EP2269328A2 - Method and device for processing terahertz waves - Google Patents

Method and device for processing terahertz waves

Info

Publication number
EP2269328A2
EP2269328A2 EP09732829A EP09732829A EP2269328A2 EP 2269328 A2 EP2269328 A2 EP 2269328A2 EP 09732829 A EP09732829 A EP 09732829A EP 09732829 A EP09732829 A EP 09732829A EP 2269328 A2 EP2269328 A2 EP 2269328A2
Authority
EP
European Patent Office
Prior art keywords
frequency
terahertz
signal
wave
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP09732829A
Other languages
German (de)
French (fr)
Inventor
Ingo Breunig
Karsten Buse
Jens Kiessling
Bastian Knabe
Rosita Sowade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Telekom AG
Original Assignee
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG filed Critical Deutsche Telekom AG
Publication of EP2269328A2 publication Critical patent/EP2269328A2/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0246Measuring optical wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/006Devices for generating or processing an RF signal by optical means

Definitions

  • the invention relates to a method for processing received electromagnetic radiation, comprising a plurality of carrier waves in the frequency range between 0.1 and 10 terahertz and modulated onto the carrier waves information of a signal frequency of less than 50 GHz, in particular less than 1 GHz.
  • the invention also relates to a receiver device for implementing the method.
  • the object of the invention is now to provide a method by which received electromagnetic radiation containing a plurality of terahertz waves, respectively channels, can be processed so that the signal frequency can be recorded and processed by a simple detector.
  • the essential basic idea of the invention lies in the tunable in the frequency range between 0.1 and 10 terahertz filter, with which it is possible from all available in space and for data transmission to
  • Available carrier waves respectively channels in terahertz exactlytranszufiltem a carrier wave, which then with a subsequent
  • the tunable filter thus initially offers the possibility of taking the possibly existing variety of
  • a reference wave in the frequency range between 0.1 and 10 terahertz is generated in the filter, which is tunable in frequency. This is tuned to the frequency of the carrier wave or of the channel to be received, wherein the tuning is performed by frequency mixing, especially by difference frequency mixing, the reference wave and the carrier waves are demodulated in their frequency, so that after demodulation only the modulated signal frequency remains. This can then in a relatively simple arrangement for Detection of such frequencies, which uses in particular an electronic circuit to be examined.
  • the tunable reference wave with a frequency ⁇ T Hz reference itself can be generated by frequency mixing of two waves ⁇ S ) C htbar, i and ⁇ S obesible, 2 are generated.
  • this reference wave the incoming electromagnetic radiation ⁇ Hz , sign a i in T ⁇ raherz Scheme quasi examined by sampling existing resonances. For this purpose, a further frequency mixing with the frequencies co- T Hz. R eferenz and coTHz.signai is made. In the moment where a resonance is detected, ie where ⁇ Hz, Refere ⁇ z and ⁇ Hz, signai are the same, remains as a difference signal only the electronically processable signal frequency.
  • the resonances thus effectively form the individual transmission channels with the carrier frequencies COTH Z + Mx ⁇ -i, where ⁇ -mz denotes the fundamental frequency of the terahertz wave, ⁇ i the frequency spacing of two channels and M the number of a channel, where M assumes values between 1 and N and N is the total number of channels.
  • This approach can be compared to the principle of a radio receiver tuned to receive a carrier frequency and then receive and modulate the signal modulated onto that carrier frequency for output.
  • a simply constructed and correspondingly inexpensive receiver for the selective reception of terahertz waves can be created.
  • the reference wave can be generated by means of frequency mixing of a fundamental wave generated by optical means in the frequency range of greater than 0.1 THz and a complementary wave generated by electronic means in the frequency range of less than 0.1 THz.
  • the fundamental wave and the complementary wave are in turn united by means of the frequency mixing to the reference wave.
  • This embodiment may be advantageous because the generation and control of the frequency of the complementary wave is sometimes easier with electronic means.
  • the fundamental wave of the frequency G> TH Z is generated while the supplementary wave of the frequency N ⁇ ⁇ i is set electronically.
  • an electronic local oscillator can generate an electrical supplementary signal of the frequency M ⁇ ⁇ i, which is added to the frequency of the optically generated fundamental wave and which then serves for difference frequency formation.
  • an optical filter for terahertz light which selects a terahertz wave.
  • a tunable Fabry-Perot resonator is used as a filter, which in each case excises a carrier wave from the existing spectrum. This is then detected with a suitable terah ⁇ rtz detector.
  • the mode of operation of the Fabry-Perot resonator and of the filter according to the invention realized therewith is explained in more detail in the exemplary embodiment.
