EP2260119A2 - Installation d'injection de gaz froid - Google Patents

Installation d'injection de gaz froid

Info

Publication number
EP2260119A2
EP2260119A2 EP09729463A EP09729463A EP2260119A2 EP 2260119 A2 EP2260119 A2 EP 2260119A2 EP 09729463 A EP09729463 A EP 09729463A EP 09729463 A EP09729463 A EP 09729463A EP 2260119 A2 EP2260119 A2 EP 2260119A2
Authority
EP
European Patent Office
Prior art keywords
section
cold gas
stagnation chamber
gas spraying
laval nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09729463A
Other languages
German (de)
English (en)
Other versions
EP2260119B1 (fr
Inventor
Oliver Stier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2260119A2 publication Critical patent/EP2260119A2/fr
Application granted granted Critical
Publication of EP2260119B1 publication Critical patent/EP2260119B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • B05B7/1626Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a cold gas spraying system having the features according to the preamble of claim 1.
  • Such a cold gas spraying system is sold, for example, by CGT CoId Gas Technology GmbH under the product name Kinetiks® 4000 CoId Spray System.
  • the previously known cold gas spraying system has a gas heater for heating a gas. Connected to the gas heating device is a stagnation chamber, which is connected on the output side to a charging nozzle.
  • Laval nozzles are known to have a converging section, a nozzle neck adjoining the converging section and a widening section adjoining the nozzle neck. On the output side, the Laval nozzle emits a gas stream with particles in it at supersonic speed.
  • Cold spray systems of the type described can be used, for example, to produce a coating on a surface with the accelerated particles.
  • the invention has for its object to provide a cold gas spraying system with which an even better layer quality when producing a coating can be achieved than before.
  • the thermal conductivity of an insulating material is usually given for a temperature range between 30 and 100 ° C., as shown in W / (K * m).
  • An essential advantage of the cold gas spraying systems according to the invention is the fact that higher flow velocities of the gas stream and thus higher particle speeds can be achieved with them than with previously known cold gas spraying systems. This is concretely attributable to the fact that, due to the thermal insulation provided according to the invention, at least one section located behind the gas heating device in the gas flow direction can achieve greater stagnation temperatures of the gas within the cold gas spraying system than previously. It has been recognized by the inventor that the achievable flow rates against atmospheric pressure, both those of the gas stream and those of the particles therein, depend primarily on the stagnation temperature of the gas and less on the stagnation pressure of the gas.
  • the invention begins by providing according to the invention to allow even higher stagnation temperatures than before; this is achieved by selectively thermally insulating or thermally protecting one or more sections located behind the gas heating device, in order to achieve even higher temperatures in these sections without damaging anima stricte of the cold gas spraying system.
  • the core of the invention is therefore to achieve higher stagnation temperatures by means of additional thermal insulation, in order thereby to achieve higher flow velocities of the particles and thus higher-quality coating qualities.
  • the insulating material is formed by one or more of the following materials or contains at least one of them: porcelains, steatites, cordierite ceramics, alumina, in particular zirconia-reinforced, aluminum silicate, aluminum titanate, zirconium oxide, in particular stabilized variants, oxides of magnesium, beryllium or Titanium, silicon nitride, porous silicon carbide, in particular nitride-bonded or recrystallized.
  • porcelains steatites, cordierite ceramics, alumina, in particular zirconia-reinforced, aluminum silicate, aluminum titanate, zirconium oxide, in particular stabilized variants, oxides of magnesium, beryllium or Titanium, silicon nitride, porous silicon carbide, in particular nitride-bonded or recrystallized.
  • the panel is formed by an insert which consists wholly or partly of the insulating material and is inserted in the thermally protected portion of the cold gas spraying system that it separates the inner wall of the portion of the gas stream ,
  • this can be exchanged particularly easily and thus advantageously.
  • the cladding may be formed by a coating of the insulating material applied to the inner wall of the section and separating the inner wall of the section from the gas flow.
  • the thermally protected portion lies in the converging section of the Laval nozzle to a thermal stress and deformation of this relevant for the beam formation and acceleration of the gas section to avoid.
  • At least part of the insert is formed by a cone-shaped, in particular frusto-conical, sleeve which is inserted into the converging section of the Laval nozzle.
  • a particularly simple replacement of the insert in the event of material wear is possible.
  • the thermally protected portion lies in the stagnation chamber.
  • the thermally protected portion extends from the stagnation chamber into the converging part of the Laval nozzle.
  • the thermal insulation is achieved by an insert which is formed by a sectionally cylindrical and partially cone-shaped, in particular frusto-conical, sleeve whose cylindrical portion is inserted in the stagnation chamber and its conical portion in the converging section of the Laval nozzle.
  • the thermally protected portion may extend into and / or through the nozzle throat.
  • the stagnation chamber can be opened and the insert and the stagnation chamber are designed such that the insert can be exchanged from the stagnation chamber.
  • FIG. 1 shows a first exemplary embodiment of a cold gas spraying installation in which the converging section of the Laval nozzle of the cold gas spraying installation is thermally protected
  • FIG. 2 shows a second exemplary embodiment of a cold gas spraying installation in which the stagnation chamber is thermally protected
