EP2268999A1 - System and method for determining parameters representing orientation of a solid in movement subject to two vector fields - Google Patents

System and method for determining parameters representing orientation of a solid in movement subject to two vector fields

Info

Publication number
EP2268999A1
EP2268999A1 EP09732406A EP09732406A EP2268999A1 EP 2268999 A1 EP2268999 A1 EP 2268999A1 EP 09732406 A EP09732406 A EP 09732406A EP 09732406 A EP09732406 A EP 09732406A EP 2268999 A1 EP2268999 A1 EP 2268999A1
Authority
EP
European Patent Office
Prior art keywords
vector
solid
determining
field
rot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09732406A
Other languages
German (de)
French (fr)
Inventor
Etienne De Foras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Movea SA
Original Assignee
Movea SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Movea SA filed Critical Movea SA
Publication of EP2268999A1 publication Critical patent/EP2268999A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1654Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with electromagnetic compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Definitions

  • the invention relates to a system and a method for determining parameters representative of the orientation of a moving solid subjected to two vector fields.
  • motion capture systems of a solid have applications in various fields such as health, multimedia, or geophysics.
  • a user's movements can be used to control virtual reality systems.
  • the movements of a player can be recorded to control the evolution of a virtual character in a synthesis scene.
  • motion capture devices allow devices to adapt to the context of use. They allow, for example, to optimize the reception of a mobile phone by the knowledge of its orientation, or to improve the interfaces of the personal assistants.
  • such systems can be used to position surgical tools, or to monitor the movement of elderly people or those with health problems resulting in reduced mobility.
  • Motion sensors and more precisely angular position sensors, are highly miniaturized and researched to give them robustness and cost compatible with applications aimed at the general public.
  • the position of a solid in space is entirely determined by the knowledge of six magnitudes. Among these are three sizes that can translate translations and three other sizes likely to translate rotations. The last three magnitudes correspond to angular positions, called attitude angles, that can be used to determine motions.
  • a rotation can be defined by a quaternion.
  • FR 2 838 185 Commissariat à l'Energie
  • Atomic discloses a device for capturing the orientation of a solid comprising at least one angular position sensor that can be made integral with the solid and to deliver at least one measurement data representative of the orientation of the solid, a means for generator of test data representative of an estimated orientation of the solid, and means for modifying the estimated orientation of the solid by confronting the measurement data and test data. After one or more modifications of the estimated orientation, it converges towards the effective orientation of the solid, or, more precisely, towards the measured orientation.
  • This device does not require calculation means to establish the orientation or the inclination of the solid on the basis of a function of the measurement data of the sensors, and makes it possible to overcome the non-linear behaviors of these.
  • Such a device requires many calculations and can not, or hardly, be embedded on a system of reduced size. Such a device is also sensitive to the proper acceleration of the solid.
  • the present invention aims to solve the problems mentioned above.
  • Said system comprises a first triaxial sensor and a second triaxial sensor integral with said solid to measure the components of said respective vector fields along the axes of said sensors, and means for determining the rotation matrix of the solid.
  • Said means for determining said rotation matrix comprise: correction means, deactivatable on command, adapted to correct the influence exerted on the measurements of at least one of said sensors by an additional vector field of the same nature as said measured vector field and to deliver at least one vector corrected vector field ; and
  • first means for calculating a third vector adapted to calculate said third non-coplanar vector to the plane formed by the two vectors delivered by said correction means, and such that the angles of the trihedron formed by the third vector and the two vectors delivered by said correction means remain constant.
  • said means for determining said rotation matrix further include means for orthogonalizing and centering the measurements transmitted by said triaxial sensors.
  • said means for determining said rotation matrix further comprise control means adapted to deactivate said correction means at a time taken for reference, while said first calculation means calculate a third vector of reference.
  • the user can thus choose his reference.
  • system further comprises automatic activation means adapted to activate said correction means when a standard of one of said vector fields transmitted by said triaxial sensors is greater than a reference threshold and for deactivating said correction means when said standard is less than or equal to said reference threshold.
  • said means for determining said rotation matrix further comprise second means for calculating an intermediate matrix whose successive columns are the components of said third vector, the components of said first vector field measured and possibly corrected by said correction means, and the components of said second vector field measured and possibly corrected by said correction means.
  • said means for determining said rotation matrix further comprise third matrix inversion calculating means adapted to be activated by said control means when calculating the third reference vector and for calculating the inverse matrix of said intermediate matrix corresponding to the third reference vector and named reference inverse matrix.
  • said means for determining said rotation matrix further comprise storage means for storing said reference inverse matrix.
  • said means for determining said rotation matrix further comprise a multiplier for multiplying said intermediate matrix and said stored reference inverse matrix and outputting said rotation matrix.
  • the matrix of rotation of the solid is obtained directly in a simple manner.
  • the system further comprises means for determining said parameters representative of the orientation of the solid from the coefficients of said rotation matrix.
  • attitude angles of the solid or the quaternion representative of the orientation of the solid from the rotation matrix of the solid are then immediately deduced.
  • said third vector is the vector product of the first measured and possibly corrected vector field and the second vector field measured and possibly corrected.
  • the vector product is a third vector that fulfills the above conditions and is simple to compute.
  • said first vector field is the terrestrial gravitational field and said second field is the terrestrial magnetic field.
  • the invention applies in a non-limiting manner to gravitational and magnetic terrestrial fields.
  • said correction means are adapted to correct the measured gravitational field in a corrected gravitational field by adding to the measured gravitational vector a vector proportional to the measured terrestrial magnetic vector so that the corrected gravitational vector forms with the terrestrial magnetic vector measured at an angle equal to a reference angle equal to the substantially constant angle between the terrestrial gravitational field and the terrestrial magnetic field in said fixed frame not bound to solid, and adapted to center the corrected gravitational vector.
  • said parameters representative of the orientation of the solid comprise attitude angles such as Cardan angles or Euler angles, or a quaternion.
  • the influence exerted on the measurements of at least one of said sensors by an additional vector field of the same nature as said measured vector field is corrected and at least one vector corrected vector vector is corrected.
  • a third non-coplanar vector is calculated from the plane formed by the two vectors delivered at the correction output, and such that the angles of the trihedron formed by the third vector and the two vectors delivered at the correction output remain substantially constant.
