EP2281107B1 - Engine with a variable volume chamber - Google Patents

Engine with a variable volume chamber Download PDF

Info

Publication number
EP2281107B1
EP2281107B1 EP09726995A EP09726995A EP2281107B1 EP 2281107 B1 EP2281107 B1 EP 2281107B1 EP 09726995 A EP09726995 A EP 09726995A EP 09726995 A EP09726995 A EP 09726995A EP 2281107 B1 EP2281107 B1 EP 2281107B1
Authority
EP
European Patent Office
Prior art keywords
piston
engine
chamber
cylinder
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09726995A
Other languages
German (de)
French (fr)
Other versions
EP2281107A2 (en
Inventor
Antar Daouk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2281107A2 publication Critical patent/EP2281107A2/en
Application granted granted Critical
Publication of EP2281107B1 publication Critical patent/EP2281107B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/04Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • F01B7/04Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons acting on same main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/045Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable connecting rod length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes

Definitions

  • the present invention relates to the general technical field of motors, and in particular engines whose operation is based on the variation of volume of a chamber (for example by compression and expansion of a working fluid within the chamber) such engines providing mechanical energy usable for example to propel vehicles (such as automobiles, motorcycles, aircraft or boats), to animate machines (industrial or agricultural), or to provide mechanical energy energy conversion devices, like generators.
  • Engines using a chamber whose volume variation is used to supply mechanical energy to a receiving system are known for a long time and widespread, since internal combustion engines (or “ engines engines "), which equip the cars, based on such a principle of operation.
  • the architecture of these engines is generally blasé on the implementation of a cylinder which is closed in its upper part by a cylinder head.
  • the cylinder and the cylinder head form a combustion chamber whose volume is defined by the stroke of a piston sliding in the cylinder in a reciprocating movement imparted by the pressure variations resulting from the combustion cycles operated in the chamber. of combustion.
  • the piston is itself connected to a crankshaft, via a connecting rod, to transform the rectilinear translation movement of the piston into rotational movement of the crankshaft.
  • This known engine architecture generally gives satisfaction, but has no less serious disadvantages.
  • these known motors use a relatively heavy and complex mechanical and kinematic chain of transmission and force transfer between the pistons and the output shaft. This is, of course, a potential source of failure and loss of energy efficiency, and is not intended to increase reliability or reduce cost.
  • these known motors implement a large number of moving parts, which corresponds to a mass in motion, likely again to cause problems of efficiency and reliability.
  • These known engines also prove to be also relatively heavy and bulky, so that their location within a vehicle, and particularly within a motor vehicle of the particular car type can be problematic, especially with respect to correct positioning of the center of gravity of the engine in the vehicle.
  • the efficiency of these known engines is not optimal in the different modes of use of the engine, which leads to overconsumption of fuel. In order to remedy this latter problem, it has been proposed to adapt the volume of the combustion chamber according to the level of stress on the engine.
  • variable compression ratio engines or " VCR” engines (for " Variable Compression Ratio "), in as the compression ratio of the air / fuel mixture in the combustion chamber varies with the volume of said chamber.
  • VCR Variable Compression Ratio
  • These variable compression engines thus allow an optimization of the efficiency compared to conventional explosion engines, and avoid (or at least minimize) the appearance of undesirable phenomena such as rattling.
  • the known variable compression engines also suffer from the drawbacks mentioned above with regard to conventional combustion engines.
  • the invention therefore aims to remedy the various disadvantages listed above and to propose a new engine whose performance is optimized and whose architecture is particularly simple, lightweight and reliable.
  • Another object of the invention is to provide a new construction engine particularly compact and robust.
  • Another object of the invention is to propose a new engine of particularly simple design and easy to manufacture.
  • Another object of the invention is to propose a new motor which is economical to manufacture.
  • Another object of the invention is to propose a new engine whose operation is based on simple and proven mechanical principles.
  • Another object of the invention is to propose a new motor whose construction particularly limits the occurrence of undesirable vibratory and acoustic phenomena.
  • Another object of the invention is to propose a new motor implementing a minimum moving mass and likely to provide important intake and / or exhaust sections.
  • Another object of the invention is to propose a new engine that implements a minimum of different parts.
  • the invention relates to an engine, that is to say a device capable of providing a mechanical work usable in particular for propelling a vehicle, and for example a motor vehicle, a motorcycle, an aircraft or a boat, or for operating a machine (machine tool, public works machine, agricultural machine, pump, compressor) or an energy conversion device, such as a generator.
  • a machine machine tool, public works machine, agricultural machine, pump, compressor
  • an energy conversion device such as a generator.
  • the engine 1 preferably constitutes an internal combustion engine (“internal combustion engine "), that is to say a motor capable of to produce mechanical energy from the combustion therein of a working fluid containing a fuel, and for example a hydrocarbon-based fuel such as gasoline.
  • internal combustion engine a motor capable of to produce mechanical energy from the combustion therein of a working fluid containing a fuel, and for example a hydrocarbon-based fuel such as gasoline.
  • the invention is however not limited to combustion engines and may relate to a motor whose operation is not based on the combustion of a fuel, as is the case for example with compressed air engines.
  • the engine 1 comprises at least the following three components: a cylinder 2, a first piston 4 and a rotary output shaft 8.
  • the cylinder 2 contributes to delimit a chamber 3 whose volume varies between a minimum value and a maximum value.
  • the volume of the chamber 3 varies cyclically during the operation of the engine 1, so that the volume of the chamber 3 passes alternately and continuously from its minimum value to its maximum value and vice versa.
  • the chamber 3 forms a combustion chamber designed to accommodate a working fluid intended to undergo combustion within said chamber 3.
  • the working fluid is therefore in this case a combustible fluid and it is preferably formed of a gas consisting of a mixture of air and vaporized fuel. This gas is intended to undergo a rapid combustion, and more precisely an explosion (or even more precisely a deflagration), within the chamber 3.
  • the fuel may for example consist of a petroleum derivative, it being understood that the invention is absolutely not limited to a specific working fluid.
  • the variation of the volume of the chamber 3 is thus generated, in the example illustrated in the figures and as is well known per se, by the variation of the volume of the working fluid present in the chamber 3, under the effect of the combustion phenomenon (which causes a relaxation of the working fluid).
  • the cylinder 2 is for example, as illustrated in the figures, in the form of a hollow tube, preferably rectilinear, of longitudinal axis X-X 'extension.
  • the cylinder 2 has a substantially circular section. It is however quite possible that the cylinder 2 has a non-circular section, and for example a polygonal section, without departing from the scope of the invention.
  • the inner wall 20 of the cylinder 2 contributes to define, in the embodiment illustrated in the figures, the chamber 3.
  • the cylinder 2 is preferably made of a material having a high mechanical and thermal strength, such as for example a metal material of the cast iron or aluminum alloy type, so as to overcome the thermal and mechanical stresses resulting fuel combustion within the chamber 3.
  • the first piston 4 is designed to slide in the cylinder 2 in a reciprocating movement under the effect of the volume variation of the chamber 3.
  • the first piston 4 is threaded inside the cylinder 2 and is tightly fitted against the inner wall 20 of the cylinder 2, so as to slide within the cylinder 2 along the axis X-X ', while remaining permanently in sealing contact with the inner wall 20 of said cylinder 2.
  • the configuration A is very particularly preferred because it allows easy implementation of the engine 1, and is generally more reliable and easy to manufacture than the configuration B. realization of the sealed contact between the first piston 4 and the inner wall 20 of the cylinder 2 can be achieved by any means known to those skilled in the art, taking up and adapting for example the well known technical solutions and Proven implemented in the prior art.
  • the first piston 4 advantageously has a head 4A which contributes to delimit the chamber 3.
  • the head 4A preferably has a cross section which is complementary to the internal cross section of the cylinder 2, this section preferably being a circular section as in the examples illustrated in the figures.
  • the first piston 4 further comprises a skirt 4B which extends from and to the periphery of the head 4A.
  • the first piston 4 has a longitudinal axis of extension Y-Y ', which corresponds to the axis of symmetry of the cross section of the head 4A of said piston.
  • the axis longitudinal YY 'of the first piston 4 is advantageously coincides with the extension axis XX' of the cylinder 2 when the first piston 4 is installed in a functional position inside the cylinder 2, as illustrated in FIG. figure 2 .
  • the first piston 4 is designed to slide in the cylinder 2 in a pure axial translation movement, that is to say that said first piston 4 is guided relative to the cylinder 2 to be able to move in longitudinal translation, parallel to the axis X-X ', without rotation of the first piston 4 on itself.
  • the first piston 4 is in this case mechanically linked to the cylinder 2 by a slide connection.
  • this sliding connection which allows the first piston 4 to slide in the cylinder 2 in a substantially pure rectilinear translational movement, is achieved by the cooperation of at least one slide 4C mounted on the first piston 4 and a corresponding slide 2A formed in the cylinder 2 and extending substantially parallel to the axis XX 'longitudinal extension of said cylinder 2.
  • the first piston 4 is provided with two sliders arranged diametrically opposite on the piston relative to the axis YY 'of symmetry of this last.
  • each slide advantageously comprises a roller 40C rotatably mounted on an axis 400C itself mounted in an orifice formed through the skirt. 4B, so that said axis 400C extends substantially radially relative to the extension axis XX 'of the first piston 4.
  • Each roller 40C is designed to roll in the corresponding slide 2A, which advantageously consists, as illustrated in the figures, in a rectilinear groove formed in the inner wall 20 of the cylinder 2, on the surface of said inner wall 20, facing the corresponding roller.
  • the invention is however absolutely not limited to the implementation of a first piston 4 mounted in a slide connection in the cylinder 2. It is for example quite possible without leaving the frame of the invention, the first piston 4 undergoes, during its movement back and forth, a rotation on itself about its axis YY ', so that the movement of the first piston 4 in the cylinder 2 is in this case not a pure axial translation movement but a helical translation movement (sub-configuration A2).
  • the rotary output shaft 8 preferably has a rectilinear character and extends along a longitudinal axis Z-Z ', in which it is designed to rotate.
  • the output shaft 8 is preferably mounted coaxially with the first piston 4, so that the X-X ', Y-Y' and Z-Z 'axes are advantageously combined.
  • the output shaft 8 passes through the first piston 4, that is to say that said first piston 4 is threaded on the output shaft 8.
  • the first piston 4 is provided with an orifice through which the output shaft 8 passes, the interface between the first piston 4 and the output shaft 8 preferably being sealed.
  • the engine 1 comprises a first conversion means of said first relative reciprocating movement in rotary motion of the output shaft 8, and more preferably in continuous rotary motion, in a single direction of rotation. , of the output shaft 8.
  • the first conversion means comprises on the one hand a substantially corrugated first guiding path 9 integral with one of said three components (cylinder 2, first piston 4 or output shaft 8) and on the other hand a first guiding element. 10 which is adapted to move along said first guide path 9 and which is integral with another of said three components.
  • the invention thus relates to several constructive variants, the main ones are summarized in Table 2 below.
  • the cooperation between the first guide path 9 and the first guide element 10 is reciprocal, that is to say that it not only makes it possible to convert the relative movement of reciprocating piston 4 / 2 cylinder in rotary motion of the output shaft 8, but also to convert the rotary motion of the output shaft 8 in relative motion of reciprocating piston 4 / cylinder 2.
  • the example illustrated in the figures corresponds to variant A11 of Table 2 above.
  • the output shaft 8 is fitly fitted into the central orifice formed through the first piston 4 to allow the latter to slide along the output shaft 8 while remaining in sealing contact with said output shaft 8, and thus avoid any communication between the inside of the chamber 3 and the outside through the interface between the output shaft 8 and the first piston 4.
  • the first path guide 9 is integral with the output shaft, while the first guide element 10 is integral with the first piston 4.
  • Such a design avoids the implementation of force references according to different working axes, as in the prior art, and allows on the contrary a direct transmission of the action of the first piston 4 on the output shaft 8.
  • the first piston 4 directly drives the output shaft 8 in rotation, which gives the engine 1 a particularly compact character, the latter can thus be easily integrated into the chassis of a vehicle.
  • Such a design is also likely to improve the center of gravity of the vehicle due to the essentially longitudinal nature of the engine 1, which allows the positioning of said engine 1 along the axis of symmetry of said vehicle.
  • the first guide path 9 has a substantially sinusoidal shape. More precisely, in the example illustrated in the figures, the first guide path 9 extends along an annular profile around the longitudinal extension axis Z-Z'-of the output shaft 8.
  • the first guide path 9 comprises a first groove while the first guide member 10 comprises a first finger which protrudes from the first piston 4 and engages in said first groove.
  • the first guide member 10 comprises two fingers arranged diametrically opposite relative to the Y-axis Y 'and engaging the same first groove.
  • the first finger advantageously comprises a roller 10A rotatably mounted on an axis itself mounted in an orifice formed through the skirt 4B, so that that said axis extends substantially radially with respect to the extension axis XX 'of the piston 4.
  • the axis in question corresponds to the axis 400C on which the roller 40C is mounted.
  • the roller 10A is mounted on the axis 400C, inside the skirt 4B, to engage the corresponding sinusoidal groove, while the roller 40C is mounted on the same axis 400C, outside the skirt 4B, to engage the corresponding rectilinear groove 2A.
  • the motor 1 further comprises a first member 5 for adjusting the position of the first guide path 9 and / or the first guide element 10 relative ai (x) component (s) which he (they) is (are) integral (s), to set the minimum value and / or the maximum value of the volume of the chamber 3.
  • the invention therefore relates in particular to the alternative sub-variants mentioned in Table 3 below.
  • Table 3 ⁇ / u> Variant (see Table 2)
  • Sub - variant Medium (s) whose position is adjusted by the adjusting member 5 Value (s) of chamber volume set by regulator 5
  • A11 A111 First guide path Minimum and maximum values
  • A11 First guide path Minimum value
  • A11 First guide path Minimum value
  • A11 First guide path Maximum value
  • A11 First guide element Minimum and maximum values
  • A11 A115 First guide element Minimum value
  • A11 A116 Maximum value
  • A11 A118 First path and guide element Minimum value
  • Minimum value A11 A119 First path and guide element Maximum value AT 12 A121 First guide path Minimum and maximum values AT 12 A122 First guide path Minimum value AT 12 A123 First guide path Maximum value AT 12 A124 First element of quidage Minimum and maximum values AT 12 A125 First guide element Minimum value AT 12 A126 First guide element Maximum value AT 12 A127 First path and guide element Minimum and maximum values
  • the invention is thus based on the idea of adjusting the position of the guide path 9 and / or the guide element 10 to adjust the volume of the chamber 3, which allows to adjust in particular the compression ratio.
  • the invention makes it possible to obtain a variable compression ratio motor 1 of particularly simple, compact and reliable construction.
  • acting directly on the position of the guide path 9 and / or the guide element 10 proves to be a particularly simple and effective technical measure for accurately adjusting the compression ratio, even during operation. of the engine 1.
  • the exemplary embodiment illustrated in the figures corresponds to the subvariant A111 (see Table 3 above).
  • the first-setting member 5 is designed to adjust the position of the first path of 9 relative to the output shaft 8, which means that the first guide path is movable relative to said output shaft 8, while being attached thereto to transmit to the shaft 8 the movement (converted) of the first piston 4.
  • the guide element 10 is in turn fixed in position relative to the component that carries it, namely the first piston 4.
  • the adjustment member 5, allowing to adjust the position of the first guide path 9 relative to the output shaft 8, makes it possible to set both the minimum value and the maximum value of the volume of the chamber 3.
  • the first piston 4 performs a back-and-forth movement of predetermined amplitude (imparted by the shape of the guide path 9) around a median position.
  • the adjustment member 5 is designed in this case to move this median position, which amounts to shift the alternating stroke of the first piston 4 and thus to simultaneously change the minimum value and the maximum value of the volume of the chamber 3.
  • the invention is not limited to such a mode of operation and it is quite possible that the adjustment member 5 acts only on the maximum value or on the minimum value of the volume of the chamber 3, by example by operating in a timely manner a displacement of the guide path 9 and / or the guide element 10) to maintain the minimum value or the constant maximum value.
  • the first adjustment member 5 advantageously comprises a first adjustment piece 6 (illustrated alone on FIG. figure 4 ) slidably mounted on and along the output shaft 8, said first part 6 carrying the first guide path 9.
  • the first guide piece 6 is advantageously in the form of a sleeve 6A which extends longitudinally along an axis W-W '. Said sleeve 6A is threaded on the output shaft 8, coaxially with the latter, so that the axes X-X ', Y-Y', ZZ 'and WW' are substantially merged.
  • the sleeve 6A is guided in a pure axial translation movement on the output shaft 8, that is to say that the output shaft 8 and the sleeve 6A are connected by a mechanical link of the slide type.
  • the sleeve 6A is for example provided with an oblong hole 7, which is intended to cooperate with a pin 17 fixed directly on the output shaft 8 and protruding radially from the latter.
  • the pin 17 is received in the oblong hole 7, so that the cooperation between the pin 17 and the oblong hole 7 provides a guide in translation of the sleeve 6A on the output shaft 8.
  • the sleeve 6A can thus slide on the output shaft 8, in a race whose amplitude corresponds to the length of the oblong hole 7.
  • the length of the oblong hole 7 is in turn determined with respect to the desired adjustment range of the minimum and maximum values of the volume of the room 3.
  • the first adjustment member 5 comprises firstly a threaded well 18 which is fixed to the cylinder 2 and which is coaxial with the output shaft 8 and on the other hand a threaded tube 19 attached at a first end thereof to the first adjusting member 6, said threaded tube 19 being capable of being screwed and unscrewed into the threaded well 18 to vary the position of the first piece 6 relative to the output shaft 8, which is fixedly mounted relative to the cylinder 2. More specifically, the threaded tube 19 is threaded coaxially on the output shaft 8, so as to freely rotate relative thereto around of the Y-Y 'axis.
  • the tube 19 is preferably provided, towards its end attached to the first adjusting member 6, a needle stop 19A which provides the connection between the threaded tube 19 and the sleeve 6A.
  • the second end of the threaded tube 19, opposite the first end attached to the sleeve 6, is provided with a gear 19B for driving in rotation of the threaded tube 19.
  • This toothed wheel 19B is it - Even designed to be rotated by a control system (not shown in the figures) mechanical and / or electrical.
  • the control system may for example comprise an electric motor provided with a pinion which meshes with the toothed wheel 19B.
  • the control system can draw its motive power directly from the output shaft 8.
  • the engine 1 comprises a management module of the control system of the gear wheel 19B, said management module being preferably designed to automatically adjust, continuously and permanently the compression ratio (by setting the minimum and / or maximum values of the volume of the chamber 3) as a function of the stresses and / or the speed of the engine 1, to optimize in particular the torque, the speed and the efficiency of the engine 1.
  • the management module preferably comprises for this purpose sensors that collect information on the instantaneous operation of the engine 1 and a computer (microprocessor) that processes this information to provide to the control system an order of rotation of the toothed wheel19B in one direction or the other, to change the position of the travel path guidance 9 and thus the compression ratio of the engine 1.
  • the computer can thus be programmed to greatly increase the compression ratio at the beginning of acceleration, so that the engine 1 provides a high torque, then reduce the rate of compression. compression to regain torque at high speed.
  • the engine 1 comprises a second piston 14 which also contributes to defining the volume of the chamber 3, said second piston 14 and cylinder 2 being designed to undergo a second relative movement back and forth under the effect of the variation of the volume of the chamber 3.
  • the engine 1 thus comprises in this case a cylinder 2 in which the first and the second piston 4, 14 are mounted to slide axially.
  • the chamber 3 is preferably formed by the interstitial space separating the first and the second piston 4, 14 in the cylinder 2.
  • the chamber 3 corresponds in this case to the free space of variable volume located inside the cylinder 2, between the pistons 4, 14.
  • the first and second pistons 4 , 14 are mounted in opposition within the cylinder 2, that is to say so that their respective heads 4A, 14A face each other.
  • the chamber 3 thus extends in the space delimited axially by the heads 4A, 14A of the first and second pistons 4, 14 and radially by the internal wall 20 of the cylinder 2 extending between said heads 4A, 14A of said pistons 4, 14.
  • the chamber 3 thus has a variable volume which depends on the relative position of the first and second piston 4, 14.
  • the first piston 4 and the second piston 14 are designed to move according to movements counter-movement in the cylinder (which is in this case fixed), so that said pistons 4, 14 move toward and away from each other substantially simultaneously (the first and second movements back and forth are opposed).
  • the first piston 4 and the second piston 14 move symmetrically with respect to the median plane of the chamber 3, perpendicular to the axis X-X '.
  • each piston 4, 14 is designed to move in the cylinder 2 individually, that is to say independently of the other piston 14, 4.
  • the second piston 14 is identical to the first piston 4 and it is also mounted in the motor 1 identically to said first piston 4.
  • the output shaft 8 is also mounted coaxially with the second piston 14, the output shaft 8 and the second piston 14 cooperating to convert the movement of the second piston 14 into rotary movement of the output shaft 8.
  • the engine 1 comprises a second conversion means of said second relative movement of va-and - comes in rotary motion from the output shaft 8.
  • Said second conversion means comprises on the one hand a second substantially corrugated guide path 15 integral with one of the following three elements: cylinder 2, output shaft 8 and second piston 14 and secondly a second guide element 16 which is adapted to move along said second guide path 15 and which is integral with another of said three elements.
  • said motor 1 further comprises a second adjustment member 50 for the position of the second guide path 15 and / or the second guide element 16 relative to the element (s) of which it (s) is (are) integral, to set the minimum value and / or the maximum value of the volume of the chamber 3.
  • the motor 1 has an overall symmetry even compared to the median plane of the chamber 3, c that is to say the plane passing through the center of the chamber 3 and which is perpendicular to the axis XX 'of longitudinal extension of the cylinder 2.
  • the invention also relates as such to a vehicle, of the motor vehicle type, equipped with a motor 1 according to the invention.
  • the invention finds its industrial application in the design, manufacture and use of motors.

