EP2268891A2 - Methods and systems of treating a wellbore - Google Patents
Methods and systems of treating a wellboreInfo
- Publication number
- EP2268891A2 EP2268891A2 EP09720550A EP09720550A EP2268891A2 EP 2268891 A2 EP2268891 A2 EP 2268891A2 EP 09720550 A EP09720550 A EP 09720550A EP 09720550 A EP09720550 A EP 09720550A EP 2268891 A2 EP2268891 A2 EP 2268891A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- wellbore
- oxidants
- electrolytic tool
- electrolytic
- filtercake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000012530 fluid Substances 0.000 claims abstract description 85
- 239000007800 oxidant agent Substances 0.000 claims abstract description 80
- 238000011065 in-situ storage Methods 0.000 claims abstract description 20
- 239000012065 filter cake Substances 0.000 claims description 66
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 13
- 230000001580 bacterial effect Effects 0.000 claims description 10
- 239000012267 brine Substances 0.000 claims description 9
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- 230000000593 degrading effect Effects 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- 229920006237 degradable polymer Polymers 0.000 claims 1
- 150000002978 peroxides Chemical class 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 33
- 238000005553 drilling Methods 0.000 description 33
- 238000005755 formation reaction Methods 0.000 description 33
- 230000001590 oxidative effect Effects 0.000 description 33
- 210000004027 cell Anatomy 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 11
- 239000000654 additive Substances 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 239000013535 sea water Substances 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- -1 phosphomannans Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Inorganic materials Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004155 Chlorine dioxide Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 235000019398 chlorine dioxide Nutrition 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 230000004941 influx Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000002906 microbiologic effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000019086 sulfide ion homeostasis Effects 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002305 Schizophyllan Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WGKMWBIFNQLOKM-UHFFFAOYSA-N [O].[Cl] Chemical compound [O].[Cl] WGKMWBIFNQLOKM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Chemical class [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000012668 chain scission Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B37/00—Methods or apparatus for cleaning boreholes or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/08—Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
Definitions
- Embodiments disclosed herein relate generally to methods and systems of treating a wellbore, and more particularly to the removal of filtercakes which form in wellbores.
- Hydrocarbons are typically obtained from a subterranean geologic formation (i.e., a "reservoir") by drilling a well that penetrates the hydrocarbon-bearing formation.
- a subterranean geologic formation i.e., a "reservoir”
- hydrocarbons In order for hydrocarbons to be "produced,” that is, travel from the formation to the wellbore (and ultimately to the surface), there must be a sufficiently unimpeded flowpath from the formation to the wellbore.
- One key parameter that influences the rate of production is the permeability of the formation along the flowpath that the hydrocarbon must travel to reach the wellbore.
- the formation rock has a naturally low permeability; other times, the permeability is reduced during, for instance, drilling the well.
- a drilling fluid is often circulated into the hole to contact the region of a drill bit, for a number of reasons such as: to cool the drill bit, to carry the rock cuttings away from the point of drilling, and to maintain a hydrostatic pressure on the formation wall to prevent production during drilling.
- the fluids may be circulated through a drill pipe and drill bit into the wellbore, and then may subsequently flow upward through wellbore to the surface.
- the drilling fluid may act to remove drill cuttings from the bottom of the hole to the surface, to suspend cuttings and weighting material when circulation is interrupted, to control subsurface pressures, to maintain the integrity of the wellbore until the well section is cased and cemented, to isolate the fluids from the formation by providing sufficient hydrostatic pressure to prevent the ingress of formation fluids into the wellbore, to cool and lubricate the drill string and bit, and/or to maximize penetration rate.
- drilling fluid can be lost by leaking into the formation.
- filtercakes are formed when particles suspended in a wellbore fluid coat and plug the pores in the subterranean formation such that the filtercake prevents or reduce both the loss of fluids into the formation and the influx of fluids present in the formation.
- a number of ways of forming filtercakes are known in the art, including the use of bridging particles, cuttings created by the drilling process, polymeric additives, and precipitates.
- the filtercake may stabilize the wellbore during subsequent completion operations such as placement of a gravel pack in the wellbore.
- a fluid loss pill of polymers may be "spotted" or placed in the wellbore.
- Other completion fluids may be injected behind the fluid loss pill into a position within the wellbore which is immediately above a portion of the formation where fluid loss is suspected. Injection of fluids into the wellbore is then stopped, and fluid loss will then move the pill toward the fluid loss location to coat the formation and prevent or reduce future fluid loss.