  • FIG. 3 shows a third exemplary embodiment of a cold gas spraying installation in which a section of the stagnation chamber of the cold gas spraying installation and the adjoining convergent section of the Laval nozzle are thermally protected
  • FIG. 4 shows an exemplary embodiment of a cold gas spraying installation in which the thermally protected section extends from the stagnation chamber via the converging section of the Laval nozzle into the widening section of the Laval nozzle.
  • FIG. 1 shows a cold gas spraying system 10, which is equipped with a Laval nozzle 20.
  • the Laval nozzle 20 comprises a converging section 30 and a widening section 40.
  • the converging section 30 and the widening section 40 are through a nozzle throat 50, in which the cross-section of the Laval nozzle 20 is minimal, separated from each other.
  • a stagnation chamber 60 is connected at the converging section 30 of the Laval nozzle 20, a stagnation chamber 60 is connected.
  • the cross-sectional area A of the stagnation chamber 60 is much larger than the cross-sectional area A 'in the region of the nozzle throat 50, so that it is in the region of the nozzle throat 50 and in the adjoining, divisional section 40 results in a significant acceleration of passing through the Laval nozzle 20 gas flow P.
  • the relatively low gas flow velocity (0 "Mach number ⁇ 1) in the stagnation chamber 60 is designated by the reference symbol Vu and the high supersonic gas flow velocity (Mach number> 1) in the subsection 40 by the reference symbol Vo.
  • a particulate feed device 80 which feeds particles T into the gas G in the stagnation chamber 60.
  • the particles T are fed laterally from the edge in the stagnation chamber 60; however, this is only to be understood as an example: The particles T can be fed into the stagnation chamber 60 in the middle or at different spatial angles than shown in FIG.
  • a gas heater 90 is arranged, which heats the gas G before it enters the stagnation chamber 60 and the Laval nozzle 20.
  • the cold gas spraying system 10 can be operated as follows: With the particle feed device 80, the particles T are fed into the gas G located in the stagnation chamber 60. Due to the large cross-section A in the stagnation chamber 60, the gas flow velocity Vu of the gas flow P from the stagnation chamber 60 into the Laval nozzle 20 is still relatively small (0 "Mach number ⁇ 1). Only in the region of the nozzle throat 50 does the gas flow P accelerate considerably, resulting in a gas flow velocity Vo of the gas flow P in the expanding section 40 in the supersonic range (Mach number> 1).
  • the highest possible gas temperature is set in the stagnation chamber 60.
  • a thermal insulation material 100 or coated In order to avoid that in the converging section 30 of the Laval nozzle 20 overheating and concomitantly a deformation or destruction of the Laval nozzle 20 may occur, this is covered with a thermal insulation material 100 or coated.
  • the thermal insulation material 100 has a thermal conductivity below 20W / Km.
  • the insulating material 100 can be formed, for example, by one or more of the following ceramic materials: porcelains, steatites, cordierite ceramics, aluminum oxide, in particular zirconium-reinforced, aluminum silicate, aluminum titanate, zirconium oxide, in particular stabilized variants, oxides of magnesium , Beryllium or titanium, silicon nitride, porous silicon carbide, in particular nitride bonded or recrystallized.
  • the covering is formed by a cone-shaped, in particular frusto-conical, insert 110 which consists wholly or partly of said thermal insulation material 100 and is inserted or inserted into the Laval nozzle 20. Through the insert 110, the gas flow P is separated from the inner wall 120 of the Laval nozzle 20, so that the inner wall 120 is thermally protected in the region of the insert 110.
  • the stagnation chamber 60 can be opened at its left or right side in FIG. 1 in order to be able to pull the insert 110 out of the Laval nozzle 20 in the event of wear and replace it.
  • FIG. 2 shows a second exemplary embodiment of a cold gas spraying system 10.
  • the stagnation chamber 60 is thermally protected.
  • the inner wall 130 of the stagnation chamber 60 is lined or coated with the thermal insulation material 100.
  • the cladding is formed by an insert 140, which consists of or comprises the thermal insulation material 100 and rests against the inner wall 130 from the inside.
  • the insert 140 may for example be formed at least in sections by a cylindrical insertion sleeve. In the case of wear, the insertion sleeve can preferably be replaced by the left or right side of the stagnation chamber 60 in FIG. 2.
  • FIG. 3 shows a further exemplary embodiment of a cold gas spray system 10.
  • the inner wall section 200 of the stagnation chamber 60 adjoining the Laval nozzle 20 and the inner wall section section 210 of the converging section 30 of the valving nozzle 20 is thermally protected.
  • the two inner wall sections 200 and 210 are lined with an insert 220 in the form of a sleeve or insertion sleeve, which has been inserted from the stagnation chamber 60 in this and in the Laval nozzle 20.
  • the insertion sleeve 220 is replaceable, so that it can be replaced in case of wear.
  • the insertion sleeve 220 is cylindrical in sections and sectionally conical, with the cylindrical section being inserted or inserted in the stagnation chamber 60 and the conical section in the converging section 40 of the Laval nozzle 20.
  • FIG. 4 shows an exemplary embodiment of a cold gas spray system 10 in which the stagnation chamber 60, the converging section 30 of the Laval nozzle 20, the nozzle neck 50 and a lower section 310 of the widening section 40 of the Laval nozzle 20 are thermally insulated.
  • the stagnation chamber 60, the converging section 30 of the Laval nozzle 20, the nozzle neck 50 and a lower section 310 of the widening section 40 of the Laval nozzle 20 are thermally insulated.
  • the stagnation chamber 60, the subsection 30, the nozzle throat 50, and the subsection 310 may also be made solid from a thermal insulation material having a conductivity below 20 W / Km.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Nozzles (AREA)