Abstract

The invention relates to an engine including: - a cylinder that contributes to define a chamber (3), - a first piston (4), said first piston (4) and cylinder are subjected to a first relative back-and-forth motion, - an output shaft (8), - a second piston (14), said second piston (4) and cylinder are subjected to a second relative back-and-forth motion, said output shaft (8) mounted coaxially to said pistons (4, 14), - a first means for converting (5) said first relative back-and-forth movement into rotational motion of the output shaft (8), including, on one side, a first corrugated guide track (9) and, on the other side, a first guide element (10) designed to move along said guide track (9), - a first adjustment member (5) to position the first guide track (9).

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention se rapporte au domaine technique général des moteurs, et en particulier des moteurs dont le fonctionnement est basé sur la variation de volume d'une chambre (par exemple par compression et détente d'un fluide de travail au sein de la chambre), de tels moteurs fournissant une énergie mécanique utilisable par exemple pour propulser des véhicules (tels que des automobiles, des motocyclettes, des aéronefs ou des bateaux), pour animer des machines (industrielles ou agricoles), ou encore pour fournir de l'énergie mécanique à des dispositifs de conversion d'énergie, du genre groupes électrogènes.The present invention relates to the general technical field of motors, and in particular engines whose operation is based on the variation of volume of a chamber (for example by compression and expansion of a working fluid within the chamber) such engines providing mechanical energy usable for example to propel vehicles (such as automobiles, motorcycles, aircraft or boats), to animate machines (industrial or agricultural), or to provide mechanical energy energy conversion devices, like generators.

L'invention concerne plus précisément un moteur comprenant au moins les trois composants suivants :

  • un cylindre qui contribue à délimiter une chambre dont le volume varie entre une valeur minimale et une valeur maximale,
  • un premier piston contribuant lui aussi à délimiter ladite chambre, lesdits premier piston et cylindre étant conçus pour-subir un premier mouvement relatif de va-et-vient sous l'effet de la variation du volume de la chambre,
  • et un arbre de sortie rotatif.
The invention more specifically relates to an engine comprising at least the following three components:
  • a cylinder which contributes to delimit a chamber whose volume varies between a minimum value and a maximum value,
  • a first piston also contributing to define said chamber, said first piston and cylinder being designed to undergo a first relative back-and-forth movement under the effect of the variation of the volume of the chamber,
  • and a rotary output shaft.

TECHNIQUE ANTERIEUREPRIOR ART

Les moteurs mettant en oeuvre une chambre dont la variation de volume est exploitée pour fournir de l'énergie mécanique à un système récepteur (voiture, machine ou autre) sont connus de longue date et largement répandus, puisque les moteurs à combustion interne (ou « moteurs à explosion »), qui équipent les voitures automobiles, reposent sur un tel principe de fonctionnement.Engines using a chamber whose volume variation is used to supply mechanical energy to a receiving system (car, machine or other) are known for a long time and widespread, since internal combustion engines (or " engines engines "), which equip the cars, based on such a principle of operation.

L'architecture de ces moteurs à explosion est généralement blasée sur la mise en oeuvre d'un cylindre qui est fermé dans sa partie supérieure par une culasse. Le cylindre et la culasse forment une chambre de combustion dont le volume est défini par la course d'un piston coulissant dans le cylindre selon un mouvement de va-et-vient imparti par les variations de pression résultant des cycles de combustion opérés dans la chambre de combustion. Le piston est lui-même relié à un vilebrequin, par l'intermédiaire d'une bielle, pour transformer le mouvement de translation rectiligne du piston en mouvement de rotation du vilebrequin.The architecture of these engines is generally blasé on the implementation of a cylinder which is closed in its upper part by a cylinder head. The cylinder and the cylinder head form a combustion chamber whose volume is defined by the stroke of a piston sliding in the cylinder in a reciprocating movement imparted by the pressure variations resulting from the combustion cycles operated in the chamber. of combustion. The piston is itself connected to a crankshaft, via a connecting rod, to transform the rectilinear translation movement of the piston into rotational movement of the crankshaft.