- filtercake (formed during drilling and/or completion) on the side walls of the wellbore must typically be removed, because remaining residue of the filtercake may negatively impact production. That is, although filtercake formation and use of fluid loss pills are essential to drilling and completion operations, the barriers may be a significant impediment to the production of hydrocarbons or other fluids from the well, if, for example, the rock formation is still plugged by the barrier. Because filtercake is compact, it often adheres strongly to the formation and may not be readily or completely flushed out of the formation by fluid action alone.
- the filtercake must be removed during the initial state of production, either physically or chemically (i.e., via acids, oxidizers, and/or enzymes).
- the amount and type of drill solids affects the effectiveness of these clean up treatments.
- Also affecting the effectiveness of the clean up of the wellbore prior to production is the presence of polymeric additives, which may be resistant to degradation using conventional filtercake breakers.
- embodiments disclosed herein relate to methods of treating a wellbore including emplacing at least one electrolytic tool in a desired section of the wellbore, applying an electric charge to wellbore fluids present in the desired section of the wellbore, and generating oxidants in situ by electrolyzing components of the wellbore fluids.
- embodiments disclosed herein relate to methods of breaking a filtercake formed in a wellbore, including generating oxidants in situ by electrolyzing components of a wellbore fluid present in the wellbore; and allowing the oxidants to degrade filtercake components.
- embodiments disclosed herein relate to systems for breaking a filtercake formed on a surface of a wellbore, including a wellbore having a filtercake formed thereon; a fluid supply source for supplying an aqueous solution into the wellbore; and at least one electrolytic tool for generating oxidants in the wellbore.
- FIG. 1 is a schematic drawing of one embodiment of a drilling system.
- Figure 2 is a schematic view of an electrolytic tool, according to embodiments disclosed herein.
- Figure 3 is a block diagram of an oxidant generation system, according to embodiments disclosed herein.
- Figure 4 is a flow chart showing a process of a filtercake treatment, according to embodiments disclosed herein.
- embodiments disclosed herein relate to the use of electrolytic tools downhole.
- embodiments disclosed herein relate to methods of treating a wellbore including emplacing an electrolytic tool in a desired section of the wellbore, applying an electric charge to wellbore fluids present, and generating oxidants in situ by electrolyzing components of the wellbore fluid.
- embodiments disclosed herein relate to methods of breaking a filtercake formed in a wellbore, including generating oxidants in situ by electrolyzing components of a wellbore fluid present in the wellbore, and allowing the oxidants to degrade filtercake components.
- embodiments disclosed herein relate to systems for breaking a filtercake formed on a surface of a wellbore, including a wellbore having a filtercake formed thereon, a fluid supply source for supplying an aqueous solution into the wellbore and an electrolytic tool for generating oxidants in the wellbore.
- FIG. 1 a schematic drawing of a typical drilling system is shown.
- a drilling system 10 is provided for drilling a wellbore into an earthen formation 100 to exploit natural resources such as oil.
- the drilling system 10 includes a derrick 20, a drill string assembly 30, a fluid circulation system 40, an electrolytic tool 50, a winch unit 70, and a control unit 85.
- the derrick 20 is built on a derrick floor 21 placed on the ground.
- the derrick 20 supports the drill string assembly 30 which is inserted into a wellbore 101 and carries out a drilling operation.
- the drill string assembly 30 includes a drill string 31, a bottom hole assembly
- the drill pipe 31 is rotated by the drive system 33, and this rotation is transmitted through the bottom hole assembly 32 to the drill bit 34.
- the fluid circulation system 40 includes a fluid pump 41, a mud pit 42, a supply line 43, and a return line 44.
- the fluid circulation system 40 circulates a wellbore fluid through the drill string assembly 30 and into the wellbore 101.
- the fluid pump 41 pumps wellbore fluid, which is reserved in the mud pit 42, through the supply line 43, and then, the wellbore fluid is injected into the drill string 31.
- the wellbore fluid injected into drill string 31 is then discharged from the drill bit 34 to the bottom of the wellbore 101 and returns to the mud pit 42 through the return line 44.
- fluids that exit drill bit 34 and circulate through the wellbore 101 may form a thin, low-permeability filtercake to seal permeable formations 100 penetrated by the bit 34.
- a variety of drilling fluids including oil- based and water-based wellbore fluids may be used to drill a wellbore 101.