  • the measurements of the first and second vector fields are orthogonalized and centered, and said correction is deactivated at an instant taken for reference during the calculation of a third reference vector.
  • FIG. 1 schematically illustrates an embodiment of a system according to an aspect of FIG. the invention.
  • FIG. 2 diagrammatically illustrates a mode of implementation of the method according to one aspect of the invention.
  • attitude angles of a solid In the description which follows, reference is made to the attitude angles of a solid. However, the solid is not part of the attitude angle determination system, which corresponds more precisely to those sensors that can be attached to the solid.
  • orientation and angular position are used as synonyms.
  • the two vector fields are the terrestrial gravitational field and the terrestrial magnetic field.
  • the invention also applies to any two arbitrary vector fields that are substantially constant in a non-solid fixed reference frame.
  • the system comprises a triaxial accelerometer CAPT1 which measures, in a reference frame linked to the solid, the gravitational field A and a triaxial magnetometer CAPT2 which measures in the reference frame the magnetic field M.
  • the measurements transmitted by the triaxial accelerometer CAPT1 and the triaxial magnetometer CAPT2 are transmitted to a DETROT module for determining the rotation matrix ROT are orthogonalized and centered by an ORTHOC module.
  • the orthogonalization and the centering of the measurements transmitted by the triaxial sensors CAPT1 and CAPT2 can be directly carried out within the sensors themselves.
  • Orthogonalization means measurements delivered by a triaxial sensor, a posterior correction of the perpendicularity defects of the sensor, and by centering the measurements delivered by a sensor, a correction of the offset of the sensor so that it has a zero response. for a null stimulus.
  • a correction module CORR which can be deactivated on command by a user of the system, via a command module CONTROL, makes it possible to correct the influence exerted on the measurements of at least one of the sensors by an additional vector field of the same nature as that measured.
  • an acceleration proper to the solid is measured by the triaxial accelerometer CAPT1 in addition to the reference gravitational field A1.
  • the correction module CORR adds to the measurement vector A a vector parallel to the measurement vector M: A + tM, which is called A PP , t being a determined scalar of so that the angle formed by A PP and M is equal to the angle between the gravitational and magnetic terrestrial fields of substantially constant directions in a fixed reference unrelated to the solid.
  • an ACTAUTO automatic activation module tests whether a standard of one of said vector fields is greater than a reference threshold, and, if the standard of one of said vector fields is greater than this reference threshold, active automatically the correction module CORR, and to disable it otherwise.
  • a first calculation module CALC1 calculates a third vector U which is not coplanar with the plane formed by the two vectors delivered by the correction module CORR, and such that the angles of the trihedron formed by the third vector U and the two vectors A PP and M delivered by the correction module remain constant.
  • a second calculation module CALC2 forms an intermediate matrix (UA PP M) whose successive columns are formed by the components of the third vector U, the corrected measurement vector A PP , and the measurement vector M.
  • the second calculation module CALC2 elaborates an intermediate matrix (U- I A- I M- I ) corresponding to the third reference vector Ui.
  • a third calculation module CALC3 is activated by the command module CONTROL allowing a user to define the reference of the system.
  • This inversion reference matrix inv ((U- ⁇ A- ⁇ M- ⁇ )) is calculated once.
  • the correction module CORR is activated, and the third calculation module CALC3 is deactivated.
  • a multiplication module MULT receives as input the intermediate matrix (UAp P M) and the inverted reference inverse matrix inv ((U- ⁇ A- ⁇ M- ⁇ )), respectively of the second calculation module CALC2 and of the memory module MEM, and outputs the matrix product of these two matrices, equal to the rotational matrix ROT representative of the rotation of the solid.
  • a determination module DET determines the parameters representative of the orientation of the solid.
  • the parameters representative of the orientation of the solid may be, for example, the attitude angles of the solid, such as yaw, roll and pitch angles.
  • the parameters representative of the orientation of the solid may be, for example, a quaternion.
  • Similar identifications may be used.
  • FIG. 2 illustrates the operation of a system according to FIG.
  • the CAPT1 and CAPT2 triaxial sensors perform measurements (step 1)
  • step 22 The influence exerted on the measurements of at least one of the sensors by an additional field of the same nature as that measured, in this case an acceleration proper to the solid, is measured by the triaxial accelerometer CAPT1 in addition to the reference gravitational field A1 , is corrected (step 22) by the CORR correction module as previously described.
  • This step may be deactivated, or in other words not carried out, on temporary command (step 23) of a user of the system, especially when he wants to define a reference of the system.
  • An optional automatic test (step 21 a) comparing whether the norm of one of the orthogonalized and centered vectors A or M, delivered by the ORTHOC orthogonalization and centering module, is greater than a reference threshold, and, if this condition is verified, the ACTAUTO automatic activation module activates the correction module CORR.
  • a third vector U is then calculated (step 24) so that it is non-coplanar with the plane formed by the two vectors delivered by the correction module CORR, and such that the angles of the trihedron formed by the third vector U and the two vectors A PP and M delivered by the correction module remain constant.
  • U may be the vector product of the vectors A PP and M delivered by the correction module CORR, calculated by the first calculation module CALC1.
  • the second calculation module CALC2 then calculates (step 25) an intermediate matrix (UA PP M) whose successive columns are formed by the components of the third vector U, the corrected measurement vector A PP , and the measurement vector M.
  • the command module COMMAND also activates the third calculation module CALC3 (step 26) to calculate the inverse reference matrix inv ( (UiA 1 M 1 )) previously defined.
  • This inverse reference matrix inv ((UiAiM- ⁇ )) is stored (step 27) in the memory module MEM.
  • the multiplication module MULT performs the matrix product or multiplication (step 28) of the intermediate matrix (UA PP M) and the stored reference inverse matrix inv ((U- ⁇ A- ⁇ M- ⁇ )) for outputting the rotation matrix ROT of the rotation of the solid.
  • the determination module DET determines (step 29) the attitude angles of the solid or the quaternion from the rotation matrix ROT, for example as previously described for the DET module.
  • the present invention thus makes it possible, with a reduced number of computations providing the attitude angles of a moving solid or a quaternion from the rotation matrix, to produce a small portable system allowing the motion capture of a solid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The system for determining parameters representing the orientation of a solid in movement subject to a first vector field (A) and a second vector field (M) includes a first triaxial sensor (CAPT1) and a second triaxial sensor (CAPT2) secured to said solid to measure the components of said respective vector fields (A, M) according to the axes of said sensors, and a determining means (DETROT) for determining the rotation matrix (ROT) for the solid. Said determining means (DETROT) for determining said rotation matrix (ROT) includes: a correction means (CORR) for correcting the influence of an additional vector field of the same nature as said measured vector field; and a first calculation means (CALC1) for calculating a third vector (U) not coplanar to the plane formed by the two vectors (App, M) delivered by said correction means (CORR), and realized such that the angles of the axis system formed by the third vector (U) and the two vectors (App, M) delivered by said correction means (CORR) remain constant.