Cette architecture de moteur connue donne généralement satisfaction, mais n'en présente pas moins de sérieux inconvénients. En particulier, ces moteurs connus mettent en oeuvre une chaîne mécanique et cinématique relativement lourde et complexe de transmission et de renvoi d'effort entre les pistons et l'arbre de sortie. Cela constitue bien entendu une source potentielle de défaillance et de perte de rendement énergétique, et ne va pas dans le sens d'une augmentation de la fiabilité ni d'une réduction du prix de revient. En outre, ces moteurs connus mettent en oeuvre un grand nombre de pièces en mouvement, ce qui correspond à une masse en mouvement importante, susceptible là encore d'engendrer des problèmes d'efficacité et de fiabilité. Ces moteurs connus s'avèrent par ailleurs être également relativement lourds et encombrants, de sorte que leur implantation au sein d'un véhicule, et notamment au sein d'un véhicule automobile du genre voiture particulière peut s'avérer problématique, notamment en regard du positionnement correct du centre de gravité du moteur dans le véhicule. Enfin, le rendement de ces moteurs connus n'est pas optimal dans les différents modes d'utilisation du moteur, ce qui conduit à une surconsommation de carburant. Afin de remédier à ce dernier problème, il a été proposé d'adapter le volume de la chambre de combustion en fonction du niveau de sollicitation du moteur.This known engine architecture generally gives satisfaction, but has no less serious disadvantages. In particular, these known motors use a relatively heavy and complex mechanical and kinematic chain of transmission and force transfer between the pistons and the output shaft. This is, of course, a potential source of failure and loss of energy efficiency, and is not intended to increase reliability or reduce cost. In addition, these known motors implement a large number of moving parts, which corresponds to a mass in motion, likely again to cause problems of efficiency and reliability. These known engines also prove to be also relatively heavy and bulky, so that their location within a vehicle, and particularly within a motor vehicle of the particular car type can be problematic, especially with respect to correct positioning of the center of gravity of the engine in the vehicle. Finally, the efficiency of these known engines is not optimal in the different modes of use of the engine, which leads to overconsumption of fuel. In order to remedy this latter problem, it has been proposed to adapt the volume of the combustion chamber according to the level of stress on the engine.

Les moteurs à explosion ainsi modifiés pour permettre un réglage dynamique du volume de la chambre de combustion sont généralement désignés par l'appellation « moteurs à taux de compression variable » ou encore moteurs « VCR » (pour « Variable Compression Ratio »), dans à mesure où le taux de compression du mélange air/carburant dans la chambre de combustion varie avec le volume de ladite chambre. Ces moteurs à compression variable permettent ainsi une optimisation du rendement par rapport aux moteurs à explosion classiques, et évitent (ou du moins minimisent) l'apparition de phénomènes indésirables tels que le cliquetis. Les moteurs à compression variable connus souffrent cependant eux aussi des inconvénients mentionnés ci-avant en ce qui concerne les moteurs à explosion classiques. Ces inconvénients sont même accentués puisque la réalisation d'une chambre à taux de compression variable est généralement obtenue, dans les moteurs VCR connus, par la mise en oeuvre de systèmes mécaniques complexes de contrôle de la course des-pistons, qui non seulement alourdissent le moteur et en affectent la fiabilité, mais sont également susceptibles d'entraîner l'apparition de phénomènes vibratoires et acoustiques indésirables. De surcroît, l'industrialisation de ces moteurs VCR connus s'avère délicate, ce qui conduit à une augmentation sensible du prix de revient du moteur.The combustion engines thus modified to allow a dynamic adjustment of the volume of the combustion chamber are generally designated by the term " variable compression ratio engines" or "VCR" engines (for " Variable Compression Ratio "), in as the compression ratio of the air / fuel mixture in the combustion chamber varies with the volume of said chamber. These variable compression engines thus allow an optimization of the efficiency compared to conventional explosion engines, and avoid (or at least minimize) the appearance of undesirable phenomena such as rattling. However, the known variable compression engines also suffer from the drawbacks mentioned above with regard to conventional combustion engines. These disadvantages are even accentuated since the realization of a variable compression ratio chamber is generally obtained, in known VCR engines, by the implementation of complex mechanical control systems of the piston stroke, which not only weigh down the motor and affect the reliability, but are also likely to cause the appearance of undesirable vibration and acoustic phenomena. In addition, the industrialization of these known VCR engines proves tricky, which leads to a significant increase in the cost price of the engine.

EXPOSE DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention vise en conséquence à porter remède aux différents inconvénients énumérés précédemment et à proposer un nouveau moteur dont le rendement est optimisé et dont l'architecture est particulièrement simple, légère et fiable.The invention therefore aims to remedy the various disadvantages listed above and to propose a new engine whose performance is optimized and whose architecture is particularly simple, lightweight and reliable.

Un autre objet de l'invention est de proposer un nouveau moteur de construction particulièrement compacte et robuste.Another object of the invention is to provide a new construction engine particularly compact and robust.

Un autre objet de l'invention est de proposer un nouveau moteur de conception particulièrement simple et de fabrication facile.Another object of the invention is to propose a new engine of particularly simple design and easy to manufacture.

Un autre objet de l'invention est de proposer un nouveau moteur qui est économique à fabriquer.Another object of the invention is to propose a new motor which is economical to manufacture.

Un autre objet de l'invention est de proposer un nouveau moteur dont le fonctionnement repose sur des principes mécaniques simples et éprouvés.Another object of the invention is to propose a new engine whose operation is based on simple and proven mechanical principles.

Un autre objet de l'invention est de proposer un nouveau moteur dont la construction limite particulièrement l'occurrence de phénomènes vibratoires et acoustiques indésirables.Another object of the invention is to propose a new motor whose construction particularly limits the occurrence of undesirable vibratory and acoustic phenomena.

Un autre objet de l'invention vise à proposer un nouveau moteur mettant en oeuvre une masse en mouvement minimale et susceptible de procurer des sections d'admission et/ou d'échappement importantes.Another object of the invention is to propose a new motor implementing a minimum moving mass and likely to provide important intake and / or exhaust sections.

Un autre objet de l'invention vise à proposer un nouveau moteur qui mette en oeuvre un minimum de pièces différentes.Another object of the invention is to propose a new engine that implements a minimum of different parts.

Les objets assignés à l'invention sont atteints à l'aide d'un moteur comprenant au moins les trois composants suivants :

  • un cylindre qui contribue à délimiter une chambre dont le volume varie entre une valeur minimale et une valeur maximale,
  • un premier piston contribuant lui aussi à délimiter ladite chambre, lesdits premier piston et cylindre étant conçus pour subir un premier mouvement relatif de va-et-vient sous l'effet de la variation du volume de la chambre,
  • un arbre de sortie rotatif,
ledit moteur comprenant en outre :
  • un deuxième piston qui contribue également à délimiter le volume de ladite chambre, lesdits deuxième piston et cylindre étant conçus pour subir un deuxième mouvement relatif de va-et-vient sous l'effet de la variation du volume de la chambre, ledit arbre de sortie étant monté coaxialement auxdits premier et deuxième pistons,
  • un premier moyen de conversion dudit premier mouvement relatif de va-et-vient en mouvement rotatif de l'arbre de sortie, comprenant d'une part un premier chemin de guidage sensiblement ondulé solidaire de l'un desdits trois composants et d'autre part un premier élément de guidage qui est conçu pour se déplacer le long dudit premier chemin de guidage et qui est solidaire d'un autre desdits trois composants,
  • un premier organe de réglage de la position du premier chemin de guidage et/ou du premier élément de guidage relativement au(x) composant(s) dont il(s) est (sont) solidaire(s), pour régler la valeur minimale et/ou la valeur maximale du volume de la chambre.
The objects assigned to the invention are achieved by means of an engine comprising at least the following three components:
  • a cylinder which contributes to delimit a chamber whose volume varies between a minimum value and a maximum value,
  • a first piston also contributing to define said chamber, said first piston and cylinder being designed to undergo a first relative reciprocating movement under the effect of the variation of the volume of the chamber,
  • a rotary output shaft,
said engine further comprising:
  • a second piston which also contributes to defining the volume of said chamber, said second piston and cylinder being designed to undergo a second relative back-and-forth movement under the effect of the variation of the volume of the chamber, said output shaft being mounted coaxially with said first and second pistons,
  • first conversion means of said first relative reciprocating movement in rotary motion of the output shaft, comprising on the one hand a first substantially corrugated guide path secured to one of said three components and secondly a first guide member which is adapted to move along said first guide path and which is integral with another one of said three components,
  • a first member for adjusting the position of the first guide path and / or the first guide element relative to the component (s) of which it (they) is (are) integral, to set the minimum value and / or the maximum value of the volume of the chamber.

DESCRIPTIF SOMMAIRE DES DESSINSSUMMARY DESCRIPTION OF THE DRAWINGS

D'autres objets et avantages de l'invention apparaîtront plus en détails à la lecture de la description qui suit, en référence aux dessins annexés, donnés à titre purement illustratif et non limitatif, dans lesquels :

  • La figure 1 est un schéma de principe, selon une vue de côté en coupe partielle, d'un exemple de moteur conforme à l'invention.
  • La figure 2 illustre, selon une vue de côté en coupe partielle, un exemple de moteur à combustion selon l'invention, correspondant au principe constructif de la figure 1.
  • La figure 3 illustre, selon une vue en perspective, le moteur de la figure 2 sans son cylindre.
  • La figure 4 illustre, selon une vue en perspective, un détail de conception du moteur des figures 2 et 3.
Other objects and advantages of the invention will appear in more detail on reading the description which follows, with reference to the appended drawings, given purely by way of non-limiting illustration, in which:
  • The figure 1 is a block diagram, according to a side view in partial section, of an exemplary motor according to the invention.
  • The figure 2 illustrates, in a partial sectional side view, an example of a combustion engine according to the invention, corresponding to the constructive principle of the figure 1 .
  • The figure 3 illustrates, in a perspective view, the engine of the figure 2 without his cylinder.
  • The figure 4 illustrates, in a perspective view, a design detail of the engine of figures 2 and 3 .

MEILLEURE MANIERE DE REALISER L'INVENTIONBEST MODE OF REALIZING THE INVENTION

L'invention concerne un moteur, c'est-à-dire un dispositif capable de fournir un travail mécanique utilisable notamment pour propulser un véhicule, et par exemple un véhicule automobile, une motocyclette, un aéronef ou un bateau, ou encore pour faire fonctionner une machine (machine-outil, machine de travaux publics, machine agricole, pompe, compresseur) ou un dispositif de conversion énergétique, tel qu'un générateur.The invention relates to an engine, that is to say a device capable of providing a mechanical work usable in particular for propelling a vehicle, and for example a motor vehicle, a motorcycle, an aircraft or a boat, or for operating a machine (machine tool, public works machine, agricultural machine, pump, compressor) or an energy conversion device, such as a generator.

Le moteur 1 conforme à l'invention constitue de préférence un moteur à combustion interne (« moteur à explosion »), c'est-à-dire un moteur capable de produire de l'énergie mécanique à partir de la combustion en son sein d'un fluide travail contenant un carburant, et par exemple un carburant à base d'hydrocarbure tel que l'essence. L'invention n'est cependant pas limitée aux moteurs à combustion et peut concerner un moteur dont le fonctionnement n'est pas basé sur la combustion d'un carburant, comme c'est le cas par exemple des moteurs à air comprimé.The engine 1 according to the invention preferably constitutes an internal combustion engine ("internal combustion engine "), that is to say a motor capable of to produce mechanical energy from the combustion therein of a working fluid containing a fuel, and for example a hydrocarbon-based fuel such as gasoline. The invention is however not limited to combustion engines and may relate to a motor whose operation is not based on the combustion of a fuel, as is the case for example with compressed air engines.

Le moteur 1 conforme à l'invention comprend au moins les trois composants suivants : un cylindre 2, un premier piston 4 et un arbre de sortie rotatif 8.The engine 1 according to the invention comprises at least the following three components: a cylinder 2, a first piston 4 and a rotary output shaft 8.

Le cylindre 2 contribue à délimiter une chambre 3 dont le volume varie entre une valeur minimale et une valeur maximale. De manière avantageuse et connue en soi, le volume de la chambre 3 varie cycliquement au cours du fonctionnement du moteur 1, de telle sorte que le volume de la chambre 3 passe alternativement et continûment de sa valeur minimale à sa valeur maximale et inversement.The cylinder 2 contributes to delimit a chamber 3 whose volume varies between a minimum value and a maximum value. Advantageously and known per se, the volume of the chamber 3 varies cyclically during the operation of the engine 1, so that the volume of the chamber 3 passes alternately and continuously from its minimum value to its maximum value and vice versa.

Dans le cas, illustré aux figures, où le moteur 1 est un moteur à combustion interne, la chambre 3 forme une chambre de combustion conçue pour accueillir un fluide de travail destiné à subir une combustion au sein de ladite chambre 3. Le fluide de travail est donc en l'occurrence un fluide combustible et il est de préférence formé d'un gaz constitué d'un mélange d'air et de carburant vaporisé. Ce gaz est destiné à subir une combustion rapide, et plus précisément une explosion (ou encore plus précisément une déflagration), au sein de la chambre 3. Le carburant peut être par exemple constitué d'un dérivé pétrolier, étant entendu que l'invention n'est absolument pas limitée à un fluide de travail spécifique. La variation du volume de la chambre 3 est ainsi générée, dans l'exemple illustré aux figures et comme cela est bien connu en soi, par la variation du volume du fluide de travail présent au sein de la chambre 3, sous l'effet du phénomène de combustion (qui entraîne une détente du fluide de travail).In the case, illustrated in the figures, where the engine 1 is an internal combustion engine, the chamber 3 forms a combustion chamber designed to accommodate a working fluid intended to undergo combustion within said chamber 3. The working fluid is therefore in this case a combustible fluid and it is preferably formed of a gas consisting of a mixture of air and vaporized fuel. This gas is intended to undergo a rapid combustion, and more precisely an explosion (or even more precisely a deflagration), within the chamber 3. The fuel may for example consist of a petroleum derivative, it being understood that the invention is absolutely not limited to a specific working fluid. The variation of the volume of the chamber 3 is thus generated, in the example illustrated in the figures and as is well known per se, by the variation of the volume of the working fluid present in the chamber 3, under the effect of the combustion phenomenon (which causes a relaxation of the working fluid).