- These well fluids may consist of synthetic polymers or biopolymers (such as to increase the rheological properties (e.g. plastic viscosity, yield point value, gel strength) of the drilling mud), clays, polymeric thinners, flocculants, and organic colloids added thereto to obtain the required viscosity and filtration properties.
- Heavy minerals such as barite or carbonate, may also be added to increase density.
- additives from the formation are incorporated into the mud and often become dispersed in the mud as a consequence of drilling.
- some additives may be added to specifically impart desired properties to the filtercake, to prevent both the loss of fluids from the wellbore into the formation and the influx of fluids that may be present in the formation into the wellbore.
- various polymeric additives may also act as fluid loss control agents to prevent or reduce the loss of wellbore fluid to the surrounding formation by reducing the permeability of filtercakes formed on the newly exposed rock surface.
- biodegradation-resistant polymeric additives include biopolymers; synthetic polymers, such as polyacrylamides and other acrylamide- based polymers; cellulose derivatives, such as dialkylcarboxymethylcellulose, hydroxyethylcellulose; and the sodium salts of carboxy-methylcellulose, chemically modified starch, guar gum, phosphomannans, scleroglucans, glucans, and dextrans.
- bridging agents such as calcium carbonate or fibrous materials may be added to bridge fractures or pores in a formation. While the filtercake serves an important role in drilling operations, the barrier can be a significant impediment to the production of hydrocarbons from the formation. Thus, once drilling and completion operations are complete, and production is desired, this coating or filtercake must be removed.
- oxidants for degrading a filtercake in accordance with embodiments disclosed herein may be generated in situ downhole by use of an electrolytic tool.
- FIG 2 a schematic of a simple electrolytic cell 51 according to some embodiments disclosed herein is shown.
- the electrolytic cell 51 includes at least one inlet port 54, through which a brine solution present in the wellbore may enter electrolytic cell 51, and at least one outlet port 56, through which generated oxidants may exit into the wellbore.
- the electrolytic cell 51 may contain at least one reaction chamber 57, for the housing of electrodes.
- the electrodes may be of any type or configuration known in the art.
- the electrolytic cell may contain at least two electrodes wherein at least one electrode is a positive electrode or an anode 58, and at least one electrode is a negative electrode or a cathode 59.
- the electrolytic tool may further include at least one control circuit (not shown) for selectively providing an electrical potential between the at least one cathode and the at least one anode, and an energy source (not shown) in electrical contact with the control circuit for delivering a controlled electrical charge to the control circuit.
- the at least one control circuit may be in electrical contact with the cathode 59 and the anode 58.
- Non-limiting examples of various electrolytic cells that may be used and/or modified for use downhole in the methods and system of the present disclosure include those described in U.S. Patent Nos. 4,761,208, 5,385,711, 6,261,464, 6,524,475, 6,558,537, 6,736,966, 6,805,787, 7,005,075, and 7,008,523, all of which are herein incorporated by reference.
- electrolytic cells may be incorporated into hardware typically used in downhole.
- completion hardware such as slotted liners and sand screens may be used as electrodes for the generation of oxidants within the wellbore in some embodiments of the present disclosure.
- a brine solution may enter and generated oxidants may exit the electrolytic cell 51.
- an electrolyte solution capable of transmitting an electrical charge upon which the electrolytic cell 51 may act.
- the capacity to transmit an electrical charge is known to be related to the ionic character of the electrolyte.
- the wellbore fluid may act as an electrolyte.
- Use of the wellbore fluid as an electrolyte is environmentally friendly and provides cost savings because no additional fluids need to be introduced into the wellbore.
- the wellbore fluid acting as an electrolyte may be a water-based fluid.
- the wellbore fluid may include an aqueous solution as the base fluid including at least one of fresh water, sea water, brine, mixtures of water and water-soluble organic compounds and mixtures thereof.
- the aqueous solution may be formulated with mixtures of desired salts in fresh water.
- Such salts may include, but are not limited to alkali metal chlorides, hydroxides, or carboxylates, for example.
- the wellbore fluids disclosed herein may include seawater, aqueous solutions wherein the salt concentration is less than that of sea water, or aqueous solutions wherein the salt concentration is greater than that of sea water.
