could be approximately 22,9 m (75-feet), which could readily be handled at the surface with existing lubricator and crane systems.
  • An alternative arrangement for the perforating gun or guns would be to locate one or more guns above the re-settable mechanical sealing mechanism. There could be two or more separate gun assemblies attached in such a way that the charges were oriented away from the components on the bottomhole assembly or the coiled tubing. It could also be a single assembly with charges loaded more densely and firing mechanisms designed to simultaneously fire only a subset of the charges within a given interval, perhaps all at a given phase orientation.
  • perforating device used remotely fired charges or fluid jetting to perforate the casing and cement sheath
  • alternative perforating devices including but not limited to chemical dissolution or drilling/milling cutting devices could be used within the scope of this invention for the purpose of creating a flow path between the wellbore and the surrounding formation.
  • perforating device will be used broadly to include all of the above, as well as any actuating device suspended in the wellbore for the purpose of actuating charges or other perforating means that may be conveyed by the casing or other means external to the bottomhole assembly or suspension method used to support the bottomhole assembly.
  • the BHA could contain a downhole motor or other mechanism to provide rotation/torque to accommodate actuation of mechanical sealing mechanisms requiring rotation/torque for actuation.
  • a downhole motor or other mechanism to provide rotation/torque to accommodate actuation of mechanical sealing mechanisms requiring rotation/torque for actuation.
  • Such a device in conjunction with an orienting device (e.g., gyroscope or compass) could allow oriented perforating such that perforation holes are placed in a preferred compass direction.
  • an orienting device e.g., gyroscope or compass
  • rotation and torque could be transmitted downhole by direct rotation of the jointed tubing using rotation drive equipment that may be readily available on conventional workover rigs.
  • Downhole instrumentation gauges for measurement of well conditions casing collar locator, pressure, temperature, pressure, and other measurement gauges
  • real-time downhole monitoring of stimulation job parameters, reservoir properties, and/or well performance could also be deployed as part of the BHA
  • diversion material/devices could be pumped downhole during the treatment including but not limited to ball sealers or particulates such as sand, ceramic material, proppant, salt, waxes, resins, or other organic or inorganic compounds or by alternative fluid systems such as viscosified fluids, gelled fluids, foams, or other chemically formulated fluids, or other injectable diversion agents.
  • the additional diversion material could be used to help minimize the duration of the stimulation treatment as some time savings could be realized by reducing the number of times the mechanical diversion device is set, while still achieving diversion capabilities over the multiple zones.
  • the tubing allows for deployment of downhole mixing devices and ready application of downhole mixing technology.
  • the tubing string can be used to pump chemicals downhole and through the flow ports in the bottomhole assembly to subsequently mix with the fluid pumped in the tubing by production casing annulus.
  • the tubing string can be used to pump chemicals downhole and through the flow ports in the bottomhole assembly to subsequently mix with the fluid pumped in the tubing by production casing annulus.
  • This method and apparatus could be used for treatment of vertical, deviated, or horizontal wellbores.
  • the invention provides a method to generate multiple vertical (or somewhat vertical) fractures to intersect horizontal or deviated wellbores.
  • Such a technique could enable economic completion of multiple wells from a single pad location.
  • Treatment of a multi-lateral well could also be performed wherein the deepest lateral is treated first; then a plug is set or sleeve actuated to isolate this lowest lateral; the next up-hole lateral is then treated; another plug is set or sleeve actuated to isolate this lateral; and the process repeated to treat the desired number of laterals within a single wellbore.
  • select-fire perforating guns are used, although desirable from the standpoint of maximizing the number of intervals that can be treated, the use of short guns (i.e., 4-ft length or less) could limit well productivity in some instances by inducing increased pressure drop in the near-wellbore reservoir region when compared to use of longer guns.
  • Well productivity could similarly be limited if only a short interval (i.e., 4-ft length or less) is perforated using abrasive jetting.
  • Potential for excessive proppant flowback may also be increased leading to reduced stimulation effectiveness.
  • Flowback would preferably be performed at a controlled low-rate to limit potential proppant flowback.
  • resin-coated proppant or alternative gun configurations could be used to improve the stimulation effectiveness.
  • an "isolation device” can be rigged up on the wellhead.
  • the isolation device may consists of a flange with a short length of tubing attached that runs down the center of the wellhead to a few feet below the injection ports.
  • the bottomhole assembly and tubing or cable are run interior to the isolation device tubing.
  • Such an isolation device would consist of an appropriate diameter tubing such that it would readily allow the largest outer diameter dimension associated with the tubing or cable and bottomhole assembly to pass through unhindered.
  • the length of the isolation device would be sized such that in the event of damage, the lower master fracture valve could still be closed and the wellhead rigged down as necessary to remove the isolation tool.
  • an isolation device would not be needed if erosion concerns were not present.
  • preferred practices would be to maintain impingement velocity on the isolation tool substantially below typical erosional limits, preferably below about 54.9 m/sec (180 ft/sec), and more preferably below about 18.3 m/sec (60 ft/sec).
  • Another concern with this technique is that premature screen-out may occur if fluid displacement during pumping is not adequately measured as it may be difficult to initiate a fracture with proppant-laden fluid across the next zone to be perforated. It may be preferable to use a KCl fluid or some other non-gelled fluid or fluid system for the pad rather than a gelled pad fluid to better initiate fracturing of the next zone. Pumping the job at a higher rate with a non-gelled fluid between stages to achieve turbulent flush/sweep of the casing will minimize the risk of proppant screen-out. Also, contingency guns available on the tool string would allow continuing the job after an appropriate wait time.