Le cylindre 2 se présente par exemple, comme illustré aux figures, sous la forme d'un tube creux, de préférence rectiligne, d'axe longitudinal d'extension X-X'. Avantageusement, comme illustré aux figures, le cylindre 2 présente une section sensiblement circulaire. Il est cependant tout à fait envisageable que le cylindre 2 présente une section non circulaire, et par exemple une section polygonale, sans pour autant sortir du cadre de l'invention. La paroi intérieure 20 du cylindre 2 contribue à définir, dans le mode de réalisation illustré aux figures, la chambre 3. Dans le cas où le moteur 1 est un moteur à combustion interne (comme dans l'exemple illustré aux figures), et donc que la chambre 3 forme une chambre de combustion, le cylindre 2 est préférentiellement réalisé en un matériau présentant une haute tenue mécanique et thermique, comme par exemple un matériau métallique du genre fonte ou alliage aluminium, de manière à surmonter les contraintes thermiques et mécaniques résultant de la combustion du carburant au sein de la chambre 3.The cylinder 2 is for example, as illustrated in the figures, in the form of a hollow tube, preferably rectilinear, of longitudinal axis X-X 'extension. Advantageously, as illustrated in the figures, the cylinder 2 has a substantially circular section. It is however quite possible that the cylinder 2 has a non-circular section, and for example a polygonal section, without departing from the scope of the invention. The inner wall 20 of the cylinder 2 contributes to define, in the embodiment illustrated in the figures, the chamber 3. In the case where the engine 1 is an internal combustion engine (as in the example illustrated in the figures), and therefore that the chamber 3 forms a combustion chamber, the cylinder 2 is preferably made of a material having a high mechanical and thermal strength, such as for example a metal material of the cast iron or aluminum alloy type, so as to overcome the thermal and mechanical stresses resulting fuel combustion within the chamber 3.

Le premier piston 4 contribue lui aussi à délimiter le volume de la chambre 3, lesdits premier piston 4 et cylindre 2 étant conçus pour subir un premier mouvement relatif de va-et-vient sous l'effet de la variation du volume de la chambre 3. En d'autres termes, l'invention prévoit notamment l'une ou l'autre des configurations constructives suivantes :

  • Configuration A : le cylindre 2 est fixe (immobile) tandis que le premier piston 4 est monté mobile relativement au cylindre 2 pour se déplacer selon un mouvement de va-et-vient (mouvement alternatif) par rapport audit cylindre 2.
  • Configuration B : le premier piston 4 est fixe (immobile) tandis que le cylindre 2 est monté mobile relativement au premier piston 4 pour se déplacer selon un mouvement de va-et-vient (mouvement alternatif) par rapport audit premier piston 4.
The first piston 4 also contributes to defining the volume of the chamber 3, said first piston 4 and cylinder 2 being designed to undergo a first relative movement back and forth under the effect of the variation of the volume of the chamber 3 In other words, the invention provides in particular one or the other of the following constructive configurations:
  • Configuration A: the cylinder 2 is stationary (stationary) while the first piston 4 is movably mounted relative to the cylinder 2 to move in a reciprocating (reciprocating) movement with respect to said cylinder 2.
  • Configuration B: the first piston 4 is stationary (immobile) while the cylinder 2 is mounted movably relative to the first piston 4 to move in a reciprocating (reciprocating) movement with respect to said first piston 4.

Dans l'exemple préférentiel illustré aux figures, et qui correspond à la configuration A, le premier piston 4 est conçu pour coulisser dans le cylindre 2 selon un mouvement de va-et-vient sous l'effet de la variation de volume de la chambre 3. Ainsi, le premier piston 4 est enfilé à l'intérieur du cylindre 2 et est ajusté hermétiquement contre la paroi interne 20 du cylindre 2, de manière à pouvoir glisser au sein du cylindre 2 selon l'axe X-X', tout en restant en permanence en contact étanche avec la paroi interne 20 dudit cylindre 2. La configuration A est tout particulièrement préférée car elle permet une implantation facilitée du moteur 1, et s'avère généralement plus fiable et facile à fabriquer que la configuration B. La réalisation du contact étanche entre le premier piston 4 et la paroi interne 20 du cylindre 2 peut être réalisée par tout moyen connu de l'homme du métier, en reprenant et adaptant par exemple les solutions techniques bien connues et éprouvées mises en oeuvre dans l'art antérieur.In the preferred example illustrated in the figures, and which corresponds to the configuration A, the first piston 4 is designed to slide in the cylinder 2 in a reciprocating movement under the effect of the volume variation of the chamber 3. Thus, the first piston 4 is threaded inside the cylinder 2 and is tightly fitted against the inner wall 20 of the cylinder 2, so as to slide within the cylinder 2 along the axis X-X ', while remaining permanently in sealing contact with the inner wall 20 of said cylinder 2. The configuration A is very particularly preferred because it allows easy implementation of the engine 1, and is generally more reliable and easy to manufacture than the configuration B. realization of the sealed contact between the first piston 4 and the inner wall 20 of the cylinder 2 can be achieved by any means known to those skilled in the art, taking up and adapting for example the well known technical solutions and Proven implemented in the prior art.

Le premier piston 4 présente avantageusement une tête 4A qui contribue à délimiter la chambre 3.The first piston 4 advantageously has a head 4A which contributes to delimit the chamber 3.

La tête 4A présente de préférence une section transversale qui est complémentaire de la section transversale interne du cylindre 2, cette section étant de préférence une section circulaire comme dans les exemples illustrés aux figures. Le premier piston 4 comprend en outre une jupe 4B qui s'étend à partir et à la périphérie de la tête 4A. Avantageusement, le premier piston 4 présente un axe longitudinal d'extension Y-Y', qui correspond à l'axe de symétrie de la section transversale de la tête 4A dudit piston. L'axe longitudinal Y-Y' du premier piston 4 est avantageusement confondu avec l'axe d'extension X-X' du cylindre 2 lorsque le premier piston 4 est installé en position fonctionnelle à l'intérieur du cylindre 2, comme illustré à la figure 2. Selon le mode de réalisation préférentiel illustré aux figures, qui correspond à une sous-configuration A1 de la configuration A, le premier piston 4 est conçu pour coulisser dans le cylindre 2 selon un mouvement de translation axiale pure, c'est-à-dire que ledit premier piston 4 est guidé relativement au cylindre 2 pour ne pouvoir se déplacer qu'en translation longitudinale, parallèlement à l'axe X-X', sans rotation du premier piston 4 sur lui-même. En d'autres termes, le premier piston 4 est dans ce cas lié mécaniquement au cylindre 2 par une liaison glissière. Un tel guidage axial du premier piston 4 en translation pure dans le cylindre 2 permet de limiter non seulement les problèmes de vibrations et d'usure prématurée du piston contre la chemise rencontrée dans les moteurs de l'art antérieur, mais également les problèmes de perte d'efforts rencontrés dans ces mêmes moteurs. Ces problèmes proviennent en effet essentiellement du fait que dans l'art antérieur, les pistons ne sont pas directement guidés dans le cylindre, mais le sont indirectement par l'embiellage qui travaille de manière désaxée lors des mouvements du piston sous charge.The head 4A preferably has a cross section which is complementary to the internal cross section of the cylinder 2, this section preferably being a circular section as in the examples illustrated in the figures. The first piston 4 further comprises a skirt 4B which extends from and to the periphery of the head 4A. Advantageously, the first piston 4 has a longitudinal axis of extension Y-Y ', which corresponds to the axis of symmetry of the cross section of the head 4A of said piston. The axis longitudinal YY 'of the first piston 4 is advantageously coincides with the extension axis XX' of the cylinder 2 when the first piston 4 is installed in a functional position inside the cylinder 2, as illustrated in FIG. figure 2 . According to the preferred embodiment illustrated in the figures, which corresponds to a sub-configuration A1 of the configuration A, the first piston 4 is designed to slide in the cylinder 2 in a pure axial translation movement, that is to say that said first piston 4 is guided relative to the cylinder 2 to be able to move in longitudinal translation, parallel to the axis X-X ', without rotation of the first piston 4 on itself. In other words, the first piston 4 is in this case mechanically linked to the cylinder 2 by a slide connection. Such axial guidance of the first piston 4 in pure translation in the cylinder 2 limits not only the problems of vibration and premature wear of the piston against the jacket encountered in the engines of the prior art, but also the problems of loss. of efforts encountered in these same engines. These problems essentially come from the fact that in the prior art, the pistons are not directly guided in the cylinder, but are indirectly through the linkage which works off-axis during the movements of the piston under load.

Il existe bien entendu une multitude de possibilités techniques, bien connues de l'homme du métier, pour réaliser une telle liaison glissière entre le premier piston 4 et le cylindre 2.There are of course a multitude of technical possibilities, well known to those skilled in the art, for making such a sliding connection between the first piston 4 and the cylinder 2.

Dans le mode de réalisation illustré aux figures, cette liaison glissière, qui permet au premier piston 4 de coulisser dans le cylindre 2 selon un mouvement de translation rectiligne sensiblement pure, est réalisée par la coopération d'au moins un coulisseau 4C monté sur le premier piston 4 et d'une glissière correspondante 2A ménagée dans le cylindre 2 et s'étendant sensiblement parallèlement à l'axe X-X' d'extension longitudinale dudit cylindre 2. De préférence, afin d'assurer un guidage équilibré du premier piston 4 relativement au cylindre 2, le premier piston 4 est pourvu de deux coulisseaux disposés de façon diamétralement opposée sur le piston par rapport à l'axe Y-Y' de symétrie de ce dernier. Afin d'améliorer le contact coulisseau/glissière, en vue notamment de limiter les frottements qui nuisent au rendement du moteur, chaque coulisseau comprend avantageusement un galet 40C monté à rotation sur un axe 400C lui-même monté dans un orifice ménagé à travers la jupe 4B, de manière à ce que ledit axe 400C s'étende sensiblement radialement par rapport à l'axe d'extension X-X' du premier piston 4. Chaque galet 40C est conçu pour rouler dans la glissière 2A correspondante, qui consiste avantageusement, comme illustré aux figures, en une rainure rectiligne ménagée dans la paroi interne 20 du cylindre 2, à la surface de ladite paroi interne 20, en regard du galet correspondant.In the embodiment illustrated in the figures, this sliding connection, which allows the first piston 4 to slide in the cylinder 2 in a substantially pure rectilinear translational movement, is achieved by the cooperation of at least one slide 4C mounted on the first piston 4 and a corresponding slide 2A formed in the cylinder 2 and extending substantially parallel to the axis XX 'longitudinal extension of said cylinder 2. Preferably, in order to ensure a balanced guide of the first piston 4 relative to the cylinder 2, the first piston 4 is provided with two sliders arranged diametrically opposite on the piston relative to the axis YY 'of symmetry of this last. In order to improve the slide / slide contact, particularly in order to limit the friction which adversely affects the efficiency of the motor, each slide advantageously comprises a roller 40C rotatably mounted on an axis 400C itself mounted in an orifice formed through the skirt. 4B, so that said axis 400C extends substantially radially relative to the extension axis XX 'of the first piston 4. Each roller 40C is designed to roll in the corresponding slide 2A, which advantageously consists, as illustrated in the figures, in a rectilinear groove formed in the inner wall 20 of the cylinder 2, on the surface of said inner wall 20, facing the corresponding roller.

L'invention n'est cependant absolument pas limitée à la mise en oeuvre d'un premier piston 4 monté selon une liaison glissière dans le cylindre 2. Il est par exemple tout à fait envisageable, sans pour autant que l'on sorte du cadre de l'invention, que le premier piston 4 subisse, au cours de son mouvement de va-et-vient, une rotation sur lui-même autour de son axe Y-Y', de telle sorte que le mouvement du premier piston 4 dans le cylindre 2 n'est dans ce cas pas un mouvement de translation axiale pure mais un mouvement de translation hélicoïdale (sous-configuration A2).The invention is however absolutely not limited to the implementation of a first piston 4 mounted in a slide connection in the cylinder 2. It is for example quite possible without leaving the frame of the invention, the first piston 4 undergoes, during its movement back and forth, a rotation on itself about its axis YY ', so that the movement of the first piston 4 in the cylinder 2 is in this case not a pure axial translation movement but a helical translation movement (sub-configuration A2).

Dans le cas de la configuration B, il est également possible de prévoir un mouvement de va-et-vient rectiligne (sous-configuration B1) ou rotatif (sous-configuration B1) du cylindre 2 relativement au premier piston 4.In the case of the configuration B, it is also possible to provide a rectilinear (sub-configuration B1) or rotary (sub-configuration B1) back-and-forth movement of the cylinder 2 relative to the first piston 4.