Description

Système et procédé de détermination de paramètres représentatifs de l'orientation d'un solide en mouvement soumis à deux champs vectoriels. System and method for determining parameters representative of the orientation of a moving solid subjected to two vector fields.
L'invention concerne un système et un procédé de détermination de paramètres représentatifs de l'orientation d'un solide en mouvement soumis à deux champs vectoriels.The invention relates to a system and a method for determining parameters representative of the orientation of a moving solid subjected to two vector fields.
De manière générale, les systèmes de capture de mouvement d'un solide ont des applications dans des domaines variés tels que la santé, le multimédia, ou la géophysique.In general, motion capture systems of a solid have applications in various fields such as health, multimedia, or geophysics.
Pour des applications vidéo ou des jeux vidéo, les mouvements d'un utilisateur peuvent être utilisés pour commander des systèmes de réalité virtuelle. A titre d'exemple, les mouvements d'un joueur peuvent être enregistrés pour commander l'évolution d'un personnage virtuel dans une scène de synthèse.For video applications or video games, a user's movements can be used to control virtual reality systems. For example, the movements of a player can be recorded to control the evolution of a virtual character in a synthesis scene.
Dans le domaine de l'électronique portable, les dispositifs de capture de mouvement permettent aux appareils de s'adapter au contexte d'utilisation. Ils permettent, par exemple, d'optimiser la réception d'un téléphone portable par la connaissance de son orientation, ou d'améliorer les interfaces des assistants personnels.In the field of portable electronics, motion capture devices allow devices to adapt to the context of use. They allow, for example, to optimize the reception of a mobile phone by the knowledge of its orientation, or to improve the interfaces of the personal assistants.
Concernant le domaine de la santé, de tels systèmes peuvent servir à positionner des outils de chirurgie, ou à surveiller les déplacements de personne âgées ou ayant des problèmes de santé entraînant une mobilité réduite.In the field of health, such systems can be used to position surgical tools, or to monitor the movement of elderly people or those with health problems resulting in reduced mobility.
Les capteurs de mouvement, et plus précisément les capteurs de position angulaire, sont fortement miniaturisés et font l'objet de recherches pour leur conférer une robustesse et un coût compatibles avec des applications visant le grand public. La position d'un solide dans l'espace est entièrement déterminée par la connaissance de six grandeurs. Parmi celles-ci on distingue trois grandeurs susceptibles de traduire des translations et trois autres grandeurs susceptibles de traduire des rotations. Les trois dernières grandeurs correspondent à des positions angulaires, appelées angles d'attitude, pouvant être utilisées pour déterminer des mouvements. En outre, une rotation peut être définie par un quaternion. Par exemple le document FR 2 838 185 (Commissariat à l'EnergieMotion sensors, and more precisely angular position sensors, are highly miniaturized and researched to give them robustness and cost compatible with applications aimed at the general public. The position of a solid in space is entirely determined by the knowledge of six magnitudes. Among these are three sizes that can translate translations and three other sizes likely to translate rotations. The last three magnitudes correspond to angular positions, called attitude angles, that can be used to determine motions. In addition, a rotation can be defined by a quaternion. For example the document FR 2 838 185 (Commissariat à l'Energie
Atomique) divulgue un dispositif de capture de l'orientation d'un solide comprenant au moins un capteur de position angulaire susceptible d'être rendu solidaire du solide et de délivrer au moins une donnée de mesure représentative de l'orientation du solide, un moyen générateur de données de test représentatives d'une orientation estimée du solide, et un moyen de modification de l'orientation estimée du solide par confrontation de la donnée de mesure et de données de test. Après une ou plusieurs modifications de l'orientation estimée, celle-ci converge vers l'orientation effective du solide, ou, plus précisément, vers l'orientation mesurée. Ce dispositif ne nécessite pas de moyens de calcul pour établir l'orientation ou l'inclinaison du solide sur la base d'une fonction des données de mesure des capteurs, et permet de s'affranchir des comportements non linéaires de ceux-ci.Atomic) discloses a device for capturing the orientation of a solid comprising at least one angular position sensor that can be made integral with the solid and to deliver at least one measurement data representative of the orientation of the solid, a means for generator of test data representative of an estimated orientation of the solid, and means for modifying the estimated orientation of the solid by confronting the measurement data and test data. After one or more modifications of the estimated orientation, it converges towards the effective orientation of the solid, or, more precisely, towards the measured orientation. This device does not require calculation means to establish the orientation or the inclination of the solid on the basis of a function of the measurement data of the sensors, and makes it possible to overcome the non-linear behaviors of these.
Toutefois, un tel dispositif nécessite de nombreux calculs et ne peut pas, ou difficilement, être embarqué sur un système de taille réduite. Un tel dispositif est en outre sensible à l'accélération propre du solide.However, such a device requires many calculations and can not, or hardly, be embedded on a system of reduced size. Such a device is also sensitive to the proper acceleration of the solid.
Aussi, la présente invention vise à résoudre les problèmes mentionnés précédemment.Also, the present invention aims to solve the problems mentioned above.
Selon un aspect de l'invention, il est proposé un système de détermination de paramètres représentatifs de l'orientation d'un solide en mouvement, soumis à un premier champ vectoriel et un deuxième champ vectoriel, lesdits champs étant de directions connues dans un repère fixe non lié au solide. Ledit système comprend un premier capteur triaxial et un deuxième capteur triaxial solidaires dudit solide pour mesurer les composantes desdits champs vectoriels respectifs selon les axes desdits capteurs, et des moyens de détermination de la matrice de rotation du solide. Lesdits moyens de détermination de ladite matrice de rotation comprennent : - des moyens de correction, désactivables sur commande, adaptés pour corriger l'influence exercée sur les mesures d'au moins un desdits capteurs par un champ vectoriel additionnel de même nature que ledit champ vectoriel mesuré et délivrer au moins un vecteur de champ vectoriel corrigé ; etAccording to one aspect of the invention, there is provided a system for determining parameters representative of the orientation of a moving solid, subjected to a first vector field and a second vector field, said fields being of known directions in a reference frame. fixed not bound to the solid. Said system comprises a first triaxial sensor and a second triaxial sensor integral with said solid to measure the components of said respective vector fields along the axes of said sensors, and means for determining the rotation matrix of the solid. Said means for determining said rotation matrix comprise: correction means, deactivatable on command, adapted to correct the influence exerted on the measurements of at least one of said sensors by an additional vector field of the same nature as said measured vector field and to deliver at least one vector corrected vector field ; and
- des premiers moyens de calcul d'un tiers vecteur adaptés pour calculer ledit tiers vecteur non coplanaire au plan formé par les deux vecteurs délivrés par lesdits moyens de correction, et tel que les angles du trièdre formé par le tiers vecteur et les deux vecteurs délivrés par lesdits moyens de correction restent constants.first means for calculating a third vector adapted to calculate said third non-coplanar vector to the plane formed by the two vectors delivered by said correction means, and such that the angles of the trihedron formed by the third vector and the two vectors delivered by said correction means remain constant.
Un tel système permet, à coût réduit, de réaliser un système de calcul des angles d'attitude d'un solide en mouvement utilisant un nombre de calcul fortement réduit, facilitant sa mise en œuvre de manière embarquée à bord d'un ensemble portable de petite taille. Dans un mode de réalisation, lesdits moyens de détermination de ladite matrice de rotation comprennent, en outre, des moyens d'orthogonalisation et de centrage des mesures transmises par lesdits capteurs triaxiaux.Such a system makes it possible, at reduced cost, to produce a system for calculating the attitude angles of a moving solid using a greatly reduced number of computations, facilitating its implementation in an onboard manner on board a portable set of small size. In one embodiment, said means for determining said rotation matrix further include means for orthogonalizing and centering the measurements transmitted by said triaxial sensors.
Ainsi, la simplicité de l'algorithme permet une implémentation consommant peu d'énergie, aisément réalisable avec un processeur embarqué.Thus, the simplicity of the algorithm allows an implementation consuming little energy, easily achievable with an embedded processor.