Claims (12)

  1. Appareil à utiliser pour perforer et traiter de multiples intervalles d'une ou plusieurs formations souterraines entrecoupées par un puits de forage, ledit appareil comprenant un assemblage de fond de puits (BHA) conçu pour être déployé dans ledit puits de forage par un moyen de déploiement, ledit BHA comportant au moins un dispositif de perforation (130, 132, 134, 136) permettant de perforer successivement lesdits multiples intervalles et au moins un mécanisme d'étanchéité (120, 125, 316) capable d'établir un joint hydraulique dans ledit puits de forage, et capable en outre de dégager ledit joint hydraulique pour permettre audit BHA de se déplacer dans une position différente à l'intérieur dudit puits de forage, permettant ainsi à chacun desdits multiples intervalles de traitement d'être traité séparément desdits autres intervalles de traitement, caractérisé en ce que ledit BHA comporte des orifices d'égalisation de la pression (114, 116, 122, 308) permettant d'égaliser la pression au-dessus et au-dessous du mécanisme d'étanchéité.
  2. Appareil selon la revendication 1, dans lequel ledit moyen de déploiement est une colonne de production, choisie parmi les tubes en spirale ou emboîtés (106).
  3. Appareil selon la revendication 1, dans lequel ledit moyen de déploiement est choisi dans le groupe constitué d'un câble de forage (102), d'un câble lisse et d'un câble.
  4. Appareil selon la revendication 1, dans lequel ledit BHA comprend en outre un détecteur de joint de tubage (128).
  5. Appareil selon la revendication 1, dans lequel ledit mécanisme d'étanchéité est une garniture d'étanchéité pouvant être remise en place (120).
  6. Appareil selon la revendication 1, dans lequel ledit dispositif de perforation est un canon de perforation Select-Fire contenant plusieurs jeux d'une ou plusieurs charges de perforation à charge creuse ; chacun desdits jeux d'une ou plusieurs charges de perforation à charge creuse étant commandé et activé individuellement par un signal électrique transmis via un câble de forage déployé dans le puits de forage.
  7. Appareil selon la revendication 1, dans lequel ledit dispositif de perforation est actionné par une pression hydraulique transmise depuis la surface à travers ledit puits de forage.
  8. Appareil selon la revendication 2, dans lequel ledit dispositif de perforation est actionné par une pression hydraulique transmise depuis la surface à travers ladite colonne de production.
  9. Appareil selon la revendication 2, dans lequel ledit dispositif de perforation est un dispositif de découpe à jet qui fait appel à un fluide pompé de haut en bas dans ladite colonne de production pour établir une communication hydraulique entre ledit puits de forage et le ou lesdits intervalles de la ou desdites formations souterraines.
  10. Appareil selon la revendication 1, dans lequel le mécanisme d'étanchéité comprend une garniture d'étanchéité gonflable pouvant être remise en place (120), un dispositif à coins mécanique pouvant être remis en place (124) servant à empêcher le mouvement axial descendant du BHA lorsqu'il est mis en place et des orifices d'égalisation de la pression situés (116, 122) au-dessus et au-dessous de la garniture d'étanchéité gonflable pouvant être remise en place.
  11. Appareil selon la revendication 1 dans lequel le mécanisme d'étanchéité est une garniture d'étanchéité montée par compression mécanique pouvant être remise en place (316) et un orifice de circulation et d'égalisation (308) est utilisé pour permettre une circulation du fluide et une égalisation de la pression au-dessus et au-dessous du mécanisme d'étanchéité.
  12. Appareil selon l'une quelconque des revendications 1 et 4 à 7, dans lequel le moyen de déploiement est un système tracteur fixé au BHA.
EP10185217A 2000-02-15 2001-02-14 Procédé et dispositif de stimulation de plusieurs intervalles de formation Expired - Lifetime EP2282002B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18268700P 2000-02-15 2000-02-15
US24425800P 2000-10-30 2000-10-30
EP01909197.4A EP1264075B1 (fr) 2000-02-15 2001-02-14 Procede et dispositif de stimulation de plusieurs intervalles de formation