Les différentes configurations envisagées dans ce qui précède sont résumées dans le tableau 1 ci-dessous. Tableau 1 Configuration Sous-configuration Mouvement du cylindre Mouvement du premier piston A A1 Aucun (cylindre fixe) Va-et-vient rectiligne A2 Aucun (cylindre fixe) Va-et-vient rotatif B B1 Va-et-vient rectiligne Aucun (premier piston fixe) B2 Va-et-vient rotatif Aucun (premier piston fixe) The various configurations envisaged in the foregoing are summarized in Table 1 below. <u> Table 1 </ u> Configuration Sub-configuration Cylinder movement Movement of the first piston AT A1 None (fixed cylinder) Straight back and forth A2 None (fixed cylinder) Rotary back and forth B B1 Straight back and forth None (fixed first piston) B2 Rotary back and forth None (fixed first piston)

L'arbre de sortie rotatif 8 présente de préférence un caractère rectiligne et s'étend selon un axe longitudinal Z-Z', selon lequel il est conçu pour tourner.The rotary output shaft 8 preferably has a rectilinear character and extends along a longitudinal axis Z-Z ', in which it is designed to rotate.

L'arbre de sortie 8 est de préférence monté coaxialement au premier piston 4, de telle sorte que les axes X-X', Y-Y' et Z-Z' sont avantageusement confondus. De manière préférentielle et comme illustré aux figures, l'arbre de sortie 8 traverse le premier piston 4, c'est-à-dire que ledit premier piston 4 est enfilé sur l'arbre de sortie 8. A cet effet, le premier piston 4 est pourvu d'un orifice par lequel passe l'arbre de sortie 8, l'interface entre le premier piston 4 et l'arbre de sortie 8 étant de préférence étanche.The output shaft 8 is preferably mounted coaxially with the first piston 4, so that the X-X ', Y-Y' and Z-Z 'axes are advantageously combined. Preferably and as illustrated in the figures, the output shaft 8 passes through the first piston 4, that is to say that said first piston 4 is threaded on the output shaft 8. For this purpose, the first piston 4 is provided with an orifice through which the output shaft 8 passes, the interface between the first piston 4 and the output shaft 8 preferably being sealed.

Conformément à l'invention, le moteur 1 comprend un premier moyen de conversion dudit premier mouvement relatif de va-et-vient en mouvement rotatif de l'arbre de sortie 8, et plus préférentiellement en mouvement rotatif continu, selon un sens unique de rotation, de l'arbre de sortie 8.According to the invention, the engine 1 comprises a first conversion means of said first relative reciprocating movement in rotary motion of the output shaft 8, and more preferably in continuous rotary motion, in a single direction of rotation. , of the output shaft 8.

Le premier moyen de conversion comprend d'une part un premier-chemin de guidage 9 sensiblement ondulé solidaire de l'un desdits trois composants (cylindre 2, premier piston 4 ou arbre de sortie 8) et d'autre part un premier élément de guidage 10 qui est conçu pour se déplacer le long dudit premier chemin de guidage 9 et qui est solidaire d'un autre desdites trois composants. L'invention concerne ainsi plusieurs variantes constructives dont les principales sont résumées dans le tableau 2 ci-après. Tableau 2 Sous-configuration de l'invention (cf. tableau 1) Variante de l'invention Composant dont est solidaire le premier chemin de guidage Composant dont est solidaire le premier élément de guidage A1 A11 Arbre de sortie Premier piston A1 A12 Premier piston Arbre de sortie A2 A21 Cylindre Premier piston A2 A22 Premier piston Cylindre B1 B11 Cylindre Arbre de sortie B1 B12 Arbre de sortie Cylindre B2 B21 Cylindre Premier piston B2 B22 Premier piston Cylindre The first conversion means comprises on the one hand a substantially corrugated first guiding path 9 integral with one of said three components (cylinder 2, first piston 4 or output shaft 8) and on the other hand a first guiding element. 10 which is adapted to move along said first guide path 9 and which is integral with another of said three components. The invention thus relates to several constructive variants, the main ones are summarized in Table 2 below. <u> Table 2 </ u> Sub - configuration of the invention (see Table 1) Variant of the invention Component with which the first guide path is secured Component with which the first guide element is secured A1 A11 Output tree First piston A1 AT 12 First piston Output tree A2 A21 Cylinder First piston A2 A22 First piston Cylinder B1 B11 Cylinder Output tree B1 B12 Output tree Cylinder B2 B21 Cylinder First piston B2 B22 First piston Cylinder

De manière préférentielle, la coopération entre le premier chemin de guidage 9 et le premier élément de guidage 10 est réciproque, c'est-à-dire qu'elle permet non seulement de convertir le mouvement relatif de va-et-vient piston 4/cylindre 2 en mouvement rotatif de l'arbre de sortie 8, mais également de convertir le mouvement rotatif de l'arbre de sortie 8 en mouvement relatif de va-et-vient piston 4 / cylindre 2.Preferably, the cooperation between the first guide path 9 and the first guide element 10 is reciprocal, that is to say that it not only makes it possible to convert the relative movement of reciprocating piston 4 / 2 cylinder in rotary motion of the output shaft 8, but also to convert the rotary motion of the output shaft 8 in relative motion of reciprocating piston 4 / cylinder 2.

L'exemple illustré aux figures correspond à la variante A11 du tableau 2 ci-avant. Dans cette variante, l'arbre de sortie 8 est enfilé de manière ajustée dans l'orifice central ménagé à travers le premier piston 4 pour permettre à ce dernier de coulisser le long de l'arbre de sortie 8 tout en restant en contact étanche avec ledit arbre de sortie 8, et éviter ainsi toute mise en communication de l'intérieur de la chambre 3 avec l'extérieur par l'intermédiaire de l'interface entre l'arbre de sortie 8 et le premier piston 4. Le premier chemin de guidage 9 est solidaire de l'arbre de sortie, tandis que le premier élément de guidage 10 est solidaire du premier piston 4.The example illustrated in the figures corresponds to variant A11 of Table 2 above. In this variant, the output shaft 8 is fitly fitted into the central orifice formed through the first piston 4 to allow the latter to slide along the output shaft 8 while remaining in sealing contact with said output shaft 8, and thus avoid any communication between the inside of the chamber 3 and the outside through the interface between the output shaft 8 and the first piston 4. The first path guide 9 is integral with the output shaft, while the first guide element 10 is integral with the first piston 4.

La variante A11 du moteur 1 conforme à l'invention illustrée aux figures fonctionne selon le principe général suivant :

  • les variations de pression au sein de la chambre 3, obtenues par des cycles de déflagration d'un mélange détonant (du type mélange air/carburant vaporisé), entraînent un mouvement alternatif rectiligne du premier piston 4, qui se déplace en translation pure,
  • le premier piston 4 entraîne lui-même en rotation l'arbre de sortie 8, lequel constitue l'arbre moteur destiné à être raccordé à l'objet à entraîner, par exemple aux roues d'un véhicule automobile.
The variant A11 of the engine 1 according to the invention illustrated in the figures operates according to the following general principle:
  • the pressure variations within the chamber 3, obtained by detonation blast cycles (of the vaporized air / fuel mixture type), cause a rectilinear reciprocating movement of the first piston 4, which moves in pure translation,
  • the first piston 4 itself drives in rotation the output shaft 8, which constitutes the drive shaft intended to be connected to the object to be driven, for example to the wheels of a motor vehicle.

Une telle conception évite la mise en oeuvre de renvois d'effort selon différents axes de travail, comme dans l'art antérieur, et permet au contraire une transmission directe de l'action du premier piston 4 sur l'arbre de sortie 8. En d'autres termes, le premier piston 4 entraîne directement l'arbre de sortie 8 en rotation, ce qui confère au moteur 1 un caractère particulièrement compact, ce dernier pouvant ainsi être facilement intégré dans le châssis d'un véhicule. Une telle conception est également de nature à améliorer le centre de gravité du véhicule grâce au caractère essentiellement longitudinal du moteur 1, qui autorise le positionnement dudit moteur 1 selon l'axe de symétrie dudit véhicule. Grâce à l'entraînement direct et coaxial de l'arbre de sortie 8 par le premier piston 4, les effets de torsion auxquels est soumis l'arbre de sortie 8 sont largement minimisés par rapport à ceux impartis aux vilebrequins par les bielles des moteurs de l'art antérieur.Such a design avoids the implementation of force references according to different working axes, as in the prior art, and allows on the contrary a direct transmission of the action of the first piston 4 on the output shaft 8. In in other words, the first piston 4 directly drives the output shaft 8 in rotation, which gives the engine 1 a particularly compact character, the latter can thus be easily integrated into the chassis of a vehicle. Such a design is also likely to improve the center of gravity of the vehicle due to the essentially longitudinal nature of the engine 1, which allows the positioning of said engine 1 along the axis of symmetry of said vehicle. Thanks to the direct and coaxial drive of the output shaft 8 by the first piston 4, the torsional effects to which the output shaft 8 is subjected are largely minimized with respect to those imparted to the crankshafts by the connecting rods of the engines. the prior art.

Avantageusement, le premier chemin de guidage 9 présente une forme sensiblement sinusoïdale. Plus précisément, dans l'exemple illustré aux figures, le premier chemin de guidage 9 s'étend selon un profil annulaire autour de l'axe longitudinal d'extension Z-Z'-de l'arbre de sortie 8.Advantageously, the first guide path 9 has a substantially sinusoidal shape. More precisely, in the example illustrated in the figures, the first guide path 9 extends along an annular profile around the longitudinal extension axis Z-Z'-of the output shaft 8.

De préférence, le premier chemin de guidage 9 comprend une première rainure tandis que le premier élément de guidage 10 comprend un premier doigt qui fait saillie du premier piston 4 et s'engage dans ladite première rainure. De préférence, le premier élément de guidage 10 comprend deux doigts disposés de manière diamétralement opposée relativement à l'axe Y-Y' et engageant la même première rainure. Afin d'améliorer le contact entre le premier élément de guidage 10 et la première rainure, le premier doigt comprend avantageusement un galet 10A monté à rotation sur un axe lui-même monté dans un orifice ménagé à travers la jupe 4B, de manière à ce que ledit axe s'étende sensiblement radialement par rapport à l'axe d'extension X-X' du piston 4. De préférence, l'axe en question correspond à l'axe 400C sur lequel est monté le galet 40C. Dans ce mode de réalisation particulièrement simple et fiable, le galet 10A est monté sur l'axe 400C, à l'intérieur de la jupe 4B, pour engager la rainure sinusoïdale correspondante, tandis que le galet 40C est monté sur le même axe 400C, à l'extérieur de la jupe 4B, pour engager la rainure rectiligne 2A correspondante. Conformément à l'invention, le moteur 1 comprend en outre un premier organe 5 de réglage de la position du premier chemin de guidage 9 et/ou du premier élément de guidage 10 relativement ai(x) composant(s) dont il(s) est (sont) solidaire(s), pour régler la valeur minimale et/ou la valeur maximale du volume de la chambre 3.Preferably, the first guide path 9 comprises a first groove while the first guide member 10 comprises a first finger which protrudes from the first piston 4 and engages in said first groove. Preferably, the first guide member 10 comprises two fingers arranged diametrically opposite relative to the Y-axis Y 'and engaging the same first groove. In order to improve the contact between the first guide element 10 and the first groove, the first finger advantageously comprises a roller 10A rotatably mounted on an axis itself mounted in an orifice formed through the skirt 4B, so that that said axis extends substantially radially with respect to the extension axis XX 'of the piston 4. Preferably, the axis in question corresponds to the axis 400C on which the roller 40C is mounted. In this particularly simple and reliable embodiment, the roller 10A is mounted on the axis 400C, inside the skirt 4B, to engage the corresponding sinusoidal groove, while the roller 40C is mounted on the same axis 400C, outside the skirt 4B, to engage the corresponding rectilinear groove 2A. According to the invention, the motor 1 further comprises a first member 5 for adjusting the position of the first guide path 9 and / or the first guide element 10 relative ai (x) component (s) which he (they) is (are) integral (s), to set the minimum value and / or the maximum value of the volume of the chamber 3.