  • Figure 1 shows a device with sourakbarah terahertz local oscillator
  • Figure 2 is a Fabry-Perot interferometer.
  • FIG. 1 shows the first-mentioned procedure for processing electromagnetic radiation.
  • This radiation comprises a plurality of carrier waves in the frequency range between 0.1 and 10 terahertz, and in each case the information modulated onto the carrier waves of a signal frequency of less than 50 GHz.
  • Signal radiation 1 with the frequency ⁇ Hz, sig ⁇ ai, to which the receiver is to be selectively adjusted.
  • the procedure according to the invention initially uses two distributed feedback lasers (DFB lasers) 2 and 3, with which a tunable terahertz local oscillator is realized.
  • DFB lasers distributed feedback lasers
  • the two laser beams of the frequencies ⁇ S i C htbar, i and ⁇ S i chtba r, 2 are generated, these frequencies being varied by varying the temperatures of the laser.
  • Both laser beams are subjected to a first difference frequency mixing in module 4, from which a reference wave 5 of frequency COTH Z + M * ⁇ i emerges.
  • the frequency of the reference wave 5 is in the frequency range between 0.1 and 10 terahertz. It is also possible to generate the reference wave from a frequency mixing of a fundamental wave, which is optically generated, for example, by means of the DFB laser, and an electronically generated supplementary wave.
  • the reference wave 5 is supplied together with the signal radiation 1 of a second difference frequency mixture 6, wherein the mixed radiation 7 is recorded with a detector, not shown.
  • the frequency of the carrier ⁇ Hz, signai just the frequency of the channel M corresponds, that is equal to ⁇ H z + M * ⁇ i then only the modulated on the signal radiation 1 signal frequency is left. Of the signal radiation 1 so the frequency com. + subtracted from the reference wave to obtain the signal channel 7 of the channel number M. This is then perceived by the sensitive for the signal frequency detection method as a signal.
  • the DFB lasers 2 and 3 in combination with the mixer 4 can also generate a terahertz wave of the frequency C ⁇ TH Z.
  • the mixer 6 are then in the signal channel 7, the frequencies .omega..sub.i, 2 ⁇ ⁇ 1 (..., N * .omega..sub.i before. If N and .omega..sub.i selected so that the frequency Nx ⁇ i can still be processed electronically, as may a detection electronics, not shown, read the information of the individual M channels.
  • the combination of the light of two laser diodes to produce terahertz light is known from the literature, for example, J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K.
  • the second device for extracting terahertz wave shown in FIG. 2 uses a Fabry-Perot interferometer known from optics. This has two mirrors 8 and 9, one of which 9 is mounted on a translator (double arrow 10), so that the distance between the mirrors 8 and 9 can be changed.
  • the one from the receiver . terahertzwelle 11 to be evaluated can only pass through the two mirrors 8 and 9, if the distance of the mirror is an integral multiple of half the wavelength of the terahertz wave 11. All other carrier frequencies are reflected by the device. This condition is only for one frequency channel
  • the obtained signal 12 of the channel M can then be applied to a terahertz detector 13.
  • a terahertz detector 13 This can consist of a light source, a sum frequency mixture and a semiconductor detector. Alternatively, a so-called photomixer could also be used as the detector.
  • a detector that can directly detect the terahertz wave. Detectors based on thermal principles (Golay cells, bolometers) are too slow to transmit information to allow high bandwidth.
  • the above-described embodiment for the terahertz detector solves this problem because a semiconductor detector is used at the end. Such detectors are known to have high detection bandwidths; up to 40 GHz can be easily reached.
  • each channel receives an identification signal which is integrated in the data stream and which indicates the number of the channel or its frequency. If the receiver does not have the necessary absolute frequency accuracy, the desired channel can be unambiguously identified with the aid of this signal while driving through the frequencies.
  • a corresponding receiving device for electromagnetic radiation of the type mentioned thus comprises a tunable in the frequency range between 0.1 and 10 terahertz filter module, in particular in the type of tunable terahertz local oscillator or the Fabry-Perot interferometer, and arranged behind it and sensitive to the signal frequency detector.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention relates to a method for processing received electromagnetic radiation 1 having several carrier waves in the frequency range between 0.1 and 10 terahertz and information of a signal frequency of less than 50 GHz, particularly of less than 1 GHz, said information being modulated onto the carrier waves, wherein by means of a filter tunable in the frequency range between 0.1 and 10 terahertz an individual carrier wave is filtered out of the received radiation 1 as a terahertz signal, and wherein the filtered-out terahertz signal is supplied to a detection method sensitive to the signal frequency.

