EP2253044A1 - Radar sensor with patch antenna for motor vehicles - Google Patents
Radar sensor with patch antenna for motor vehiclesInfo
- Publication number
- EP2253044A1 EP2253044A1 EP09716878A EP09716878A EP2253044A1 EP 2253044 A1 EP2253044 A1 EP 2253044A1 EP 09716878 A EP09716878 A EP 09716878A EP 09716878 A EP09716878 A EP 09716878A EP 2253044 A1 EP2253044 A1 EP 2253044A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radar sensor
- patch
- parasitic elements
- patch antenna
- patches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/32—Adaptation for use in or on road or rail vehicles
- H01Q1/3208—Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
- H01Q1/3233—Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/005—Patch antenna using one or more coplanar parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
Definitions
- the invention relates to a radar sensor for motor vehicles, which has at least one patch antenna.
- ACC Adaptive Cruise Control
- PSS predictive safety systems
- radar sensors are required that are capable of controlling the distance and to measure the relative speed of preceding vehicles.
- DE 10 2006 032 539 A1 describes an angle-resolving multi-beam radar sensor in which several antenna patches are arranged side by side on a common horizontal line. The radar radiation emitted by the patches is radiated by a common lens and focused, and the radar echo is focused by the same lens back on the patches and received by them (monostatic antenna concept). Due to the offset of the patches slightly different horizontally Radiation and Hauptbulkeitsraumen, so that can be determined by comparing the phases and amplitudes of the signals obtained in different patches of the azimuth angle of the reflecting object.
- This radar sensor works on the principle of an FMCW (Frequency Modulated Continuous Wave) radar.
- the frequency of the radar radiation is ramped, for example, with a rising and a falling frequency ramp, so that the frequency differences between the transmitted and the received signal obtained on the two ramps not only the calculation of the signal delay time and thus the object distance, but also the Doppler shift and thus allow the relative speed of the object.
- FMCW Frequency Modulated Continuous Wave
- US Pat. No. 6,281,843 B1 discloses a planar broadband dipole antenna for the VHF, FM or UHF band, in which parasitic elements are arranged on both sides of the dipole elements. This is to suppress the dispersion of the waves radiated from the dipole element.
- the object of the invention is to provide a better resolution in the distance and relative speed measurement in a radar sensor of the type mentioned with simple and inexpensive means.
- the patch antennas are associated with parasitic elements to increase the bandwidth. While the lens of the radar sensor generally has a large bandwidth, ie, is transparent to radar radiation in a relatively wide frequency band, in conventional radar sensors the antenna patch has only a small bandwidth. It forms a resonator which has only a relatively sharply defined resonance frequency and can radiate radar radiation only at this frequency or in its immediate vicinity, while at frequencies which deviate more strongly from this frequency, the largest part of the injected signal is reflected.
- the antenna patch parasitic elements ie, surface elements of electrically conductive material, spatially associated in such a way that the system of patch and parasitic elements as a whole has at least two slightly shifted mutually resonant frequencies, resulting in a larger bandwidth of the antenna ,
- the greater bandwidth can be exploited for greater frequency modulation of the transmitted signal, so that at the same temporal resolution, the frequency ramps can be made steeper and, consequently, greater frequency differences between transmitted and received signal for a given distance and given relative speed. In this way, a better resolution of the radar sensor is made possible.
- Another advantage of the invention is that, in a monostatic antenna concept, poorly reflected power returns to the mixer, which serves to mix the transmitted signal with the received signal and generate an intermediate frequency whose frequency indicates the difference in frequency between the transmitted and received signals , In addition, will - A -
- the DC offset of the mixer diode which has a positive effect on the performance of the radar sensor, especially in the vicinity.
- the antenna patches have a rectangular shape, and the - preferably also rectangular - parasitic elements are arranged on both sides of the patch parallel to the edges which extend in the direction parallel to the feed line.
- a multi-beam radar sensor having a plurality of antenna patches arranged on a common baseline
- the patches including the associated parasitic elements are arranged obliquely with respect to the baseline.
- the parasitic elements belonging to different patches can then overlap one another in the direction of the baseline or can be arranged at least very densely, so that a compact arrangement of the patches can be realized despite the larger surface area required by the parasitic elements.
- Fig. 1 is a schematic side view of a radar sensor according to the invention
- FIG. 2 is a front view of antenna patches of the radar sensor of FIG. 1; FIG. and
- Fig. 3 is an adaptation diagram of the radar sensor according to the invention.
- a radar sensor for motor vehicles is schematically shown, which has a lens 10 and an approximately arranged in the focal plane of the line 10 board 12.
- the circuit board 12 is formed by an electrically insulating substrate 14, at the side facing away from the lens 10 back a continuous electrically conductive ground layer 16 is attached.
- a plurality of, for example four, patch antennas 18 (hereinafter referred to as "patches"), including the associated infeeds 20, are arranged on a base line (horizontal in use) perpendicular to the plane of the drawing in FIG.
- each patch 18 two parasitic elements 22, 24 are assigned. The arrangement of the patches 18 and the parasitic elements 22, 24 can be seen more clearly in the front view in FIG.
- the patches 18 have a rectangular shape and are connected to the feeds 20 via a (microstrip) feed line 26, respectively, which runs parallel to two opposite edges of the patch 18.
- the parasitic elements 22 and 24 also have a rectangular shape and are disposed on opposite sides of the patch 18, respectively, in parallel and spaced from the edges of the patch, which are parallel to the feedline 26.
- the length of the parasitic elements 22 in the direction parallel to the feed line corresponds to the length of the patches 18, but their width is slightly smaller.
- the areas and distances of the parasitic elements to the patches 18 are tuned so that the system as a whole has two adjacent resonant frequencies causing an increase in bandwidth.