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP01909197.4 Division 2001-02-14
EP01909197.4A Division-Into EP1264075B1 (fr) 2000-02-15 2001-02-14 Procede et dispositif de stimulation de plusieurs intervalles de formation

Publications (3)

Publication Number Publication Date
EP2282002A2 EP2282002A2 (fr) 2011-02-09
EP2282002A3 EP2282002A3 (fr) 2011-05-04
EP2282002B1 true EP2282002B1 (fr) 2012-07-11

Family

ID=26878314

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01909197.4A Expired - Lifetime EP1264075B1 (fr) 2000-02-15 2001-02-14 Procede et dispositif de stimulation de plusieurs intervalles de formation
EP10185217A Expired - Lifetime EP2282002B1 (fr) 2000-02-15 2001-02-14 Procédé et dispositif de stimulation de plusieurs intervalles de formation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01909197.4A Expired - Lifetime EP1264075B1 (fr) 2000-02-15 2001-02-14 Procede et dispositif de stimulation de plusieurs intervalles de formation

Country Status (21)

Country Link
EP (2) EP1264075B1 (fr)
CN (1) CN1281846C (fr)
AR (1) AR027331A1 (fr)
AU (2) AU3697801A (fr)
BR (1) BR0108418B1 (fr)
CA (1) CA2397460C (fr)
CO (1) CO5300472A1 (fr)
DK (1) DK2282002T3 (fr)
DZ (1) DZ3378A1 (fr)
EA (1) EA004100B1 (fr)
EG (1) EG23117A (fr)
MX (1) MXPA02007728A (fr)
MY (1) MY132567A (fr)
NO (1) NO330514B1 (fr)
NZ (1) NZ520310A (fr)
OA (1) OA12171A (fr)
PE (1) PE20011019A1 (fr)
PL (1) PL196155B1 (fr)
RO (1) RO121145B1 (fr)
TN (1) TNSN01026A1 (fr)
WO (1) WO2001061146A1 (fr)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6688389B2 (en) * 2001-10-12 2004-02-10 Halliburton Energy Services, Inc. Apparatus and method for locating joints in coiled tubing operations
US10316616B2 (en) * 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
CN103362489B (zh) * 2006-01-27 2017-05-10 普拉德研究及开发股份有限公司 用于地层的水力压裂的方法
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
US8261834B2 (en) 2007-04-30 2012-09-11 Schlumberger Technology Corporation Well treatment using electric submersible pumping system
GB2454917B (en) * 2007-11-23 2011-12-14 Schlumberger Holdings Deployment of a wireline tool
US7963325B2 (en) * 2007-12-05 2011-06-21 Schlumberger Technology Corporation Method and system for fracturing subsurface formations during the drilling thereof
CA2737205A1 (fr) * 2008-09-19 2010-03-25 Chevron U.S.A. Inc. Procede pour optimiser la production de puits dans des reservoirs comportant des barrieres d'ecoulement
US8276677B2 (en) 2008-11-26 2012-10-02 Baker Hughes Incorporated Coiled tubing bottom hole assembly with packer and anchor assembly
GB0911672D0 (en) * 2009-07-06 2009-08-12 Tunget Bruce A Through tubing cable rotary system
US8479832B2 (en) * 2009-02-18 2013-07-09 Schlumberger Technology Corporation Method and apparatus for setting an inflatable packer in a subhydrostatic wellbore
US8408300B2 (en) * 2009-06-16 2013-04-02 Schlumberger Technology Corporation Open-hole stimulation system
RU2398099C1 (ru) * 2009-07-10 2010-08-27 Дмитрий Иванович Александров Способ заканчивания скважины
US8695716B2 (en) 2009-07-27 2014-04-15 Baker Hughes Incorporated Multi-zone fracturing completion
US8944167B2 (en) 2009-07-27 2015-02-03 Baker Hughes Incorporated Multi-zone fracturing completion
US8613321B2 (en) 2009-07-27 2013-12-24 Baker Hughes Incorporated Bottom hole assembly with ported completion and methods of fracturing therewith
CA2891734C (fr) * 2009-11-06 2017-08-22 Weatherford Technology Holdings, Llc Methode et appareil destines a un mecanisme de systeme d'accumulateur de trou de forage
CA2749636C (fr) 2010-02-18 2014-05-06 Ncs Oilfield Services Canada Inc. Outillage de fond avec securite pour debris, et methode d'utilisation
EA025825B1 (ru) * 2010-05-11 2017-02-28 Шлюмбергер Текнолоджи Б.В. Способ и система для обработки подземного образования
CA2738907C (fr) 2010-10-18 2012-04-24 Ncs Oilfield Services Canada Inc. Outils et procedes pour la completion de puits
US8955603B2 (en) 2010-12-27 2015-02-17 Baker Hughes Incorporated System and method for positioning a bottom hole assembly in a horizontal well
AU2012279476B2 (en) * 2011-07-05 2017-08-31 Bruce A. Tunget Cable compatible rig-less operable annuli engagable system for using and abandoning a subterranean well
CA2838164C (fr) * 2011-08-29 2017-03-28 Halliburton Energy Services, Inc. Systeme et procede de regulation de fluide pour fond de puits a reaction dynamique aux conditions de puits locales
US9677337B2 (en) 2011-10-06 2017-06-13 Schlumberger Technology Corporation Testing while fracturing while drilling