Description

Verfahren und Vorrichtung zur Verarbeitung von Terahertz-Wellen Method and apparatus for processing terahertz waves
Die Erfindung betrifft ein Verfahren zur Verarbeitung empfangener elektromagnetischer Strahlung, aufweisend mehrere Trägerwellen im Frequenzbereich zwischen 0.1 und 10 Terahertz und auf die Trägerwellen aufmodulierter Information einer Signalfrequenz von weniger als 50 GHz, insbesondere von weniger als 1 GHz. Die Erfindung betrifft auch eine Empfängervorrichtung zur Umsetzung des Verfahrens.The invention relates to a method for processing received electromagnetic radiation, comprising a plurality of carrier waves in the frequency range between 0.1 and 10 terahertz and modulated onto the carrier waves information of a signal frequency of less than 50 GHz, in particular less than 1 GHz. The invention also relates to a receiver device for implementing the method.
Seitdem vor etwa 100 Jahren erste Techniken zur drahtlose Datenübertragung eingesetzt wurden, stieg die für die Übertragung zur Verfügung stehende Bandbreite kontinuierlich. Dabei ist die Breite des zur Übertragung nutzbaren Frequenzbandes bekanntermaßen von der Trägerfrequenz abhängig, so dass gilt: Je höher die Trägerfrequenz, desto großer sind die zur Verfügung stehenden Übertragungsbandbreiten. Heutzutage werden Trägerfrequenzen im Bereich zwischen einigen Kilohertz bis hin zu vielen Gigahertz eingesetzt. So arbeitet beispielsweise das sogenannte „Wireless HD" mit einer Trägerfrequenz von 60 GHz und Bandbreiten von 4 Gbit/s. Um Datenraten im Bereich 10 Gbit/s und höher erreichen zu können, werden zukünftig auch Wellen im Terahertzbereich als Träger genutzt.Since the advent of wireless technology for the first time approximately 100 years ago, the bandwidth available for transmission has grown steadily. The width of the usable for transmission frequency band is known to be dependent on the carrier frequency, so that the higher the carrier frequency, the greater the available transmission bandwidths. Nowadays, carrier frequencies ranging from a few kilohertz to many gigahertz are used. For example, the so-called "Wireless HD" operates with a carrier frequency of 60 GHz and bandwidths of 4 Gbit / s In order to achieve data rates in the range of 10 Gbit / s and higher, waves in the terahertz range will also be used as carriers in the future.
Problematisch an der Datenübertragung mittels solcher Terahertzwellen ist, dass elektronische Schaltungen aufgrund der Lebensdauer freier Elektronen und Löcher auf Verarbeitungsgeschwindigkeiten unter 100 GHz = 0.1 THz begrenzt . sind und somit für die Verarbeitung derartig hoher Frequenzen im genannten Terahertzbereich kaum in Frage kommen. Statt dessen sind optische Verfahren bekannt, die sich meist der Frequenzmischung bedienen, um vom Bereich des sichtbaren Lichtes in den fraglichen Terahertzbereich zu gelangen. Diese Verfahren sind verhältnismäßig aufwendig.The problem with data transmission by means of such terahertz waves is that due to the lifetime of free electrons and holes, electronic circuits limit processing speeds below 100 GHz = 0.1 THz. are and thus for the processing of such high frequencies in the mentioned terahertz hardly come into question. Instead, they are optical methods are known, which usually use the frequency mixing to get from the range of visible light in the terahertz range in question. These methods are relatively expensive.
Aufgabe der Erfindung ist es nunmehr, ein Verfahren zu schaffen, mit dem empfangene elektromagnetischer Strahlung enthaltend eine Vielzahl von Terahertzwellen, respektive Kanälen, so aufbereitet werden kann, dass sich die Signalfrequenz von einem einfachen Detektor aufnehmen und verarbeiten lässt. Zudem ist es Aufgabe der Erfindung, eine Empfangsvorrichtung zur Umsetzung des Verfahrens zu schaffen.The object of the invention is now to provide a method by which received electromagnetic radiation containing a plurality of terahertz waves, respectively channels, can be processed so that the signal frequency can be recorded and processed by a simple detector. In addition, it is an object of the invention to provide a receiving device for implementing the method.
Diese Aufgaben werden durch das Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 und die Empfangsvorrichtung nach Anspruch 8 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den jeweiligen Unteransprüchen genannt.These objects are achieved by the method having the characterizing features of claim 1 and the receiving device according to claim 8. Advantageous embodiments of the invention are mentioned in the respective subclaims.
Der wesentliche Grundgedanke der Erfindung liegt in dem im Frequenzbereich zwischen 0.1 und 10 Terahertz durchstimmbaren Filter, mit dem es möglich ist, aus sämtlichen im Raum vorhandenen und für die Datenübertragung zurThe essential basic idea of the invention lies in the tunable in the frequency range between 0.1 and 10 terahertz filter, with which it is possible from all available in space and for data transmission to
Verfügung stehenden Trägerwellen respektive Kanälen im Terahertzbereich genau eine Trägerwelle herauszufiltem, die dann mit einer nachfolgendenAvailable carrier waves respectively channels in terahertz exactly herauszufiltem a carrier wave, which then with a subsequent
Anordnung weiterverarbeitet werden kann. Das durchstimmbare Filter bietet somit zunächst die Möglichkeit, unter der eventuell vorhandenen Vielzahl vonArrangement can be further processed. The tunable filter thus initially offers the possibility of taking the possibly existing variety of
Übertragungskanälen einen gezielt auszuwählen. Dabei kann das durchstimmbareSelect one of the transmission channels. In this case, the tunable
Filter mittels zweier unterschiedlicher Konzepte realisiert werden:Filter can be realized by means of two different concepts:
In der einen ersten Ausführungsform wird im Filter eine Referenzwelle im Frequenzbereich zwischen 0.1 und 10 Terahertz erzeugt, die in ihrer Frequenz durchstimmbar ist. Diese wird auf die Frequenz der Trägerwelle respektive des zu empfangenden Kanals abgestimmt, wobei die Abstimmung dadurch erfolgt, dass durch Frequenzmischung, insbesondere durch Differenzfrequenzmischung, die Referenzwelle und die Trägerwellen in ihrer Frequenz demoduliert werden, so dass nach der Demodulation lediglich die aufmodulierte Signalfrequenz verbleibt. Diese kann anschließend in einer vergleichsweise einfachen Anordnung zur Detektion derartiger Frequenzen, die sich insbesondere einer elektronischen Schaltung bedient, untersucht werden.In a first embodiment, a reference wave in the frequency range between 0.1 and 10 terahertz is generated in the filter, which is tunable in frequency. This is tuned to the frequency of the carrier wave or of the channel to be received, wherein the tuning is performed by frequency mixing, especially by difference frequency mixing, the reference wave and the carrier waves are demodulated in their frequency, so that after demodulation only the modulated signal frequency remains. This can then in a relatively simple arrangement for Detection of such frequencies, which uses in particular an electronic circuit to be examined.
Die durchstimmbare Referenzwelle mit einer Frequenz ωTHz,Referenz kann selber durch Frequenzmischung aus zwei Wellen ωS)Chtbar,i und ωSichtbar,2 erzeugt werden. Mit dieser Referenzwelle wird die ankommende elektromagnetische Strahlung ωτHz,signai im Tβraherzbereich quasi durch Abtastung vorhandener Resonanzen untersucht. Dazu wird eine weitere Frequenzmischung mit den Frequenzen co-THz.Referenz und coTHz.signai vorgenommen. In dem Moment, wo eine Resonanz entdeckt ist, wo also ωτHz,Refereπz und ωτHz,signai gleich sind, verbleibt als Differenzsignal nur noch die elektronisch verarbeitbare Signalfrequenz. Die Resonanzen bilden damit gewissermaßen die einzelnen Übertragungskanäle mit den Trägerfrequenzen COTHZ + Mxω-i, wobei ω-mz die Grundfrequenz der Terahertzwelle, ωi den Frequenzabstand von zwei Kanälen und M die Nummer eines Kanals bezeichnet, wobei M Werte zwischen 1 und N annimmt und N die Gesamtzahl der Kanäle ist.The tunable reference wave with a frequency ω T Hz, reference itself can be generated by frequency mixing of two waves ω S ) C htbar, i and ω S obesible, 2 are generated. With this reference wave , the incoming electromagnetic radiation ωτHz , sign a i in Tβraherzbereich quasi examined by sampling existing resonances. For this purpose, a further frequency mixing with the frequencies co- T Hz. R eferenz and coTHz.signai is made. In the moment where a resonance is detected, ie where ωτHz, Refereπz and ωτHz, signai are the same, remains as a difference signal only the electronically processable signal frequency. The resonances thus effectively form the individual transmission channels with the carrier frequencies COTH Z + Mxω-i, where ω-mz denotes the fundamental frequency of the terahertz wave, ωi the frequency spacing of two channels and M the number of a channel, where M assumes values between 1 and N and N is the total number of channels.
Diese Vorgehensweise lässt sich mit dem Prinzip eines Radioempfängers vergleichen, der auf den Empfang einer Trägerfrequenz eingestimmt wird und dann das auf diese Trägerfrequenz modulierte Signal empfangen und für die Ausgabe umwandeln kann. Auf diese erfindungsgemäße Weise kann ein einfach aufgebauter und entsprechend kostengünstiger Empfänger für den selektiven Empfang von Terahertzwellen geschaffen werden.This approach can be compared to the principle of a radio receiver tuned to receive a carrier frequency and then receive and modulate the signal modulated onto that carrier frequency for output. In this way according to the invention, a simply constructed and correspondingly inexpensive receiver for the selective reception of terahertz waves can be created.
Dabei kann in einer speziellen Ausführungsform die Referenzwelle mittels Frequenzmischung einer mit optischen Mitteln generierten Grundwelle im Frequenzbereich von größer 0,1 THz und einer mit elektronischen Mitteln generierten Ergänzungswelle im Frequenzbereich von weniger als 0,1 THz erzeugt werden. Grundwelle und Ergänzungswelle werden wiederum mit Mitteln der Frequenzmischung zur Referenzwelle vereint. Diese Ausführungsform kann vorteilhaft sein, weil die Erzeugung und die Kontrolle der Frequenz der Ergänzungswelle mit elektronischen Mitteln mitunter einfacher ist. Es wird also die Grundwelle der Frequenz G>THZ erzeugt, während die Ergänzungswelle der Frequenz Nχωi elektronisch eingestellt wird. Beispielsweise kann ein elektronischer Lokaloszillator ein elektrisches Ergänzungssignal der Frequenz Mχωi generieren, welches zu der Frequenz der optisch generierten Grundwelle addiert wird und welches dann zur Differenzfrequenzbildung dient. Die verbleibende relative niederfrequente Amplitudenmodulation ist dann die Information des Kanals M. Auch wenn keine Amplitudenmodulation vorliegt: Bei anderen Modulationsverfahren, bei denen die Frequenz, die Phase und/oder die Polarisation moduliert ist, unterscheidet sich nur der letzte Schritt der Sigηalauswertung. Als typische Werte seien für ωi = 100 MHz und für N = 128 genannt.In this case, in a specific embodiment, the reference wave can be generated by means of frequency mixing of a fundamental wave generated by optical means in the frequency range of greater than 0.1 THz and a complementary wave generated by electronic means in the frequency range of less than 0.1 THz. The fundamental wave and the complementary wave are in turn united by means of the frequency mixing to the reference wave. This embodiment may be advantageous because the generation and control of the frequency of the complementary wave is sometimes easier with electronic means. Thus, the fundamental wave of the frequency G> TH Z is generated while the supplementary wave of the frequency N χ ωi is set electronically. For example, an electronic local oscillator can generate an electrical supplementary signal of the frequency M χ ωi, which is added to the frequency of the optically generated fundamental wave and which then serves for difference frequency formation. The remaining relative low-frequency amplitude modulation is then the information of the channel M. Even if no amplitude modulation is present: In other modulation methods in which the frequency, phase and / or polarization is modulated, only the last step of the signal evaluation differs. Typical values for ωi = 100 MHz and for N = 128 are mentioned.