L'invention concerne donc en particulier les sous-variantes alternatives mentionnées dans le tableau 3 ci-après. Tableau 3 Variante (cf. Tab. 2) Sous-variante Moyen(s) dont la position est réglée par l'organe de réglage 5 Valeur(s) du volume de la chambre réglée(s) par l'organe de réglage 5 A11 A111 Premier chemin de guidage Valeurs minimale et maximale A11 A112 Premier chemin de guidage Valeur minimale A11 A113 Premier chemin de guidage Valeur maximale A11 A114 Premier élément de guidage Valeurs minimale et maximale A11 A115 Premier élément de guidage Valeur minimale A11 A116 Premier élément de guidage Valeur maximale A11 A117 Premiers chemin et élément de guidage Valeurs minimale et maximale A11 A118 Premiers chemin et élément de guidage Valeur minimale A11 A119 Premiers chemin et élément de guidage Valeur maximale A12 A121 Premier chemin de guidage Valeurs minimale et maximale A12 A122 Premier chemin de guidage Valeur minimale A12 A123 Premier chemin de guidage Valeur maximale A12 A124 Premier élément de quidage Valeurs minimale et maximale A12 A125 Premier élément de guidage Valeur minimale A12 A126 Premier élément de guidage Valeur maximale A12 A127 Premiers chemin et élément de guidage Valeurs minimale et maximale A12 A128 Premiers chemin et élément de quidage Valeur minimale A12 A129 Premiers chemin et élément de guidage Valeur maximale A21 A211 Premier chemin de guidage Valeurs minimale et maximale A21 A212 Premier chemin de guidage Valeur minimale A21 A213 Premier chemin de guidage Valeur maximale A21 A214 Premier élément de guidage Valeurs minimale et maximale A21 A215 Premier élément de guidage Valeur minimale A21 A216 Premier élément de guidage Valeur maximale A21 A217 Premiers chemin et élément de guidage Valeurs minimale et maximale A21 A218 Premiers chemin et élément de guidage Valeur minimale A21 A219 Premiers chemin et élément de guidage Valeur maximale A22 A221 Premier chemin de guidage Valeurs minimale et maximale A22 A222 Premier chemin de guidage Valeur minimale A22 A223 Premier chemin de guidage Valeur maximale A22 A224 Premier élément de guidage Valeurs minimale et maximale A22 A225 Premier élément de guidage Valeur minimale A22 A226 Premier élément de guidage Valeur maximale A22 A227 Premiers chemin et élément de guidage Valeurs minimale et maximale A22 A228 Premiers chemin et élément de guidage Valeur minimale A22 A229 Premiers chemin et élément de guidage Valeur maximale B11 B111 Premier chemin de guidage Valeurs minimale et maximale B11 B112 Premier chemin de guidage Valeur minimale B11 B113 Premier chemin de guidage Valeur maximale B11 B114 Premier élément de guidage Valeurs minimale et maximale B11 B115 Premier élément de guidage Valeur minimale B11 B116 Premier élément de guidage Valeur maximale B11 B117 Premiers chemin et élément de guidage Valeurs minimale et maximale B11 B118 Premiers chemin et élément de guidage Valeur minimale B11 B119 Premiers chemin et élément de guidage Valeur maximale B12 B121 Premier chemin de guidage Valeurs minimale et maximale B12 B122 Premier chemin de guidage Valeur minimale B12 B123 Premier chemin de guidage Valeur maximale B12 B124 Premier élément de guidage Valeurs minimale et maximale B12 B125 - Premier élément de guidage Valeur minimale B12 B126 Premier élément de guidage Valeur maximale B12 B127 Premiers chemin et élément de guidage Valeurs minimale et maximale B12 B128 Premiers chemin et élément de guidage Valeur minimale B12 B129 Premiers chemin et élément de guidage Valeur maximale B21 B211 Premier chemin de guidage Valeurs minimale et maximale B21 B212 Premier chemin de guidage Valeur minimale B21 B213 Premier chemin de guidage Valeur maximale B21 B214 Premier élément de guidage Valeurs minimale et maximale B21 B215 Premier élément de guidage Valeur minimale B21 B216 Premier élément de guidage Valeur maximale B21 B217 Premiers chemin et élément de guidage Valeurs minimale et maximale B21 B218 Premiers chemin et élément de guidage Valeur minimale B21 B219 Premiers chemin et élément de guidage Valeur maximale B22 B221 Premier chemin de guidage Valeurs minimale et maximale B22 B222 Premier chemin de guidage Valeur minimale B22 B223 Premier chemin de guidage Valeur maximale B22 B224 Premier élément de guidage de guidage Valeurs minimale et maximale B22 B225 Premier élément de guidage Valeur minimale B22 B226 Premier élément de guidage Valeur maximale B22 B227 Premiers chemin et élément de guidage Valeurs minimale et maximale B22 B228 Premiers chemin et élément de guidage Vapeur minimale 822 B229 Premiers chemin et élément de guidage Valeur maximale The invention therefore relates in particular to the alternative sub-variants mentioned in Table 3 below. <u> Table 3 </ u> Variant (see Table 2) Sub - variant Medium (s) whose position is adjusted by the adjusting member 5 Value (s) of chamber volume set by regulator 5 A11 A111 First guide path Minimum and maximum values A11 A112 First guide path Minimum value A11 A113 First guide path Maximum value A11 A114 First guide element Minimum and maximum values A11 A115 First guide element Minimum value A11 A116 First guide element Maximum value A11 A117 First path and guide element Minimum and maximum values A11 A118 First path and guide element Minimum value A11 A119 First path and guide element Maximum value AT 12 A121 First guide path Minimum and maximum values AT 12 A122 First guide path Minimum value AT 12 A123 First guide path Maximum value AT 12 A124 First element of quidage Minimum and maximum values AT 12 A125 First guide element Minimum value AT 12 A126 First guide element Maximum value AT 12 A127 First path and guide element Minimum and maximum values AT 12 A128 First way and quidage element Minimum value AT 12 A129 First path and guide element Maximum value A21 A211 First guide path Minimum and maximum values A21 A212 First guide path Minimum value A21 A213 First guide path Maximum value A21 A214 First guide element Minimum and maximum values A21 A215 First guide element Minimum value A21 A216 First guide element Maximum value A21 A217 First path and guide element Minimum and maximum values A21 A218 First path and guide element Minimum value A21 A219 First path and guide element Maximum value A22 A221 First guide path Minimum and maximum values A22 A222 First guide path Minimum value A22 A223 First guide path Maximum value A22 A224 First guide element Minimum and maximum values A22 A225 First guide element Minimum value A22 A226 First guide element Maximum value A22 A227 First path and guide element Minimum and maximum values A22 A228 First path and guide element Minimum value A22 A229 First path and guide element Maximum value B11 B111 First guide path Minimum and maximum values B11 B112 First guide path Minimum value B11 B113 First guide path Maximum value B11 B114 First guide element Minimum and maximum values B11 B115 First guide element Minimum value B11 B116 First guide element Maximum value B11 B117 First path and guide element Minimum and maximum values B11 B118 First path and guide element Minimum value B11 B119 First path and guide element Maximum value B12 B121 First guide path Minimum and maximum values B12 B122 First guide path Minimum value B12 B123 First guide path Maximum value B12 B124 First guide element Minimum and maximum values B12 B125 - First guide element Minimum value B12 B126 First guide element Maximum value B12 B127 First path and guide element Minimum and maximum values B12 B128 First path and guide element Minimum value B12 B129 First path and guide element Maximum value B21 B211 First guide path Minimum and maximum values B21 B212 First guide path Minimum value B21 B213 First guide path Maximum value B21 B214 First guide element Minimum and maximum values B21 B215 First guide element Minimum value B21 B216 First guide element Maximum value B21 B217 First path and guide element Minimum and maximum values B21 B218 First path and guide element Minimum value B21 B219 First path and guide element Maximum value B22 B221 First guide path Minimum and maximum values B22 B222 First guide path Minimum value B22 B223 First guide path Maximum value B22 B224 First guiding guide element Minimum and maximum values B22 B225 First guide element Minimum value B22 B226 First guide element Maximum value B22 B227 First path and guide element Minimum and maximum values B22 B228 First path and guide element Minimal steam 822 B229 First path and guide element Maximum value

L'invention repose ainsi sur l'idée d'ajuster la position du chemin de guidage 9 et/ou de l'élément de guidage 10 pour ajuster le volume de la chambre 3, ce qui permet de régler notamment le taux de compression. L'invention permet de cette manière d'obtenir un moteur 1 à taux de compression variable de construction particulièrement simple, compacte et fiable. En particulier, agir directement sur la position du chemin de guidage 9 et/ou de l'élément de guidage 10 s'avère être une mesure technique particulièrement simple et efficace pour régler avec précision le taux de compression, et ce y compris pendant le fonctionnement du moteur 1.The invention is thus based on the idea of adjusting the position of the guide path 9 and / or the guide element 10 to adjust the volume of the chamber 3, which allows to adjust in particular the compression ratio. In this way, the invention makes it possible to obtain a variable compression ratio motor 1 of particularly simple, compact and reliable construction. In particular, acting directly on the position of the guide path 9 and / or the guide element 10 proves to be a particularly simple and effective technical measure for accurately adjusting the compression ratio, even during operation. of the engine 1.

L'exemple de réalisation illustré aux figures correspond à la sous-variante A111 (cf. tableau 3 ci-avant). Selon cette sous-variante, le premier-organe de réglage 5 est conçu pour régler la position du premier chemin de guidage 9 relativement à l'arbre de sortie 8, ce qui signifie que le premier chemin de guidage est mobile relativement audit arbre de sortie 8, tout en étant attaché à ce dernier pour transmettre à l'arbre 8 le mouvement (converti) du premier piston 4.The exemplary embodiment illustrated in the figures corresponds to the subvariant A111 (see Table 3 above). According to this sub-variant, the first-setting member 5 is designed to adjust the position of the first path of 9 relative to the output shaft 8, which means that the first guide path is movable relative to said output shaft 8, while being attached thereto to transmit to the shaft 8 the movement (converted) of the first piston 4.

Selon cette sous-variante A111, l'élément de guidage 10 est quant à lui fixe en position relativement au composant qui le porte, à savoir le premier piston 4. Selon la sous-variante A111, l'organe de réglage 5, en permettant de régler la position du premier chemin de guidage 9 relativement à l'arbre de sortie 8, permet de régler à la fois la valeur minimale et la valeur maximale du volume de la chambre 3. En effet, dans cette sous-variante A111, le premier piston 4 effectue un mouvement de va-et-vient d'amplitude prédéterminée (impartie par la forme du chemin de guidage 9) autour d'une position médiane. L'organe de réglage 5 est conçu en l'occurrence pour déplacer cette position médiane, ce qui revient à décaler la course alternative du premier piston 4 et ainsi à modifier simultanément la valeur minimale et la valeur maximale du volume de la chambre 3. L'invention n'est cependant pas limitée à un tel mode de fonctionnement et il est tout à fait envisageable que l'organe de réglage 5 n'agisse que sur la valeur maximale ou que sur la valeur minimale du volume de la chambre 3, par exemple en opérant en temps utile un déplacement du chemin de guidage 9 et/ou de l'élément de guidage 10) pour maintenir la valeur minimale ou la valeur maximale constante.According to this sub-variant A111, the guide element 10 is in turn fixed in position relative to the component that carries it, namely the first piston 4. According to the sub-variant A111, the adjustment member 5, allowing to adjust the position of the first guide path 9 relative to the output shaft 8, makes it possible to set both the minimum value and the maximum value of the volume of the chamber 3. Indeed, in this sub-variant A111, the first piston 4 performs a back-and-forth movement of predetermined amplitude (imparted by the shape of the guide path 9) around a median position. The adjustment member 5 is designed in this case to move this median position, which amounts to shift the alternating stroke of the first piston 4 and thus to simultaneously change the minimum value and the maximum value of the volume of the chamber 3. L However, the invention is not limited to such a mode of operation and it is quite possible that the adjustment member 5 acts only on the maximum value or on the minimum value of the volume of the chamber 3, by example by operating in a timely manner a displacement of the guide path 9 and / or the guide element 10) to maintain the minimum value or the constant maximum value.

Dans le mode de réalisation illustré aux figures (qui correspond à la sous-variante A111), le premier organe de réglage 5 comprend avantageusement une première pièce de réglage 6 (illustrée seule sur la figure 4) montée à coulissement sur et le long de l'arbre de sortie 8, ladite première pièce 6 portant le premier chemin de guidage 9. La première pièce de guidage 6 se présente avantageusement sous la forme d'un manchon 6A qui s'étend longitudinalement selon un axe W-W'. Ledit manchon 6A est enfilé sur l'arbre de sortie 8, coaxialement à ce dernier, de telle sorte que les axes X-X', Y-Y', Z-Z' et W-W' sont sensiblement confondus. De préférence, le manchon 6A est guidé selon un mouvement de translation axiale pure sur l'arbre de sortie 8, c'est à dire que l'arbre de sortie 8 et le manchon 6A sont reliés par une liaison mécanique de type glissière. A cette fin, le manchon 6A est par exemple pourvu d'un trou oblong 7, qui est destiné à coopérer avec un pion 17 fixé directement sur l'arbre de sortie 8 et faisant saillie radialement de ce dernier. Le pion 17 est reçu dans le trou oblong 7, de façon que la coopération entre le pion 17 et le trou oblong 7 assure un guidage en translation du manchon 6A sur l'arbre de sortie 8. Le manchon 6A peut ainsi glisser sur l'arbre de sortie 8, selon une course dont l'amplitude correspond à la longueur du trou oblong 7. La longueur du trou oblong 7 est quant à elle déterminée en regard de la plage d'ajustement souhaitée des valeurs minimale et maximale du volume de la chambre 3.In the embodiment illustrated in the figures (which corresponds to the subvariant A111), the first adjustment member 5 advantageously comprises a first adjustment piece 6 (illustrated alone on FIG. figure 4 ) slidably mounted on and along the output shaft 8, said first part 6 carrying the first guide path 9. The first guide piece 6 is advantageously in the form of a sleeve 6A which extends longitudinally along an axis W-W '. Said sleeve 6A is threaded on the output shaft 8, coaxially with the latter, so that the axes X-X ', Y-Y', ZZ 'and WW' are substantially merged. Preferably, the sleeve 6A is guided in a pure axial translation movement on the output shaft 8, that is to say that the output shaft 8 and the sleeve 6A are connected by a mechanical link of the slide type. For this purpose, the sleeve 6A is for example provided with an oblong hole 7, which is intended to cooperate with a pin 17 fixed directly on the output shaft 8 and protruding radially from the latter. The pin 17 is received in the oblong hole 7, so that the cooperation between the pin 17 and the oblong hole 7 provides a guide in translation of the sleeve 6A on the output shaft 8. The sleeve 6A can thus slide on the output shaft 8, in a race whose amplitude corresponds to the length of the oblong hole 7. The length of the oblong hole 7 is in turn determined with respect to the desired adjustment range of the minimum and maximum values of the volume of the room 3.