US8931559B2 (en) 2012-03-23 2015-01-13 Ncs Oilfield Services Canada, Inc. Downhole isolation and depressurization tool
WO2014036742A1 (fr) 2012-09-10 2014-03-13 Schlumberger Canada Limited Procédé de fracturation transversale d'une formation souterraine
CA2862556A1 (fr) * 2013-09-11 2015-03-11 Shell Internationale Research Maatschappij B.V. Procede destine au sous-deplacement de fractures hydrauliques dans un puits horizontal ou devie
RU2537719C1 (ru) * 2013-10-29 2015-01-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ многократного гидравлического разрыва пласта в открытом стволе горизонтальной скважины
US10221667B2 (en) 2013-12-13 2019-03-05 Schlumberger Technology Corporation Laser cutting with convex deflector
WO2015089458A1 (fr) 2013-12-13 2015-06-18 Schlumberger Canada Limited Création de fentes radiales dans un puits de forage
CN105089599A (zh) * 2014-05-08 2015-11-25 中国石油化工股份有限公司 一种用于不动管柱水力喷砂压裂的装置及方法
US9982517B2 (en) * 2014-06-27 2018-05-29 Owen Oil Tools Lp Coiled tubing connector for downhole tools
CN105317409B (zh) * 2014-07-03 2018-03-09 中国石油化工股份有限公司 一种水平井分段压裂泵送射孔方法
CN105350948B (zh) * 2014-08-22 2019-01-01 中国石油化工股份有限公司 页岩气水平井分段压裂方法和页岩气水平井完井方法
AU2015324487B2 (en) * 2014-10-03 2017-12-14 Exxonmobil Upstream Research Company Method of remediating a screen-out during well completion
EP3212884B1 (fr) 2014-10-30 2021-03-03 Services Petroliers Schlumberger Méthode de création de fentes radiales dans une formation souterraine
US9810051B2 (en) * 2014-11-20 2017-11-07 Thru Tubing Solutions, Inc. Well completion
CN104624623B (zh) * 2015-01-30 2017-09-12 浙江博世华环保科技有限公司 一种污染场地原位抽提修复方法
CN104624633B (zh) * 2015-01-30 2017-09-12 浙江博世华环保科技有限公司 一种污染场地原位注药修复方法
US9528353B1 (en) 2015-08-27 2016-12-27 William Jani Wellbore perforating tool
CN105134157B (zh) * 2015-10-10 2017-09-01 北京化工大学 一种应用于页岩气开采的岩层蒸汽压裂装置
RU2612702C1 (ru) * 2015-12-25 2017-03-13 Игорь Александрович Гостев Способ гидромеханической прокалывающей перфорации скважин на депрессии
CN105840166B (zh) * 2016-04-19 2018-09-11 中石化重庆涪陵页岩气勘探开发有限公司 一种采用完全可溶解桥塞的水平井压裂试气完井工艺
US10415382B2 (en) * 2016-05-03 2019-09-17 Schlumberger Technology Corporation Method and system for establishing well performance during plug mill-out or cleanout/workover operations
RU2631517C1 (ru) * 2016-06-28 2017-09-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Способ для механизированной насосной эксплуатации скважин и устройство для его осуществления
RU170641U1 (ru) * 2016-09-16 2017-05-03 Эльмир Саттарович Кузяев Устройство для ориентирования перфоратора в скважине
WO2018067598A1 (fr) * 2016-10-03 2018-04-12 Owen Oil Tools Lp Canon de perforation
RU2673093C2 (ru) * 2017-04-24 2018-11-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Способ экспресс-определения характеристик призабойной зоны пласта, применяемый при освоении скважины
CN107725010A (zh) * 2017-10-27 2018-02-23 西安石竹能源科技有限公司 一种可熔断单芯电缆释放装置
CA2988409A1 (fr) 2017-12-20 2019-06-20 Lee Energy Systems Inc. Systeme de fracturation et stimulation multietape deploye par cable
EP3740644B1 (fr) * 2018-04-06 2022-12-28 Halliburton Energy Services, Inc. Systèmes et procédés de coupe tubulaire de fond de trou
CA3004675A1 (fr) * 2018-05-11 2019-11-11 Fluid Energy Group Ltd. Composition d'inhibition de la corrosion novatrice et methode de fracturation
US11125026B2 (en) 2018-10-24 2021-09-21 Saudi Arabian Oil Company Completing slim-hole horizontal wellbores
CN111425174B (zh) * 2019-01-09 2022-02-01 中国石油天然气股份有限公司 热力式同心分层电点火工艺管柱
US10927654B2 (en) 2019-05-23 2021-02-23 Saudi Arabian Oil Company Recovering hydrocarbons in multi-layer reservoirs with coiled tubing
US11428089B2 (en) 2019-05-23 2022-08-30 Halliburton Energy Services, Inc. Locating self-setting dissolvable plugs
US20200378229A1 (en) * 2019-05-28 2020-12-03 Saudi Arabian Oil Company Proppant-free hydraulic fracturing
CN110924931B (zh) * 2019-12-09 2022-04-05 西南石油大学 基于能量转换的水力裂缝与天然裂缝交互状态判别方法
RU2750792C1 (ru) * 2020-10-21 2021-07-02 Николай Маратович Шамсутдинов Способ проведения гидравлического разрыва пласта в наклонно-направленной нефтедобывающей скважине, эксплуатирующей один продуктивный пласт
RU2752371C1 (ru) * 2020-10-24 2021-07-26 Николай Маратович Шамсутдинов Способ проведения гидравлического разрыва пласта в наклонно-направленной нефтедобывающей скважине, эксплуатирующей два продуктивных пласта
CN114564800B (zh) * 2022-02-25 2022-10-11 北京金阳普泰石油技术股份有限公司 一种水平井测井曲线的真垂厚纵向拟合方法及系统
CN114876370B (zh) * 2022-06-01 2023-03-28 中国石油大学(北京) 多点定向喷射钻进工具及其使用方法
CN117365396A (zh) * 2023-12-05 2024-01-09 大庆金祥寓科技有限公司 电缆式精密老井二次射孔工艺、新井二次射孔工艺