In der anderen zweiten Ausführungsform wird ein optisches Filter für Terahertzlicht geschaffen, welches eine Terahertzwelle selektiert. Dazu wird als Filter ein durchstimmbarer Fabry-Perot-Resonator genutzt, der jeweils eine Trägerwelle aus dem vorhandenen Spektrum herausschneidet. Diese wird dann mit einem geeigneten Terahβrtz-Detektor nachgewiesen. Die Funktionsweise des Fabry- Perot-Resonators und des damit realisierten erfindungsgemäßen Filters wird im Ausführungsbeispiel näher erklärt.In the other second embodiment, an optical filter for terahertz light is provided which selects a terahertz wave. For this purpose, a tunable Fabry-Perot resonator is used as a filter, which in each case excises a carrier wave from the existing spectrum. This is then detected with a suitable terahβrtz detector. The mode of operation of the Fabry-Perot resonator and of the filter according to the invention realized therewith is explained in more detail in the exemplary embodiment.
Das erfindungsgemäße Verfahren wird nachfolgend anhand der Figuren 1 und 2 erläutert. Es zeigenThe inventive method will be explained below with reference to Figures 1 and 2. Show it
Figur 1 eine Vorrichtung mit durchstämmbarem Terahertz-Lokaloszillator undFigure 1 shows a device with durchrakbarah terahertz local oscillator and
Figur 2 ein Fabry-Perot-Interferometer.Figure 2 is a Fabry-Perot interferometer.
In Figur 1 ist die erstgenannte Vorgehensweise zur Verarbeitung elektromagnetischer Strahlung dargestellt. Diese Strahlung umfasst mehrere Trägerwellen im Frequenzbereich zwischen 0,1 und 10 Terahertz sowie jeweils die auf die Trägerwellen aufmodulierte Information einer Signalfrequenz von weniger als 50 GHz. Unter all diesen Frequenzen findet sich auch die eine Signalstrahlung 1 mit der Frequenz ωτHz,sigπai, auf die der Empfänger selektiv eingestellt werden soll.FIG. 1 shows the first-mentioned procedure for processing electromagnetic radiation. This radiation comprises a plurality of carrier waves in the frequency range between 0.1 and 10 terahertz, and in each case the information modulated onto the carrier waves of a signal frequency of less than 50 GHz. Among all these frequencies there is also one Signal radiation 1 with the frequency ωτHz, sigπai, to which the receiver is to be selectively adjusted.
Für diese selektive Einstellung bedient sich die erfindungsgemäße Verfahrensweise zunächst zweier Distributed-Feedback-Laser (DFB-Laser) 2 und 3, mit denen ein durchstimmbarer Terahertz-Lokaloszillator realisiert wird. Mit den DFB-Lasern werden die beiden Laserstrahlen der Frequenzen ωSiChtbar,i und ωSichtbar,2 erzeugt, wobei diese Frequenzen durch Variation der Temperaturen der Laser verändert werden. Beide Laserstrahlen werden im Modul 4 einer ersten Differenzfrequenzmischung unterzogen, aus der eine Referenzwelle 5 der Frequenz COTHZ + M*ωi hervorgeht. Die Frequenz der Referenzwelle 5 liegt im Frequenzbereich zwischen 0.1 und 10 Terahertz. Es ist auch möglich, die Referenzwelle aus einer Frequenzmischung einer beispielsweise mittels der DFB- Laser optisch erzeugten Grundwelle und einer elektronisch erzeugten Ergänzungswelle zu generieren.For this selective setting, the procedure according to the invention initially uses two distributed feedback lasers (DFB lasers) 2 and 3, with which a tunable terahertz local oscillator is realized. With the DFB lasers, the two laser beams of the frequencies ω S i C htbar, i and ω S i chtba r, 2 are generated, these frequencies being varied by varying the temperatures of the laser. Both laser beams are subjected to a first difference frequency mixing in module 4, from which a reference wave 5 of frequency COTH Z + M * ωi emerges. The frequency of the reference wave 5 is in the frequency range between 0.1 and 10 terahertz. It is also possible to generate the reference wave from a frequency mixing of a fundamental wave, which is optically generated, for example, by means of the DFB laser, and an electronically generated supplementary wave.
Nachfolgend wird die Referenzwelle 5 zusammen mit der Signalstrahlung 1 einer zweiten Differenzfrequenzmischung 6 zugeführt, wobei die Mischstrahlung 7 mit einem nicht dargestellten Detektor aufgenommen wird. Wenn nun die Frequenz der Trägerweile ωτHz,signai gerade der Frequenz des Kanals M entspricht, also gleich ωγHz + M*ωi ist, dann bleibt nur noch die auf die Signalstrahlung 1 aufmodulierte Signalfrequenz übrig. Von der Signalstrahlung 1 wird also die Frequenz com. + der Referenzwelle abgezogen, um den Signalkanal 7 der Kanalnummer M zu erhalten. Dieser wird dann von dem für die Signalfrequenz sensiblen Detektionsverfahren als Signal wahrgenommen.Subsequently, the reference wave 5 is supplied together with the signal radiation 1 of a second difference frequency mixture 6, wherein the mixed radiation 7 is recorded with a detector, not shown. Now, if the frequency of the carrier ωτHz, signai just the frequency of the channel M corresponds, that is equal to ωγ H z + M * ωi, then only the modulated on the signal radiation 1 signal frequency is left. Of the signal radiation 1 so the frequency com. + subtracted from the reference wave to obtain the signal channel 7 of the channel number M. This is then perceived by the sensitive for the signal frequency detection method as a signal.
Alternativ können die DFB-Laser 2 und 3 in Kombination mit dem Mischer 4 auch eine Terahertzwelle der Frequenz CÖTHZ erzeugen. Nach dem Mischer 6 liegen dann im Signalkanal 7 die Frequenzen ω-i, 2χω1 ( ... , N*ωi vor. Werden N und ω-i so gewählt, dass die Frequenz Nxωi noch elektronisch verarbeitet werden kann, so kann eine nicht gezeigte Detektionselektronik die Information der einzelnen M Kanäle auslesen. Dabei ist die Kombination des Lichts von zwei Laserdioden, um Terahertzlicht zu erzeugen, aus der Literatur, beispielsweise aus J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary und J. F. Lampin, Applied Physics Letters 91, 241102 (2007) bekannt und wird beispielsweise in der Radioastronomie s eingesetzt, um Terahertzsignale aus dem All zu demodulieren. Dort liegt jedoch ein kontinuierliches Eingangsspektrum vor. Bei den erfindungsgemäßen Verfahren kommt es hingegen darauf an, die Frequenz COTHZ + M*ωi genau zu treffen. Auch kann jeder einzelne der N Kanäle, die das Terahertz-Signal 1 