Selon le mode avantageux de réalisation illustré aux figures (sous-variante A111), le premier organe de réglage 5 comprend d'une part un puits fileté 18 qui est fixé au cylindre 2 et qui est coaxial à l'arbre de sortie 8 et d'autre part un tube fileté 19 attaché, à une première de ses extrémités, à la première pièce de réglage 6, ledit tube fileté 19 étant capable d'être vissé et dévissé dans le puits fileté 18 pour faire varier la position de la première pièce de réglage 6 relativement à l'arbre de sortie 8, lequel est monté fixe relativement au cylindre 2. Plus précisément, le tube fileté 19 est enfilé coaxialement sur l'arbre de sortie 8, de manière à pouvoir librement tourner relativement à ce dernier autour de l'axe Y-Y'. A cette fin, le tube 19 est de préférence pourvu, vers son extrémité attachée à la première pièce de réglage 6, d'une butée à aiguilles 19A qui assure la liaison entre le tube fileté 19 et le manchon 6A. Afin de commander le vissage/dévissage du tube 19 dans le puits 18, la deuxième extrémité du tube fileté 19, opposée à la première extrémité attachée au manchon 6, est pourvue d'une roue dentée 19B pour l'entraînement en rotation du tube fileté 19. Cette roue dentée 19B est elle-même conçue pour être entraînée en rotation par un système de commande (non illustré sur les figures) mécanique et/ou électrique. Le système de commande peut par exemple comprendre un moteur électrique pourvu d'un pignon qui engrène avec la roue dentée 19B. De manière alternative, le système de commande peut tirer son énergie motrice directement à partir de l'arbre de sortie 8. Dans un mode de réalisation particulièrement intéressant, le moteur 1 comprend un module de gestion du système de commande de la roue dentée 19B, ledit module de gestion étant de préférence conçu pour ajuster automatiquement, continûment et en permanence le taux de compression (par réglage des valeurs minimale et/ou maximale du volume de la chambre 3) en fonction des sollicitations et/ou du régime du moteur 1, pour optimiser notamment le couple, le régime et le rendement du moteur 1. Le module de gestion comprend de préférence à cet effet des capteurs qui récoltent des informations sur le fonctionnement instantané du moteur 1 et un calculateur (microprocesseur) qui traite ces informations pour fournir au système de commande un ordre de mise en rotation de la roue dentée19B dans un sens ou dans l'autre, pour modifier la position du chemin de guidage 9 et ainsi le taux de compression du moteur 1. Le calculateur peut être ainsi programmé pour augmenter fortement le taux de compression en début d'accélération, de manière à ce que le moteur 1 fournisse un couple important, puis réduire ensuite le taux de compression pour retrouver du couple à haut régime.According to the advantageous embodiment illustrated in the figures (sub-variant A111), the first adjustment member 5 comprises firstly a threaded well 18 which is fixed to the cylinder 2 and which is coaxial with the output shaft 8 and on the other hand a threaded tube 19 attached at a first end thereof to the first adjusting member 6, said threaded tube 19 being capable of being screwed and unscrewed into the threaded well 18 to vary the position of the first piece 6 relative to the output shaft 8, which is fixedly mounted relative to the cylinder 2. More specifically, the threaded tube 19 is threaded coaxially on the output shaft 8, so as to freely rotate relative thereto around of the Y-Y 'axis. To this end, the tube 19 is preferably provided, towards its end attached to the first adjusting member 6, a needle stop 19A which provides the connection between the threaded tube 19 and the sleeve 6A. In order to control the screwing / unscrewing of tube 19 in the well 18, the second end of the threaded tube 19, opposite the first end attached to the sleeve 6, is provided with a gear 19B for driving in rotation of the threaded tube 19. This toothed wheel 19B is it - Even designed to be rotated by a control system (not shown in the figures) mechanical and / or electrical. The control system may for example comprise an electric motor provided with a pinion which meshes with the toothed wheel 19B. Alternatively, the control system can draw its motive power directly from the output shaft 8. In a particularly interesting embodiment, the engine 1 comprises a management module of the control system of the gear wheel 19B, said management module being preferably designed to automatically adjust, continuously and permanently the compression ratio (by setting the minimum and / or maximum values of the volume of the chamber 3) as a function of the stresses and / or the speed of the engine 1, to optimize in particular the torque, the speed and the efficiency of the engine 1. The management module preferably comprises for this purpose sensors that collect information on the instantaneous operation of the engine 1 and a computer (microprocessor) that processes this information to provide to the control system an order of rotation of the toothed wheel19B in one direction or the other, to change the position of the travel path guidance 9 and thus the compression ratio of the engine 1. The computer can thus be programmed to greatly increase the compression ratio at the beginning of acceleration, so that the engine 1 provides a high torque, then reduce the rate of compression. compression to regain torque at high speed.

Avantageusement, le moteur 1 conforme à l'invention comprend un deuxième piston 14 qui contribue également à délimiter le volume de la chambre 3, lesdits deuxième piston 14 et cylindre 2 étant conçus pour subir un deuxième mouvement relatif de va-et-vient sous l'effet de la variation du volume de la chambre 3. De préférence et comme illustré aux figures, le moteur 1 comprend ainsi dans ce cas un cylindre 2 au sein duquel le premier et le deuxième piston 4, 14 sont montés à coulissement axial. Dans ce mode de réalisation particulièrement avantageux, qui est illustré aux figures, la chambre 3 est de préférence formée par l'espace interstitiel séparant le premier et le deuxième piston 4, 14 dans le cylindre 2.Advantageously, the engine 1 according to the invention comprises a second piston 14 which also contributes to defining the volume of the chamber 3, said second piston 14 and cylinder 2 being designed to undergo a second relative movement back and forth under the effect of the variation of the volume of the chamber 3. Preferably and as illustrated in the figures, the engine 1 thus comprises in this case a cylinder 2 in which the first and the second piston 4, 14 are mounted to slide axially. In this particularly advantageous embodiment, which is illustrated in the figures, the chamber 3 is preferably formed by the interstitial space separating the first and the second piston 4, 14 in the cylinder 2.

En d'autres termes, la chambre 3 correspond dans ce cas à l'espace libre de volume variable situé à l'intérieur du cylindre 2, entre les pistons 4, 14. Avantageusement, comme illustré aux figures, les premier et deuxième pistons 4, 14 sont montés en opposition au sein du cylindre 2, c'est-à-dire de telle sorte que leurs têtes respectives 4A, 14A se font face. La chambre 3 s'étend ainsi dans l'espace délimité axialement par les têtes 4A, 14A des premier et deuxième pistons 4, 14 et radialement par la paroi interne 20 du cylindre 2 s'étendant entre lesdites têtes 4A, 14A desdits pistons 4, 14. La chambre 3 présente donc un volume variable qui dépend de la position relative du premier et du deuxième piston 4, 14. Avantageusement et comme illustré aux figures, le premier piston 4 et le deuxième piston 14 sont conçus pour se déplacer selon des mouvements de va-et-vient opposés dans le cylindre (lequel est en l'occurrence fixe), de telle sorte que lesdits pistons 4, 14 se rapprochent et s'éloignent l'un de l'autre sensiblement simultanément (les premier et deuxième mouvements de va-et-vient sont opposés). En d'autres termes, le premier piston 4 et le deuxième piston 14 se déplacent de manière symétrique par rapport au plan médian de la chambre 3, perpendiculaire à l'axe X-X'. Dans le mode de réalisation préférentiel illustré aux figures, chaque piston 4, 14 est conçu pour se déplacer dans le cylindre 2 de manière individuelle, c'est-à-dire indépendamment de l'autre piston 14, 4. De préférence, le deuxième piston 14 est identique au premier piston 4 et il est également monté dans le moteur 1 de manière identique audit premier piston 4. Dans ce mode de réalisation avantageux, qui est illustré aux figures, l'arbre de sortie 8 est donc également monté coaxialement au deuxième piston 14, l'arbre de sortie 8 et le deuxième piston 14 coopérant pour convertir le mouvement du deuxième piston 14 en mouvement rotatif de l'arbre de sortie 8. A cette fin, le moteur 1 comprend un deuxième moyen de conversion dudit deuxième mouvement relatif de va-et-vient en mouvement rotatif de l'arbre de sortie 8.In other words, the chamber 3 corresponds in this case to the free space of variable volume located inside the cylinder 2, between the pistons 4, 14. Advantageously, as illustrated in the figures, the first and second pistons 4 , 14 are mounted in opposition within the cylinder 2, that is to say so that their respective heads 4A, 14A face each other. The chamber 3 thus extends in the space delimited axially by the heads 4A, 14A of the first and second pistons 4, 14 and radially by the internal wall 20 of the cylinder 2 extending between said heads 4A, 14A of said pistons 4, 14. The chamber 3 thus has a variable volume which depends on the relative position of the first and second piston 4, 14. Advantageously and as illustrated in the figures, the first piston 4 and the second piston 14 are designed to move according to movements counter-movement in the cylinder (which is in this case fixed), so that said pistons 4, 14 move toward and away from each other substantially simultaneously (the first and second movements back and forth are opposed). In other words, the first piston 4 and the second piston 14 move symmetrically with respect to the median plane of the chamber 3, perpendicular to the axis X-X '. In the preferred embodiment illustrated in the figures, each piston 4, 14 is designed to move in the cylinder 2 individually, that is to say independently of the other piston 14, 4. Preferably, the second piston 14 is identical to the first piston 4 and it is also mounted in the motor 1 identically to said first piston 4. In this advantageous embodiment, which is illustrated in the figures, the output shaft 8 is also mounted coaxially with the second piston 14, the output shaft 8 and the second piston 14 cooperating to convert the movement of the second piston 14 into rotary movement of the output shaft 8. For this purpose, the engine 1 comprises a second conversion means of said second relative movement of va-and - comes in rotary motion from the output shaft 8.

Ledit deuxième moyen de conversion comprend d'une part un deuxième chemin de guidage 15 sensiblement ondulé solidaire de l'un des trois éléments suivants : cylindre 2, arbre de sortie 8 et deuxième piston 14 et d'autre part un deuxième élément de guidage 16 qui est conçu pour se déplacer le long dudit deuxième chemin de guidage 15 et qui est solidaire d'un autre desdits trois éléments. Avantageusement, ledit moteur 1 comprend en outre un deuxième organe de réglage 50 de la position du deuxième chemin de guidage 15 et/ou du deuxième élément de guidage 16 relativement au(x) élément(s) dont il(s) est (sont) solidaires, pour régler la valeur minimale et/ou la valeur maximale du volume de la chambre 3. Dans l'exemple de réalisation particulièrement avantageux illustré aux figures, le moteur 1 présente une symétrie globale pair rapport au plan médian de la chambre 3, c'est-à-dire le plan qui passe par le centre de la chambre 3 et qui est perpendiculaire à l'axe X-X' d'extension longitudinal du cylindre 2.Said second conversion means comprises on the one hand a second substantially corrugated guide path 15 integral with one of the following three elements: cylinder 2, output shaft 8 and second piston 14 and secondly a second guide element 16 which is adapted to move along said second guide path 15 and which is integral with another of said three elements. Advantageously, said motor 1 further comprises a second adjustment member 50 for the position of the second guide path 15 and / or the second guide element 16 relative to the element (s) of which it (s) is (are) integral, to set the minimum value and / or the maximum value of the volume of the chamber 3. In the particularly advantageous embodiment illustrated in the figures, the motor 1 has an overall symmetry even compared to the median plane of the chamber 3, c that is to say the plane passing through the center of the chamber 3 and which is perpendicular to the axis XX 'of longitudinal extension of the cylinder 2.

Cela signifie notamment que l'ensemble des dispositions constructives relatives au deuxième piston 14, au deuxième chemin de guidage 15, au deuxième élément de guidage 16 et au deuxième organe de réglage 50 sont identiques à celles relatives respectivement au premier piston 4, au premier chemin de guidage 9, au premier élément de guidage 10 et au premier organe de réglage 5. Il s'avère particulièrement intéressant de combiner :

  • une chambre 3 délimitée par deux pistons 4, 14 travaillant de préférence en opposition et de concert pour convertir leurs mouvements de va-et-vient opposés en un mouvement rotatif continu de l'arbre de sortie 8,
  • et des premier et de préférence deuxième moyens de réglage 5, 50 permettant d'agir sur le volume disponible de la chambre 3, et donc sur le taux de compression.
This means that all the construction arrangements relating to the second piston 14, the second guide path 15, the second guide member 16 and the second adjustment member 50 are identical to those respectively relating to the first piston 4, the first path 9, the first guide element 10 and the first adjustment member 5. It is particularly interesting to combine:
  • a chamber 3 delimited by two pistons 4, 14 preferably working in opposition and in concert to convert their opposite back and forth movements into a continuous rotary movement of the output shaft 8,
  • and first and preferably second adjustment means 5, 50 for acting on the available volume of the chamber 3, and thus on the compression ratio.

En effet, la présence de deux pistons à course réglable permet de piloter finement le taux de compression, en agissant de manière séparée sur les pistons 4, 14 pour ajuster le taux de compression.Indeed, the presence of two pistons with adjustable stroke allows to finely control the compression ratio, acting separately on the pistons 4, 14 to adjust the compression ratio.