Abstract

La présente invention concerne une installation d'injection de gaz froid (10) comprenant un dispositif de chauffage de gaz (90) et une chambre de stagnation (60) connectée au dispositif de chauffage de gaz (90). Une tuyère de Laval (20) est connectée à la chambre de stagnation, laquelle tuyère libère côté sortie un courant de gaz dans lequel se trouvent des particules (T) à une vitesse supersonique. Des installations d'injection de gaz froid de ce type peuvent par exemple être utilisées pour appliquer un revêtement sur une surface avec les particules accélérées. L'objectif de l'invention est d'obtenir une qualité de revêtement encore meilleure lors de la fabrication d'un revêtement. A cette fin, au moins une partie de l'installation d'injection de gaz froid située derrière le dispositif de chauffage de gaz lorsqu'elle est observée dans la direction d'écoulement du gaz est dotée d'une protection thermique en ce qu'elle est revêtue côté paroi intérieure d'un matériau isolant en céramique présentant une conductivité thermique inférieure à 20 W/Km ou en ce qu'elle est composée d'un tel matériau. Le revêtement peut par exemple être assuré par un élément rapporté échangeable (110, 140) qui sépare du courant de gaz la paroi intérieure de ladite partie. Un tel élément rapporté peut par exemple présenter un manchon partiellement cylindrique et partiellement conique, notamment tronconique, dont la partie cylindrique est insérée dans la chambre de stagnation et dont la partie conique est insérée dans la partie convergente de la tuyère de Laval.
EP09729463A 2008-04-11 2009-03-24 Installation d'injection de gaz froid Active EP2260119B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008019682A DE102008019682A1 (de) 2008-04-11 2008-04-11 Kaltgasspritzanlage
PCT/EP2009/053462 WO2009124839A2 (fr) 2008-04-11 2009-03-24 Installation d'injection de gaz froid

Publications (2)

Publication Number Publication Date
EP2260119A2 true EP2260119A2 (fr) 2010-12-15
EP2260119B1 EP2260119B1 (fr) 2012-08-15

Family

ID=40765713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09729463A Active EP2260119B1 (fr) 2008-04-11 2009-03-24 Installation d'injection de gaz froid

Country Status (7)

Country Link
US (1) US20110094439A1 (fr)
EP (1) EP2260119B1 (fr)
CN (1) CN101999011B (fr)
CA (1) CA2721114C (fr)
DE (1) DE102008019682A1 (fr)
DK (1) DK2260119T3 (fr)
WO (1) WO2009124839A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
WO2014178937A1 (fr) * 2013-05-03 2014-11-06 United Technologies Corporation Réchauffeur de gaz portatif haute température et haute pression
US20160221014A1 (en) * 2013-09-25 2016-08-04 United Technologies Corporation Simplified cold spray nozzle and gun
JP6716204B2 (ja) * 2015-06-24 2020-07-01 日本発條株式会社 成膜方法及び成膜装置
WO2020179100A1 (fr) * 2019-03-01 2020-09-10 株式会社カワタ Dispositif de revêtement en poudre et procédé de revêtement, dispositif de dispersion de poudre, et procédé de dispersion de poudre
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
JP7440621B2 (ja) 2019-09-19 2024-02-28 ウェスティングハウス エレクトリック カンパニー エルエルシー コールドスプレー堆積物のその場付着試験を行うための装置及びその使用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162934A (zh) * 1994-09-19 1997-10-22 Ast控股有限公司 把电磁能和可加热混合物耦合起来的喷嘴
US6417126B1 (en) * 2000-02-24 2002-07-09 C-Max Technology, Inc. Ceramics and process for producing
DE10207519A1 (de) * 2002-02-22 2003-09-11 Linde Ag Vorrichtung zum Kaltgasspritzen
US7163603B2 (en) * 2002-06-24 2007-01-16 Tokyo Electron Limited Plasma source assembly and method of manufacture
US20060038044A1 (en) * 2004-08-23 2006-02-23 Van Steenkiste Thomas H Replaceable throat insert for a kinetic spray nozzle
JP2006179856A (ja) * 2004-11-25 2006-07-06 Fuji Electric Holdings Co Ltd 絶縁基板および半導体装置
US20070074656A1 (en) * 2005-10-04 2007-04-05 Zhibo Zhao Non-clogging powder injector for a kinetic spray nozzle system
DE102006014124A1 (de) * 2006-03-24 2007-09-27 Linde Ag Kaltgasspritzpistole