überträgt, eine Information über seine Kanalnummer besitzen. Dies macht es dann überflüssig, dass der Empfänger durch eigenständige Messung die genaue Differenzfrequenz der Laser absolut ermittelt, was eine deutliche Vereinfachung darstellt.Alternatively, the DFB lasers 2 and 3 in combination with the mixer 4 can also generate a terahertz wave of the frequency CÖTH Z. After the mixer 6 are then in the signal channel 7, the frequencies .omega..sub.i, 2 χ ω 1 (..., N * .omega..sub.i before. If N and .omega..sub.i selected so that the frequency Nxωi can still be processed electronically, as may a detection electronics, not shown, read the information of the individual M channels. Incidentally, the combination of the light of two laser diodes to produce terahertz light is known from the literature, for example, J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary and JF Lampin, Applied Physics Letters 91, 241102 (2007) and is used for example in radio astronomy s to demodulate terahertz signals from space. However, there is a continuous range of inputs. In the case of the methods according to the invention, on the other hand, it is important to exactly hit the frequency COTH Z + M * ωi. Also, each one of the N channels transmitting the terahertz signal 1 may have information about its channel number. This makes it superfluous that the receiver determines the exact difference frequency of the laser absolutely by independent measurement, which represents a significant simplification.
Die in Figur 2 dargestellte zweite Vorrichtung zum Herausfiitem von Terahertzwelleή greift auf ein aus der Optik bekanntes ein Fabry-Perot- Interferometer zurück. Dieses hat zwei Spiegel 8 und 9, wovon einer 9 auf einem Translator (Doppelpfeil 10) montiert ist, so dass der Abstand zwischen den Spiegeln 8 und 9 verändert werden kann. Die vom Empfänger . auszuwertende Terahertzwelle 11 kann jedoch nur dann durch die beiden Spiegel 8 und 9 treten, wenn der Abstand der Spiegel ein ganzzahliges Vielfaches der halben Wellenlänge der Terahertzwelle 11 ist. Alle anderen Trägerfrequenzen werden von der Anordnung reflektiert. Diese Bedingung ist jeweils nur für einen FrequenzkanalThe second device for extracting terahertz wave shown in FIG. 2 uses a Fabry-Perot interferometer known from optics. This has two mirrors 8 and 9, one of which 9 is mounted on a translator (double arrow 10), so that the distance between the mirrors 8 and 9 can be changed. The one from the receiver . terahertzwelle 11 to be evaluated, however, can only pass through the two mirrors 8 and 9, if the distance of the mirror is an integral multiple of half the wavelength of the terahertz wave 11. All other carrier frequencies are reflected by the device. This condition is only for one frequency channel
. erfüllt, sofern die Spiegel 8 und 9 eine so große Reflektivität aufweisen, dass die, fulfilled, if the mirrors 8 and 9 have such a high reflectivity, that the
Selektivität des Fabry-Perot-Resonators besser als der Frequenzabstand ωi zweier Terahertzkanäle ist. Das erhaltene Signal 12 des Kanals M kann dann auf einen Terahertzdetektor 13 gegeben werden. Dieser kann aus einer Lichtquelle, einer Summenfrequenzmischung und einem Halbleiterdetektor bestehen. Alternativ könnte als Detektor auch ein sogenannter Photomischer genutzt werden.Selectivity of the Fabry-Perot resonator is better than the frequency spacing ωi two terahertz channels. The obtained signal 12 of the channel M can then be applied to a terahertz detector 13. This can consist of a light source, a sum frequency mixture and a semiconductor detector. Alternatively, a so-called photomixer could also be used as the detector.
Im Gegensatz zur in Figur 1 gezeigten Anordnung wird die eigentliche Terahertz-In contrast to the arrangement shown in FIG. 1, the actual terahertz
WeIIe hier ja nicht demoduliert, so dass ein Detektor nötig ist, der die Terahertz- Welle unmittelbar nachweisen kann. Detektoren, die auf thermischen Prinzipien basieren (Golay-Zellen, Bolometer) sind zu langsam, um Informationsübertragung hoher Bandbreite zu ermöglichen. Die oben beschriebene Ausführungsform für den Terahertzdetektor löst dieses Problem, da am Ende ein Halbleiterdetektor eingesetzt wird. Solche Detektoren weisen bekanntermaßen hohe Detektionsbandreiten auf; bis zu 40 GHz lassen sich leicht erreichen.We do not demodulate here, so a detector is needed that can directly detect the terahertz wave. Detectors based on thermal principles (Golay cells, bolometers) are too slow to transmit information to allow high bandwidth. The above-described embodiment for the terahertz detector solves this problem because a semiconductor detector is used at the end. Such detectors are known to have high detection bandwidths; up to 40 GHz can be easily reached.
Auch in diesem Fall kann es vorteilhaft sein, wenn jeder Kanal ein Identifikationssignal erhält, welches in den Datenstrom integriert ist, und welches die Nummer des Kanals bzw. dessen Frequenz angibt. Verfügt der Empfänger nicht über die nötige absolute Frequenzgenauigkeit, so kann mit Hilfe dieses Signals beim Durchfahreren der Frequenzen der gewünschte Kanal eindeutig identifiziert werden.In this case too, it may be advantageous if each channel receives an identification signal which is integrated in the data stream and which indicates the number of the channel or its frequency. If the receiver does not have the necessary absolute frequency accuracy, the desired channel can be unambiguously identified with the aid of this signal while driving through the frequencies.
Eine entsprechende Empfangsvorrichtung für elektromagnetische Strahlung der genannten Art umfasst somit ein im Frequenzbereich zwischen 0.1 und 10 Terahertz durchstimmbares Filtermodul, insbesondere in der Art des durchstimmbaren Terahertz-Lokaloszillators oder des Fabry-Perot-Interferometers, und einen dahinter angeordneten und für die Signalfrequenz sensiblen Detektor. A corresponding receiving device for electromagnetic radiation of the type mentioned thus comprises a tunable in the frequency range between 0.1 and 10 terahertz filter module, in particular in the type of tunable terahertz local oscillator or the Fabry-Perot interferometer, and arranged behind it and sensitive to the signal frequency detector.