Selon un mode de réalisation, lesdits moyens de détermination de ladite matrice de rotation comprennent, en outre, des moyens de commande adaptés pour désactiver lesdits moyens de correction à un instant pris pour référence, pendant que lesdits premiers moyens de calcul calculent un tiers vecteur de référence.According to one embodiment, said means for determining said rotation matrix further comprise control means adapted to deactivate said correction means at a time taken for reference, while said first calculation means calculate a third vector of reference.
L'utilisateur peut ainsi choisir sa référence.The user can thus choose his reference.
Avantageusement, le système comprend, en outre, des moyens d'activation automatique adaptés pour activer lesdits moyens de correction lorsqu'une norme d'un desdits champs vectoriels transmis par lesdits capteurs triaxiaux est supérieure à un seuil de référence et pour désactiver lesdits moyens de correction lorsque ladite norme est inférieure ou égale audit seuil de référence.Advantageously, the system further comprises automatic activation means adapted to activate said correction means when a standard of one of said vector fields transmitted by said triaxial sensors is greater than a reference threshold and for deactivating said correction means when said standard is less than or equal to said reference threshold.
Ainsi, de manière automatique, le système peut désactiver la correction, par exemple, pour lancer un mode de reconnaissance de geste. Dans un mode de réalisation, lesdits moyens de détermination de ladite matrice de rotation comprennent, en outre, des deuxièmes moyens de calcul d'une matrice intermédiaire dont les colonnes successives sont les composantes dudit tiers vecteur, les composantes dudit premier champ vectoriel mesurées et éventuellement corrigées par lesdits moyens de correction, et les composantes dudit deuxième champ vectoriel mesurées et éventuellement corrigées par lesdits moyens de correction.Thus, automatically, the system can disable the correction, for example, to initiate a gesture recognition mode. In one embodiment, said means for determining said rotation matrix further comprise second means for calculating an intermediate matrix whose successive columns are the components of said third vector, the components of said first vector field measured and possibly corrected by said correction means, and the components of said second vector field measured and possibly corrected by said correction means.
Il est ainsi possible d'indiquer des champs de référence, par exemple dans un environnement perturbé magnétiquement, et des les utiliser pour rendre une matrice de rotation correcte. Selon un mode de réalisation, lesdits moyens de détermination de ladite matrice de rotation comprennent, en outre, des troisièmes moyens de calcul d'inversion de matrice, adaptés pour être activés par lesdits moyens de commande lors du calcul du tiers vecteur de référence et pour calculer la matrice inverse de ladite matrice intermédiaire correspondant au tiers vecteur de référence et nommée matrice inverse de référence.It is thus possible to indicate reference fields, for example in a magnetically disturbed environment, and to use them to make a rotation matrix correct. According to one embodiment, said means for determining said rotation matrix further comprise third matrix inversion calculating means adapted to be activated by said control means when calculating the third reference vector and for calculating the inverse matrix of said intermediate matrix corresponding to the third reference vector and named reference inverse matrix.
Les calculs d'inversion de matrice sont effectués uniquement pour la matrice intermédiaire de référence, ce qui limite fortement la complexité calculatoire de réalisation de l'invention.Matrix inversion calculations are performed only for the intermediate reference matrix, which greatly limits the computational complexity of carrying out the invention.
Dans un mode de réalisation, lesdits moyens de détermination de ladite matrice de rotation comprennent, en outre, des moyens de mémorisation pour mémoriser ladite matrice inverse de référence.In one embodiment, said means for determining said rotation matrix further comprise storage means for storing said reference inverse matrix.
Ainsi l'inversion de cette matrice n'est effectuée qu'une seule fois.Thus the inversion of this matrix is performed only once.
Selon un mode de réalisation, lesdits moyens de détermination de ladite matrice de rotation comprennent, en outre, un multiplicateur pour multiplier ladite matrice intermédiaire et ladite matrice inverse de référence mémorisée et délivrer en sortie ladite matrice de rotation.According to one embodiment, said means for determining said rotation matrix further comprise a multiplier for multiplying said intermediate matrix and said stored reference inverse matrix and outputting said rotation matrix.
On obtient directement la ma matrice de rotation du solide, de manière simple. Dans un mode de réalisation, le système comprend, en outre, des moyens de détermination desdits paramètres représentatifs de l'orientation du solide à partir des coefficients de ladite matrice de rotation.The matrix of rotation of the solid is obtained directly in a simple manner. In one embodiment, the system further comprises means for determining said parameters representative of the orientation of the solid from the coefficients of said rotation matrix.
On déduit ensuite de manière immédiate les angles d'attitude du solide ou le quaternion représentatif de l'orientation du solide à partir de la matrice de rotation du solide.The attitude angles of the solid or the quaternion representative of the orientation of the solid from the rotation matrix of the solid are then immediately deduced.
Selon un mode de réalisation, ledit tiers vecteur est le produit vectoriel du premier champ vectoriel mesuré et éventuellement corrigé et du deuxième champ vectoriel mesuré et éventuellement corrigé.According to one embodiment, said third vector is the vector product of the first measured and possibly corrected vector field and the second vector field measured and possibly corrected.
Le produit vectoriel est un tiers vecteur qui remplit les conditions précitées et est simple à calculer.The vector product is a third vector that fulfills the above conditions and is simple to compute.
Dans un mode de réalisation, ledit premier champ vectoriel est le champ de gravitation terrestre et ledit deuxième champ est le champ magnétique terrestre.In one embodiment, said first vector field is the terrestrial gravitational field and said second field is the terrestrial magnetic field.
L'invention s'applique de manière non limitative aux champs gravitationnel et magnétique terrestres.The invention applies in a non-limiting manner to gravitational and magnetic terrestrial fields.
Selon un mode de réalisation, lesdits moyens de correction sont adaptés pour corriger le champ de gravitation mesuré en un champ de gravitation corrigé en ajoutant au vecteur de gravitation mesuré un vecteur proportionnel au vecteur magnétique terrestre mesuré de sorte que le vecteur de gravitation corrigé forme avec le vecteur magnétique terrestre mesuré un angle égal à un angle de référence égal à l'angle sensiblement constant entre le champ de gravitation terrestre et le champ magnétique terrestre dans ledit repère fixe non lié à solide, et adaptés pour centrer le vecteur de gravitation corrigé. Dans un mode de réalisation, lesdits paramètres représentatifs de l'orientation du solide comprennent des angles d'attitude tels les angles de Cardan ou les angles d'Euler, ou un quaternion.According to one embodiment, said correction means are adapted to correct the measured gravitational field in a corrected gravitational field by adding to the measured gravitational vector a vector proportional to the measured terrestrial magnetic vector so that the corrected gravitational vector forms with the terrestrial magnetic vector measured at an angle equal to a reference angle equal to the substantially constant angle between the terrestrial gravitational field and the terrestrial magnetic field in said fixed frame not bound to solid, and adapted to center the corrected gravitational vector. In one embodiment, said parameters representative of the orientation of the solid comprise attitude angles such as Cardan angles or Euler angles, or a quaternion.
Selon un autre aspect de l'invention, il est également proposé un procédé de détermination de paramètres représentatifs de l'orientation d'un solide en mouvement, soumis à un premier champ vectoriel et un deuxième champ vectoriel, de directions sensiblement constantes dans un repère fixe non lié au solide, dans lequel on mesure les composantes desdits champs vectoriels respectifs selon les axes de capteurs triaxiaux respectifs, et on détermine la matrice de rotation du solide. On corrige l'influence exercée sur les mesures d'au moins un desdits capteurs par un champ vectoriels additionnel de même nature que ledit champ vectoriels mesuré et on délivre au moins un vecteur de champ vectoriel corrigé. On calcule un tiers vecteur non coplanaire au plan formé par les deux vecteurs délivrés en sortie de correction, et tel que les angles du trièdre formé par le tiers vecteur et les deux vecteurs délivrés en sortie de correction restent sensiblement constants.According to another aspect of the invention, there is also provided a method for determining parameters representative of the orientation of a moving solid, subjected to a first vector field and a second vector field, of substantially constant directions in a reference frame. fixed non-solid bond, wherein the components of said respective vector fields are measured along the respective triaxial sensor axes, and the rotation matrix of the solid is determined. The influence exerted on the measurements of at least one of said sensors by an additional vector field of the same nature as said measured vector field is corrected and at least one vector corrected vector vector is corrected. A third non-coplanar vector is calculated from the plane formed by the two vectors delivered at the correction output, and such that the angles of the trihedron formed by the third vector and the two vectors delivered at the correction output remain substantially constant.