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2558427A (en) * 1946-05-08 1951-06-26 Schlumberger Well Surv Corp Casing collar locator
US2986214A (en) * 1956-12-26 1961-05-30 Jr Ben W Wiseman Apparatus for perforating and treating zones of production in a well
US3118501A (en) * 1960-05-02 1964-01-21 Brents E Kenley Means for perforating and fracturing earth formations
US3417827A (en) * 1967-01-09 1968-12-24 Gulf Research Development Co Well completion tool
US4208966A (en) * 1978-02-21 1980-06-24 Schlumberger Technology Corporation Methods and apparatus for selectively operating multi-charge well bore guns
US4315797A (en) * 1980-06-02 1982-02-16 Gearhart Industries, Inc. Chemical pipe cutter with exponential spacing between reactant stages
US4637468A (en) * 1985-09-03 1987-01-20 Derrick John M Method and apparatus for multizone oil and gas production
US4917187A (en) * 1989-01-23 1990-04-17 Baker Hughes Incorporated Method and apparatus for hydraulically firing a perforating gun below a set packer
DK34192D0 (da) * 1992-03-13 1992-03-13 Htc As Traktor til fremfoering af bearbejdnings- og maaleudstyr i et borehul
US5287924A (en) * 1992-08-28 1994-02-22 Halliburton Company Tubing conveyed selective fired perforating systems
US5287741A (en) * 1992-08-31 1994-02-22 Halliburton Company Methods of perforating and testing wells using coiled tubing
US5704426A (en) * 1996-03-20 1998-01-06 Schlumberger Technology Corporation Zonal isolation method and apparatus
US5954133A (en) * 1996-09-12 1999-09-21 Halliburton Energy Services, Inc. Methods of completing wells utilizing wellbore equipment positioning apparatus
AU736644B2 (en) 1997-08-26 2001-08-02 Exxonmobil Upstream Research Company Stimulation of lenticular natural gas formations
FR2769665B1 (fr) * 1997-10-13 2000-03-10 Inst Francais Du Petrole Methode et systeme de mesure dans un conduit horizontal
US6296066B1 (en) * 1997-10-27 2001-10-02 Halliburton Energy Services, Inc. Well system

Also Published As

Publication number Publication date
CN1281846C (zh) 2006-10-25
AR027331A1 (es) 2003-03-26
NO20023571L (no) 2002-10-14
AU3697801A (en) 2001-08-27
CA2397460A1 (fr) 2001-08-23
OA12171A (en) 2006-05-08
WO2001061146B1 (fr) 2001-11-29
PL365452A1 (en) 2005-01-10
BR0108418A (pt) 2004-01-06
CO5300472A1 (es) 2003-07-31
MY132567A (en) 2007-10-31
MXPA02007728A (es) 2002-10-11
PL196155B1 (pl) 2007-12-31
EP2282002A2 (fr) 2011-02-09
EP1264075A1 (fr) 2002-12-11
NO20023571D0 (no) 2002-07-26
CA2397460C (fr) 2009-07-07
DK2282002T3 (da) 2012-10-15
EP2282002A3 (fr) 2011-05-04
NZ520310A (en) 2004-08-27
EG23117A (en) 2004-04-28
NO330514B1 (no) 2011-05-09
CN1416499A (zh) 2003-05-07
EP1264075A4 (fr) 2004-08-11
TNSN01026A1 (fr) 2003-04-03
RO121145B1 (ro) 2006-12-29
EP1264075B1 (fr) 2018-06-20
PE20011019A1 (es) 2001-10-24
AU2001236978B2 (en) 2004-12-23
BR0108418B1 (pt) 2010-06-29
WO2001061146A1 (fr) 2001-08-23
EA200200857A1 (ru) 2003-04-24
EA004100B1 (ru) 2003-12-25
DZ3378A1 (fr) 2001-08-23

Similar Documents

Publication Publication Date Title
EP2282002B1 (fr) Procédé et dispositif de stimulation de plusieurs intervalles de formation
US7059407B2 (en) Method and apparatus for stimulation of multiple formation intervals
AU2001236978A1 (en) Method and apparatus for stimulation of multiple formation intervals
EP1305501B1 (fr) Procede pour traiter les intervalles multiples dans un trou de forage
US9963955B2 (en) Assembly and method for multi-zone fracture stimulation of a reservoir using autonomous tubular units
AU2001276926A1 (en) Method for treating multiple wellbore intervals
EP2935771B1 (fr) Procédé et appareil pour traiter une région souterraine
Afghoul et al. Coiled tubing: the next generation
UA74818C2 (en) Method and apparatus for intensification of multiple intervals of formation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101001

AC Divisional application: reference to earlier application

Ref document number: 1264075

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE DK GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE DK GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EXXONMOBIL UPSTREAM RESEARCH COMPANY

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1264075

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60146829

Country of ref document: DE

Effective date: 20120906

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

26N No opposition filed

Effective date: 20130412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60146829

Country of ref document: DE

Effective date: 20130412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200130

Year of fee payment: 20

Ref country code: GB

Payment date: 20200130

Year of fee payment: 20

Ref country code: DK

Payment date: 20200128

Year of fee payment: 20

Ref country code: DE

Payment date: 20200115

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60146829

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Expiry date: 20210214

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210213

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210213