Claims

Ansprüche claims
1. Verfahren zur Verarbeitung empfangener elektromagnetischer Strahlung (1) aufweisend mehrere Trägerwellen im Frequenzbereich zwischen 0.1 und 10 Terahertz und auf die Trägerwellen aufmodulierter Information einer Signalfrequenz von weniger als 50 GHz, insbesondere von weniger als 1 GHz, dadurch gekennzeichnet, dass mittels eines im Frequenzbereich zwischen 0.1 und 10 Terahertz durchstimmbaren Filters eine einzelne der Trägerwellen als Terahertzsignal aus der empfangenen Strahlung (1) herausgefiltert wird, wobei das herausgefilterte Terahertzsignal einem für die Signalfrequenz sensiblen Detektionsverfahren zugeführt wird.1. A method for processing received electromagnetic radiation (1) comprising a plurality of carrier waves in the frequency range between 0.1 and 10 terahertz and on the carrier waves modulated information a signal frequency of less than 50 GHz, in particular less than 1 GHz, characterized in that by means of a frequency range between 0.1 and 10 terahertz tunable filter, a single of the carrier waves as terahertz signal from the received radiation (1) is filtered out, wherein the filtered terahertz signal is supplied to a signal frequency sensitive detection method.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Filter eine durchstimmbare Terahertzquelle aufweist, die eine Referenzwelle (5) im Frequenzbereich zwischen 0.1 und 10 Terahertz erzeugt, wobei aus der Referenzwelle (5) und der elektromagnetischen . Strahlung (1) eine Differenzfrequenzwelle (7) erzeugt wird, die dem Demodulationsverfahren zugeführt wird.2. The method according to claim 1, characterized in that the filter comprises a tunable Terahertzquelle which generates a reference wave (5) in the frequency range between 0.1 and 10 terahertz, wherein from the reference wave (5) and the electromagnetic. Radiation (1) a difference frequency wave (7) is generated, which is supplied to the demodulation process.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Referenzwelle (5) mittels Frequenzmischung einer mit optischen Mitteln generierten Grundwelle und einer mit elektronischen Mitteln generierten Ergänzungswelle erzeugt wird.3. The method according to claim 2, characterized in that the reference wave (5) is generated by means of frequency mixing of a fundamental wave generated by optical means and a supplementary wave generated by electronic means.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Gundwelle oder die Referenzwelle durch Differenzfrequenzbildung der Signale zweier Laser, insbesondere zweier Halbleiterlaser (2,3), generiert wird. 4. The method according to claim 2 or 3, characterized in that the Gundwelle or the reference wave by difference frequency formation of the signals of two lasers, in particular two semiconductor lasers (2,3), is generated.
5. Verfahren nach Anspruch 6, dadu rch geke n nzei ch net, dass die Gundwede oder die Referenzwelle durch Differenzfrequenzbildung der Signale zweier Distributed-Feedback-Laser (2,3) generiert wird; die bei unterschiedlichen einstellbaren Temperaturen betrieben werden.5. The method according to claim 6, characterized in that the Gundwede or the reference wave is generated by difference frequency formation of the signals of two distributed feedback lasers (2, 3); which are operated at different adjustable temperatures.
6. Verfahren nach Anspruch 1 , dadu rch geke n nzeich net, dass die Filterfunktion einen durchstimmbaren Fabry-Perot-Resonator aufweist, wobei das den Fabry-Perot-Resonator passierende Terahertzsignal dem Detektionsverfahren zugeführt wird.6. Method according to claim 1, characterized in that the filter function has a tunable Fabry-Perot resonator, wherein the terahertz signal passing through the Fabry-Perot resonator is fed to the detection method.
7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass, jeder Datenkanal eine Kennung erhält, welche seine eindeutige Identifikation zulässt.7. The method according to any one of the preceding claims, characterized in that, each data channel receives an identifier, which allows its unique identification.
8. Empfangsvorrichtung für elektromagnetische Strahlung aufweisend mehrere Trägerwellen im Frequenzbereich zwischen 0.1 und 10 Terahertz mit aufmodulierter Information einer Signalfrequenz von weniger als 50 GHz1 insbesondere von weniger als 1 GHz, . geken nzeichnet d u rc h ein im Frequenzbereich zwischen 0.1 und 10 Terahertz durchstimmbares Filtermodul und einen dahinter angeordneten für die Signalfrequenz sensiblen Detektor. 8. Receiving device for electromagnetic radiation comprising a plurality of carrier waves in the frequency range between 0.1 and 10 terahertz with modulated information a signal frequency of less than 50 GHz 1, in particular less than 1 GHz . You can call rc h a tunable in the frequency range between 0.1 and 10 terahertz filter module and arranged behind it for the signal frequency sensitive detector.
EP09732829A 2008-04-15 2009-02-03 Method and device for processing terahertz waves Ceased EP2269328A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008019010A DE102008019010A1 (en) 2008-04-15 2008-04-15 Method and apparatus for processing terahertz waves
PCT/DE2009/000151 WO2009127177A2 (en) 2008-04-15 2009-02-03 Method and device for processing terahertz waves

Publications (1)

Publication Number Publication Date
EP2269328A2 true EP2269328A2 (en) 2011-01-05

Family

ID=41078559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09732829A Ceased EP2269328A2 (en) 2008-04-15 2009-02-03 Method and device for processing terahertz waves

Country Status (5)

Country Link
US (1) US8693896B2 (en)
EP (1) EP2269328A2 (en)
CN (1) CN102007713B (en)
DE (1) DE102008019010A1 (en)
WO (1) WO2009127177A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412495A (en) * 2011-09-09 2012-04-11 华中科技大学 Method for CO2 laser to generate tunable terahertz-wave (THz) in sector periodicity crystal
CN107248697B (en) * 2017-07-26 2019-08-27 福建中科光芯光电科技有限公司 A kind of preparation method of long wavelength's InP-base DFB semiconductor laser tube core
CN108398691B (en) * 2018-05-25 2023-10-17 中国工程物理研究院流体物理研究所 Difference frequency signal generating device and method
CN112866168B (en) * 2021-03-05 2021-09-14 上海交通大学 SI-DFT-s-OFDM system for terahertz communication perception integration
CN113726445B (en) * 2021-07-12 2022-11-18 网络通信与安全紫金山实验室 Modulation signal generation method and terahertz wireless transmission method and system
CN114268361B (en) * 2021-12-20 2023-09-26 中国科学院微小卫星创新研究院 Multiple-input multiple-output inter-satellite communication diversity system and method based on photogenerated terahertz