Dans un mode de mise en œuvre, on orthogonalise et on centre les mesures des premier et deuxième champs vectoriels, et on désactive ladite correction à un instant pris pour référence, pendant le calcul d'un tiers vecteur de référence.In one embodiment, the measurements of the first and second vector fields are orthogonalized and centered, and said correction is deactivated at an instant taken for reference during the calculation of a third reference vector.
L'invention sera mieux comprise à l'étude de quelques modes de réalisation décrits à titre d'exemples nullement limitatifs et illustrés par les dessins annexés sur lesquels : - la figure 1 illustre schématiquement un mode de réalisation d'un système selon un aspect de l'invention; etThe invention will be better understood from the study of some embodiments described by way of non-limiting examples and illustrated by the appended drawings in which: FIG. 1 schematically illustrates an embodiment of a system according to an aspect of FIG. the invention; and
- la figure 2 illustre schématiquement un mode de mise en œuvre du procédé selon un aspect de l'invention.FIG. 2 diagrammatically illustrates a mode of implementation of the method according to one aspect of the invention.
Dans la description qui suit, il est fait référence aux angles d'attitude d'un solide. Le solide ne fait cependant pas partie du système de détermination des angles d'attitude, qui correspondent plus précisément à ceux des capteurs susceptibles d'être fixés au solide. Par ailleurs, les termes orientation et position angulaire sont utilisés comme synonymes.In the description which follows, reference is made to the attitude angles of a solid. However, the solid is not part of the attitude angle determination system, which corresponds more precisely to those sensors that can be attached to the solid. In addition, the terms orientation and angular position are used as synonyms.
Dans la suite de la description, de manière non limitative, les deux champs vectoriels sont le champ gravitationnel terrestre et le champ magnétique terrestre. Bien entendu, l'invention s'applique également à deux champs vectoriels quelconques sensiblement constants dans un repère fixe non lié à solide.In the remainder of the description, in a nonlimiting manner, the two vector fields are the terrestrial gravitational field and the terrestrial magnetic field. Of course, the invention also applies to any two arbitrary vector fields that are substantially constant in a non-solid fixed reference frame.
Tel qu'illustré sur la figure 1 , le système comprend un accéléromètre triaxial CAPT1 qui mesure dans un référentiel de référence lié au solide le champ gravitationnel A et un magnétomètre triaxial CAPT2 qui mesure dans le référentiel de référence le champ magnétique M.As illustrated in FIG. 1, the system comprises a triaxial accelerometer CAPT1 which measures, in a reference frame linked to the solid, the gravitational field A and a triaxial magnetometer CAPT2 which measures in the reference frame the magnetic field M.
Les mesures transmises par l'accéléromètre triaxial CAPT1 et par le magnétomètre triaxial CAPT2 sont transmise à un module DETROT de détermination de la matrice de rotation ROT sont orthogonalisées et centrées par un module ORTHOC. En variante l'orthogonalisation et le centrage des mesures transmises par les capteurs triaxiaux CAPT1 et CAPT2 peut être directement effectué au sein même des capteurs.The measurements transmitted by the triaxial accelerometer CAPT1 and the triaxial magnetometer CAPT2 are transmitted to a DETROT module for determining the rotation matrix ROT are orthogonalized and centered by an ORTHOC module. As a variant, the orthogonalization and the centering of the measurements transmitted by the triaxial sensors CAPT1 and CAPT2 can be directly carried out within the sensors themselves.
On entend par orthogonalisation des mesures délivrées par un capteur triaxial, une correction a posteriori des défauts de perpendicularité du capteur, et par centrage des mesures délivrées par un capteur, une correction de l'offset du capteur de sorte qu'il ait une réponse nulle pour un stimulus nul.Orthogonalization means measurements delivered by a triaxial sensor, a posterior correction of the perpendicularity defects of the sensor, and by centering the measurements delivered by a sensor, a correction of the offset of the sensor so that it has a zero response. for a null stimulus.
Un module de correction CORR, désactivable sur commande d'un utilisateur du système, par l'intermédiaire d'un module de commande COMMANDE, permet de corriger l'influence exercée sur les mesures d'au moins un des capteurs par un champ vectoriel additionnel de même nature que celui mesuré. En l'espèce, une accélération propre au solide est mesurée par l'accéléromètre triaxial CAPT1 en sus du champ gravitationnel de référence A1. Dans un tel exemple de réalisation, le module de correction CORR ajoute au vecteur de mesures A un vecteur parallèle au vecteur de mesures M : A+t.M , que l'on nomme APP, t étant un scalaire déterminé de sorte que l'angle formé par APP et M soit égal à l'angle entre les champs gravitationnel et magnétique terrestres de directions sensiblement constantes dans un repère fixe non lié au solide.A correction module CORR, which can be deactivated on command by a user of the system, via a command module CONTROL, makes it possible to correct the influence exerted on the measurements of at least one of the sensors by an additional vector field of the same nature as that measured. In this case, an acceleration proper to the solid is measured by the triaxial accelerometer CAPT1 in addition to the reference gravitational field A1. In such an exemplary embodiment, the correction module CORR adds to the measurement vector A a vector parallel to the measurement vector M: A + tM, which is called A PP , t being a determined scalar of so that the angle formed by A PP and M is equal to the angle between the gravitational and magnetic terrestrial fields of substantially constant directions in a fixed reference unrelated to the solid.
De manière optionnelle, un module de d'activation automatique ACTAUTO teste si une norme d'un desdits champs vectoriels est supérieure à un seuil de référence, et, si la norme d'un desdits champs vectoriels est supérieure à ce seuil de référence, active automatiquement le module de correction CORR, et pour le désactiver dans le cas contraire.Optionally, an ACTAUTO automatic activation module tests whether a standard of one of said vector fields is greater than a reference threshold, and, if the standard of one of said vector fields is greater than this reference threshold, active automatically the correction module CORR, and to disable it otherwise.
Un premier module de calcul CALC1 calcule un tiers vecteur U non coplanaire au plan formé par les deux vecteurs délivrés par le module de correction CORR, et tel que les angles du trièdre formé par le tiers vecteur U et les deux vecteurs APP et M délivrés par le module de correction restent constants. Dans cet exemple avec les champs gravitationnel et magnétique terrestres, le premier module de calcul CALC1 calcule le produit vectoriel U des vecteurs APP et M délivrés par le module de correction CORR ( U = App XM 1 x étant le symbole du produit vectoriel).A first calculation module CALC1 calculates a third vector U which is not coplanar with the plane formed by the two vectors delivered by the correction module CORR, and such that the angles of the trihedron formed by the third vector U and the two vectors A PP and M delivered by the correction module remain constant. In this example with terrestrial gravitational and magnetic fields, the first calculation module CALC1 calculates the vector product U of the vectors A PP and M delivered by the correction module CORR (U = A, pp XM 1 x being the symbol of the vector product) .
Un deuxième module de calcul CALC2 forme une matrice intermédiaire (UAPPM) dont les colonnes successives sont formées par les composantes du tiers vecteur U, du vecteur de mesures corrigé APP, et du vecteur de mesures M.A second calculation module CALC2 forms an intermediate matrix (UA PP M) whose successive columns are formed by the components of the third vector U, the corrected measurement vector A PP , and the measurement vector M.