- Salts that may be found in seawater include, but are not limited to, sodium, calcium, aluminum, magnesium, potassium, strontium, lithium, and salts of chlorides, bromides, carbonates, iodides, chlorates, bromates, formates, nitrates, oxides, sulfates, silicates, phosphates and fluorides. Salts that may be incorporated in brines include any one or more of those present in natural seawater or any other organic or inorganic dissolved salts.
- brines that may be used in the drilling fluids disclosed herein may be natural or synthetic, with synthetic brines tending to be much simpler in constitution.
- a brine may include halide or carboxylate salts of mono- or divalent cations of metals, such as cesium, potassium, calcium, zinc, and/or sodium. The presence of these salts enhances the ionic character of the wellbore fluid, thereby increasing its ability to transmit an electric charge and enhancing its properties as an electrolyte.
- an electrical potential may be provided by a control unit (shown in Figure 3 as 85), and may be conducted between the electrodes 58 and 59 by the wellbore fluid.
- a controlled electrical charge passes through the wellbore fluid from the at least one cathode 59 to the at least one anode 58, thereby generating at least one oxidant in the electrolytic solution.
- the wellbore fluid flows through the reaction chamber 57 of the electrolytic cell 51, and an electrical current is passed between the anode 58 and the cathode 59, several chemical reactions occur that involve the water, as well as one or more of the other salts or ions contained in the wellbore fluid.
- the electrical current polarizes the electrodes 58, 59 and causes dissociation of the wellbore fluid into component ions.
- the wellbore fluid includes a solution of sodium chloride (NaCl)
- NaCl brine may dissociate into sodium and chlorine ions which would migrate to the cathode and to the anode, respectively:
- the anode is known to be electron deficient, and without being bound by any particular theory, it is believed that the anode withdraws electrons from the water and other ions adjacent to the anode, which results in the formation of oxidative species in the wellbore electrolyte. For instance, the following chlorine generating reaction may occur at the anode surface:
- the chlorine gas (Cl 2 ) generated by the chlorine reaction may dissolve in the water to generate hypochlorite ions (OCl " ) which are an oxidative species useful in embodiments of this disclosure:
- the protons generated (H + ) may in turn combine with free electrons at the electron-rich cathode to generate hydrogen gas, which may be vented from the electrolytic tool by any means known in the art:
- oxidant generation has been illustrated by using NaCl brines as an example, one skilled in the art would appreciate that these principles apply to the generation of oxidants from any ionic solution by electrolysis.
- the present disclosure relates to the production of one or more oxidants and may include, for example, hypochlorite, chlorine, bromine, chlorine dioxide, ozone, hydrogen peroxide, and other chloro-oxygenated and bromo-oxygenated species.
- Flow dynamics which include the movement of molecules in a flowing solution by turbulence, predict that the conversion of salts will increase as the solution flow path nears the anode surface layer.
- methods and systems of the present disclosure preferably maximize the flow of the wellbore electrolyte over the anode in order to maximize the generation of oxidants.
- Flow of the wellbore fluid may be enhanced by any means known in the art, for example mixers such as propellers, etc.
- pumping devices 60, 61 may be set between the positive electrode 58 and the negative electrode 59.
- the pumping devices may have propeller blades, valves, or any means known in the art to generate a fluid stream in the reaction chamber 57 so that the wellbore fluid surrounding the electrolytic tool is induced into the reaction chamber 57 of the electrolytic cell 51 through inlet port 54, passes through the reaction chamber 57 of the electrolytic cell 51, and is released from the outlet port 56.
- the inlet port 54 may include an inlet port mechanism such as a valve, or any other mechanism known in the art to seal the inlet port after the wellbore fluid has entered the cell. Once generated, the oxidant-rich wellbore fluid may exit the electrolytic cell 51 via the outlet port 56.
- the local concentration of oxidants present in the exiting wellbore fluid may be measured by any instrument known in the art, for example, an oxidant sensor. Once the oxidant sensor has detected that the local concentration of oxidant is sufficient to break the filtercake, the electrical potential applied across the electrodes of the electrolytic cell may be removed and the electrolytic tool may then be removed from the wellbore.
- the oxidants now present in the wellbore fluid may degrade the filtercake by any mechanism known in the art.
- filtercakes may comprise polymers such as polysaccharides. Oxidants are known to attack the glycosidic linkage between the rings, causing chain scission. Accordingly, as the polymer breaks down to shorter chains, the filtercake degrades, and may be removed by the circulating wellbore fluid. The oxidant becomes reduced by this process, and the reduced form may be reoxidized by the electrolytic tool, if deemed necessary. Alternatively, one skilled in the art would appreciate that the electrolytic tool may continuously (or intermittently) generate oxidants until it has been determined that the filtercake has been sufficiently removed.