La mise en oeuvre de deux pistons 4, 14 pour définir la même chambre 3 permet également, en agissant de manière symétrique sur les pistons 4, 14, de bénéficier d'une grande amplitude variation de taux de compression sans pour autant impartir un déplacement important de la course des pistons, puisque chaque piston contribue pour moitié à la variation du taux de compression.The use of two pistons 4, 14 to define the same chamber 3 also allows, by acting symmetrically on the pistons 4, 14, to benefit from a large amplitude variation of compression ratio without imparting a significant displacement piston stroke, since each piston contributes half to the variation of the compression ratio.

L'invention concerne également en tant que tel un véhicule, du genre véhicule automobile, équipé d'un moteur 1 conforme à l'invention.The invention also relates as such to a vehicle, of the motor vehicle type, equipped with a motor 1 according to the invention.

POSSIBILITE D'APPLICATION INDUSTRIELLEPOSSIBILITY OF INDUSTRIAL APPLICATION

L'invention trouve son application industrielle dans la conception, la fabrication et l'utilisation de moteurs.The invention finds its industrial application in the design, manufacture and use of motors.

Claims (11)

  1. An engine (1) comprising at least the following three components:
    - a cylinder (2) which contributes to delimiting a chamber (3) whose volume varies between a minimum value and a maximum value,
    - a first piston (4) also contributing to delimiting said chamber (3), said first piston (4) and cylinder (2) being designed to undergo a first relative reciprocating movement under the effect of the variation of the volume of the chamber (3),
    - a rotary output shaft (8),
    said engine (1) also comprising:
    - a second piston (14) which also contributes to delimiting the volume of said chamber (3), said second piston (4) and cylinder (2) being designed to undergo a second relative reciprocating movement under the effect of the variation of the volume of the chamber (3), said output shaft (8) being mounted coaxially to said first and second pistons (4, 14),
    - a first means (5) of converting said first relative reciprocating movement into rotary movement of the output shaft (8), comprising, on the one hand, a first guidance path (9) of substantially undulating form joined to one of said three components (2, 4, 8) and, on the other hand, a first guidance element (10) which is designed to be displaced along said first guidance path (9) and which is joined to another of said three components (2, 4, 8),
    - a first member (5) for adjusting the position of the first guidance path (9) and/or of the first guidance element (10) relative to the component(s) (2, 4, 8) to which it (they) is (are) joined, to adjust the minimum value and/or the maximum value of the volume of the chamber (3).
  2. The engine (1) as claimed in claim 1, characterized in that the first guidance path (9) is joined to the output shaft (8), whereas the first guidance element (10) is joined to the first piston (4).
  3. The engine (1) as claimed in one of the preceding claims, characterized in that the first guidance path (9) comprises a first groove, whereas the first guidance element comprises a first finger which engages in said first groove.
  4. The engine (1) as claimed in one of the preceding claims, characterized in that the first adjustment member (5) comprises a first adjustment part (6) mounted to slide over and along the output shaft (8), said first adjustment part (6) bearing the first guidance path (9).
  5. The engine (1) as claimed in claim 4, characterized in that the first adjustment member (5) comprises, on the one hand, a threaded well (18) which is fixed to the cylinder (2) and which is coaxial to the output shaft (8) and, on the other hand, a threaded tube (19) attached at a first of its ends to the first adjustment part (6), said threaded tube (19) being capable of being screwed and unscrewed in the threaded well (18) to vary the position of the first adjustment part (6) relative to the output shaft (8), which is mounted fixedly relative to the cylinder (2).
  6. The engine (1) as claimed in claim 5, characterized in that the second end of the threaded tube (19) is provided with a toothed wheel (19B) in order to drive the threaded tube (19) in rotation.
  7. The engine (1) as claimed in one of claims 1 to 6, characterized in that said chamber (3) is formed by the interstitial space separating said first and second pistons (4, 14) in the cylinder (2).
  8. The engine (1) as claimed in one of claims 1 to 7, characterized in that the first and second reciprocating movements are opposite, such that said first and second pistons (4, 14) move toward one another and away from one another substantially simultaneously.
  9. The engine (1) as claimed in one of claims 1 to 8, characterized in that it comprises a second means of converting said second relative reciprocating movement into rotary movement of the output shaft (8), said second conversion means comprising, on the one hand, a second guidance path (15) of substantially undulating form joined to one of the following three elements: cylinder (2), output shaft (8) and second piston (14) and, on the other hand, a second guidance element (16) which is designed to be displaced along said second guidance path (15) and which is joined to another of said three elements (2, 8, 14), said engine (1) also comprising a second member (50) for adjusting the position of the second guidance path (15) and/or of the second guidance element (16) relative to the element (s) (2, 8, 14) to which it (they) is (are) joined, to adjust the minimum value and/or the maximum value of the volume of the chamber (3).
  10. The engine (1) as claimed in one of claims 1 to 9, characterized in that it constitutes an internal combustion engine, said chamber (3) being designed to accommodate a working fluid intended to undergo a combustion within said chamber (3).
  11. A vehicle equipped with an engine (1) conforming to one of the preceding claims.
EP09726995A 2008-03-17 2009-03-17 Engine with a variable volume chamber Active EP2281107B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0801437A FR2928694A1 (en) 2008-03-17 2008-03-17 ENGINE WITH VARIABLE VOLUME CHAMBER
PCT/FR2009/050443 WO2009122089A2 (en) 2008-03-17 2009-03-17 Engine with a variable volume chamber

Publications (2)

Publication Number Publication Date
EP2281107A2 EP2281107A2 (en) 2011-02-09
EP2281107B1 true EP2281107B1 (en) 2012-07-11

Family

ID=39563417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09726995A Active EP2281107B1 (en) 2008-03-17 2009-03-17 Engine with a variable volume chamber

Country Status (13)

Country Link
US (1) US9388695B2 (en)
EP (1) EP2281107B1 (en)
JP (1) JP5715043B2 (en)
KR (1) KR101617477B1 (en)
CN (1) CN101983278B (en)
BR (1) BRPI0909496B1 (en)
EA (1) EA017522B1 (en)
ES (1) ES2394594T3 (en)
FR (1) FR2928694A1 (en)
IL (1) IL208149A (en)
UA (1) UA104859C2 (en)
WO (1) WO2009122089A2 (en)
ZA (1) ZA201007308B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101111380B1 (en) * 2011-07-28 2012-02-16 고중식 Power generating engine
CN102562261A (en) * 2012-03-01 2012-07-11 南昌航空大学 Annular double-piston engine
DE102013105217A1 (en) * 2013-05-22 2014-11-27 Illinois Tool Works Inc. Compressor for generating a pressure medium
WO2015123262A1 (en) * 2014-02-12 2015-08-20 Achates Power, Inc. A low reactivity, compression-ignition, opposed-piston engine
KR20160140955A (en) * 2014-04-16 2016-12-07 셰퍼드 인벤터 리미티드 Reciprocating engine
DE102014014706B3 (en) * 2014-10-02 2016-04-07 Audi Ag Multi-link crank drive for an internal combustion engine with axially movable control shaft and gate-guided rotatable eccentrics on the control shaft
CN104791076A (en) * 2015-03-25 2015-07-22 韩培洲 Variable volume combustion chamber internal combustion engine with auxiliary piston
KR20200015305A (en) * 2018-08-03 2020-02-12 현대자동차주식회사 Variable compression ratio apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1372559A (en) * 1917-10-29 1921-03-22 Frank H Stiasny Internal-combustion engine
US1613136A (en) * 1925-06-11 1927-01-04 Schuyler Schieffelin Internal-combustion motor.
US1745821A (en) * 1927-03-18 1930-02-04 Gribojedoff Nicolai Von Internal-combustion engine
US3403668A (en) * 1966-04-04 1968-10-01 Schottler Henry Fluid transducer
US4553508A (en) * 1981-04-27 1985-11-19 Stinebaugh Donald E Internal combustion engine
US5161491A (en) * 1989-06-26 1992-11-10 Graves John G Internal combustion engine
US4974556A (en) * 1989-12-07 1990-12-04 Royse Enterprises, Inc. Internal combustion engine
KR100256888B1 (en) * 1991-10-15 2000-06-01 맨소르 알마씨 Internal combustion rotary piston engine
US5507253A (en) * 1993-08-27 1996-04-16 Lowi, Jr.; Alvin Adiabatic, two-stroke cycle engine having piston-phasing and compression ratio control system
BG63221B1 (en) * 1997-03-14 2001-06-29 Боян БАХНЕВ Cam type engine
US6343575B1 (en) * 1997-10-14 2002-02-05 Carl Robert Deckard Rotating/reciprocating cylinder positive displacement device
US6698394B2 (en) * 1999-03-23 2004-03-02 Thomas Engine Company Homogenous charge compression ignition and barrel engines
AU2003222032A1 (en) 2002-03-15 2003-09-29 Advanced Propulsion Technologies, Inc. Internal combustion engine
US7409932B2 (en) * 2005-09-29 2008-08-12 Randall Gaiser Sliding joint for variable compression ratio device

Also Published As

Publication number Publication date
JP2011514480A (en) 2011-05-06
US20110061631A1 (en) 2011-03-17
EA017522B1 (en) 2013-01-30
ES2394594T3 (en) 2013-02-04
CN101983278A (en) 2011-03-02
UA104859C2 (en) 2014-03-25
IL208149A (en) 2013-11-28
EP2281107A2 (en) 2011-02-09
IL208149A0 (en) 2010-12-30
EA201071092A1 (en) 2011-04-29
JP5715043B2 (en) 2015-05-07
KR101617477B1 (en) 2016-05-02
BRPI0909496B1 (en) 2021-07-27
CN101983278B (en) 2014-05-07
FR2928694A1 (en) 2009-09-18
ZA201007308B (en) 2011-07-27
BRPI0909496A2 (en) 2020-08-18
WO2009122089A2 (en) 2009-10-08
US9388695B2 (en) 2016-07-12
WO2009122089A3 (en) 2009-11-26
KR20110008178A (en) 2011-01-26

Similar Documents

Publication Publication Date Title
EP2281107B1 (en) Engine with a variable volume chamber
EP1238189B1 (en) Device for modifying compression rate to optimize operating conditions of reciprocating piston engines
WO2015200432A1 (en) Variable compression connecting rod
US20170159559A1 (en) Variable Compression Connecting Rod
FR3043720B1 (en) VARIABLE VOLUMETRIC RATIO ENGINE
EP0222841A1 (en) Crankshaft crank
LU88235A1 (en) Improvements made to four-stroke internal combustion engines, with variable volumetric ratio allowing high rates of boost pressure and operating by compression ignition or by controlled ignition
FR2927137A1 (en) Movement converting device for piston heat engine, has complementary units cooperated for ensuring deceleration of translation movement of transmission element to define stop position and to start inverse translation movement of element
JP5014225B2 (en) Internal combustion engine
EP0034958B1 (en) Engine with rotary pistons having a cyclic speed variation and driving means
EP2279332B1 (en) Internal combustion engine
FR2906332A1 (en) DEVICE FOR TRANSFORMING A LINEAR MOVEMENT INTO A ROTATION MOTION IN AN ADJUSTABLE MANNER
FR2487427A1 (en) INTERNAL COMBUSTION ENGINE WITH TWO COUPLED CRANKSHAFTS
EP3004550B1 (en) Device for converting movement and corresponding method
FR2965014A1 (en) Generating device i.e. power generating unit, for use in generating system of motor vehicle, has disengaging units arranged between connector and rotor for driving rotor in rotation along only one direction of translation of rod
FR3050234A1 (en) ASSEMBLY FOR THERMAL ENGINE COMPRESSION RATE VARIATION SYSTEM
FR2694336A1 (en) Rotary piston motor or pump - has connecting rod and crank arm rigidly connected to each shaft and together, with motion of intermediate shaft constrained by eccentric arm
FR2669676A1 (en) Bearings making it possible to vary the compression ratio of an internal combustion engine
FR2801932A1 (en) I.c. engine has compression ratio varied by adjusting position of cams on crankshaft bearing journal
FR3096425A1 (en) Balancing method of an internal combustion engine
WO2018138093A1 (en) Balancing system for balancing an internal combustion engine
FR2965320A1 (en) Internal combustion engine e.g. oil engine, for motor vehicle, has balancing shaft rotatively assembled inside valve control camshaft that is driven in rotation by hollow crankshaft, where balancing shaft is driven in rotation by camshaft
WO2018138096A1 (en) Balancing body and balancing system for balancing an internal combustion engine
WO2018138092A1 (en) Method for balancing an internal combustion engine
FR2468731A1 (en) VALVE ROTATION DEVICE FOR AN INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101015

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 566249

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009008229

Country of ref document: DE

Effective date: 20120906

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120711

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 566249

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121011

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2394594

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121112

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

26N No opposition filed

Effective date: 20130412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009008229

Country of ref document: DE

Effective date: 20130412

BERE Be: lapsed

Owner name: DAOUK, ANTAR

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130317

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090317

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130317

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230324

Year of fee payment: 15

Ref country code: CZ

Payment date: 20230316

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230316

Year of fee payment: 15

Ref country code: SE

Payment date: 20230315

Year of fee payment: 15

Ref country code: IT

Payment date: 20230315

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 15

Ref country code: DE

Payment date: 20230412

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230424

Year of fee payment: 15