Durant la désactivation du module de correction CORR par le module de commande COMMANDE, le deuxième module de calcul CALC2 élabore une matrice intermédiaire (U-IA-I M-I) correspondant au vecteur tiers de référence U-i. Un troisième module de calcul CALC3 est activé par le module de commande COMMANDE permettant à un utilisateur de définir la référence du système. Le troisième module de commande CALC3 effectue le calcul de l'inverse d'une matrice, en ce cas, le calcul de l'inverse de la matrice (U-IA-I M-I) des vecteurs de référence (Ui=Ai x M-i) que l'on nomme matrice inverse de référence inv((UiA1M1)), et qui est mémorisée dans un module de mémorisation MEM. Cette matrice inverse de référence inv((U-ιA-ιM-ι)) est calculée une seule fois. En fonctionnement établi du système le module de correction CORR est activé, et le troisième module de calcul CALC3 est désactivé.During the deactivation of the correction module CORR by the command module COMMAND, the second calculation module CALC2 elaborates an intermediate matrix (U- I A- I M- I ) corresponding to the third reference vector Ui. A third calculation module CALC3 is activated by the command module CONTROL allowing a user to define the reference of the system. The third control module CALC3 performs the computation of the inverse of a matrix, in this case the computation of the inverse of the matrix (U- I A- I M- I ) of the reference vectors (Ui = Ai x Mi) which is called reference inverse matrix inv ((UiA 1 M 1 )), and which is stored in a memory module MEM. This inversion reference matrix inv ((U-ιA-ιM-ι)) is calculated once. In system operation, the correction module CORR is activated, and the third calculation module CALC3 is deactivated.
Un module de multiplication MULT reçoit en entrée la matrice intermédiaire (UApPM) et la matrice inverse de référence mémorisée inv((U-ιA-ιM-ι)), respectivement du deuxième module de calcul CALC2 et du module de mémorisation MEM, et délivre en sortie le produit matriciel de ces deux matrices, égal à la matrice de rotation ROT représentative de la rotation du solide.A multiplication module MULT receives as input the intermediate matrix (UAp P M) and the inverted reference inverse matrix inv ((U-ιA-ιM-ι)), respectively of the second calculation module CALC2 and of the memory module MEM, and outputs the matrix product of these two matrices, equal to the rotational matrix ROT representative of the rotation of the solid.
A partir de la matrice de rotation ROT, un module de détermination DET détermine les paramètres représentatifs de l'orientation du solide. Les paramètres représentatifs de l'orientation du solide peuvent être, par exemple, les angles d'attitude du solide, tels les angles de lacet, roulis et tangage. En variante, les paramètres représentatifs de l'orientation du solide peuvent être, par exemple, un quaternion. Dans le cas des angles d'attitude, cette détermination par identification des angles d'attitude peut être effectuée en multipliant la matrice de rotation ROT par le vecteur V1 =[1 O O] , qui donne un deuxième vecteur V2=[x y z], tel que l'angle de lacet YAW, qui est la projection de V2 sur le plan (x, y) vérifie l'équation suivante: tan(YAW)=y/x. Pour les angles de roulis ROLL et de tangage PITCH, des identifications similaires peuvent être utilisées.From the rotation matrix ROT, a determination module DET determines the parameters representative of the orientation of the solid. The parameters representative of the orientation of the solid may be, for example, the attitude angles of the solid, such as yaw, roll and pitch angles. Alternatively, the parameters representative of the orientation of the solid may be, for example, a quaternion. In the case of attitude angles, this determination by identification of attitude angles can be performed by multiplying the rotation matrix ROT by the vector V1 = [1 OO], which gives a second vector V2 = [xyz], as that the yaw angle YAW, which is the projection of V2 on the (x, y) plane, satisfies the following equation: tan (YAW) = y / x. For ROLL roll angles and PITCH pitch, similar identifications may be used.
Dans le cas du quaternion, cette détermination permet de retrouver le quaternion (vecteur de l'axe de rotation et rotation) associé à la rotation, par un calcul simple utilisant la trace de la matrice de rotation. La figure 2 illustre le fonctionnement d'un système selon la figureIn the case of quaternion, this determination makes it possible to find the quaternion (vector of the axis of rotation and rotation) associated with the rotation, by a simple calculation using the trace of the rotation matrix. FIG. 2 illustrates the operation of a system according to FIG.
1 . Les capteurs triaxiaux CAPT1 et CAPT2 effectuent des mesures (étape1. The CAPT1 and CAPT2 triaxial sensors perform measurements (step
20), qui sont orthogonalisées et centrées (étape 21 ) par le module ORTHOC.20), which are orthogonalized and centered (step 21) by the ORTHOC module.
L'influence exercée sur les mesures d'au moins un des capteurs par un champ additionnel de même nature que celui mesuré, en l'occurrence une accélération propre au solide est mesurée par l'accéléromètre triaxial CAPT1 en sus du champ gravitationnel de référence A1 , est corrigée (étape 22) par le module de correction CORR de la manière décrite précédemment. Cette étape peut être désactivée, ou, en d'autres termes non effectuée, sur commande (étape 23) temporaire d'un utilisateur du système, notamment lorsqu'il veut définir une référence du système. Un test automatique optionnel, (étape 21 a) comparant si la norme de l'un des vecteurs orthogonalisé et centré A ou M, délivrés par le module d'orthogonalisation et de centrage ORTHOC, est supérieure à un seuil de référence, et, si cette condition est vérifiée, le module d'activation automatique ACTAUTO active le module de correction CORR. Un tiers vecteur U est ensuite calculé (étape 24) de sorte qu'il soit non coplanaire au plan formé par les deux vecteurs délivrés par le module de correction CORR, et tel que les angles du trièdre formé par le tiers vecteur U et les deux vecteurs APP et M délivrés par le module de correction restent constants. Par exemple, U peut être le produit vectoriel des vecteurs APP et M délivrés par le module de correction CORR, calculé par le premier module de calcul CALC1.The influence exerted on the measurements of at least one of the sensors by an additional field of the same nature as that measured, in this case an acceleration proper to the solid, is measured by the triaxial accelerometer CAPT1 in addition to the reference gravitational field A1 , is corrected (step 22) by the CORR correction module as previously described. This step may be deactivated, or in other words not carried out, on temporary command (step 23) of a user of the system, especially when he wants to define a reference of the system. An optional automatic test, (step 21 a) comparing whether the norm of one of the orthogonalized and centered vectors A or M, delivered by the ORTHOC orthogonalization and centering module, is greater than a reference threshold, and, if this condition is verified, the ACTAUTO automatic activation module activates the correction module CORR. A third vector U is then calculated (step 24) so that it is non-coplanar with the plane formed by the two vectors delivered by the correction module CORR, and such that the angles of the trihedron formed by the third vector U and the two vectors A PP and M delivered by the correction module remain constant. For example, U may be the vector product of the vectors A PP and M delivered by the correction module CORR, calculated by the first calculation module CALC1.
Le deuxième module de calcul CALC2 calcule ensuite (étape 25) une matrice intermédiaire (UAPPM) dont les colonnes successives sont formées par les composantes du tiers vecteur U, du vecteur de mesures corrigé APP, et du vecteur de mesures M.The second calculation module CALC2 then calculates (step 25) an intermediate matrix (UA PP M) whose successive columns are formed by the components of the third vector U, the corrected measurement vector A PP , and the measurement vector M.
Durant la commande (étape 23) de désactivation de la correction (étape 22) faite par le module de correction CORR, le module de commande COMMANDE active également le troisième module de calcul CALC3 (étape 26) pour calculer la matrice inverse de référence inv((UiA1M1)) définie précédemment. Cette matrice inverse de référence inv((UiAiM-ι)) est mémorisée (étape 27) dans le module de mémorisation MEM.During the control (step 23) of deactivation of the correction (step 22) made by the correction module CORR, the command module COMMAND also activates the third calculation module CALC3 (step 26) to calculate the inverse reference matrix inv ( (UiA 1 M 1 )) previously defined. This inverse reference matrix inv ((UiAiM-ι)) is stored (step 27) in the memory module MEM.
En fonctionnement établi, hors commande (étape 23) de prise de référence pour le système, le module de multiplication MULT effectue le produit matriciel ou multiplication (étape 28) de la matrice intermédiaire (UAPPM) et de la matrice inverse de référence mémorisée inv((U-ιA-ιM-ι)) pour fournir en sortie la matrice de rotation ROT de la rotation du solide. Le module de détermination DET détermine (étape 29) alors, les angles d'attitude du solide ou le quaternion à partir de la matrice de rotation ROT, par exemple comme décrit précédemment pour le module DET.In operation established, out of command (step 23) for referencing for the system, the multiplication module MULT performs the matrix product or multiplication (step 28) of the intermediate matrix (UA PP M) and the stored reference inverse matrix inv ((U-ιA-ιM-ι)) for outputting the rotation matrix ROT of the rotation of the solid. The determination module DET then determines (step 29) the attitude angles of the solid or the quaternion from the rotation matrix ROT, for example as previously described for the DET module.
La présente invention permet donc, avec un nombre de calculs réduits fournissant les angles d'attitude d'un solide en mouvement ou un quaternion à partir de la matrice de rotation, de réaliser un système portatif de petite taille permettant la capture de mouvement d'un solide. The present invention thus makes it possible, with a reduced number of computations providing the attitude angles of a moving solid or a quaternion from the rotation matrix, to produce a small portable system allowing the motion capture of a solid.