- the applicants have also found that the ability to generate oxidants in situ for the breaking of filtercakes provides advantageous control over the timing of the breaking of the filtercake. Because the electrolytic tool may be emplaced at the site of the filtercake desired to be removed (e.g., at the producing interval), thereby generating an oxidant-rich environment in close proximity to the filtercake, the timing of the breaking of the filtercake may be triggered by the providing of an electrical potential across the electrodes of the electrolytic cell. For example, this technique may provide greater controllability as compared to conventional emplacement of breaker fluids, which may react too fast or too slow depending on the presence or absence of delay mechanisms.
- an electrolytic tool may be placed downhole to generate oxidants in situ which are able to kill bacteria which may be present in the wellbore.
- the drilling process initiates communication between the surface and the subsurface oilfield environments.
- wellbore fluids may be circulated from the surface to the bit to remove cuttings, and to control formation pressures downhole.
- chemicals and bacteria from the surface may be circulated into the deep subsurface energy-rich, oil-bearing strata, and the hydrocarbon laden cuttings may be brought into the oxygen-rich, moderate temperature surface environment.
- microbiological activity may be initiated in the surface and subsurface environments. While this typically does not occur normally, this may lead to bacterial contamination of the wellbore.
- organic polymers present as viscosifiers and fluid loss control agents in a wellbore fluid tend to be of plant or microbiological origin and may act as a ready food source for growth of naturally occurring oilfield bacteria. If bacterial growth is excessive, the consumption of these organic wellbore fluid components may result in a loss of the rheological properties of the mud, microbial corrosion of well tubulars and screens, biomass plugging in injection wells and the formation, and hydrogen sulfide production deep in the formation. If left untreated, it is possible that bacterial contamination may cause a breakdown of wellbore integrity.
- oxidants generated in situ in a wellbore from an electrolyte solution may be used to kill bacteria downhole.
- oxidants may attack components of the bacterial cell wall, such as peptidoglycans and other polysaccharides. Accordingly, methods and systems disclosed herein may generate oxidants in situ for the reduction of bacterial populations downhole.
- Electrolytic tools of use in embodiments disclosed herein may be placed in the wellbore by any means known in the art.
- the various embodiments of the present disclosure may work by placing at least part of or the entire electrolytic tool in the wellbore. Placement may occur at any stage of wellbore operations.
- the electrolytic tool may be placed in the wellbore during completion and before production.
- electrolytic tools disclosed herein may be used to trigger breaking of the gel in the inappropriate location so that it may be placed in the desired location. Additionally, if the tool is being used to control bacterial growth, it is envisioned that it may be desirable to form oxidants at any stage, including drilling.
- the electrolytic tool when generation of oxidants is desired, the electrolytic tool, or portions thereof, may be placed in the desired section of the well.
- This provides advantageous control over axial placement.
- problems may arise with respect to the proper placement of the breaker fluid, that is, ensuring that it is delivered to the entire desired zone (that is, the zone that needs filtercake removal). It is foreseeable in some cases that the portions of the filtercake that encounter the breaker fluid first may react and break apart more quickly than other portions of the filtercake do, with the potential that some fluid loss may be experienced in the region in which the filter cake has quickly broken up.
- an electrolytic tool with adequate dimensions may advantageously allow generation of oxidants over all of the filtercake, so that most of the filtercake may be broken at about the same time.
- several electrolytic cells may be emplaced in proximity to the f ⁇ ltercake to advantageously allow for generation of oxidants over all of the f ⁇ ltercake.
- the desired depth and/or lateral positioning of the electrolytic tool in the wellbore may be advantageously controlled by the use of any equipment known in the art such as winches etc. Further, the depth and lateral positioning of the electrolytic tool in the wellbore may be measured by any instrumentation known in the art, such as depth gauges, sensors, cameras etc. Once optimal placement of the electrolytic tool has been achieved, the oxidants may then be generated in situ at the desired section of the wellbore, thereby achieving paramount axial distribution of the oxidant breaker.
- the electrolytic tool includes an oxidant generation system 80.
- the oxidant generation system 80 includes the oxidant generator 50, a control unit 85, the winch unit 70, a power supply unit 81, and a valve actuator 82.
- the oxidant generator 50 includes an electrolytic cell 51, an oxidant sensor 52, and optionally a hydraulic power generator 53.
- the oxidant generator 50 may comprise multiple electrolytic cells 51, which may be electrically connected to each other in series or in parallel, to allow for the breaking of filtercakes over larger intervals.
- multiple oxidant generators 50 may be used in a single operation depending on the length of interval to be broken and/or dimensions of the tool.
- the oxidant generator 50 is suspended in the wellbore 101 by a cable 71.
- a winch unit 70 lifts and/or lowers the cable 71 to adjust depth position of the oxidant generator 50 in the wellbore 101.
- the control unit 85 includes, for example, a CPU, a ROM, a RAM, an input and an output port, a memory apparatus and the like (not shown).
- the control unit 85 is electrically connected to at least the oxidant generator 50, the winch unit 70, and power supply unit 81.
- the control unit 85 operates the oxidant generator 50, the winch unit 70 and valve actuator 82 by transmitting command signals (solid arrowed lines).
- the command signals may be based on detection signals of the oxidant sensor 51 connected to the oxidant generator 50 and/or the depth gauge 72 connected to the winch unit 70.
- a feedback command signal may be sent to the winch unit 70 through the control unit 85 to adjust the depth of the oxidant generator 50 accordingly.
- a feedback command signal may be sent to the winch unit 70 through the control unit 85 to adjust the output of the oxidant generator accordingly.
- the feedback command signal may be automated or input manually. Accordingly, the power supply unit 81 supplies electrical power (broken arrowed lines) to control unit 60, the oxidant generator 50, the winch unit 70 and the valve actuator 82, based on command signals transmitted by the control unit 85.
- a method of treating a wellbore is shown in a flow chart.
- a wellbore fluid which is an electrolytic brine solution may be emplaced within a wellbore.
- electrolytic brine solutions may have been the fluid used to drill the wellbore or may have been a subsequent fluid placed in the wellbore for completion operations, for example.
- the electrolytic tool may be placed in the section of the wellbore where removal of the filtercake is desired.
- applying voltage to the electrodes generates oxidants in the brine solution in the electrolytic cell.
- the wellbore is evaluated to assess the efficiency of the breaking of the filtercake.
- the electrolytic tool is deactivated in 5000, and removed from the wellbore, as in 6000. If the filtercake has not been sufficiently removed, the electrolytic tool may be activated once again by applying a voltage across the electrodes, as in 3000. This iteration may repeat until the filtercake has been sufficiently removed, and then the electrolytic tool may then be deactivated and removed from the wellbore as in 5000 and 6000, respectively.
- embodiments of the present disclosure provides for the degradation of filtercakes by oxidants generated downhole, in situ, by use of an electrolytic tool.
- the in situ generation of oxidants may provide advantageous control over timing of breaking of the oxidative breaker in the wellbore.
- generating oxidants in situ from relatively benign precursors such as brines may result in less corrosion in the drill string assembly and is more environmentally friendly.
- generating oxidants in situ at the desired site may allow use of smaller volumes of chemicals such as oxidative breaker and other additives, and may be more cost-efficient, using species already present in a wellbore instead of requiring a subsequent pumping of a breaker fluid downhole.
- generating oxidants downhole may allow for control of bacterial populations downhole.
- Control of bacterial populations downhole may result in decreased microbial corrosion of tubular and screens, biomass plugging, and hydrogen sulfide production.