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847853A (en) * 1995-12-29 1998-12-08 Micron Technology, Inc. Modulation and demodulation of light to facilitate transmission of information
WO2002015416A2 (en) * 2000-08-17 2002-02-21 Terabit Communications, L.L.C. High-speed communications system
WO2003005002A1 (en) * 2001-07-02 2003-01-16 Advantest Corporation Propagation measurement apparatus and propagation measurement method
US7085499B2 (en) * 2001-11-15 2006-08-01 Hrl Laboratories, Llc Agile RF-lightwave waveform synthesis and an optical multi-tone amplitude modulator
WO2003043178A2 (en) * 2001-11-15 2003-05-22 Hrl Laboratories, Llc Frequency agile spread waveform generator and method and pre-processor apparatus and method
US7092645B1 (en) * 2002-12-13 2006-08-15 Rockwell Collins, Inc. Electro optical microwave communications system
US7259859B2 (en) * 2004-01-23 2007-08-21 Hrl Laboratories, Llc Terahertz modulation spectrometer
GB2415309A (en) * 2004-06-18 2005-12-21 Univ Kent Canterbury Electro-magnetic terahertz transmission/reception system
US7054339B1 (en) * 2004-07-13 2006-05-30 Np Photonics, Inc Fiber-laser-based Terahertz sources through difference frequency generation (DFG) by nonlinear optical (NLO) crystals
US7529484B2 (en) * 2005-12-14 2009-05-05 Nec Laboratories America, Inc. Triplexer transceiver using parallel signal detection
CN100421318C (en) * 2006-06-19 2008-09-24 中国计量学院 Apparatus for double wavelength output and photonic mixing to generate THz wave for semiconductor laser
US7738111B2 (en) * 2006-06-27 2010-06-15 Lawrence Livermore National Security, Llc Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope
WO2008030782A2 (en) * 2006-09-05 2008-03-13 Oewaves, Inc. Wideband receiver based on photonics technology
US7515801B2 (en) * 2006-12-28 2009-04-07 Wisconsin Alumni Research Foundation Coherent terahertz radiation source
US8035083B1 (en) * 2007-04-07 2011-10-11 Microtech Instruments, Inc. Terahertz tunable sources, spectrometers, and imaging systems
US9246529B2 (en) * 2008-01-25 2016-01-26 California Institute Of Technology Photonic RF down-converter based on optomechanical oscillation
DE102008015397A1 (en) * 2008-03-20 2009-09-24 Deutsche Telekom Ag Method for generating electromagnetic terahertz carrier waves
DE102008020466A1 (en) * 2008-04-23 2009-10-29 Deutsche Telekom Ag Wireless data transmission with terahertz waves
US8373921B2 (en) * 2008-08-14 2013-02-12 Battelle Memorial Institute Methods and systems for modulating and demodulating millimeter-wave signals
JP4674635B2 (en) * 2008-12-26 2011-04-20 ブラザー工業株式会社 Image forming apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009127177A3 *

Also Published As

Publication number Publication date
US8693896B2 (en) 2014-04-08
US20110110674A1 (en) 2011-05-12
CN102007713B (en) 2014-08-20
CN102007713A (en) 2011-04-06
WO2009127177A2 (en) 2009-10-22
DE102008019010A1 (en) 2009-10-22
WO2009127177A3 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
DE69835125T2 (en) Optical transmission system, optical transmitter and optical receiver for transmitting an angle-modulated signal
DE69737228T2 (en) Purely RF optical signal channel former
DE69432850T2 (en) Optical wavelength division multiplexer of high density
EP0438075B1 (en) Optical cable television transmission system
DE102006058395B4 (en) Arrangement for the electrical control and fast modulation of THz transmitters and THz measuring systems
DE102019111306A1 (en) METHOD FOR CALCULATION-FREE BROADBAND SPECTRAL CORRELATION AND ANALYSIS
EP2269328A2 (en) Method and device for processing terahertz waves
WO1996033535A1 (en) Optical frequency generator
DE60215290T2 (en) Optical clock phase locked loop circuit
DE60301817T2 (en) Apparatus and method for measuring ultrashort light pulses
DE60207477T2 (en) Method and device for spectral analysis with detection with adapted filter
DE19801469C2 (en) Device for acquiring or generating optical signals
EP1026849A2 (en) Optical transmission system as well as transmitter and receiver
DE102010031652A1 (en) Apparatus and method for generating continuous wave terahertz radiation
DE60125566T2 (en) FREQUENCY GENERATOR
DE102022201312B4 (en) Method for operating an electro-optical transmission device for any signals, computer program product and data transmission device
DE69433483T2 (en) High sensitivity optical receiver for receiving a single high frequency modulated optical signal
DE60023386T2 (en) Optical FM transmission system
DE10296631T5 (en) Optical network analyzer
DE4444218A1 (en) Optical transmission device for an optical message transmission system in connection with a radio system
DE60201200T2 (en) Optical Pulse Source for Remote Optical Transmission Systems
DE602004006468T2 (en) Optical wavelength monitor system
DE102013215162A1 (en) Terahertz frequency domain spectrometer with phase modulation of a source laser beam
EP0394772B1 (en) Television transmission system by optical cable
EP1286487A1 (en) Optical cascaded filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101217

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOWADE, ROSITA

Inventor name: KNABE, BASTIAN

Inventor name: KIESSLING, JENS

Inventor name: BUSE, KARSTEN

Inventor name: BREUNIG, INGO

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121017

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200402