Claims

REVENDICATIONS
1. Système de détermination de paramètres représentatifs de l'orientation d'un solide en mouvement, soumis à un premier champ vectoriel (A) et un deuxième champ vectoriel (M), lesdits champs étant de directions connues dans un repère fixe non lié au solide, ledit système comprenant un premier capteur triaxial (CAPT1 ) et un deuxième capteur triaxial (CAPT2), solidaires dudit solide, pour mesurer les composantes desdits champs vectoriels respectifs (A, M) selon les axes desdits capteurs, et des moyens de détermination (DETROT) de la matrice de rotation (ROT) du solide, caractérisé en ce que lesdits moyens de détermination (DETROT) de ladite matrice de rotation (ROT) comprennent:1. System for determining parameters representative of the orientation of a moving solid, subjected to a first vector field (A) and a second vector field (M), said fields being of known directions in a fixed reference frame unrelated to solid, said system comprising a first triaxial sensor (CAPT1) and a second triaxial sensor (CAPT2), integral with said solid, for measuring the components of said respective vector fields (A, M) along the axes of said sensors, and determining means ( DETROT) of the rotation matrix (ROT) of the solid, characterized in that said means for determining (DETROT) said rotation matrix (ROT) comprise:
- des moyens de correction (CORR), désactivables sur commande, adaptés pour corriger l'influence exercée sur les mesures d'au moins un desdits capteurs (CAPT1 , CAPT2) par un champ vectoriel additionnel de même nature que ledit champ vectoriel mesuré, et délivrer au moins un vecteur corrigé (APP) ; etcorrection means (CORR), deactivatable on command, adapted to correct the influence exerted on the measurements of at least one of said sensors (CAPT1, CAPT2) by an additional vector field of the same nature as said measured vector field, and delivering at least one corrected vector (A PP ); and
- des premiers moyens de calcul (CALC1 ) d'un tiers vecteur (U) adaptés pour calculer ledit tiers vecteur (U) non coplanaire au plan formé par les deux vecteurs (APP, M) délivrés par lesdits moyens de correction (CORR), et tel que les angles du trièdre formé par le tiers vecteur (U) et les deux vecteurs (APP, M) délivrés par lesdits moyens de correction (CORR) restent constants.first calculation means (CALC1) of a third vector (U) adapted to calculate said third vector (U) which is non-coplanar with the plane formed by the two vectors (A PP , M) delivered by said correction means (CORR); , and such that the angles of the trihedron formed by the third vector (U) and the two vectors (A PP , M) delivered by said correction means (CORR) remain constant.
2. Système selon la revendication 1 , dans lequel lesdits moyens de détermination (DETROT) de ladite matrice de rotation (ROT) comprennent, en outre, des moyens d'orthogonalisation et de centrage (ORTHOC) des mesures transmises par lesdits capteurs triaxiaux (CAPT1 , CAPT2).2. System according to claim 1, wherein said means for determining (DETROT) said rotation matrix (ROT) further comprise orthogonalization and centering means (ORTHOC) measurements transmitted by said triaxial sensors (CAPT1). , CAPT2).
3. Système selon la revendication 1 ou 2, dans lequel lesdits moyens de détermination (DETROT) de ladite matrice de rotation (ROT) comprennent, en outre, des moyens de commande (COMMANDE) adaptés pour désactiver lesdits moyens de correction (CORR) à un instant pris pour référence, pendant que lesdits premiers moyens de calcul (CALC1 ) calculent un tiers vecteur (U) de référence (U-i).3. System according to claim 1 or 2, wherein said means for determining (DETROT) said rotation matrix (ROT) further comprises control means (CONTROL). adapted to disable said correction means (CORR) at a time taken for reference, while said first calculating means (CALC1) calculates a reference third vector (U) (Ui).
4. Système selon la revendication 3, comprenant, en outre, des moyens d'activation automatique (ACTAUTO) adaptés pour activer lesdits moyens de correction (CORR) lorsqu'une norme d'un desdits champs vectoriels (A, M) transmis par lesdits capteurs triaxiaux (CAPT1 , CAPT2) est supérieure à un seuil de référence, et pour désactiver lesdits moyens de correction (CORR) lorsque ladite norme est inférieure ou égale audit seuil de référence.4. System according to claim 3, further comprising automatic activation means (ACTAUTO) adapted to activate said correction means (CORR) when a standard of one of said vector fields (A, M) transmitted by said triaxial sensors (CAPT1, CAPT2) is greater than a reference threshold, and for deactivating said correction means (CORR) when said standard is less than or equal to said reference threshold.
5. Système selon la revendication 4, dans lequel lesdits moyens de détermination (DETROT) de ladite matrice de rotation (ROT) comprennent, en outre, des deuxièmes moyens de calcul (CALC2) d'une matrice intermédiaire (UApPM) dont les colonnes successives sont les composantes dudit tiers vecteur (U), les composantes dudit premier champ vectoriel mesurées et éventuellement corrigées (APP) par lesdits moyens de correction (CORR), et les composantes dudit deuxième champ vectoriel mesurées et éventuellement corrigées (M) par lesdits moyens de correction (CORR). 5. System according to claim 4, wherein said means for determining (DETROT) said rotation matrix (ROT) further comprises second calculation means (CALC2) of an intermediate matrix (UAp P M) whose successive columns are the components of said third vector (U), the components of said first vector field measured and possibly corrected (A PP ) by said correction means (CORR), and the components of said second vector field measured and possibly corrected (M) by said correction means (CORR).
6. Système selon la revendication 5, dans lequel lesdits moyens de détermination (DETROT) de ladite matrice de rotation (ROT) comprennent, en outre, des troisièmes moyens de calcul (CALC3) d'inversion de matrice, adaptés pour être activés par lesdits moyens de commande (COMMANDE) lors du calcul du tiers vecteur de référence (U-i) et pour calculer la matrice inverse de ladite matrice intermédiaire (U-IA-I M-I) correspondant au tiers vecteur de référence (U-i) et nommée matrice inverse de référence (JnV(UiA1 M1)).6. System according to claim 5, wherein said means for determining (DETROT) said rotation matrix (ROT) further comprises third matrix inversion calculating means (CALC3) adapted to be activated by said control means (CONTROL) during the calculation of the third reference vector (Ui) and for calculating the inverse matrix of said intermediate matrix (U-IA-I MI) corresponding to the third reference vector (Ui) and named reference inverse matrix (JnV (UiA 1 M 1 )).
7. Système selon la revendication 6, dans lequel lesdits moyens de détermination (DETROT) de ladite matrice de rotation (ROT) comprennent, en outre, des moyens de mémorisation (MEM) pour mémoriser ladite matrice inverse de référence (JnV(U1A1 M)). 7. System according to claim 6, wherein said means for determining (DETROT) said rotation matrix (ROT) further comprises storage means (MEM) for storing said reference inverse matrix (JnV (U 1 A 1 M)).
8. Système selon la revendication 7, dans lequel lesdits moyens de détermination (DETROT) de ladite matrice de rotation (ROT) comprennent, en outre, un multiplicateur (MULT) pour multiplier ladite matrice intermédiaire (UApPM) et ladite matrice inverse de référence (inv(U-ιA-ιM-ι)) mémorisée et délivrer en sortie ladite matrice de rotation (ROT).The system of claim 7, wherein said means for determining (DETROT) said rotation matrix (ROT) further comprises a multiplier (MULT) for multiplying said intermediate matrix (UAp P M) and said inverse matrix of reference (inv (U-ιA-ιM-ι)) stored and outputting said rotation matrix (ROT).
9. Système selon l'une des revendications 1 à 8, comprenant, en outre, des moyens de détermination (DET) desdits paramètres représentatifs de l'orientation du solide à partir des coefficients de ladite matrice de rotation (ROT).9. System according to one of claims 1 to 8, further comprising means for determining (DET) said parameters representative of the orientation of the solid from the coefficients of said rotation matrix (ROT).
10. Système selon l'une des revendications précédentes, dans lequel ledit tiers vecteur (U) est le produit vectoriel du premier champ vectoriel mesuré et éventuellement corrigé (APP) et du deuxième champ vectoriel mesuré et éventuellement corrigé (M). 10. System according to one of the preceding claims, wherein said third vector (U) is the vector product of the first measured and optionally corrected vector field (A PP ) and the second measured vector field and possibly corrected (M).
11. Système selon l'une des revendications précédentes, dans lequel ledit premier champ vectoriel (A) est le champ de gravitation terrestre et ledit deuxième champ vectoriel (M) est le champ magnétique terrestre.11. System according to one of the preceding claims, wherein said first vector field (A) is the terrestrial gravitational field and said second vector field (M) is the terrestrial magnetic field.
12. Système selon les revendications 10 et 1 1 , dans lequel lesdits moyens de correction (CORR) sont adaptés pour corriger le champ de gravitation mesuré (A) en un champ de gravitation corrigé (App) en ajoutant au vecteur de gravitation mesuré (A) un vecteur proportionnel au vecteur magnétique terrestre mesuré (M) de sorte que le vecteur de gravitation corrigé (APP) forme avec le vecteur magnétique terrestre mesuré (M) un angle égal à un angle de référence égal à l'angle sensiblement constant entre le champ de gravitation terrestre et le champ magnétique terrestre dans ledit repère fixe non lié à solide, et adaptés pour centrer le vecteur de gravitation corrigé (APP).The system of claims 10 and 11, wherein said correction means (CORR) is adapted to correct the measured gravitational field (A) to a corrected gravitational field (A pp ) by adding to the measured gravitational vector ( A) a vector proportional to the measured terrestrial magnetic vector (M) so that the corrected gravitation vector (A PP ) forms with the measured terrestrial magnetic vector (M) an angle equal to a reference angle equal to the substantially constant angle between the terrestrial gravitational field and the terrestrial magnetic field in said fixed reference frame not bound to solid, and adapted to center the corrected gravitation vector (A PP ).
13. Système selon l'une des revendications précédentes, dans lequel lesdits paramètres représentatifs de l'orientation du solide comprennent des angles d'attitude tels les angles de Cardan ou les angles d'Euler, ou un quaternion.13. System according to one of the preceding claims, wherein said parameters representative of the orientation of the solid. include attitude angles such as Cardan angles or Euler angles, or a quaternion.
14. Procédé de détermination de paramètres représentatifs de l'orientation d'un solide en mouvement, soumis à un premier champ vectoriel (A) et un deuxième champ vectoriel (M), de directions sensiblement constantes dans un repère fixe non lié au solide, dans lequel on mesure les composantes desdits champs respectifs selon les axes de capteurs triaxiaux respectifs (CAPT1 , CAPT2), et on détermine la matrice de rotation (ROT) du solide, caractérisé en ce que : - on corrige l'influence exercée sur les mesures d'au moins un desdits capteurs par un champ vectoriel additionnel de même nature que ledit champ vectoriel mesuré et on délivre au moins un vecteur corrigé (APP) ; et14. A method for determining parameters representative of the orientation of a moving solid, subjected to a first vector field (A) and a second vector field (M), of substantially constant directions in a fixed reference frame unrelated to the solid, in which the components of said respective fields are measured according to the respective triaxial sensor axes (CAPT1, CAPT2), and the rotation matrix (ROT) of the solid is determined, characterized in that: - the influence exerted on the measurements is corrected at least one of said sensors by an additional vector field of the same nature as said measured vector field and delivers at least one corrected vector (A PP ); and
- on calcule un tiers vecteur (U) non coplanaire au plan formé par les deux vecteurs (APP, M) délivrés en sortie de correction, et tel que les angles du trièdre formé par le tiers vecteur (U) et les deux vecteurs (APP, M) délivrés en sortie de correction restent sensiblement constants.a third vector (U) which is not coplanar with the plane formed by the two vectors (A PP , M) delivered at the correction output, and such that the angles of the trihedron formed by the third vector (U) and the two vectors ( A PP , M) delivered at the correction output remain substantially constant.
15. Procédé selon la revendication 14, dans lequel on orthogonalise et on centre les mesures des premier et deuxième champs vectoriels, et on désactive ladite correction à un instant pris pour référence, pendant le calcul d'un tiers vecteur (U) de référence (U-i). 15. The method according to claim 14, in which the measurements of the first and second vector fields are orthogonalized and centered, and said correction is deactivated at a time taken for reference, during the calculation of a third vector (U) of reference ( Ui).
EP09732406A 2008-04-18 2009-04-08 System and method for determining parameters representing orientation of a solid in movement subject to two vector fields Withdrawn EP2268999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0802172A FR2930335B1 (en) 2008-04-18 2008-04-18 SYSTEM AND METHOD FOR DETERMINING PARAMETERS REPRESENTATIVE OF THE ORIENTATION OF A MOVING SOLID SUBJECTED TO TWO VECTOR FIELDS.
PCT/EP2009/054185 WO2009127561A1 (en) 2008-04-18 2009-04-08 System and method for determining parameters representing orientation of a solid in movement subject to two vector fields