- FIG. 3 shows an adaptation diagram for a single patch antenna according to FIG. 2.
- S-parameter which is a measure of the proportion of the microwave power reflected in the feed
- the S parameter should be greater than -10 dB.
- This S parameter is indicated in FIG. 3 by a curve 28 which has two distinct, partially fused minima at the frequencies 74 GHz and about 77.5 GHz. The entire range of the curve 28 between 72 GHz and about 78 GHz is below -10 dB. The gives a usable bandwidth W of about 6 GHz.
- the minima of the curve 28 that cause the increase in bandwidth correspond to the resonance frequencies caused by the parasitic elements 22, 24.
- Fig. 2 it can be seen that the M supply lines 26 and consequently also the edges of the patches and the parasitic elements extend at an angle of 45 ° to a baseline A, on which the patches 18 are arranged.
- the location of the patches 18 relative to the optical axis of the lens 10 determines the direction in which the radar radiation is mainly emitted.
- the arrangement according to Fig. 2 makes it possible to choose the distances between the patches 18 so small that the main emission directions of the various antennas are close enough together without the belonging to different patches 18 parasitic elements 22, 24 come so close to each other they cause mutual interference.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008000502A DE102008000502A1 (en) | 2008-03-04 | 2008-03-04 | Radar sensor with patch antenna for motor vehicles |
PCT/EP2009/050818 WO2009109418A1 (en) | 2008-03-04 | 2009-01-26 | Radar sensor with patch antenna for motor vehicles |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2253044A1 true EP2253044A1 (en) | 2010-11-24 |
Family
ID=40791352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09716878A Ceased EP2253044A1 (en) | 2008-03-04 | 2009-01-26 | Radar sensor with patch antenna for motor vehicles |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2253044A1 (en) |
DE (1) | DE102008000502A1 (en) |
WO (1) | WO2009109418A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013135345A (en) * | 2011-12-26 | 2013-07-08 | Fujitsu Ten Ltd | Microstrip antenna, array antenna, and radar device |
DE102015211384A1 (en) | 2015-06-19 | 2016-12-22 | Robert Bosch Gmbh | Antenna arrangement, method for producing an antenna arrangement and method for operating an antenna arrangement |
DE102018219986A1 (en) * | 2018-11-22 | 2020-05-28 | Robert Bosch Gmbh | Printed circuit board for radar sensors with a metallic filling structure and method for producing a printed circuit board for radar sensors with a metallic filling structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4082725B2 (en) | 1995-07-01 | 2008-04-30 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Monostatic FMCW radar sensor |
KR100322119B1 (en) | 1998-07-31 | 2002-05-09 | 윤종용 | Planar broadband dipole antenna for linearly polariged waves |
US6999030B1 (en) | 2004-10-27 | 2006-02-14 | Delphi Technologies, Inc. | Linear polarization planar microstrip antenna array with circular patch elements and co-planar annular sector parasitic strips |
DE102006019054B4 (en) | 2006-04-25 | 2019-03-28 | Robert Bosch Gmbh | High frequency arrangement with a transition between a waveguide and a microstrip line |
DE102006032539A1 (en) | 2006-07-13 | 2008-01-17 | Robert Bosch Gmbh | FMCW radar sensor |
-
2008
- 2008-03-04 DE DE102008000502A patent/DE102008000502A1/en not_active Withdrawn
-
2009
- 2009-01-26 WO PCT/EP2009/050818 patent/WO2009109418A1/en active Application Filing
- 2009-01-26 EP EP09716878A patent/EP2253044A1/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of WO2009109418A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102008000502A1 (en) | 2009-09-10 |
WO2009109418A1 (en) | 2009-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2659285B1 (en) | Radar sensor for motor vehicles | |
EP1792203B1 (en) | Monostatic planar multibeam radar sensor | |
WO2006063915A1 (en) | Radar system with adaptive digital reception beam forming and switchable transmission directional characteristics for coverage of near and far range | |
WO1997002496A1 (en) | Monostatic fmcw radar sensor | |
EP2622366B1 (en) | Antenna system for radar sensors | |
EP2972476A1 (en) | Polarimetric radar for object classification and suitable method and suitable use therefor | |
DE102008054624A1 (en) | FMCW radar sensor for motor vehicles | |
EP1812809A1 (en) | Radar system, especially for measuring distance and/or speed | |
WO2012034736A1 (en) | Radar sensor for motor vehicles, especially lca sensor | |
EP3336575B1 (en) | Radar sensor for a motor vehicle with an antenna element embedded in a radome, driver assistance system and motor vehicle | |
DE102019120460A1 (en) | HIKING WAVE IMAGE DISTRIBUTOR FOR A HIGH-RESOLUTION RADAR SYSTEM | |
DE102017223471A1 (en) | Device for emitting and receiving electromagnetic radiation | |
EP3295517A1 (en) | Radar sensor for motor vehicles | |
EP2215497B1 (en) | Angle resolving radar sensor | |
EP2616839B1 (en) | Radar sensor for motor vehicles, especially rca sensor | |
WO2008028739A1 (en) | Antenna arrangement with parasitically coupled antenna elements | |
EP2253044A1 (en) | Radar sensor with patch antenna for motor vehicles | |
EP1476921B1 (en) | Device for emitting and receiving electromagnetic radiation | |
EP2732307B1 (en) | Angular resolving radar sensor for motor vehicles | |
WO2009077235A1 (en) | Antenna arrangement for a radar transceiver and circuit arrangement for feeding an antenna arrangement of such a radar transceiver | |
WO2009065652A1 (en) | Radar unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101004 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150805 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20161110 |