- appreciable cost savings, environmental, and safety benefits may be actualized by use of embodiments of the methods and systems of the present disclosure. While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3601808P | 2008-03-12 | 2008-03-12 | |
PCT/IB2009/005119 WO2009112948A2 (en) | 2008-03-12 | 2009-03-06 | Methods and systems of treating a wellbore |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2268891A2 true EP2268891A2 (en) | 2011-01-05 |
Family
ID=40943750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09720550A Withdrawn EP2268891A2 (en) | 2008-03-12 | 2009-03-06 | Methods and systems of treating a wellbore |
Country Status (8)
Country | Link |
---|---|
US (1) | US20110024122A1 (zh) |
EP (1) | EP2268891A2 (zh) |
CN (1) | CN101970793B (zh) |
AU (1) | AU2009223855B2 (zh) |
CA (2) | CA2718072A1 (zh) |
EA (1) | EA018242B1 (zh) |
MX (1) | MX2010009936A (zh) |
WO (1) | WO2009112948A2 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2473799C2 (ru) * | 2011-04-22 | 2013-01-27 | Шлюмберже Текнолоджи Б.В. | Способ увеличения проницаемости призабойной зоны пласта |
GB2490919A (en) * | 2011-05-18 | 2012-11-21 | Schlumberger Holdings | Electrochemical method for altering a composition at a location through an elongate conduit |
US20140299552A1 (en) * | 2011-05-27 | 2014-10-09 | M-I L.L.C. | Disinfecting water used in a fracturing operation |
WO2013131102A1 (en) * | 2012-03-02 | 2013-09-06 | Miox Corporation | Waste to product on site generator |
CN104919126B (zh) * | 2012-12-28 | 2017-05-17 | 哈利伯顿能源服务公司 | 井下无叶发电机 |
GB2512818B (en) * | 2013-03-04 | 2017-03-22 | Schlumberger Holdings | Electrochemical reactions in flowing stream |
US10132150B2 (en) * | 2014-06-23 | 2018-11-20 | Halliburton Energy Services, Inc. | In-well saline fluid control |
JP6569354B2 (ja) * | 2015-07-27 | 2019-09-04 | 日本製鉄株式会社 | 坑井の掘削方法 |
CN113426770A (zh) * | 2021-07-30 | 2021-09-24 | 西安热工研究院有限公司 | 一种烟气组分吸收管的处理装置及方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1784214A (en) * | 1928-10-19 | 1930-12-09 | Paul E Workman | Method of recovering and increasing the production of oil |
US1984668A (en) * | 1934-03-10 | 1934-12-18 | Alfred W Knight | Method of cleaning the walls of mudded bore-holes |
US2217857A (en) * | 1937-04-17 | 1940-10-15 | Shell Dev | Process for the removal of mud sheaths |
US2211696A (en) * | 1937-09-23 | 1940-08-13 | Dow Chemical Co | Treatment of wells |
US2210205A (en) * | 1939-03-30 | 1940-08-06 | Lane Wells Co | Water intrusion location in oil wells |
US4392529A (en) * | 1981-11-03 | 1983-07-12 | Burwell Maurel R | Method of cleaning a well and apparatus thereof |
US4609475A (en) * | 1984-02-24 | 1986-09-02 | Halliburton Company | Method of improving the permeability of a subterranean formation by removal of polymeric materials therefrom |
US4974672A (en) * | 1988-03-08 | 1990-12-04 | Petrolphysics Operators | Gravel packing system for a production radial tube |
US4761208A (en) | 1986-09-29 | 1988-08-02 | Los Alamos Technical Associates, Inc. | Electrolytic method and cell for sterilizing water |
US4941537A (en) * | 1988-02-25 | 1990-07-17 | Hi-Tek Polymers, Inc. | Method for reducing the viscosity of aqueous fluid |
US5247995A (en) * | 1992-02-26 | 1993-09-28 | Bj Services Company | Method of dissolving organic filter cake obtained from polysaccharide based fluids used in production operations and completions of oil and gas wells |
US5316740A (en) * | 1992-03-26 | 1994-05-31 | Los Alamos Technical Associates, Inc. | Electrolytic cell for generating sterilization solutions having increased ozone content |
US5607905A (en) * | 1994-03-15 | 1997-03-04 | Texas United Chemical Company, Llc. | Well drilling and servicing fluids which deposit an easily removable filter cake |
US6029755A (en) * | 1998-01-08 | 2000-02-29 | M-I L.L.C. | Conductive medium for openhole logging and logging while drilling |
US6131661A (en) * | 1998-08-03 | 2000-10-17 | Tetra Technologies Inc. | Method for removing filtercake |
US6524475B1 (en) | 1999-05-25 | 2003-02-25 | Miox Corporation | Portable water disinfection system |
US6558537B1 (en) * | 1999-05-25 | 2003-05-06 | Miox Corporation | Portable hydration system |
US6261464B1 (en) * | 1999-05-25 | 2001-07-17 | Miox Corporation | Portable water disinfection system |
US6736966B2 (en) * | 1999-05-25 | 2004-05-18 | Miox Corporation | Portable water disinfection system |
US6332972B1 (en) * | 1999-12-17 | 2001-12-25 | H20 Technologies, Ltd. | Decontamination method and system, such as an in-situ groundwater decontamination system, producing dissolved oxygen and reactive initiators |
US7005075B2 (en) * | 2001-07-16 | 2006-02-28 | Miox Corporation | Gas drive electrolytic cell |
US7008523B2 (en) * | 2001-07-16 | 2006-03-07 | Miox Corporation | Electrolytic cell for surface and point of use disinfection |
US6805787B2 (en) | 2001-09-07 | 2004-10-19 | Severn Trent Services-Water Purification Solutions, Inc. | Method and system for generating hypochlorite |
US6861394B2 (en) * | 2001-12-19 | 2005-03-01 | M-I L.L.C. | Internal breaker |
US7325604B2 (en) * | 2002-10-24 | 2008-02-05 | Electro-Petroleum, Inc. | Method for enhancing oil production using electricity |
DK1787005T3 (da) * | 2004-09-07 | 2009-06-08 | Terence Borst | Magnetiske enheder til forebyggelse af aflejring |
US7311150B2 (en) * | 2004-12-21 | 2007-12-25 | Cdx Gas, Llc | Method and system for cleaning a well bore |
-
2009
- 2009-03-06 CA CA2718072A patent/CA2718072A1/en not_active Abandoned
- 2009-03-06 EA EA201071065A patent/EA018242B1/ru not_active IP Right Cessation
- 2009-03-06 MX MX2010009936A patent/MX2010009936A/es not_active Application Discontinuation
- 2009-03-06 EP EP09720550A patent/EP2268891A2/en not_active Withdrawn
- 2009-03-06 AU AU2009223855A patent/AU2009223855B2/en not_active Ceased
- 2009-03-06 CN CN200980108529.2A patent/CN101970793B/zh not_active Expired - Fee Related
- 2009-03-06 US US12/921,607 patent/US20110024122A1/en not_active Abandoned
- 2009-03-06 CA CA2853269A patent/CA2853269A1/en not_active Abandoned
- 2009-03-06 WO PCT/IB2009/005119 patent/WO2009112948A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2009112948A2 * |
Also Published As
Publication number | Publication date |
---|---|
CN101970793A (zh) | 2011-02-09 |
MX2010009936A (es) | 2010-10-25 |
WO2009112948A3 (en) | 2009-11-05 |
CA2853269A1 (en) | 2009-09-17 |
AU2009223855A1 (en) | 2009-09-17 |
EA201071065A1 (ru) | 2011-04-29 |
EA018242B1 (ru) | 2013-06-28 |
WO2009112948A2 (en) | 2009-09-17 |
CA2718072A1 (en) | 2009-09-17 |
US20110024122A1 (en) | 2011-02-03 |
CN101970793B (zh) | 2014-10-08 |
AU2009223855B2 (en) | 2012-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2009223855B2 (en) | Methods and systems of treating a wellbore | |
Crabtree et al. | Fighting scale—removal and prevention | |
US8017563B2 (en) | Diverting compositions, fluid loss control pills, and breakers thereof | |
US5458198A (en) | Method and apparatus for oil or gas well cleaning | |
US8124571B2 (en) | Process for treating an underground formation | |
US20160272869A1 (en) | Treatment fluids and uses thereof | |
US20170260067A1 (en) | Treatment of subterranean wells with electrolyzed water | |
CA2652042C (en) | Energized fluid for generating self-cleaning filter cake | |
NO20201098A1 (en) | Ultrasonic Breaking of Polymer-Containing Fluids for Use in Subterranean Formations | |
NO20170841A1 (en) | Barrier pills | |
CN115434680B (zh) | 一种气井储层的改造方法 | |
US11499086B1 (en) | Subterranean drilling and completion in geothermal wells | |
US20230183551A1 (en) | Dissolution of filter cake at low temperatures | |
AU2021201374B2 (en) | Drill fluid and method for tunneling | |
RU2160831C2 (ru) | Способ реагентной разглинизации скважин | |
US20230313023A1 (en) | Removal of filter cake | |
MM et al. | Life cycle management of scale control within subsea fields and its impact on flow assurance, gulf of mexico and the north sea basin | |
Lin et al. | Geoscience-engineering integration-based formation damage control drill-in fluid (GEI-FDC-DIF): An essential technology for successful extraction of deep mid-high permeability sandstone reservoirs | |
Moses et al. | Microbial hydraulic acid fracturing | |
US10703956B2 (en) | Use of alkali metal silicates during formulation of drilling fluids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101007 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20120123 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20141202 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150414 |