Publications (1)

Publication Number Publication Date
EP2268999A1 true EP2268999A1 (en) 2011-01-05

Family

ID=40039886

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09732406A Withdrawn EP2268999A1 (en) 2008-04-18 2009-04-08 System and method for determining parameters representing orientation of a solid in movement subject to two vector fields

Country Status (4)

Country Link
US (1) US9297660B2 (en)
EP (1) EP2268999A1 (en)
FR (1) FR2930335B1 (en)
WO (1) WO2009127561A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307525B (en) 2009-01-05 2016-10-05 莫韦公司 For characterizing equipment and the method for motion
FR2959112B1 (en) * 2010-04-23 2015-05-29 Movea SYSTEM FOR ANALYZING CROWDS OF A USER
FR2976353B1 (en) * 2011-06-07 2013-07-05 Movea SIMPLIFIED ESTIMATING METHOD OF OBJECT ORIENTATION AND ATTITUDE CENTER USING SUCH A METHOD
FR3015072B1 (en) 2013-12-18 2017-03-17 Movea METHOD FOR DETERMINING THE ORIENTATION OF A MOBILE TERMINAL-RELATED SENSOR MARK WITH SENSOR ASSEMBLY PROVIDED BY A USER AND COMPRISING AT LEAST ONE MOTION-MOVING MOTION SENSOR

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298874A (en) * 1977-01-17 1981-11-03 The Austin Company Method and apparatus for tracking objects
US5953683A (en) * 1997-10-09 1999-09-14 Ascension Technology Corporation Sourceless orientation sensor
AU2002230578A1 (en) * 2000-10-30 2002-05-15 Naval Postgraduate School Method and apparatus for motion tracking of an articulated rigid body
JPWO2006035505A1 (en) * 2004-09-29 2008-05-22 株式会社シーアンドエヌ Magnetic sensor control method, control device, and portable terminal device
DE112007000074T5 (en) * 2006-07-10 2009-04-02 Memsic Inc., Andover A system for detecting a yaw rate using a magnetic field sensor and portable electronic devices using the same
US8374817B2 (en) * 2007-04-04 2013-02-12 Nxp B.V. Auto-calibration of orientation sensing systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009127561A1 *

Also Published As

Publication number Publication date
US9297660B2 (en) 2016-03-29
US20110035172A1 (en) 2011-02-10
FR2930335A1 (en) 2009-10-23
FR2930335B1 (en) 2010-08-13
WO2009127561A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
EP1492998B1 (en) Device for rotational motion capture of a solid
EP1984696B1 (en) Motion capture device and associated method
EP2718670B1 (en) Simplified method for estimating the orientation of an object, and attitude sensor implementing such a method
EP3807594B1 (en) Method for calibrating magnetometers fitted in an object
EP3408612B1 (en) Method for estimating the physical activity of an upper limb
EP1969314B1 (en) Method for estimating movement of a solid
EP3655800B1 (en) Method and device for magnetic field measurement by magnetometers
WO2009127561A1 (en) System and method for determining parameters representing orientation of a solid in movement subject to two vector fields
EP3427088B1 (en) Method for detecting an anomaly in the context of using a magnetic positioning device
EP3655724B1 (en) Method for estimating the movement of an object moving in a magnetic field
EP3807595A1 (en) Method for calibrating a gyrometer fitted in an object
EP2271946B1 (en) Device for detecting a percussion event, and associated mobile system
EP2746722B1 (en) Method for determining the inclination of an object
WO2013131990A1 (en) Method of identifying the geometric parameters of an articulated structure and of a set of reference frames of interest disposed on said structure
EP3655725A1 (en) Method for estimating the movement of an object moving in a magnetic field environment
EP3008547B1 (en) Device to analyse the movement of a mobile element and corresponding method
EP4001851A1 (en) Method for aligning a plurality of inertial and/or magnetic sensors and device enabling the implementation of such a method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170927

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180410