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009124839A2 *

Also Published As

Publication number Publication date
US20110094439A1 (en) 2011-04-28
DE102008019682A1 (de) 2009-10-15
CN101999011A (zh) 2011-03-30
CN101999011B (zh) 2013-08-21
WO2009124839A3 (fr) 2010-02-18
EP2260119B1 (fr) 2012-08-15
DK2260119T3 (da) 2012-11-26
CA2721114C (fr) 2017-04-25
CA2721114A1 (fr) 2009-10-15
WO2009124839A2 (fr) 2009-10-15

Similar Documents

Publication Publication Date Title
EP2260119B1 (fr) Installation d'injection de gaz froid
EP1999297B1 (fr) Pistolet de projection a gaz froid
EP1390152B1 (fr) Procede et dispositif de projection par gaz froid
DE69718514T2 (de) Vorrichtung zum gasdynamischen beschichten
EP2108051B1 (fr) Procédé et dispositif de projection dynamique par gaz froid de particules de différente dureté et/ou ductilité
EP3102335B1 (fr) Dispositif de refroidissement pour gicleur ou arrangement de gicleur muni d'un dispositif de refroidissement pour la pulvérisation thermique
EP2558217B1 (fr) Buse multiple à mélange externe
DE3929960A1 (de) Duese fuer einen plasmabrenner und verfahren zum einbringen eines pulvers in die plasmaflamme eines plasmabrenners
EP1022078B1 (fr) Procédé et dispositif pour la préparation de poudre métallique par atomisation à l'aide d'un gas
EP2555858A1 (fr) Système de pulvérisation et procédé pour pulvériser un fluide secondaire dans un fluide primaire
EP0736328B1 (fr) Dispositif pour broyeur à jet à lit fluidisé
EP2499278A1 (fr) Procédé et dispositif de revêtement d'élément
DE2300217A1 (de) Verfahren und vorrichtung zur brennstoffeinspritzung in hochoefen o. dgl
EP2872258B1 (fr) Pistolet de projection à gaz froid avec injecteur de poudre
DE102007034549A1 (de) Energiespardüse mit Druckluftunterstützung
DE19752245A1 (de) Zweistoffdüse und Niederdruck-Zerstäubungsvorrichtung mit mehreren benachbarten Zweistoffdüsen
DE102006022282A1 (de) Kaltgasspritzpistole
EP1791645B1 (fr) Procede de pulverisation par gaz froid et pistolet pulverisateur a gaz froid caracterises par un temps de sejour prolonge de la poudre dans le jet de gaz
DE102014003877A1 (de) Verfahren und Vorrichtung zur on-line-Reinigung von Zweistoffdüsen
DE10207519A1 (de) Vorrichtung zum Kaltgasspritzen
EP1506816A1 (fr) Buse de Laval pour la pulvérisation thermique et cinétique
DE10119288B4 (de) Verfahren und Einrichtung zur gasdynamischen Beschichtung von Oberflächen mittels Schalldüsen
DE102013010126B4 (de) Plasmapulverspritzverfahren und Vorrichtung zur Beschichtung von Paneelen für Kesselwände in Verbindung mit einem Laserstrahlgerät
DE102010001454A1 (de) Vorrichtung zum Erzeugen eines Gespinsts und deren Verwendung
DE10207525A1 (de) Verfahren und Vorrichtung zum Kaltgasspritzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100917

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 570902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004408

Country of ref document: DE

Effective date: 20121011

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121215

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009004408

Country of ref document: DE

Effective date: 20130516

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130324

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 570902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090324

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140324

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230317

Year of fee payment: 15

Ref country code: DK

Payment date: 20230323

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230612

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240409

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240517

Year of fee payment: 16

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20240331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL