EP2252628B1 - Bombesin analog peptide antagonist conjugates - Google Patents
Bombesin analog peptide antagonist conjugates Download PDFInfo
- Publication number
- EP2252628B1 EP2252628B1 EP09717301.7A EP09717301A EP2252628B1 EP 2252628 B1 EP2252628 B1 EP 2252628B1 EP 09717301 A EP09717301 A EP 09717301A EP 2252628 B1 EP2252628 B1 EP 2252628B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- xaa
- bombesin
- peptide antagonist
- analog peptide
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical class C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 title claims description 87
- 229940083963 Peptide antagonist Drugs 0.000 title claims description 57
- 206010028980 Neoplasm Diseases 0.000 claims description 126
- 229910052751 metal Inorganic materials 0.000 claims description 101
- 239000002184 metal Substances 0.000 claims description 101
- -1 D-Cpa Chemical compound 0.000 claims description 67
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 59
- 239000002738 chelating agent Substances 0.000 claims description 50
- 150000001413 amino acids Chemical class 0.000 claims description 49
- 150000001875 compounds Chemical class 0.000 claims description 49
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 27
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 26
- 108010073466 Bombesin Receptors Proteins 0.000 claims description 25
- 238000003384 imaging method Methods 0.000 claims description 25
- COLNVLDHVKWLRT-MRVPVSSYSA-N D-phenylalanine Chemical compound OC(=O)[C@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-MRVPVSSYSA-N 0.000 claims description 23
- 230000027455 binding Effects 0.000 claims description 23
- 125000006850 spacer group Chemical group 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 150000002739 metals Chemical class 0.000 claims description 17
- 206010027476 Metastases Diseases 0.000 claims description 16
- 210000004881 tumor cell Anatomy 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 230000001173 tumoral effect Effects 0.000 claims description 12
- 206010060862 Prostate cancer Diseases 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 10
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 claims description 10
- 201000010099 disease Diseases 0.000 claims description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 10
- 239000012217 radiopharmaceutical Substances 0.000 claims description 10
- 229940121896 radiopharmaceutical Drugs 0.000 claims description 10
- 230000002799 radiopharmaceutical effect Effects 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 150000004985 diamines Chemical class 0.000 claims description 9
- 150000007524 organic acids Chemical class 0.000 claims description 9
- 238000001959 radiotherapy Methods 0.000 claims description 9
- DFVFTMTWCUHJBL-BQBZGAKWSA-N statine Chemical compound CC(C)C[C@H](N)[C@@H](O)CC(O)=O DFVFTMTWCUHJBL-BQBZGAKWSA-N 0.000 claims description 9
- 206010006187 Breast cancer Diseases 0.000 claims description 8
- 208000026310 Breast neoplasm Diseases 0.000 claims description 8
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 claims description 8
- 102000047481 Gastrin-releasing peptide receptors Human genes 0.000 claims description 8
- 150000001408 amides Chemical class 0.000 claims description 8
- OHSVLFRHMCKCQY-NJFSPNSNSA-N lutetium-177 Chemical compound [177Lu] OHSVLFRHMCKCQY-NJFSPNSNSA-N 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- OUYCCCASQSFEME-MRVPVSSYSA-N D-tyrosine Chemical compound OC(=O)[C@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-MRVPVSSYSA-N 0.000 claims description 7
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 7
- 229910052801 chlorine Inorganic materials 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 7
- 229910052740 iodine Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- QIVBCDIJIAJPQS-SECBINFHSA-N D-tryptophane Chemical compound C1=CC=C2C(C[C@@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-SECBINFHSA-N 0.000 claims description 6
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 claims description 6
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 6
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 150000007522 mineralic acids Chemical class 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 6
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 5
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 claims description 5
- 206010029260 Neuroblastoma Diseases 0.000 claims description 5
- 206010061534 Oesophageal squamous cell carcinoma Diseases 0.000 claims description 5
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 5
- 208000017055 digestive system neuroendocrine neoplasm Diseases 0.000 claims description 5
- 208000007276 esophageal squamous cell carcinoma Diseases 0.000 claims description 5
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 claims description 5
- 239000012216 imaging agent Substances 0.000 claims description 5
- 208000000587 small cell lung carcinoma Diseases 0.000 claims description 5
- 208000017572 squamous cell neoplasm Diseases 0.000 claims description 5
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000003814 drug Substances 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 4
- KZUNJOHGWZRPMI-AKLPVKDBSA-N samarium-153 Chemical compound [153Sm] KZUNJOHGWZRPMI-AKLPVKDBSA-N 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 150000004677 hydrates Chemical class 0.000 claims description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000000163 radioactive labelling Methods 0.000 claims description 3
- 239000012453 solvate Substances 0.000 claims description 3
- 239000002671 adjuvant Substances 0.000 claims description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 2
- 150000001721 carbon Chemical group 0.000 claims description 2
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims description 2
- 239000008194 pharmaceutical composition Substances 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 201000004228 ovarian endometrial cancer Diseases 0.000 claims 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 56
- 229940024606 amino acid Drugs 0.000 description 46
- 235000001014 amino acid Nutrition 0.000 description 43
- 239000000243 solution Substances 0.000 description 40
- 239000000556 agonist Substances 0.000 description 38
- 210000004027 cell Anatomy 0.000 description 37
- 230000000694 effects Effects 0.000 description 37
- 102000005962 receptors Human genes 0.000 description 35
- 108020003175 receptors Proteins 0.000 description 35
- 239000000562 conjugate Substances 0.000 description 34
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 33
- 241000699670 Mus sp. Species 0.000 description 31
- 102000004862 Gastrin releasing peptide Human genes 0.000 description 29
- 108090001053 Gastrin releasing peptide Proteins 0.000 description 29
- 239000011347 resin Substances 0.000 description 29
- 229920005989 resin Polymers 0.000 description 29
- 108010051479 Bombesin Proteins 0.000 description 28
- 229940125904 compound 1 Drugs 0.000 description 28
- 229940125782 compound 2 Drugs 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- 102000013585 Bombesin Human genes 0.000 description 27
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 27
- 238000005859 coupling reaction Methods 0.000 description 27
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 25
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 25
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 24
- 230000008878 coupling Effects 0.000 description 24
- 238000010168 coupling process Methods 0.000 description 24
- 102000004196 processed proteins & peptides Human genes 0.000 description 23
- 210000003734 kidney Anatomy 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 19
- 230000000903 blocking effect Effects 0.000 description 19
- 210000004369 blood Anatomy 0.000 description 19
- 239000008280 blood Substances 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 210000003205 muscle Anatomy 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- PUBCCFNQJQKCNC-XKNFJVFFSA-N gastrin-releasingpeptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)CNC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)C(C)C)[C@@H](C)O)C(C)C)[C@@H](C)O)C(C)C)C1=CNC=N1 PUBCCFNQJQKCNC-XKNFJVFFSA-N 0.000 description 17
- 210000000496 pancreas Anatomy 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- 125000000539 amino acid group Chemical group 0.000 description 16
- 210000004185 liver Anatomy 0.000 description 16
- NQRYJNQNLNOLGT-UHFFFAOYSA-N tetrahydropyridine hydrochloride Natural products C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 210000000056 organ Anatomy 0.000 description 14
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 13
- 210000000988 bone and bone Anatomy 0.000 description 13
- 239000011541 reaction mixture Substances 0.000 description 13
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 241001465754 Metazoa Species 0.000 description 11
- 230000001919 adrenal effect Effects 0.000 description 11
- 229960004132 diethyl ether Drugs 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 11
- 210000000936 intestine Anatomy 0.000 description 11
- 239000003446 ligand Substances 0.000 description 11
- 210000004072 lung Anatomy 0.000 description 11
- 230000001817 pituitary effect Effects 0.000 description 11
- 229930182852 proteinogenic amino acid Natural products 0.000 description 11
- 210000000952 spleen Anatomy 0.000 description 11
- 210000002784 stomach Anatomy 0.000 description 11
- HBENZIXOGRCSQN-VQWWACLZSA-N (1S,2S,6R,14R,15R,16R)-5-(cyclopropylmethyl)-16-[(2S)-2-hydroxy-3,3-dimethylpentan-2-yl]-15-methoxy-13-oxa-5-azahexacyclo[13.2.2.12,8.01,6.02,14.012,20]icosa-8(20),9,11-trien-11-ol Chemical compound N1([C@@H]2CC=3C4=C(C(=CC=3)O)O[C@H]3[C@@]5(OC)CC[C@@]2([C@@]43CC1)C[C@@H]5[C@](C)(O)C(C)(C)CC)CC1CC1 HBENZIXOGRCSQN-VQWWACLZSA-N 0.000 description 10
- 239000005557 antagonist Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 238000004007 reversed phase HPLC Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 241000699660 Mus musculus Species 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 9
- 239000012043 crude product Substances 0.000 description 9
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 238000011580 nude mouse model Methods 0.000 description 9
- 210000002966 serum Anatomy 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 229940093499 ethyl acetate Drugs 0.000 description 8
- 235000019439 ethyl acetate Nutrition 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 239000000700 radioactive tracer Substances 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 7
- 0 C*C1CNCC*CCNC1 Chemical compound C*C1CNCC*CCNC1 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 7
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 230000002285 radioactive effect Effects 0.000 description 7
- 239000002287 radioligand Substances 0.000 description 7
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical compound CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 description 7
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 6
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 241001070875 Prochelator Species 0.000 description 6
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 6
- 238000004949 mass spectrometry Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 238000002603 single-photon emission computed tomography Methods 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 5
- FCQHYITXTSIWDB-UHFFFAOYSA-N 2-(4-azaniumylpiperidin-1-yl)acetate Chemical compound NC1CCN(CC(O)=O)CC1 FCQHYITXTSIWDB-UHFFFAOYSA-N 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 238000010511 deprotection reaction Methods 0.000 description 5
- 239000003480 eluent Substances 0.000 description 5
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000010820 immunofluorescence microscopy Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 5
- 235000005985 organic acids Nutrition 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 229910052713 technetium Inorganic materials 0.000 description 5
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 4
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 4
- HVBSAKJJOYLTQU-UHFFFAOYSA-N 4-aminobenzenesulfonic acid Chemical compound NC1=CC=C(S(O)(=O)=O)C=C1 HVBSAKJJOYLTQU-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- KOHYJMBRYCXNMR-ICRHTFBISA-N C([C@@H](C(=O)N[C@@H](CC(C)C)[C@@H](O)CC(=O)N[C@@H](CC(C)C)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)[C@@H](O)CC(=O)N[C@@H](CC(C)C)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 KOHYJMBRYCXNMR-ICRHTFBISA-N 0.000 description 4
- RRSNDVCODIMOFX-MPKOGUQCSA-N Fc1c(Cl)cccc1[C@H]1[C@@H](NC2(CCCCC2)[C@@]11C(=O)Nc2cc(Cl)ccc12)C(=O)Nc1ccc(cc1)C(=O)NCCCCCc1cccc2C(=O)N(Cc12)C1CCC(=O)NC1=O Chemical compound Fc1c(Cl)cccc1[C@H]1[C@@H](NC2(CCCCC2)[C@@]11C(=O)Nc2cc(Cl)ccc12)C(=O)Nc1ccc(cc1)C(=O)NCCCCCc1cccc2C(=O)N(Cc12)C1CCC(=O)NC1=O RRSNDVCODIMOFX-MPKOGUQCSA-N 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 230000003042 antagnostic effect Effects 0.000 description 4
- IADUEWIQBXOCDZ-UHFFFAOYSA-N azetidine-2-carboxylic acid Chemical compound OC(=O)C1CCN1 IADUEWIQBXOCDZ-UHFFFAOYSA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 229940125797 compound 12 Drugs 0.000 description 4
- 229940125898 compound 5 Drugs 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- GVOISEJVFFIGQE-YCZSINBZSA-N n-[(1r,2s,5r)-5-[methyl(propan-2-yl)amino]-2-[(3s)-2-oxo-3-[[6-(trifluoromethyl)quinazolin-4-yl]amino]pyrrolidin-1-yl]cyclohexyl]acetamide Chemical compound CC(=O)N[C@@H]1C[C@H](N(C)C(C)C)CC[C@@H]1N1C(=O)[C@@H](NC=2C3=CC(=CC=C3N=CN=2)C(F)(F)F)CC1 GVOISEJVFFIGQE-YCZSINBZSA-N 0.000 description 4
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000027425 release of sequestered calcium ion into cytosol Effects 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 3
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 3
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 3
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 3
- JDDWRLPTKIOUOF-UHFFFAOYSA-N 9h-fluoren-9-ylmethyl n-[[4-[2-[bis(4-methylphenyl)methylamino]-2-oxoethoxy]phenyl]-(2,4-dimethoxyphenyl)methyl]carbamate Chemical group COC1=CC(OC)=CC=C1C(C=1C=CC(OCC(=O)NC(C=2C=CC(C)=CC=2)C=2C=CC(C)=CC=2)=CC=1)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 JDDWRLPTKIOUOF-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 3
- 206010014759 Endometrial neoplasm Diseases 0.000 description 3
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 3
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000012879 PET imaging Methods 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000013522 chelant Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000536 complexating effect Effects 0.000 description 3
- 238000010668 complexation reaction Methods 0.000 description 3
- 229940125773 compound 10 Drugs 0.000 description 3
- 229940126543 compound 14 Drugs 0.000 description 3
- 229940126214 compound 3 Drugs 0.000 description 3
- 238000013170 computed tomography imaging Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 3
- 125000005647 linker group Chemical group 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 210000001589 microsome Anatomy 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000033300 receptor internalization Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000010898 silica gel chromatography Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 2
- NKIJBSVPDYIEAT-UHFFFAOYSA-N 1,4,7,10-tetrazacyclododec-10-ene Chemical compound C1CNCCN=CCNCCN1 NKIJBSVPDYIEAT-UHFFFAOYSA-N 0.000 description 2
- JFLSOKIMYBSASW-UHFFFAOYSA-N 1-chloro-2-[chloro(diphenyl)methyl]benzene Chemical compound ClC1=CC=CC=C1C(Cl)(C=1C=CC=CC=1)C1=CC=CC=C1 JFLSOKIMYBSASW-UHFFFAOYSA-N 0.000 description 2
- PBLZLIFKVPJDCO-UHFFFAOYSA-N 12-aminododecanoic acid Chemical compound NCCCCCCCCCCCC(O)=O PBLZLIFKVPJDCO-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- BLCJBICVQSYOIF-UHFFFAOYSA-N 2,2-diaminobutanoic acid Chemical compound CCC(N)(N)C(O)=O BLCJBICVQSYOIF-UHFFFAOYSA-N 0.000 description 2
- QWCKQJZIFLGMSD-UHFFFAOYSA-N 2-Aminobutanoic acid Natural products CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- RXACEEPNTRHYBQ-UHFFFAOYSA-N 2-[[2-[[2-[(2-sulfanylacetyl)amino]acetyl]amino]acetyl]amino]acetic acid Chemical compound OC(=O)CNC(=O)CNC(=O)CNC(=O)CS RXACEEPNTRHYBQ-UHFFFAOYSA-N 0.000 description 2
- OYIFNHCXNCRBQI-UHFFFAOYSA-N 2-aminoadipic acid Chemical compound OC(=O)C(N)CCCC(O)=O OYIFNHCXNCRBQI-UHFFFAOYSA-N 0.000 description 2
- PRVQUJDSHYXMCI-UHFFFAOYSA-N 4-amino-2-[2-(2-aminoethoxy)ethyl]-4-oxobutanoic acid Chemical compound NCCOCCC(C(O)=O)CC(N)=O PRVQUJDSHYXMCI-UHFFFAOYSA-N 0.000 description 2
- JJMDCOVWQOJGCB-UHFFFAOYSA-N 5-aminopentanoic acid Chemical compound [NH3+]CCCCC([O-])=O JJMDCOVWQOJGCB-UHFFFAOYSA-N 0.000 description 2
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 2
- BDDLHHRCDSJVKV-UHFFFAOYSA-N 7028-40-2 Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O BDDLHHRCDSJVKV-UHFFFAOYSA-N 0.000 description 2
- UQXNEWQGGVUVQA-UHFFFAOYSA-N 8-aminooctanoic acid Chemical compound NCCCCCCCC(O)=O UQXNEWQGGVUVQA-UHFFFAOYSA-N 0.000 description 2
- 239000012103 Alexa Fluor 488 Substances 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 229940123804 Bombesin antagonist Drugs 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 238000003650 Calcium Assay Kit Methods 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 102100025841 Cholecystokinin Human genes 0.000 description 2
- 101800001982 Cholecystokinin Proteins 0.000 description 2
- 108010089448 Cholecystokinin B Receptor Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229910005267 GaCl3 Inorganic materials 0.000 description 2
- 239000007821 HATU Substances 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- MBZXSJWDBIIBLL-GDVGLLTNSA-N Homoisoleucine Chemical compound CCC(C)C[C@H](N)C(O)=O MBZXSJWDBIIBLL-GDVGLLTNSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- PSCMQHVBLHHWTO-UHFFFAOYSA-K Indium trichloride Inorganic materials Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 2
- QWCKQJZIFLGMSD-VKHMYHEASA-N L-alpha-aminobutyric acid Chemical compound CC[C@H](N)C(O)=O QWCKQJZIFLGMSD-VKHMYHEASA-N 0.000 description 2
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 2
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- QIAFMBKCNZACKA-UHFFFAOYSA-N N-benzoylglycine Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1 QIAFMBKCNZACKA-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 108010016076 Octreotide Proteins 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N THREONINE Chemical compound CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 102000055135 Vasoactive Intestinal Peptide Human genes 0.000 description 2
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 229960002684 aminocaproic acid Drugs 0.000 description 2
- 239000012131 assay buffer Substances 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 150000001576 beta-amino acids Chemical class 0.000 description 2
- 239000002790 bombesin antagonist Substances 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229940107137 cholecystokinin Drugs 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- UHBYWPGGCSDKFX-VKHMYHEASA-N gamma-carboxy-L-glutamic acid Chemical compound OC(=O)[C@@H](N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-VKHMYHEASA-N 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 150000002678 macrocyclic compounds Chemical class 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- DWPCPZJAHOETAG-UHFFFAOYSA-N meso-lanthionine Natural products OC(=O)C(N)CSCC(N)C(O)=O DWPCPZJAHOETAG-UHFFFAOYSA-N 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000003228 microsomal effect Effects 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 230000001613 neoplastic effect Effects 0.000 description 2
- 238000009206 nuclear medicine Methods 0.000 description 2
- 229940127059 octreoscan Drugs 0.000 description 2
- 229960002700 octreotide Drugs 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 2
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- DBABZHXKTCFAPX-UHFFFAOYSA-N probenecid Chemical compound CCCN(CCC)S(=O)(=O)C1=CC=C(C(O)=O)C=C1 DBABZHXKTCFAPX-UHFFFAOYSA-N 0.000 description 2
- 229960003081 probenecid Drugs 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000003439 radiotherapeutic effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 229950000244 sulfanilic acid Drugs 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 2
- IKRXSZUARJIXLZ-JTQLQIEISA-N tert-butyl n-[(2s)-1-[methoxy(methyl)amino]-4-methyl-1-oxopentan-2-yl]carbamate Chemical compound CON(C)C(=O)[C@H](CC(C)C)NC(=O)OC(C)(C)C IKRXSZUARJIXLZ-JTQLQIEISA-N 0.000 description 2
- 229940127044 therapeutic radiopharmaceutical Drugs 0.000 description 2
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 2
- FDKWRPBBCBCIGA-REOHCLBHSA-N (2r)-2-azaniumyl-3-$l^{1}-selanylpropanoate Chemical compound [Se]C[C@H](N)C(O)=O FDKWRPBBCBCIGA-REOHCLBHSA-N 0.000 description 1
- VRTXRNJMNFVTOM-ZDUSSCGKSA-N (2r)-3-[(4-methoxyphenyl)methylsulfanyl]-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound COC1=CC=C(CSC[C@H](NC(=O)OC(C)(C)C)C(O)=O)C=C1 VRTXRNJMNFVTOM-ZDUSSCGKSA-N 0.000 description 1
- NMDDZEVVQDPECF-LURJTMIESA-N (2s)-2,7-diaminoheptanoic acid Chemical compound NCCCCC[C@H](N)C(O)=O NMDDZEVVQDPECF-LURJTMIESA-N 0.000 description 1
- IYKLZBIWFXPUCS-VIFPVBQESA-N (2s)-2-(naphthalen-1-ylamino)propanoic acid Chemical compound C1=CC=C2C(N[C@@H](C)C(O)=O)=CC=CC2=C1 IYKLZBIWFXPUCS-VIFPVBQESA-N 0.000 description 1
- RWLSBXBFZHDHHX-VIFPVBQESA-N (2s)-2-(naphthalen-2-ylamino)propanoic acid Chemical compound C1=CC=CC2=CC(N[C@@H](C)C(O)=O)=CC=C21 RWLSBXBFZHDHHX-VIFPVBQESA-N 0.000 description 1
- MSECZMWQBBVGEN-LURJTMIESA-N (2s)-2-azaniumyl-4-(1h-imidazol-5-yl)butanoate Chemical compound OC(=O)[C@@H](N)CCC1=CN=CN1 MSECZMWQBBVGEN-LURJTMIESA-N 0.000 description 1
- ADJZXDVMJPTFKT-JTQLQIEISA-N (2s)-2-azaniumyl-4-(1h-indol-3-yl)butanoate Chemical compound C1=CC=C2C(CC[C@H](N)C(O)=O)=CNC2=C1 ADJZXDVMJPTFKT-JTQLQIEISA-N 0.000 description 1
- FMUMEWVNYMUECA-LURJTMIESA-N (2s)-2-azaniumyl-5-methylhexanoate Chemical compound CC(C)CC[C@H](N)C(O)=O FMUMEWVNYMUECA-LURJTMIESA-N 0.000 description 1
- BUZICZZQJDLXJN-GSVOUGTGSA-N (3R)-3-amino-4-hydroxybutanoic acid Chemical compound OC[C@H](N)CC(O)=O BUZICZZQJDLXJN-GSVOUGTGSA-N 0.000 description 1
- GLUJNGJDHCTUJY-RXMQYKEDSA-N (3R)-beta-leucine Chemical compound CC(C)[C@H]([NH3+])CC([O-])=O GLUJNGJDHCTUJY-RXMQYKEDSA-N 0.000 description 1
- PJDINCOFOROBQW-LURJTMIESA-N (3S)-3,7-diaminoheptanoic acid Chemical compound NCCCC[C@H](N)CC(O)=O PJDINCOFOROBQW-LURJTMIESA-N 0.000 description 1
- DUVVFMLAHWNDJD-VIFPVBQESA-N (3S)-3-Amino-4-(1H-indol-3-yl)butanoic acid Chemical compound C1=CC=C2C(C[C@@H](CC(O)=O)N)=CNC2=C1 DUVVFMLAHWNDJD-VIFPVBQESA-N 0.000 description 1
- OFVBLKINTLPEGH-VIFPVBQESA-N (3S)-3-Amino-4-phenylbutanoic acid Chemical compound OC(=O)C[C@@H](N)CC1=CC=CC=C1 OFVBLKINTLPEGH-VIFPVBQESA-N 0.000 description 1
- NIVRJEWVLMOZNV-QWWZWVQMSA-N (3r,4r)-3-amino-4-hydroxypentanoic acid Chemical compound C[C@@H](O)[C@H](N)CC(O)=O NIVRJEWVLMOZNV-QWWZWVQMSA-N 0.000 description 1
- JHEDYGILOIBOTL-NTSWFWBYSA-N (3r,4s)-3-azaniumyl-4-methylhexanoate Chemical compound CC[C@H](C)[C@H]([NH3+])CC([O-])=O JHEDYGILOIBOTL-NTSWFWBYSA-N 0.000 description 1
- XOYSDPUJMJWCBH-VKHMYHEASA-N (3s)-3,5-diamino-5-oxopentanoic acid Chemical compound NC(=O)C[C@H](N)CC(O)=O XOYSDPUJMJWCBH-VKHMYHEASA-N 0.000 description 1
- IDNSGZOFDGAHTI-BYPYZUCNSA-N (3s)-3,6-diamino-6-oxohexanoic acid Chemical compound OC(=O)C[C@@H](N)CCC(N)=O IDNSGZOFDGAHTI-BYPYZUCNSA-N 0.000 description 1
- VNWXCGKMEWXYBP-YFKPBYRVSA-N (3s)-3-amino-6-(diaminomethylideneamino)hexanoic acid Chemical compound OC(=O)C[C@@H](N)CCCNC(N)=N VNWXCGKMEWXYBP-YFKPBYRVSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- MLYMSIKVLAPCAK-LURJTMIESA-N (S)-3-Amino-5-methylhexanoic acid Chemical compound CC(C)C[C@H](N)CC(O)=O MLYMSIKVLAPCAK-LURJTMIESA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- BWKMGYQJPOAASG-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid Chemical compound C1=CC=C2CNC(C(=O)O)CC2=C1 BWKMGYQJPOAASG-UHFFFAOYSA-N 0.000 description 1
- DTTYDTDZOPLNBW-UHFFFAOYSA-N 1,3-bis(2-aminoethylamino)propan-2-ol Chemical compound NCCNCC(O)CNCCN DTTYDTDZOPLNBW-UHFFFAOYSA-N 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- KIUIVKNVSSLOAG-UHFFFAOYSA-N 1,4,7,10-tetrazacyclotridecan-11-one Chemical compound O=C1CCNCCNCCNCCN1 KIUIVKNVSSLOAG-UHFFFAOYSA-N 0.000 description 1
- MPPPKRYCTPRNTB-UHFFFAOYSA-N 1-bromobutane Chemical compound CCCCBr MPPPKRYCTPRNTB-UHFFFAOYSA-N 0.000 description 1
- XAUQWYHSQICPAZ-UHFFFAOYSA-N 10-amino-decanoic acid Chemical compound NCCCCCCCCCC(O)=O XAUQWYHSQICPAZ-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- XUUGOSKUEDWDAS-COJKEBBMSA-N 2-(2-fluoranylethoxy)ethyl-trimethylazanium Chemical compound C[N+](C)(C)CCOCC[18F] XUUGOSKUEDWDAS-COJKEBBMSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- FHQWIXXRHHMBQL-UHFFFAOYSA-N 2-[1,3,10-tris(carboxymethyl)-1,3,6,10-tetrazacyclododec-6-yl]acetic acid Chemical compound OC(=O)CN1CCCN(CC(O)=O)CCN(CC(O)=O)CN(CC(O)=O)CC1 FHQWIXXRHHMBQL-UHFFFAOYSA-N 0.000 description 1
- JHALWMSZGCVVEM-UHFFFAOYSA-N 2-[4,7-bis(carboxymethyl)-1,4,7-triazonan-1-yl]acetic acid Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CC1 JHALWMSZGCVVEM-UHFFFAOYSA-N 0.000 description 1
- PHXRLXSFXHFCPA-UHFFFAOYSA-N 2-[4-(2-aminoethyl)piperazin-1-yl]acetic acid Chemical compound NCCN1CCN(CC(O)=O)CC1 PHXRLXSFXHFCPA-UHFFFAOYSA-N 0.000 description 1
- WAMWSIDTKSNDCU-UHFFFAOYSA-N 2-azaniumyl-2-cyclohexylacetate Chemical compound OC(=O)C(N)C1CCCCC1 WAMWSIDTKSNDCU-UHFFFAOYSA-N 0.000 description 1
- FHNLXNKFRGMOPW-UHFFFAOYSA-N 3-amino-2-sulfanylpropanoic acid Chemical compound NCC(S)C(O)=O FHNLXNKFRGMOPW-UHFFFAOYSA-N 0.000 description 1
- XABCFXXGZPWJQP-UHFFFAOYSA-N 3-aminoadipic acid Chemical compound OC(=O)CC(N)CCC(O)=O XABCFXXGZPWJQP-UHFFFAOYSA-N 0.000 description 1
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 1
- OQEBBZSWEGYTPG-UHFFFAOYSA-N 3-aminobutanoic acid Chemical compound CC(N)CC(O)=O OQEBBZSWEGYTPG-UHFFFAOYSA-N 0.000 description 1
- BXRLWGXPSRYJDZ-UHFFFAOYSA-N 3-cyanoalanine Chemical compound OC(=O)C(N)CC#N BXRLWGXPSRYJDZ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FZTIWOBQQYPTCJ-UHFFFAOYSA-N 4-[4-(4-carboxyphenyl)phenyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(O)=O)C=C1 FZTIWOBQQYPTCJ-UHFFFAOYSA-N 0.000 description 1
- YNHLVALLAURVJF-UHFFFAOYSA-N 4-amino-1-[(2-methylpropan-2-yl)oxycarbonyl]piperidine-4-carboxylic acid Chemical compound CC(C)(C)OC(=O)N1CCC(N)(C(O)=O)CC1 YNHLVALLAURVJF-UHFFFAOYSA-N 0.000 description 1
- DVEQYBXCFNPUGR-UHFFFAOYSA-N 4-amino-5-methylheptanoic acid Chemical compound CCC(C)C(N)CCC(O)=O DVEQYBXCFNPUGR-UHFFFAOYSA-N 0.000 description 1
- HYYFSIISRIDZPM-UHFFFAOYSA-N 4-azaniumyl-5-methylhexanoate Chemical compound CC(C)C(N)CCC(O)=O HYYFSIISRIDZPM-UHFFFAOYSA-N 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N 5-hydroxylysine Chemical group NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- VWPQCOZMXULHDM-UHFFFAOYSA-N 9-aminononanoic acid Chemical compound NCCCCCCCCC(O)=O VWPQCOZMXULHDM-UHFFFAOYSA-N 0.000 description 1
- IQKNYBIRCFFRJR-QHDGRIBOSA-N 9h-fluoren-9-ylmethyl 2-amino-2-(2,4-dimethoxyphenyl)-2-[4-[2-[2-[(2s)-1-[[(4-methylphenyl)-phenylmethyl]amino]-1-oxohexan-2-yl]hydrazinyl]-2-oxoethoxy]phenyl]acetate Chemical compound N([C@@H](CCCC)C(=O)NC(C=1C=CC=CC=1)C=1C=CC(C)=CC=1)NC(=O)COC(C=C1)=CC=C1C(N)(C(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)C1=CC=C(OC)C=C1OC IQKNYBIRCFFRJR-QHDGRIBOSA-N 0.000 description 1
- IADUEWIQBXOCDZ-VKHMYHEASA-N Azetidine-2-carboxylic acid Natural products OC(=O)[C@@H]1CCN1 IADUEWIQBXOCDZ-VKHMYHEASA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- JVMRDYNGJCBNPA-BZFHMXIJSA-N C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 JVMRDYNGJCBNPA-BZFHMXIJSA-N 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 1
- HPHUWHKFQXTZPS-SSDOTTSWSA-N C[C@H](Cc1ccc[s]1)NC Chemical compound C[C@H](Cc1ccc[s]1)NC HPHUWHKFQXTZPS-SSDOTTSWSA-N 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UWTATZPHSA-N D-Asparagine Chemical compound OC(=O)[C@H](N)CC(N)=O DCXYFEDJOCDNAF-UWTATZPHSA-N 0.000 description 1
- FDKWRPBBCBCIGA-UWTATZPHSA-N D-Selenocysteine Natural products [Se]C[C@@H](N)C(O)=O FDKWRPBBCBCIGA-UWTATZPHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-GSVOUGTGSA-N D-glutamine Chemical compound OC(=O)[C@H](N)CCC(N)=O ZDXPYRJPNDTMRX-GSVOUGTGSA-N 0.000 description 1
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- UQBOJOOOTLPNST-UHFFFAOYSA-N Dehydroalanine Chemical compound NC(=C)C(O)=O UQBOJOOOTLPNST-UHFFFAOYSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 101150032569 Grpr gene Proteins 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 101001071515 Homo sapiens Gastrin-releasing peptide Proteins 0.000 description 1
- 101000841490 Homo sapiens Unique cartilage matrix-associated protein Proteins 0.000 description 1
- YZJSUQQZGCHHNQ-UHFFFAOYSA-N Homoglutamine Chemical compound OC(=O)C(N)CCCC(N)=O YZJSUQQZGCHHNQ-UHFFFAOYSA-N 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- QUOGESRFPZDMMT-UHFFFAOYSA-N L-Homoarginine Natural products OC(=O)C(N)CCCCNC(N)=N QUOGESRFPZDMMT-UHFFFAOYSA-N 0.000 description 1
- LOOZZTFGSTZNRX-VIFPVBQESA-N L-Homotyrosine Chemical compound OC(=O)[C@@H](N)CCC1=CC=C(O)C=C1 LOOZZTFGSTZNRX-VIFPVBQESA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- AGPKZVBTJJNPAG-UHNVWZDZSA-N L-allo-Isoleucine Chemical compound CC[C@@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-UHNVWZDZSA-N 0.000 description 1
- VUNPIAMEJXBAFP-QMMMGPOBSA-N L-beta-Homotyrosine Chemical compound OC(=O)C[C@@H](N)CC1=CC=C(O)C=C1 VUNPIAMEJXBAFP-QMMMGPOBSA-N 0.000 description 1
- QWVNCDVONVDGDV-YFKPBYRVSA-N L-beta-homomethionine Chemical compound CSCC[C@H](N)CC(O)=O QWVNCDVONVDGDV-YFKPBYRVSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- QUOGESRFPZDMMT-YFKPBYRVSA-N L-homoarginine Chemical compound OC(=O)[C@@H](N)CCCCNC(N)=N QUOGESRFPZDMMT-YFKPBYRVSA-N 0.000 description 1
- SFSJZXMDTNDWIX-YFKPBYRVSA-N L-homomethionine Chemical compound CSCCC[C@H](N)C(O)=O SFSJZXMDTNDWIX-YFKPBYRVSA-N 0.000 description 1
- JTTHKOPSMAVJFE-VIFPVBQESA-N L-homophenylalanine Chemical compound OC(=O)[C@@H](N)CCC1=CC=CC=C1 JTTHKOPSMAVJFE-VIFPVBQESA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- DWPCPZJAHOETAG-IMJSIDKUSA-N L-lanthionine Chemical compound OC(=O)[C@@H](N)CSC[C@H](N)C(O)=O DWPCPZJAHOETAG-IMJSIDKUSA-N 0.000 description 1
- HXEACLLIILLPRG-YFKPBYRVSA-N L-pipecolic acid Chemical compound [O-]C(=O)[C@@H]1CCCC[NH2+]1 HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 1
- DGYHPLMPMRKMPD-UHFFFAOYSA-N L-propargyl glycine Natural products OC(=O)C(N)CC#C DGYHPLMPMRKMPD-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 101100208721 Mus musculus Usp5 gene Proteins 0.000 description 1
- MDXGYYOJGPFFJL-QMMMGPOBSA-N N(alpha)-t-butoxycarbonyl-L-leucine Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)OC(C)(C)C MDXGYYOJGPFFJL-QMMMGPOBSA-N 0.000 description 1
- 238000007126 N-alkylation reaction Methods 0.000 description 1
- NPKSPKHJBVJUKB-UHFFFAOYSA-N N-phenylglycine Chemical compound OC(=O)CNC1=CC=CC=C1 NPKSPKHJBVJUKB-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 229910020889 NaBH3 Inorganic materials 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- ODHCTXKNWHHXJC-GSVOUGTGSA-N Pyroglutamic acid Natural products OC(=O)[C@H]1CCC(=O)N1 ODHCTXKNWHHXJC-GSVOUGTGSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 108050001286 Somatostatin Receptor Proteins 0.000 description 1
- 102000011096 Somatostatin receptor Human genes 0.000 description 1
- 229940121856 Somatostatin receptor antagonist Drugs 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000012317 TBTU Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- CYJYKTMBMMYRHR-UHFFFAOYSA-N acetic acid;1,4,7-triazonane Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.C1CNCCNCCN1 CYJYKTMBMMYRHR-UHFFFAOYSA-N 0.000 description 1
- 150000008043 acidic salts Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- YOFPFYYTUIARDI-UHFFFAOYSA-N alpha-aminosuberic acid Chemical compound OC(=O)C(N)CCCCCC(O)=O YOFPFYYTUIARDI-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000006295 amino methylene group Chemical group [H]N(*)C([H])([H])* 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- WTOFYLAWDLQMBZ-LURJTMIESA-N beta(2-thienyl)alanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CS1 WTOFYLAWDLQMBZ-LURJTMIESA-N 0.000 description 1
- ADSALMJPJUKESW-UHFFFAOYSA-N beta-Homoproline Chemical compound OC(=O)CC1CCCN1 ADSALMJPJUKESW-UHFFFAOYSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- JCZLABDVDPYLRZ-AWEZNQCLSA-N biphenylalanine Chemical compound C1=CC(C[C@H](N)C(O)=O)=CC=C1C1=CC=CC=C1 JCZLABDVDPYLRZ-AWEZNQCLSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229960000958 deferoxamine Drugs 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 229940127043 diagnostic radiopharmaceutical Drugs 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000000668 effect on calcium Effects 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- FPIQZBQZKBKLEI-UHFFFAOYSA-N ethyl 1-[[2-chloroethyl(nitroso)carbamoyl]amino]cyclohexane-1-carboxylate Chemical compound ClCCN(N=O)C(=O)NC1(C(=O)OCC)CCCCC1 FPIQZBQZKBKLEI-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- SSBRJDBGIVUNDK-QOGDCIHTSA-N gastrin-14 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CC=C(O)C=C1 SSBRJDBGIVUNDK-QOGDCIHTSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N guanidine group Chemical group NC(=N)N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- SFSJZXMDTNDWIX-UHFFFAOYSA-N homomethionine Natural products CSCCCC(N)C(O)=O SFSJZXMDTNDWIX-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000056782 human Ucma Human genes 0.000 description 1
- USZLCYNVCCDPLQ-UHFFFAOYSA-N hydron;n-methoxymethanamine;chloride Chemical compound Cl.CNOC USZLCYNVCCDPLQ-UHFFFAOYSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- XGCKLPDYTQRDTR-UHFFFAOYSA-H indium(iii) sulfate Chemical compound [In+3].[In+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O XGCKLPDYTQRDTR-UHFFFAOYSA-H 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 1
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 108010076432 minigastrin Proteins 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- TVIDEEHSOPHZBR-AWEZNQCLSA-N para-(benzoyl)-phenylalanine Chemical compound C1=CC(C[C@H](N)C(O)=O)=CC=C1C(=O)C1=CC=CC=C1 TVIDEEHSOPHZBR-AWEZNQCLSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000000863 peptide conjugate Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 238000012302 perinuclear staining Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- HXEACLLIILLPRG-UHFFFAOYSA-N pipecolic acid Chemical compound OC(=O)C1CCCCN1 HXEACLLIILLPRG-UHFFFAOYSA-N 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005258 radioactive decay Effects 0.000 description 1
- 238000011362 radionuclide therapy Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 210000003370 receptor cell Anatomy 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- JZWFDVDETGFGFC-UHFFFAOYSA-N salacetamide Chemical group CC(=O)NC(=O)C1=CC=CC=C1O JZWFDVDETGFGFC-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229940055619 selenocysteine Drugs 0.000 description 1
- ZKZBPNGNEQAJSX-UHFFFAOYSA-N selenocysteine Natural products [SeH]CC(N)C(O)=O ZKZBPNGNEQAJSX-UHFFFAOYSA-N 0.000 description 1
- 235000016491 selenocysteine Nutrition 0.000 description 1
- JXOHGGNKMLTUBP-HSUXUTPPSA-N shikimic acid Chemical compound O[C@@H]1CC(C(O)=O)=C[C@@H](O)[C@H]1O JXOHGGNKMLTUBP-HSUXUTPPSA-N 0.000 description 1
- JXOHGGNKMLTUBP-JKUQZMGJSA-N shikimic acid Natural products O[C@@H]1CC(C(O)=O)=C[C@H](O)[C@@H]1O JXOHGGNKMLTUBP-JKUQZMGJSA-N 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- NPDBDJFLKKQMCM-UHFFFAOYSA-N tert-butylglycine Chemical compound CC(C)(C)C(N)C(O)=O NPDBDJFLKKQMCM-UHFFFAOYSA-N 0.000 description 1
- DZLNHFMRPBPULJ-UHFFFAOYSA-N thioproline Chemical compound OC(=O)C1CSCN1 DZLNHFMRPBPULJ-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- ORQXBVXKBGUSBA-QMMMGPOBSA-N β-cyclohexyl-alanine Chemical compound OC(=O)[C@@H](N)CC1CCCCC1 ORQXBVXKBGUSBA-QMMMGPOBSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/088—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
- A61K47/183—Amino acids, e.g. glycine, EDTA or aspartame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K17/00—Carrier-bound or immobilised peptides; Preparation thereof
- C07K17/14—Peptides being immobilised on, or in, an inorganic carrier
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
- C07K7/086—Bombesin; Related peptides
Definitions
- the invention relates to therapeutic or diagnostic/imaging radiopharmaceuticals, the preparation and use thereof wherein the therapeutic or diagnostic radiopharmaceuticals are defined as binding moieties having an affinity for and are capable of binding to bombesin receptors and more particularly to gastrin releasing peptide (GRP) receptor.
- the binding moieties are labeled to metal complexing group for alpha-, beta-, gamma- and positron emitting isotopes.
- the use includes treating a subject having a neoplastic disease comprising the step of administering to the subject an effective amount of a therapeutic radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to bombesin receptors and more particularly to gastrin releasing peptide (GRP) receptor over-expressed on tumor cells.
- the use includes diagnosing or imaging a subject having a neoplastic disease using a diagnostic/imaging radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to bombesin receptors and more particularly to gastrin releasing peptide (GRP) receptor over-expressed on tumor cells.
- the method consists of forming a therapeutic or diagnostic compound from a precursor compound consisting of a metal chelating group covalently linked with a moiety capable of binding bombesin receptors and more particularly to gastrin releasing peptide (GRP) receptor.
- a precursor compound consisting of a metal chelating group covalently linked with a moiety capable of binding bombesin receptors and more particularly to gastrin releasing peptide (GRP) receptor.
- Peptides are biomolecules that play a crucial role in many physiological processes including actions as neurotransmitters, hormones, and antibiotics. Research has shown their importance in such fields as neuroscience, immunology, pharmacology, and cell biology. Some peptides can act as chemical messenger. They bind to receptor on the target cell surface and the biological effect of the ligand is transmitted to the target tissue. Hence, the specific receptor binding property of the ligand can be exploited by labeling the ligand with a radionuclide. Theoretically, the high affinity of the ligand for the receptor facilitates retention of the radio labeled ligand in receptor expressing tissues. However, it is still under investigation which peptides can be efficiently labeled and under which conditions the labeling shall occur. It is well known that receptor specificity of ligand peptide may be altered during chemical reaction. Therefore an optimal peptidic construct has to be determined.
- somatostatin analogs e.g ., 111 In-DTPA conjugated Octreotide, an FDA approved diagnostic imaging agent, Octreoscan®, marketed by Covidien in the United States ( Lowbertz et al., Seminars in Oncology, 1994, 1 ) and Reubi et al., J. Nucl. Med., 2005, 46, 67S-75S and references therein, respectively.
- Octreotide and its analogs have been covalently linked to several imaging metal isotopes ( 99m Tc, 111 In, 68 Ga) and to therapeutic metal isotopes ( 105 Rh, 186/188 Re, 153 m, 90 Y, 166 Ho, 177 Lu).
- the metal labeled conjugates specifically bind to the receptor, and upon binding to the receptor, the construct is internalized by the receptor and the metal labeled receptor specific peptides or their metabolites are trapped in the targeted cells.
- the invention relates to bombesin analog peptide antagonist conjugates which selectively bind to bombesin receptors and more particularly to GRP receptor without triggering internalization into the cell and without signaling through calcium mobilization while antagonizing the agonist-induced effects in these two systems, wherein the bombesin analog peptide antagonist conjugate has general Formula (I): (I) [A-(B) n ] x -C wherein
- the invention further refers to pharmaceutically acceptable salts of these bombesin analog peptide antagonist conjugates of an inorganic or organic acid thereof, and further to hydrates, complexes, esters, amides and solvates of these compounds having general chemical Formula (I).
- the metal chelator (A) is a metal chelator for trivalent metals or for pentavalent metals and their close analogs.
- the metal chelator (A) for trivalent metals is selected from the group comprising: DOTA-, NODASA-, NODAGA-, NOTA-, DTPA-, EDTA-, TETA-, and TRITA- based chelators and their close analogs, wherein DOTA stands for 1,4,7,10-tetrazacyclododecane-N, N',N",N"' tetraacetic acid, DTPA stands for diethylenetriaminepentaacetic acid, EDTA stands for ethylenediamine-N,N'-tetraacetic acid, TETA stands for 1,4,8,11-tetraazacyclododecane-1,4,8,11-tetraacetic acid, and NOTA stands for 1,4,7-triazacyclononanetriacetic acid.
- DOTA stands for 1,4,7,10-tetrazacyclododecane-N, N',N",N"' tetraacetic acid
- DTPA stands for diethylenetri
- the metal chelator (A) for trivalent metals is selected from the group comprising:
- the metal chelator (A) for trivalent metals is selected from the group comprising DTPA (diethylenetriaminepentaacetic acid) and polyaza-polycarboxylate macrocycles such as DOTA (1,4,7,10-tetrazacyclododecane-N, N',N",N"' tetraacetic acid).
- the metal chelator (A) for pentavalent metals is selected from the group comprising 2-hydrazino nicotinamide (HYNIC), N 4 -chelators, N 4 -X (N 4 may be linear or macrocyclic and X may be an azide amine, OH, halogen, o-, m-, p-amino benzyl metaparacarboxybenzyl, and carboxy (Nock, B. et al. (2003 [ 99m Tc]Demobesin 1, a novel bombesin analogue for GRP receptor-targeted tumour imaging. Eur. I. Nucl. Mol. Imaging, 30, 247-258 )), Desferrioxamin (DFO), and N r S (4-r) chelators. and wherein
- N 4 -chelators is preferably, wherein m means an integer from 1 to 4.
- N r S (4-r) chelators is defined wherein r is an integer from 1 to 4.
- Said functional group Y preferably comprises isocyanato, isothiocyanato, formyl, halonitrophenyl, diazonium, epoxy, trichloro-s-triazinyl, ethyleneimino, chlorosulfonyl, alkoxycarb-imidoyl, (substituted or unsubstituted) alkylcarbonyloxycarbonyl, alkylcarbonylimidazolyl, succinimido-oxycarbonyl; said group being attached to a (C 1 -C 10 ) hydrocarbon biradical.
- hydrocarbon biradicals are biradicals derived from benzene, (C 1 -C 6 ) alkanes, (C 2 -C 6 ) alkenes and (C 1 -C 4 )-alkylbenzenes.
- N t S (4-t) chelators are selected from the group comprising bisamino bisthiol (BAT) based chelators for technetium radionuclide metal, mercapto-acetyl-glycyl-glycyl-glycine (MAG3) for technetium radionuclide metal.
- BAT bisamino bisthiol
- MAG3 mercapto-acetyl-glycyl-glycyl-glycine
- the metal chelator (A) for pentavalent metals is selected from the group comprising wherein R 1 -R 19 ,Z', Y, G and t are defined as above.
- r is an integer from 2 to 4 and more preferably r is 2 or 3.
- n means an integer from 1 to 2, more preferably m is 1.
- metal chelators such as linear, macrocyclic, tetrapyridine and N 3 S, N 2 S 2 or N 4 chelators are disclosed in US 5,367,080 A , US 5,364,613 A , US 5,021,556 A , US 5,075,099 A , US 5,886,142 A .
- DFO Desferrioxamin
- 2-hydrazino nicotinamide is another class of chelating group ( A ), in the presence of a coligand which has been widely used for incorporation of 99m Tc and 186,188 Re ( Schwartz et al. Bioconj. Chem., 1991, 2, 333-6 ; Babich et al., J. Nucl. Med., 1993, 34, 1964-70 ; Nucl. Med. Biol., 1995, 22, 25-30 ; Nucl. Med. Biol., 1995, 22, pp. 32, pp. 1-10 )
- DTPA is used in Octreoscan® (marketed by Covidian) for complexing 111
- Octreoscan® marketed by Covidian
- DOTA type chelates for radiotherapy applications are described by Tweedle et al., US Pat 48885363 .
- Other polyaza macrocycles for chelating trivalent isotopes metals are described by Maecke et al in Bioconj. Chem., 2002, 13, 530 .
- N 4 -chelators, 99m Tc-N 4 -chelator have been used for peptide labeling in the case of minigastrin for targeting CCK-2 receptors ( Nock et al., J. Nucl. Med., 2005, 46, 1727-36 ).
- the radionuclide metal is suitable for being complexed with a metal chelator and leading to radioactive metal chelator for imaging.
- the radionuclide metal is selected from the group comprising 133m In, 99m Tc, 67 Ga, 52 Fe, 68 Ga, 72 As, 111 In, 97 Ru, 203 Pb, 62 Cu, 64 Cu, 51 Cr, 52m Mn, 157 Gd, 123 I, 124 I, 131 I, 75 Br, 76 Br, 77 Br, 64 Cu and 82 Br. More preferably, the radionuclide metal is selected from the group comprising 99m Tc, 67 Ga, 68 Ga, 111 In, and 123 I. Even more preferably the radionuclide metal is 68 Ga. Even more preferably the radionuclide metal is 99m Tc.
- the radionuclide metal is suitable for complexing with a metal chelator and leading to radioactive metal chelator for radiotherapy.
- the radionuclide metal is selected from the group comprising 186 Re, 90 Y, 67 Cu, 68 Ga, 69 Er, 121 Sn, 127 Te, 142 Pr, 143 Pr, 198 Au, 199 Au, 161 Tb, 109 Pd, 188 Rd, 186 Re, 188 Re, 77 As, 166 Dy, 166 Ho, 149 Pm, 151 Pm, 153 Sm, 159 Gd, 172 Tm, 90 Y, 111 In, 169 Yb, 175 Yb, 177 Lu, 105 Rh, 111 Ag, 125 I, 123 I, 213 Bi, 225 Ac, 129 I, 64 Cu and 177m Sn. More preferably, the radionuclide metal is selected from the group comprising 186 Re, 188 Re, 90 Y, 67 Cu, 68 Ga, 69
- the suitable radionuclide metal is a radioactive halogen (iodine and bromine isotopes), the radioactive halogen is bonded directly to the peptide, such as by chemical reaction to a Tyr or Trp moiety within the peptide, or optionally A can be Tyr or Trp.
- a radioactive halogen iodine and bromine isotopes
- the radioactive halogen is bonded directly to the peptide, such as by chemical reaction to a Tyr or Trp moiety within the peptide, or optionally A can be Tyr or Trp.
- Preferred radiodiagnostic agents ( 67 Ga, 111 In) and radiotherapeutic agents ( 90 Y, 153 Sm, 177 Lu) optionally contain a chelated +3 metal ion from the class of elements known as the lanthanides.
- Typical radioactive metals in this class include the isotopes 90 Yttrium, 111 Indium, 149 Promethium, 153 Samarium, 166 Dysprosium, 166 Holmium, 175 Ytterbium, and 177 Lutetium. All of these metals (and others in the lanthanide series) have very similar chemistries, in that they remain in the +3 oxidation state and prefer to chelate to ligands that bear hard (oxygen/nitrogen) donor atoms.
- B is a compound having Formula (II) II B 1 -B 2 wherein
- the unnatural amino acid is a compound having any one of Formulae (III), (IV), (V) or (VI) wherein wherein
- the spacer is selected from the group comprising 4-amino-1-carboxymethylpiperidine, (R,S)-diaminoaceticacid, PEG 1-24 , Sar 5-10 , 8-aminooctanoic acid, 6-aminocaproic acid, 4-(2aminoethyl)-1-carboxymethyl piperazine, diaminobutyric acid, hippuric acid, 4-amino-1-Boc-piperidine-4-carboxylic acid, Gly-aminobenzoic acid, 5-amino-3-oxa-pentyl-succinamic acid, Peg 1-24 -4-amino-1-carboxymethyl piperidine, Dab(shikimic acid), (D-Gln)x, (D-Asn)x.
- the bombesin analog peptide antagonist sequence is selected from the group comprising C-1 to C-3, preferably C-1 to C-2.
- the bombesin analog peptide antagonist sequence is selected from the group comprising:
- the bombesin analog peptide antagonist conjugate having Formula (I) comprising at least one radionuclide metal is selected from the group comprising
- x is an integer from 1 to 2, preferably x is 1.
- n is a linear spacer or a branched spacer linked to the N-terminal of the bombesin analog peptide antagonist (C).
- n is an integer from 1 to 4, preferably n is 1 or 3, more preferably 1.
- A is additionally a metal chelator comprising at least one cold metal atom corresponding or equivalent to the listed above radionuclide metal.
- a metal chelator comprising at least one cold metal atom corresponding or equivalent to the listed above radionuclide metal.
- K is additionally H or preferably H.
- the invention relates to bombesin analog peptide antagonist conjugate precursors which selectively bind to bombesin receptors and which more particularly bind to GRP receptor without triggering internalization into the cell and without signaling through calcium mobilization while antagonizing the agonist-induced effects in these two systems, wherein the bombesin analog peptide antagonist conjugate has general Formula (I') (I') [A'-(B) n ] x -C wherein
- the metal chelator A' is a metal chelator free of radionuclide metal as defined in the first aspect for A.
- the spacer B and the bombesin analog peptide antagonist C are defined as above in the first aspect.
- the invention further refers to pharmaceutically acceptable salts of the bombesin analog peptide antagonist conjugates of an inorganic or organic acid thereof, and to hydrates, complexes, esters, amides, solvates and prodrugs of these compounds having general chemical Formula (I').
- x is an integer from 1 to 2, preferably x is 1.
- ( B ) n is a linear spacer or a branched spacer linked to the N-terminal of the bombesin analog peptide antagonist ( C ).
- n is an integer from 1 to 4, preferably n is 1 or 3, more preferably 1.
- the invention in a third aspect, relates to a pharmaceutical composition
- a pharmaceutical composition comprising bombesin analog peptide antagonist conjugates having Formula (I) or (I') and a pharmaceutical acceptable carrier.
- the invention relates to the use of bombesin analog peptide antagonist conjugates having Formula (I) or (I') for binding to bombesin receptors and more particularly gastrin releasing peptide receptor (GRP) and/or for inhibiting bombesin receptors and more particularly gastrin releasing peptide receptor (GRP).
- GRP gastrin releasing peptide receptor
- the invention relates to a method for preparing a bombesin analog peptide antagonist conjugate having general Formula (I) (I) [A-(B) n ] x -C wherein n, x, A , B and C are defined as above, comprising the step
- the method for preparing a bombesin analog peptide antagonist conjugate having general Formula (I) comprises the step of radiochelating with a suitable radionuclide metal.
- the method for preparing a bombesin analog peptide antagonist conjugate having general Formula (I) (II) [A-(B) n ] x -C wherein n, x, A , A', B and C are defined as above, comprises additionally the steps:
- n, x, metal chelator A, metal chelator A' spacer B and bombesin analog peptide antagonist C are defined as above.
- the invention relates to a method for imaging bombesin receptors and more particularly GRP Receptor expressing tumor cells and/or tumoral and peritumoral vessels in a patient, comprising the steps:
- a preferred embodiment of the sixth aspect concerns the use of a radiopharmaceutically effective amount of a bombesin analog peptide antagonist conjugate having Formula (I) for the manufacture of an imaging agent for imaging bombesin receptors and more particularly GRP Receptor expressing tumor cells and/or tumoral and peritumoral vessels.
- tumor cells refer to cancers that are selected from
- the tumoral and peritumoral vessels refers to Ovarian cancers.
- a preferred embodiment concerns the use of a therapeutically effective amount of a bombesin analog peptide antagonist conjugate having Formula (I) for the manufacture of a medicament for treating or preventing tumor cell and/or tumoral and peritumoral vessel related diseases.
- the tumor cell related diseases refer to cancers that are selected from the group comprising:
- the tumoral and peritumoral vessel related diseases refers to Ovarian cancers.
- the invention relates to a kit for the preparation of a radiotherapeutical agent or radiopharmaceutical imaging agent having Formula (I), which kit comprises a vial containing a predetermined quantity of bombesin analog peptide antagonist conjugate of formual (I') and an acceptable carrier, diluent, excipient or adjuvant for the radiolabeling a metal chelator.
- the invention relates to bombesin analog peptide antagonist of sequence C-1 to C-3, wherein
- alkyl refers to a straight chain or branched chain alkyl group with 1 to 20 carbon atoms, such as, for example, methyl, ethyl, propyl, iso -propyl, butyl, iso -butyl, tert -butyl, pentyl, iso -pentyl, neo- pentyl, heptyl, hexyl, decyl.
- Alkyl groups can also be substituted, such as by halogen atoms, hydroxyl groups, C 1 -C 4 -alkoxy groups or C 6 -C 12 -aryl groups. More preferably alkyl is C 1 -C 10 -alkyl, C 1 -C 6 -alkyl or C 1 -C 4 -alkyl.
- lower unbranched or branched alkyl(en) shall have the following meaning: a substituted or unsubstituted, straight or branched chain monovalent, divalent or trivalent radical consisting of carbon and hydrogen, containing no unsaturation and having from one to eight carbon atoms, e.g ., but not limited to methyl, ethyl, n-propyl, n-pentyl, 1,1-dimethylethyl (t-butyl), n-heptyl and the like.
- This moiety may be unsubstituted or substituted, such as by halogen atoms, hydroxyl atoms, C 1 -C 4 -alkoxy groups or C 6 -C 12 -aryl groups.
- phenylene group is based on a di- or optionally tri-substituted benzene ring.
- poly( p- phenylene) is a polymer built up from para -phenylene repeating units.
- Phenylene may be substituted or unsubstituted. It may be substituted with halogen, OH, alkoxy, preferably C 1 -C 4 -alkoxy, carboxy, ester, preferably C 1 -C 4 -ester, amide, nitro.
- alkene shall have the following meaning: an unsaturated aliphatic or alicyclic chemical compound containing at least one carbon-to-carbon double bond.
- the alkenes may be substituted or unsubstituted. If the alkene are substituted, they may be substituted by halogen atoms, hydroxyl groups, C 1 -C 4 -alkoxy groups, C 6 -C 12 -aryl groups or the like.
- aryl shall have the meaning of an unsaturated ring system, preferably an aromatic ring system, more preferably having 6 to 12 carbon atoms in the ring skeleton. Examples thereof are phenyl and naphthalenyl.
- the aryl moieties may be unsubstituted or substituted, such as by halogen atoms, hydroxyl groups, C 1 -C 4 -alkoxy groups or C 6 -C 12 -aryl groups.
- benzene shall have the following meaning: an organic chemical compound with the formula C 6 H 6 .
- Benzene is an aromatic hydrocarbon and the second [ n ]-annulene ([6]-annulene), a cyclic hydrocarbon with a continuous pi bond.
- Benzene may be unsubstituted or substituted, such as by halogen atoms, hydroxyl groups, C 1 -C 4 -alkoxy groups or C 6 -C 12 -aryl groups.
- alkenyl and “alkynyl” are similarly defined as for alkyl, but contain at least one carbon-carbon double or triple bond, respectively.
- Alkenyl may more preferably be C 2 -C 6 -alkenyl and alkynyl may more preferably be C 2 -C 6 -alkynyl.
- halogen shall have the meaning of F, Cl, Br or 1.
- inorganic acid and “organic acid” refer to mineral acids, including, but not being limited to acids such as: carbonic, nitric, phosphoric, hydrochloric, perchloric or sulphuric acid or the acidic salts thereof such as the potassium, sodium, calcium, magnesium salts, for example potassium hydrogen sulfate, or to appropriate organic acids which include, but are not limited to: acids such as aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulphonic acids, examples of which are formic, acetic, trifluoracetic, propionic, succinic, glycolic, gluconic, lactic, malic, fumaric, pyruvic, benzoic, anthranilic, mesylic, fumaric, salicylic, phenylacetic, mandelic, embonic, methansul
- mineral acids including, but not being limited to acids such as: carbonic, nitric, phosphoric, hydrochloric
- the term "pharmaceutically acceptable salt” relates to salts of inorganic and organic acids, such as mineral acids, including, but not limited to, acids such as carbonic, nitric or sulfuric acid, or organic acids, including, but not limited to, acids such as aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulphonic acids, examples of which are formic, acetic, trifluoroacetic, propionic, succinic, glycolic, gluconic, lactic, malic, fumaric, pyruvic, benzoic, anthranilic, mesylic, salicylic, phenylacetic, mandelic, embonic, methansulfonic, ethanesulfonic, benzenesulfonic, phantothenic, toluenesulfonic and sulfanilic acid.
- mineral acids including, but not limited to, acids such as carbonic, nitric or sulfuric acid,
- amino acid sequence and “peptide” are defined herein as a polyamide obtainable by (poly)condensation of at least two amino acids.
- amino acid means any molecule comprising at least one amino group and at least one carboxyl group, but no peptide bond within the molecule.
- an amino acid is a molecule that has a carboxylic acid functionality and an amine nitrogen having at least one free hydrogen, preferably in alpha position thereto, but no amide bond in the molecule structure.
- a dipeptide having a free amino group at the N-terminus and a free carboxyl group at the C-terminus is not to be considered as a single “amino acid” within the above definition.
- the amide bond between two adjacent amino acid residues which is obtained from such a condensation is defined as a "peptide bond”.
- An amide bond between two adjacent amino acid residues which is obtained from such a polycondensation is defined as a "peptide bond”.
- the nitrogen atoms of the polyamide backbone (indicated as NH above) may be independently alkylated, e.g ., with -C 1 -C 6 -alkyl, preferably with -CH 3 .
- an amino acid residue is derived from the corresponding amino acid by forming a peptide bond with another amino acid.
- an amino acid is a naturally occurring or unnatural amino acid wherein unnatural amino acid is a synthetic / artificial amino acid residue, proteinogenic and/or non-proteinogenic amino acid residue.
- the non-proteinogenic amino acid residues may be further classified as (a) homo analogues of proteinogenic amino acids, (b) ⁇ -homo analogues of proteinogenic amino acid residues and (c) further non-proteinogenic amino acid residues.
- amino acid residues are derived from the corresponding amino acids, e.g., from proteinogenic amino acids, namely Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val; or non-proteinogenic amino acids, such as homo analogues of proteinogenic amino acids wherein the side chain has been extended by a methylene group, e.g., homoalanine (Hal), homoarginine (Har), homocysteine (Hcy), homoglutamine (Hgl), homohistidine (Hhi), homoisoleucine (Hil), homoleucine (Hle), homolysine (Hly), homomethionine (Hme), homophenylalanine (Hph), homoproline (Hpr), homoserine (Hse), homothreonine (Hth), homotryptophane (Htr), homo
- Cyclic amino acids may be proteinogenic or non-proteinogenic, such as Pro, Aze, Glp, Hyp, Pip, Tic and Thz.
- non-proteinogenic amino acid and “non-proteinogenic amino acid residue” also encompass derivatives of proteinogenic amino acids.
- the side chain of a proteinogenic amino acid residue may be derivatized thereby rendering the proteinogenic amino acid residue "non-proteinogenic”.
- derivatives of the C-terminus and/or the N-terminus of a proteinogenic amino acid residue terminating the amino acid sequence may be obtained from a proteinogenic amino acid residue.
- a proteinogenic amino acid residue is derived from a proteinogenic amino acid selected from the group consisting of Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val either in L- or D-configuration; the second chiral center in Thr and Ile may have either R- or S-configuration. Therefore, for example, any posttranslational modification of an amino acid sequence, such as N-alkylation, which might naturally occur renders the corresponding modified amino acid residue "non-proteinogenic", although in nature said amino acid residue is incorporated in a protein.
- modified amino acids are selected from N-alkylated amino acids, ß-amino acids, ⁇ -amino acids, lanthionines, dehydro amino acids, and amino acids with alkylated guanidine moieties.
- carboxylic acid or “dicarboxylic acid” means organic compounds having one COOH moiety or two COOH moieties, respectively, such as for example, formic acid, acetic acid, propionic acid, butyric acid, cyclohexane carboxylic acid, benzoic acid, salicyl acid, lactic acid (carboxylic acids) or oxalic acid, malonic acid, succinic acid, adipic acid, fumaric acid, maleic acid, malic acid, phthalic acid (dicarboxylic acids), respectively.
- diamine means organic compounds having two NR'R" moieties, wherein R' and R" may independently from each other be alkyl, alkenyl, alkynyl, aryl. Diamines may for example be ethylendiamine, 1,4-cyclohexane diamine, piperazine.
- amino acids, carboxylic acids, dicarboxylic acids or diamines are referred to, this also specifically includes the respective radicals obtained when such amino acids, carboxylic acids, dicarboxylic acids or diamines, respectively, are comprised in the compounds of the invention, i.e., -HN-...-CO- (amino acid), -OC-... (carboxylic acid), -OC-...-CO- (dicarboxylic acid), -HN-...-NH- (diamine), for example.
- metal chelator is defined as a molecule that complexes a radionuclide metal to form a metal complex that is stable under physiological conditions and which may also be conjugated with a targeting group though a spacer.
- the metal chelator is complexed or not complexed with a metal radionuclide.
- radionuclide metal is defined as a radionuclide which is an atom with an unstable nucleus, the nucleus being characterized by excess energy which is available to be imparted either to a newly-created radiation particle within the nucleus, or else to an atomic electron (see internal conversion).
- the radionuclide metals used herein are especially suitable for diagnostic or therapeutic use, more preferably for imaging or radiotherapy.
- the radionuclide, in this process undergoes radioactive decay, and emits (a) gamma ray(s) and/or subatomic particles. These particles constitute ionizing radiation. Radionuclides may occur naturally, but can also be artificially produced.
- radionuclide metals include, but are not limited to gallium (e.g., 67 Ga, 68 Ga) copper ( e.g ., 67 Cu and 64 Cu); technetium (e.g ., and 99m Tc and 94m Tc); rhenium ( e.g ., 186 Re and 188 Re); lead ( e.g., 212 Pb); bismuth (e.g, 212 Bi); and palladium ( e.g., 109 Pd). Methods for preparing these isotopes are known. Molybdenum/technetium generators for producing 99m Tc are commercially available.
- Procedures for producing 186 Re include the procedures described by Deutsch et al., (Nucl. Med. Biol., Vol. 13:4:465-477, 1986 ) and Vanderheyden et al. (Inorganic Chemistry, Vol. 24:1666-1673, 1985 ), and methods for the production of 188 Re have been described by Blachot et al. (Intl. J. of Applied Radiation and Isotopes, Vol. 20:467-470, 1969 ) and by Klofutar et al. (J. of Radioanalytical Chem, Vol. 5:3-10, 1970 ). Production of 212 Pd is described in Fawwaz et al., J. Nucl.
- spacer is defined as a linking group between the metal chelator and the bombesin peptide antagonists.
- agonist means a substance (ligand) which binds to a specific site at a receptor molecule of a cell and thus activates signal transduction in the cell. This leads to a measurable effect.
- the wording "antagonist” means a substance (ligand) which binds to a site at receptor cell which is specific to an agonist substance, thus blocking this site to the agonist, without actuating an effect. Thus the antagonist inhibits the effect of the agonist.
- statine analog is defined as a di-peptidic mimetic with the following generic structure
- A has the meaning of A but also A' as appropriate for all examples disclosed below.
- A has the meaning of A but also A' as appropriate for all examples disclosed below.
- Rink amide MBHA resin with a theoretical loading of 0.34 mmole/g resin was given to the reactor.
- N,N-Dimethylformamide (DMF) was added to the reactor and was shaken for 30 minutes to allow swelling of the resin.
- a solution of 20% piperidine in DMF was added and the resin was shaken for 15 minutes to remove the 9-Fluorenylmethoxycarbonyl (Fmoc) protecting group. This step was repeated twice. After this procedure, the resin was washed three times for 5 min with DMF. The piperidine solution and the DMF solution of the last three washings were collected and filled with ethanol to 100 mL. From this solution an aliquot was taken to determine the amount of removed Fmoc-protecting groups spectrophotometrically.
- the resin was washed twice for 2 min with DMF.
- 2 equivalents of Fmoc-aminoacids preactivated with 2 equivalents of N,N-Diisopropylcarbodiimide (DIC) / N-Hydroxybenzotriazole (HOBt) were added to the resin and the pH was adjusted to a value of 8-9 by adding about 4 equivalents of N-Ethyldiisopropylamine (DIPEA).
- DIPEA N-Ethyldiisopropylamine
- the reaction was incubated for 2h under gentle shaking. After the reaction, the solution was removed and the solid phase was washed twice for 5 min with DMF. The reaction was monitored by Kaiser-test.
- a certain amount of beads of the resin were washed 3 times with ethanol, 50 ⁇ L of the solution 1 (20 g phenol in 10 mL ethanol were mixed with 1 mL of a solution of 0.01 M KCN in 49 mL pyridine) and 50 ⁇ L of solution 2 (500 g ninhydrine in 10 mL ethanol) were added and the beads were heated for 10 min at 95°C. Blue beads indicated uncoupled free amino functions.
- the resin was washed 5 times with DCM followed by 5 times washing with diethyl ether, each for 2 minutes and dried under vacuum.
- the prochelator DOTA( t Bu) 3 was purchased from Macrocyclics Inc., Dallas, USA. Prior to coupling the SPACER, the N -terminal Fmoc-protection was removed from the resin bound peptides. The resin was swelled for 15 min in DMF, tretated twice with a solution of 20% piperidine in DMF (15 min) and washed three times with DMF. The solution from the piperidine treatments and the following DMF washings were collected to determine the amount of cleaved Fmoc groups.
- the peptide-resin was taken in a syringe equipped with a frit.
- a solution of trifluoroacetic acid (TFA)/Thioanisol (TA)/Triisopropylsilane (TIS)/H 2 O (94/2/2/1) was added and the syringe was agitated for 2h.
- the solution was added to a mixture of 50% diisopropylether and 50% diethylether on ice to allow the precipitation of the peptide.
- the peptide was collected by centrifugation at 3000 rpm for 5 min and the supernatant was decanted. The precipitate was washed several times with diethylether and dried under vacuum.
- the N -terminalFmoc-protection was removed from the resin bound peptides.
- the resin was swelled for 15 min in DMF, treated twice with a solution of 20% piperidine in DMF (15 min) and washed three times with DMF. The solution from the piperidine treatment and the following DMF washings were collected for Fmoc determination.
- the peptide-resin was taken in a syringe equipped with a frit. A solution of TFA/TIS/H 2 O (94/2.5/2.5) was added and the syringe was agitated for 2h. The solution was added to a mixture of 50% diisopropylether and 50% diethylether on ice to allow the precipitation of the peptide. The peptide was collected by centrifugation at 3000 rpm for 5 min and the supernatant was decanted. The precipitate was washed several times with diethylether and dried under vacuum. The crude product was dissolved in water and purified by semi-preparative RP-HPLC as described before.
- the conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
- the peptide (6.2 mg, 5 ⁇ m) with terminal alkyl group and 3 (3 mg, 5 ⁇ m) were dissolved in a 1:1 mixture of water and tert -butyl alcohol (1 mL). Copper powder (10 mg) was added followed by 0.1 M aqueous copper(II) sulfate pentahydrate (60 ⁇ L, 6 ⁇ m, 1.2 equiv) and the reaction mixture was stirred at room temperature for 24 h. The copper powder was filtered off, the solvent removed under reduced pressure. The crude peptide was purified by semi-preparative RP-HPLC.
- the chelator-peptide conjugate was treated with TFA:TIS:H 2 O (95:2:3) for 2h. The solvent was removed under reduced pressure. The crude product was titurated with diethyl ether and purified by semi-preparative RP-HPLC as described before.
- the conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
- the Fmoc was deprotected using 20% of piperidine in DMF and the amount of removed Fmoc-protecting group was determined spectrophotometrically at 300 nm.
- the next amino acid was coupled by adding 2-fold molar excess of amino acid, mixed with equimolar amounts of DIC/HOBt, and 4-fold molar excess of DIPEA in DMF.
- the resin was agitated at room temperature for 2h and the coupling was monitored by Kaiser ninhydrin test. Each amino acid was coupled using the same strategy.
- the fully protected peptides were cleaved from the solid support by suspending the resin in a mixture of TFA/TIS/DCM (1/5/94). Several times were drawn up a volume of 5 mL of the cleaving solution with the syringe, incubated 10 min and the cleaved fractions were collected in a 50 mL flask. After all the fractions were collected 3X10 mL of toluene were added into the flask, the solvents were evaporated and the product was dried afterwards for 1 h at the oil pump vacuum.
- Boc-Leu-OH (1 g, 4.3 mmol) was dissolved in DCM (30 mL) and 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU)(1.380 g, 4.3 mmol), HOBt (0.581 g, 4.3 mmol) and DIPEA (743 ⁇ L, 4.3 mmol) were added at 0°C. After 5 min of stirring, O,N-dimethylhydroxylamine hydrochloride (0.461 g, 4.73 mmol) and DIPEA (817 ⁇ L, 4.73 mmol) were added. All solid material dissolved within 10 min and the mixture was stirred overnight at RT.
- TBTU 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate
- HOBt 0.581 g, 4.3 mmol
- DIPEA 743
- Boc-Leu ⁇ (CHOH)-(CH 2 ) 3 -CH 3 was deprotected using a solution of 80% TFA in DCM. After 1h the solution was concentrated, washed several time with DCM and dried. The chelator-spacer-peptide was dissolved in DMF, HATU (1.2 equivalents) was added and the mixture was stirred for 1h. H-Leu ⁇ (CHOH)-(CH 2 ) 3 -CH 3 was dissolved in DMF and added to the peptide. The pH was adjusted to 8 using DIPEA and the reaction was stirred for 4h at RT.
- the solvent was concentrated and the peptide, fully protected, was obtained by precipitation with H 2 O on ice.
- the crude peptide was precipitated, cooled, centrifuged and separated from the solvent by decantation. In order to get the peptide fully deprotected it was solubilized in a mixture of DCM/TFA/TIS/H 2 O 10/85/2.5/2.5. After 4h the solution was concentrated and the peptide was precipitated using a mixture of 50% diethyl ether and 50% diisopropylether on ice. The peptide was then collected by centrifugation at 3000 rpm for 5 min and the supernatant was decanted. The precipitate was washed several times with diethylether and the crude product was kept then at a vacuum overnight to remove the remaining solvents. The crude product was dissolved in water and purified by preparative as describe earlier.
- the conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
- Peptides were synthesized manually on MBHA resin LL (100-200 mesh) HCl using Boc strategy.
- MBHA resin with a theoretical loading of 0.59 mmol/g was given to the reactor and it was swelled in DCM for 30 min.
- the resin was treated 3 times (10 min) with a solution of 10% DIPEA in DCM.
- the first coupling of the Boc-Leu ⁇ (CH 2 NH)-Phe-OH was achieved using 2 equivalent of Boc-amino acid activated with 2 equivalents of HOBt and 2 equivalents of DIC.
- the coupling reaction mixture was stirred at room temperature for 2h and the reaction was monitored with the Kaiser ninhydrin test.
- the Boc was deprotected using 30% of TFA in DCM and this step was repeated twice.
- the resin was, then, treated with a solution of 10% DIPEA in DCM and the couplings were performed as described above.
- the peptide was treated with TFA (1 mL) and TIS (30 ⁇ L) and the mixture stirred at room temperature for 5 min. The mixture was then cooled in ice bath and trifluoromethanesulfonic acid (TFMSA) (100 ⁇ L) added dropwise with stirring. The flask was sealed with a stopper and the mixture stirred at room temperature for 2 h. The volume was reduced under vacuum and the peptide was precipitated adding cold diethyl ether. The precipitate was washed several times with diethylether and the crude product was dried under vacuum. The crude product was dissolved in water and purified by HPLC preparative as describe above.
- TFMSA trifluoromethanesulfonic acid
- the conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
- Peptides were synthetized manually by solid phase on MBHA resin (0.59 mmol/g) using Boc-strategy. Boc-Cys(4-MeOBzl)-OH (2.5 eq.) was coupled to the resin using DIC (2.5 eq.) and HOBt (2.5 eq.) as activating reagent. The pH was adjusted to 8 with DIPEA (5 eq.). Introduction of reduced bond 13 ⁇ 14 (CH 2 -NH) was carried out using Boc-Leu-aldehyde (2.5 eq.) dissolved in acified dimethylformamide. NaBH 3 CN (2.5 eq.) in DMF was added slowly, in 20 min, and the reaction was stirred for 1h at RT. After the formation of a reduced peptide bond, all of the coupling reactions were performed using N -Boc-protected aminoacids.
- the deprotection, cleavage and purification were performed as described previously.
- the conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
- the complexation of the bombesin analogs with nat In was performed following the same protocol.
- the nat In was used in the form of nat InCl 3 solution and in a molar ratio of 1:1.
- HA hemagglutinin
- Bosset a monoclonal hemagglutinin epitope antibody
- the secondary antibodies Alexa Fluor 488 goat anti-mouse IgG H+L was from Molecular Probes, Inc. (Eugene, OR). Bombesin and the antagonist [D-Phe 6 , Leu-NHEt 13 , des -Met 14 ]-bombesin(6-14) (GRPR-ANTAG) were purchased from Bachem (Bubendorf, Switzerland).
- RM26, RM1b, In-RMlb, and 175 Lu-AMBA were provided by H.R. Switzerland).
- the Fluo-4NW Calcium Assay kit was from Molecular Probes, Inc. (Eugene, OR).
- DMEM Dulbecco's Modified Eagle Medium with GlutaMAX TM -I
- FBS fetal bovine serum
- PC3 cells Human prostate cancer cells (PC3 cells) were obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; DSMZ No: ACC465) and cultured at 37°C and 5% CO 2 in Ham's F12K containing 2 mM L-glutamine and supplemented with 10% (v/v) FBS, 100 U/ml penicillin and 100 ⁇ g/ml streptomycin. All culture reagents were from Gibco BRL (Grand Island, NY).
- the GRP receptor binding affinity of the various compounds was determined by in vitro receptor autoradiography on cryostat sections of either well characterized prostate carcinomas, or on sections from HEK-GRPR or PC3 cell pellets as described previously ( Markwalder et al., Can. Res., 1999; 59, 1152-1159 ; Reubi et al., Eur. J. Nucl. Med., 2000;27: 273-282 ; Reubi et al., Clin. Cancer Res. 2002;8 1139-1146 ).
- the radioligands used were I25 I-[Tyr 4 ]-bombesin, known to preferentially label GRP receptors ( Vigna et al., Gastroenterology.
- HEK-GRPR cells were grown on poly-D-lysine (20 ⁇ g/ml) (Sigma-Aldrich, St. Louis, MO) coated 35 mm four-well plates (Cellstar, Greiner Bio-One GmbH, Frickenhausen, Germany).
- cells were treated either with 10 nM bombesin, or with 1 ⁇ M of the various bombesin analogs, or, to evaluate potential antagonism, with 10 nM bombesin in the presence of a 100-fold excess of these various analogs for 30 min at 37°C and 5% CO 2 in growth medium, and then processed for immunofluorescence microscopy using the mouse monoclonal HA-epitope antibody at a dilution of 1:1,000 as first antibody and Alexa Fluor 488 goat anti-mouse IgG (H+L) at a dilution of 1:600 as secondary antibody.
- the cells were imaged using a Leica DM RB immunofluorescence microscope and an Olympus DP10 camera.
- GRP receptor internalization induced by bombesin is efficiently antagonized by the bombesin analogues Compound 1, In-Compound 1, Compound 1b and GRPR-ANTAG.
- HEK-GRPR cells were treated for 30 min either with vehicle (no peptide, a), or with 10 nmol/L bombesin (b), a concentration inducing a sub-maximal internalization effect.
- Panels (d, f, h, j) show cells treated with 10 nmol/L bombesin in the presence of 1 ⁇ mol/L of the analogues Compound 1b, GRPR-ANTAG, Compound 1, and In-Compound 1.
- Intracellular calcium release was measured in PC3 cells using the Fluo-4NW Calcium Assay kit as described previously ( Magrys et al., J. Clin. Immunol. 2007, 27, 181-192 ; Michel et al .,; Cescato et al., J. Nucl. Med. 2008; 49: 318-326 ).
- PC3 cells were seeded (10,000 cells per well) in 96 well plates and cultured for 2 day at 37°C and 5% CO 2 in culture medium.
- the cells were washed with assay buffer (1 x HBSS, 20 mM HEPES) containing 2.5 mM probenecid, and then loaded with 100 ⁇ L/well Fluo-4NW dye in assay buffer containing 2.5 mM probenecid for 30 min at 37°C and 5% CO 2 and then for further 30 min at room temperature.
- assay buffer 1 x HBSS, 20 mM HEPES
- Fluo-4NW dye in assay buffer containing 2.5 mM probenecid for 30 min at 37°C and 5% CO 2 and then for further 30 min at room temperature.
- the dye-loaded cells were transferred to a SpectraMax M2 e (Molecular Devices, Sunnyvale, CA).
- Fig. 1 shows that In- Compound 1 and compound 1a behave like antagonists shifting the dose-response curve of bombesin to the right in presence of bombesin (BB). See results in Table 1 and Fig. 1 .
- Compound 8 DOTA-(5-amino-3-oxa-pentyl)-succinamic acid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH 2
- Binding affinities of Compounds 1, 2 and 9 were measured after complexation with 115 In nonradioactive isotope. The data reaveals that complexation with isotope does not affect the binding affinity to the receptor as well as antagonist properties.
- Nef protein of human immunodeficiency virus is a broad-spectrum modulator of chemokine receptor cell surface levels that acts independently of classical motifs for receptor endocytosis and Galphai signaling. Mol. Biol. Cell. 2006, 17, 3578-3590
- PBS phosphate-buffered saline
- Empirical Formula C78H115N20O19Ga; Molecular Weight: 1704.89
- Ga-68-DOTA- Compound 2 was imaged on a microPET/ CT (Inveon, Siemens) in PC-3 and LNCaP tumor-bearing mice 1h after injection of 10 MBq radiotracer. Due to the rapid renal clearance of this bombesin antagonist very low background activity was observed with only some kidney and bladder uptake. High tumor-contrast visible in both xenografts was effectively blocked by either 100 ⁇ g bombesin or non-radioactive Compound 2 itself. Bombesin receptors were successfully blocked with Bombesin leading to a critical lost of signal in tumor Fig. 3a and 3b in PC-3 tumor bearing mice + Fig. 4a and 4b LNCaP-tumor bearing mice).
- the binding affinity of Ga-68-DOTA- Compound 2 to the GRPr was determined via two different methods comprising receptor autoradiography on human tissues and a cellular assay using PC-3 cells. Both methods yielded high binding affinity of Compound 2 with an IC 50 of ⁇ 8 nM based on the non-radioactive DOTA-Compond 2 peptide.
- Ga-68-DOTA- Compound 2 shows good metabolic stability measured by different in vitro and in vivo methods.
- In vivo plasma stability of Ga-68-DOTA- Compound 2 was investigated in non-tumor bearing mice Mouse plasma and urine was analysed by HPLC at 1, 3, 5, 10 and 15 min after intraveneous injection of approx. 20 MBq of Ga-68-DOTA- Compound 2 ( Fig. 10a , b, c, d, e). After some minutes, minor plasma degradation of the radiotracer was found showing two very small/ polar metabolites at 1.3 min and 1.5 min retention time which also occurred as main metabolites in the urine. The compound itself appeared with a retention time of 11.6-11.7 showing a double peak starting 5 min p.i..
- Microsomal stability of Ga-68-DOTA- Compound 2 was determined using mouse and human microsomes incubated with the radiotracer and analysed by HPLC. No degradation by mouse or human microsomes of Ga-68-DOTA- Compound 2 was found. Minor impurities detected on the chromatograms also occurred without the microsomal co-factor.
- Figure 6 shows a SPECT/CT image of 99m Tc-ARN4-06 (15 MBq/200 pmol)
- Figure 8 shows a SPECT/CT image of 99m Tc-ARN4-05 (15 MBq/200 pmol)
- Step 1 Non-radioactive peptides were synthesized by solid phase peptide synthesis (SPPS) following standard Fmoc strategy using polystyrene-supported Rink amide resin.
- SPPS solid phase peptide synthesis
- Figure 9 shows HPLC analysis of Ga-68-DOTA Compound 2 on a reversed phase column.
- Serum stability of Lu-177-DOTA Compound 2 radiolabeled with Lu-177 was also investigated in human serum. After 96h incubation of Lu-177-DOTA Compound 2 in human serum still 70% of the compound was intact as analysed by HPLC methods ( Fig. 11 ). To 1 mL of freshly prepared human serum, previously equilibrated in a 5% CO 2 environment at 37°C, was added 0.03 nmol 177 Lu-labeled peptide standard solution. The mixture was incubated in a 5% CO 2 , 37°C environment. At different time points, 100- ⁇ L aliquots (in triplicate) were removed and treated with 200 ⁇ L of EtOH to precipitate serum proteins.
- Fig. 11 shows stability of Lu-177-DOTA Compound 2 in Human serum.
- Ga-68- DOTA- 4-amino-1-carboxymethyl-piperidine- D-Phe- Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 at 1 h p.i. in PC-3 tumor bearing mice was compared with the F-18 tracer [ 18 F]Fluoroethylcholine (FEC) used for prostate cancer imaging, and FDG the gold standard F18 tracer in oncology. High tumor-to-tissue ratios underline the diagnostic usefulness of the Ga-68 compound RM2 for PET imaging
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Description
- The invention relates to therapeutic or diagnostic/imaging radiopharmaceuticals, the preparation and use thereof wherein the therapeutic or diagnostic radiopharmaceuticals are defined as binding moieties having an affinity for and are capable of binding to bombesin receptors and more particularly to gastrin releasing peptide (GRP) receptor. The binding moieties are labeled to metal complexing group for alpha-, beta-, gamma- and positron emitting isotopes. The use includes treating a subject having a neoplastic disease comprising the step of administering to the subject an effective amount of a therapeutic radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to bombesin receptors and more particularly to gastrin releasing peptide (GRP) receptor over-expressed on tumor cells. The use includes diagnosing or imaging a subject having a neoplastic disease using a diagnostic/imaging radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to bombesin receptors and more particularly to gastrin releasing peptide (GRP) receptor over-expressed on tumor cells. The method consists of forming a therapeutic or diagnostic compound from a precursor compound consisting of a metal chelating group covalently linked with a moiety capable of binding bombesin receptors and more particularly to gastrin releasing peptide (GRP) receptor.
- In designing an effective radiopharmaceutical tracer for use as a diagnostic agent, it is imperative that the drugs have appropriate in vivo targeting and pharmacokinetic properties. Fritzberg et al. (1992, J. Nucl. Med., 33:394) state further that radionuclide chemistry and associated linkages underscore the need to optimize the attachment and labeling chemical modifications of the biomolecule carrier. Hence the type of radionuclide, the type of biomolecule and the method used for linking them to one another may have a crucial effect onto the radiotracer properties.
- Peptides are biomolecules that play a crucial role in many physiological processes including actions as neurotransmitters, hormones, and antibiotics. Research has shown their importance in such fields as neuroscience, immunology, pharmacology, and cell biology. Some peptides can act as chemical messenger. They bind to receptor on the target cell surface and the biological effect of the ligand is transmitted to the target tissue. Hence, the specific receptor binding property of the ligand can be exploited by labeling the ligand with a radionuclide. Theoretically, the high affinity of the ligand for the receptor facilitates retention of the radio labeled ligand in receptor expressing tissues. However, it is still under investigation which peptides can be efficiently labeled and under which conditions the labeling shall occur. It is well known that receptor specificity of ligand peptide may be altered during chemical reaction. Therefore an optimal peptidic construct has to be determined.
- Tumors overexpress various receptor types to which peptides bind specifically. The following publications of Boerman et al., Seminar in Nuclear Medicine, 2000, 30(3), 195); Reubi et al. J. Nucl. Med., 2005, 46, (supp1) 67S; Reubi, J.C., Endocrine Reviews, 2003, 24(4), 389 provide a non exhaustive list of peptides that specifically bind to cell surface receptors in neoplasms, i.e., somatostatin, vasoactive intestinal peptide (VIP), Bombesin binding to Gastrin-releasing peptide (GRP) receptor, Gastrin, Cholecystokinin (CCK), and Calcitonin.
- The potential utility of metal labeled receptor specific peptides for scintigraphic imaging and radiotherapy is exemplified by somatostatin analogs, e.g., 111In-DTPA conjugated Octreotide, an FDA approved diagnostic imaging agent, Octreoscan®, marketed by Covidien in the United States (Lowbertz et al., Seminars in Oncology, 1994, 1) and Reubi et al., J. Nucl. Med., 2005, 46, 67S-75S and references therein, respectively. Octreotide and its analogs have been covalently linked to several imaging metal isotopes (99mTc, 111In, 68Ga) and to therapeutic metal isotopes (105Rh, 186/188Re, 153m, 90Y, 166Ho, 177Lu). The metal labeled conjugates specifically bind to the receptor, and upon binding to the receptor, the construct is internalized by the receptor and the metal labeled receptor specific peptides or their metabolites are trapped in the targeted cells.
- The foregoing principle is further extended to GRP receptor avid peptides (peptides have high affinity for the receptor) in which metal conjugated Bombesin agonists are used for scintigraphic imaging and radiotherapy. ( Smith et al., Anticancer Res" 23 (2003), 63-70; Baidoo et al., Bioconjug. Chem., 9 (1998), 218-225; Gali et al., Bioconjug. Chem., 12 (2001), 354-363; Smith et al., Bioconjug. Chem., 14 (2003), 93-102, Cancer Res., 63 (2003), 4082-4088; Rogers et al., In, M. Nicolini and U. Mazzi, Editors, Technetium, rhenium and other metals in chemistry and nuclear medicine, SGE Editoriali, Italy (1999), 519-525; Zhang et al., Cancer Res., 64 (2004), 6707-6715; Lantry et al., EANM, Helsinki (Finland) (2004); Linder et al., J. Nucl. Med., 45, (2004) (5), 169P [abstract 482]. Chen et al., J. Nucl. Med., 45 (2004), 1390-1397; Johnson et al., Cancer Biother Radiopharm. 2006, 21(2), 155-66, Smith et al., Nucl. Med. Biol., 2005, 32 733-40).
- In Chen et al. (Appl. Radiat. Isot., 2007, (In Press)), Waser et al. (Eur. J. Nucl. Med. Mol. Imaging. 2007 34, 95-100) and Lantry et al. (J. Nucl. Med., 2006, 47, 1144-52) imaging and radiotherapy of a bombesin agonist, 177Lu-DOTA coupled to -NH-CH2-CO-[4-aminobenzoyl]-QWAVGHLM-NH2))(177Lu-AMBA), has been described.
- Several patents and patent applications refer to metal labeled Bombesin agonists.
Volkert et al. (US 2007/0065362 A ) claim metal labeled Bombesin agonists of the general structure Metal labeling moiety-Spacer group-Bombesin agonist for imaging and therapeutic use. Other patents and patent applications by the same inventors include:US 6,921,526 B (2005 ),US 7,060,247 B ,US 7,147,838 B (2006 ) andWO 2002/087631 A1 . - The underlying principle for the selection of agonists as a radiopharmaceutical in all the above publications is that they produce or elicit a response by the GRP receptors upon interaction wherein the radiopharmaceutical is subsequently internalized inside the cell by endocytosis. GRP antagonists counteract the effect of an agonist and are not internalized into the cell and hence it is assumed that antagonists may not well be suited for radio scintigraphic imaging and radiotherapeutic purposes. Up to now the consensus has been to develop compounds with good radioligand internalization properties, leading to a high in vivo accumulation of radioligands in the tumors that appeared to be required for optimal visualization and radionuclide therapy in vivo. It is well known from molecular-pharmacologic investigations that efficient internalization is usually provided predominantly by agonists (Bodei et al., J. Nucl. Med., 2006;47, 375-377; Koenig et al., Trends Pharmacol. Sci., 1997;18, 276-287, Cescato et al., J. Nucl. Med., 2006;47, 502-511. Ginj et al., Proc. Natl. Acad. Sci. USA. 2006; 103, 16436-16441) and recently, it was demonstrated that, in the case of somatostatin receptors, high-affinity metal labeled somatostatin receptor antagonists poorly internalize into tumor cells and perform equally or even better in terms of in vivo uptake into tumor in animal tumor models than the corresponding agonists, which massively internalize. GRP receptors are over expressed in several neoplasms (Cornelio et al, Ann. Onco., 2007, 18, 1457-1466 and references therein) such as prostate cancer and metastasis, breast cancer and metastasis, gastrointestinal stromal tumors, small cell lung carcinomas, renal cell carcinomas, gastroenteropancreatic neuroendocrine tumors, head and neck squamous cell cancers, neuroblastomas and oesophageal squamous cell carcinomas. GRP receptors are also expressed in tumor-associated blood vessels of human ovarian, endometrial and pancreatic cancers. (Fleischmann et al., Cell Onc., 2007, 29, 421-33).Therefore, it is highly desirable to design potent radiopharmaceuticals with antagonist properties for imaging and radiotherapy.
- Jensen et al. (Pharma. Reviews, 2008 (in Press)) recently reviewed the receptor pharmacology of three different Bombesin receptor subtypes of which GRP receptor belong to subtype 2.
- In a recent publication Cescato et al. (J. Nucl. Med., 2008, 49, 318-26) demonstrated that 99mTc-N4-labelled Bombesin antagonist may be preferred over agonists for tumor targeting.
- Earlier inventions in the field of GRP-receptor targeted compounds are described in
WO 2007/109475 A2 ,WO 2007/095443 A2 ,US 2008/0008649 A1 andUS 7,226,577 B2 with metal chelated-Linker-Bombesin with a general scheme shown below. - According to
WO 2007/095443 A2 , L70 sample with the particular sequence 177Lu-DOTA-Gly-4-aminobenzoyl-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2 behaved as an agonist wherein the uptake at 1 and 24 hours was measured. The uptake is not optimal for therapeutic purposes and needs to be improved. - Besides these patents and applications, pre-clinical and clinical studies are included in the publications (Waser et al., Eur. J. Nucl. Medicine, 2007, 34, 95-100; J. Nucl. Med., 2006, 47, 1144-52).
- By virtue of selecting an antagonist that targets GPR receptor at a different site with high affinity, it is shown in this invention that a combination of spacer strategy results in unexpected high and persistent tumor uptake combined with a low uptake and rapid clearance in non-target organs. In a comparative study, remarkable higher uptake (> 2 X) in the tumor was observed when a similar linker was used. Starting from in vitro assays validating the antagonistic properties of the Bombesin analogs it was found that even after adding N-terminally a spacer, a chelator and a metal these antagonistic effects were retained and translated into excellent in vivo behaviour regarding tumor-to-background ratios.
- Therefore it is an object of the present invention, to provide new bombesin peptide antagonist conjugates showing high uptake and high in vivo stability (human serum and tissue).
- In a first aspect, the invention relates to bombesin analog peptide antagonist conjugates which selectively bind to bombesin receptors and more particularly to GRP receptor without triggering internalization into the cell and without signaling through calcium mobilization while antagonizing the agonist-induced effects in these two systems, wherein the bombesin analog peptide antagonist conjugate has general Formula (I):
(I) [A-(B)n]x-C
wherein - x is an integer from 1 to 3,
- n is an integer from 1 to 6,
- A is a metal chelator comprising at least one radionuclide metal, preferably suitable for diagnostic or therapeutic use, more preferably for imaging or radiotherapy,
- B is a spacer linked to N-terminal of C or a covalent bond ,
- C is a bombesin analog peptide antagonist of sequence C-1 to C-3, wherein
- C-1: Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Xaa3 13-Xaa4 14-ZH,
wherein- Xaa1 is D-Phe, D-Cpa, D-Tyr, D-Trp or a residue having any one of the formulae described below:
- K is F, Cl, I, or NO2,
- Xaa2 is Gly or β-Ala,
- Xaa3 is Statine, Statine analogs and isomers, 4-Am,5-MeHpA, or 4-Am,5-MeHxA,
- Xaa4 is Leu, Cpa, Cba, CpnA, Cha, t-buGly, tBuAla, Met, Nle, or iso-Bu-Gly, and Z is NH or O;
- Xaa1 is D-Phe, D-Cpa, D-Tyr, D-Trp or a residue having any one of the formulae described below:
- C-2: Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Leuψ(CHOH-CH2)-(CH2)2-CH3,
wherein- Leuψ(CHOH-CH2)-(CH2)2-CH3 is
- Xaa1 is D-Phe, D-Cpa, D-Tyr, D-Trp or a residue having any one of the formulae described below:
- K is F, Cl, I, or NO2,
- Xaa2 is Gly or β-Ala;
- Leuψ(CHOH-CH2)-(CH2)2-CH3 is
- C-3: Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Xaa5 13-Xaa6 14-ZH,
wherein- Xaa1 is D-Phe,
- Xaa2 is Gly,
- Xaa5 is Leuψ-CH2NH-,
- Xaa6 is Cys or Phe,
- and
- Z is NH.
- The invention further refers to pharmaceutically acceptable salts of these bombesin analog peptide antagonist conjugates of an inorganic or organic acid thereof, and further to hydrates, complexes, esters, amides and solvates of these compounds having general chemical Formula (I).
- In a preferred embodiment of the present invention, the metal chelator (A) is a metal chelator for trivalent metals or for pentavalent metals and their close analogs.
- Preferably, the metal chelator (A) for trivalent metals is selected from the group comprising: DOTA-, NODASA-, NODAGA-, NOTA-, DTPA-, EDTA-, TETA-, and TRITA- based chelators and their close analogs,
wherein
DOTA stands for 1,4,7,10-tetrazacyclododecane-N, N',N",N"' tetraacetic acid,
DTPA stands for diethylenetriaminepentaacetic acid,
EDTA stands for ethylenediamine-N,N'-tetraacetic acid,
TETA stands for 1,4,8,11-tetraazacyclododecane-1,4,8,11-tetraacetic acid, and
NOTA stands for 1,4,7-triazacyclononanetriacetic acid. - More preferably, the metal chelator (A) for trivalent metals is selected from the group comprising:
- DOTA-, NOTA-, DTPA-, and TETA-based chelators and their close analogs.
-
- Even more preferably, the metal chelator (A) for trivalent metals is selected from the group comprising DTPA (diethylenetriaminepentaacetic acid) and polyaza-polycarboxylate macrocycles such as DOTA (1,4,7,10-tetrazacyclododecane-N, N',N",N"' tetraacetic acid).
- Preferably, the metal chelator (A) for pentavalent metals is selected from the group comprising 2-hydrazino nicotinamide (HYNIC), N4-chelators, N4-X (N4 may be linear or macrocyclic and X may be an azide amine, OH, halogen, o-, m-, p-amino benzyl metaparacarboxybenzyl, and carboxy (Nock, B. et al. (2003 [99mTc]
Demobesin 1, a novel bombesin analogue for GRP receptor-targeted tumour imaging. Eur. I. Nucl. Mol. Imaging, 30, 247-258)), Desferrioxamin (DFO), and NrS(4-r) chelators.
and - R1-R15 are independently from each other hydrogen atoms or (C1 -C4) alkyl groups, wherein, in the
- R16 is a hydrogen atom or a CO2 (C1 -C4)alkyl group;
- R17 and R18 are independently from each other (C1-C4) alkyl groups or phenyl groups;
- R19 is CH2-COOH or a functional derivative thereof;
- E is (C1 -C4)alkylene, or phenylene;
- optionally (C1-C4)alkylene is substituted by CO2-alkyl CH2-COalkyl, CONH2, or CONHCH2-CO2-alkyl;
- optionally phenylene is substituted by CO2-alkyl,
- wherein the alkyl groups have 1 to 4 carbon atoms;
- G is NH or S;
- Y is a functional group capable of binding with a free amino group of the peptide (N-terminal) or with the spacer; and
- Z' is S or O.
-
- NrS(4-r) chelators is defined wherein r is an integer from 1 to 4.
- Said functional group Y preferably comprises isocyanato, isothiocyanato, formyl, halonitrophenyl, diazonium, epoxy, trichloro-s-triazinyl, ethyleneimino, chlorosulfonyl, alkoxycarb-imidoyl, (substituted or unsubstituted) alkylcarbonyloxycarbonyl, alkylcarbonylimidazolyl, succinimido-oxycarbonyl; said group being attached to a (C1 -C10) hydrocarbon biradical. Suitable examples of hydrocarbon biradicals are biradicals derived from benzene, (C1 -C6) alkanes, (C2-C6) alkenes and (C1-C4)-alkylbenzenes.
- Preferably NtS(4-t) chelators are selected from the group comprising bisamino bisthiol (BAT) based chelators for technetium radionuclide metal, mercapto-acetyl-glycyl-glycyl-glycine (MAG3) for technetium radionuclide metal. More preferably, the metal chelator (A) for pentavalent metals is selected from the group comprising
- Preferably, r is an integer from 2 to 4 and more preferably r is 2 or 3.
- Preferably, m means an integer from 1 to 2, more preferably m is 1.
- Well known metal chelators such as linear, macrocyclic, tetrapyridine and N3S, N2S2 or N4 chelators are disclosed in
US 5,367,080 A ,US 5,364,613 A ,US 5,021,556 A ,US 5,075,099 A ,US 5,886,142 A . - Well known metal chelators such as HYNIC, DTPA, EDTA, DOTA, TETA, bisamino bisthiol (BAT) based chelators are disclosed in
US 5,720,934 A . - Well known metal chelators such as Desferrioxamin (DFO) is disclosed in Doulias et al. (2003) Endosomal and lysosomal effects of desferrioxamine: protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest. Free Radic. Biol. Med., Vol. 35, Issue 7:719-28.
- A wide variety of chelating agents is available and reviewed by Banerjee et al., (Nucl. Med. and Biology, 2005, 32, 1-20 and references therein).
- 2-hydrazino nicotinamide (HYNIC) is another class of chelating group (A), in the presence of a coligand which has been widely used for incorporation of 99mTc and 186,188Re (Schwartz et al. Bioconj. Chem., 1991, 2, 333-6; Babich et al., J. Nucl. Med., 1993, 34, 1964-70; Nucl. Med. Biol., 1995, 22, 25-30; Nucl. Med. Biol., 1995, 22, pp. 32, pp. 1-10)
- DTPA is used in Octreoscan® (marketed by Covidian) for complexing 111In and several modifications are described in the literature (Brechbiel et al., Biocon. Chem., 1991, 2, 187-194; Li et al., Nucl. Med. Biol., 2001, 28, 145-154).
- DOTA type chelates for radiotherapy applications are described by
Tweedle et al., US Pat 48885363 - N4-chelators, 99mTc-N4-chelator have been used for peptide labeling in the case of minigastrin for targeting CCK-2 receptors (Nock et al., J. Nucl. Med., 2005, 46, 1727-36).
- In a preferred embodiment of the present invention, the radionuclide metal is suitable for being complexed with a metal chelator and leading to radioactive metal chelator for imaging. Preferably, the radionuclide metal is selected from the group comprising 133mIn, 99m Tc, 67Ga, 52Fe, 68Ga, 72As, 111In, 97Ru, 203Pb, 62Cu, 64Cu, 51Cr, 52mMn, 157Gd, 123I, 124I, 131I, 75Br, 76Br, 77Br, 64Cu and 82Br. More preferably, the radionuclide metal is selected from the group comprising 99mTc, 67Ga, 68Ga, 111In, and 123I. Even more preferably the radionuclide metal is 68Ga. Even more preferably the radionuclide metal is 99mTc.
- In a preferred embodiment of the present invention, the radionuclide metal is suitable for complexing with a metal chelator and leading to radioactive metal chelator for radiotherapy. Preferably, the radionuclide metal is selected from the group comprising 186Re, 90Y, 67Cu, 68 Ga, 69Er, 121Sn, 127Te, 142Pr, 143Pr, 198Au, 199Au, 161Tb, 109Pd, 188Rd, 186Re, 188Re, 77As, 166Dy, 166Ho, 149Pm, 151Pm, 153Sm, 159Gd, 172Tm, 90Y, 111In, 169Yb, 175Yb, 177Lu, 105Rh, 111Ag, 125I, 123I, 213Bi, 225Ac, 129I, 64Cu and 177mSn. More preferably, the radionuclide metal is selected from the group comprising 186Re, 188Re, 90Y, 153Sm, 68Ga, and 177Lu.
- In a further alternative of the first aspect the suitable radionuclide metal is a radioactive halogen (iodine and bromine isotopes), the radioactive halogen is bonded directly to the peptide, such as by chemical reaction to a Tyr or Trp moiety within the peptide, or optionally A can be Tyr or Trp.
- Preferred radiodiagnostic agents (67Ga, 111In) and radiotherapeutic agents (90Y, 153Sm, 177Lu) optionally contain a chelated +3 metal ion from the class of elements known as the lanthanides. Typical radioactive metals in this class include the isotopes 90Yttrium, 111Indium, 149Promethium, 153Samarium, 166Dysprosium, 166Holmium, 175Ytterbium, and 177Lutetium. All of these metals (and others in the lanthanide series) have very similar chemistries, in that they remain in the +3 oxidation state and prefer to chelate to ligands that bear hard (oxygen/nitrogen) donor atoms.
-
- B is a spacer linked to N-terminal of C or a covalent bond.
- In a preferred embodiment of the present invention B is a compound having Formula (II)
II B1-B2
wherein - B1 is a covalent bond, a natural amino acid, an unnatural amino acid, a linear diamine or a cyclic diamine,
- B2 is a covalent bond, a natural amino acid, an unnatural amino acid, a linear carboxylic acid or a cyclic carboxylic acid,
- with the proviso that both B1 and B2 cannot be covalent bonds at the same time and that, when B1 is a diamine, B2 is a carboxylic acid (i.e., B2 cannot be a bond or a natural or unnatural amino acid in this case).
-
- a is an integer from 0 to 3,
- b is an integer from 0 to 3,
- Preferably,
- a is 0 or 1,
- b is 0 or 1,
- c is an integer from 1 to 24,
- d is an integer from 1 to 6.
- Preferably,
- c is an integer from 1 to 15, more preferably c is from 1 to 8,
- d is an integer from 1 to 3, more preferably d is 1.
- E' is NH, or CH2,
- f is an integer from 0 to 6,
- g is an integer from 0 to 6;
- when E' is CH2, then the 6-membered ring is optionally substituted at any carbon position of the 6-membered ring on the same carbon of the ring or on different carbons,
- when E' is NH, then the 6-membered ring is optionally substituted at any carbon position of the 6-membered ring on the same carbon atom of the ring or on different carbon atoms and/or
- on the nitrogen atom with the proviso that f or g is an integer equal to or higher than 1.
- Preferably,
- E' is NH,
- f is an integer from 0 to 3,
- g is an integer from 0 to 3;
- i is an integer from 1 to 6,
- j is an integer from 1 to 6,
- P is O or H2.
- Preferably,
- i is an integer from 1 to 3,
- j is an integer from 1 to 3,
- PisO.
- More preferably the spacer is selected from the group comprising 4-amino-1-carboxymethylpiperidine, (R,S)-diaminoaceticacid, PEG1-24, Sar5-10, 8-aminooctanoic acid, 6-aminocaproic acid, 4-(2aminoethyl)-1-carboxymethyl piperazine, diaminobutyric acid, hippuric acid, 4-amino-1-Boc-piperidine-4-carboxylic acid, Gly-aminobenzoic acid, 5-amino-3-oxa-pentyl-succinamic acid, Peg1-24-4-amino-1-carboxymethyl piperidine, Dab(shikimic acid), (D-Gln)x, (D-Asn)x.
- In a preferred embodiment of the present invention, the bombesin analog peptide antagonist sequence is selected from the group comprising C-1 to C-3, preferably C-1 to C-2.
- Preferably, the bombesin analog peptide antagonist sequence is selected from the group comprising:
-
Compound 1 Seq: D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2; -
Compound 9 Seq: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3; -
Compound 12 Seq: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CH2NH)-Phe-NH2; - Compound 13 Seq: Dphe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CH2NH)-Cys-NH2.
- Preferably, the bombesin analog peptide antagonist conjugate having Formula (I) comprising at least one radionuclide metal is selected from the group comprising
- Compound 1: DOTA-Gly-aminobenzoyl-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2;
- Compound 2: DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2;
- Compound 3: DOTA-4-amino-1-piperidine-4-carboxylicacid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2;
- Compound 4: DOTA-15-amino-4,7,10,13-tetraoxapentadecanoic acid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2;
- Compound 5: DOTA-(15-amino-4,7,10,13-tetraoxapentadecanoic acid)-(4-amino-1-carboxymethyl-piperidine)-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2;
- Compound 6: DOTA-diaminobutyricacid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2;
- Compound 7: DOTA-4-(2-aminoethyl)-1-carboxymethyl-piperazine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2;
- Compound 8: DOTA-(5-amino-3-oxa-pentyl)-succinamic acid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2;
- Compound 9: DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3;
- Compound 10: DOTA-(15-amino-4,7,10,13-tetraoxapentadecanoic acid-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3;
- Compound 11: DOTA-15-amino-4,7,10,13-tetraoxapentadecanoic acid -D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3;
- Compound 12: DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CH2NH)-Phe-NH2;
- Compound 13: DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CH2NH)-Cys-NH2;
- Compound 14: N4-triazoles-dPEG1-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2.
- In a preferred embodiment of the present invention, for the compound having Formula (I), x is an integer from 1 to 2, preferably x is 1.
- When x is equal to or higher than 2, then (B)n is a linear spacer or a branched spacer linked to the N-terminal of the bombesin analog peptide antagonist (C).
- In a preferred embodiment of the present invention, for the compound having Formula (I), n is an integer from 1 to 4, preferably n is 1 or 3, more preferably 1.
- In a preferred embodiment of the present invention, for the compound having Formula (I), A is additionally a metal chelator comprising at least one cold metal atom corresponding or equivalent to the listed above radionuclide metal. Such compounds are useful for in-vitro in-vivo binding assays and as reference compounds. Listed above preferred embodiments apply here.
- In a preferred embodiment of the present invention, for the compound having Formula (I), K is additionally H or preferably H.
In a second aspect, the invention relates to bombesin analog peptide antagonist conjugate precursors which selectively bind to bombesin receptors and which more particularly bind to GRP receptor without triggering internalization into the cell and without signaling through calcium mobilization while antagonizing the agonist-induced effects in these two systems, wherein the bombesin analog peptide antagonist conjugate has general Formula (I')
(I') [A'-(B)n]x-C
wherein - x is an integer from 1 to 3,
- n is an integer from 1 to 6
- A' is a metal chelator,
- B is a spacer linked to N-terminal of C or a covalent bond,
- C is a bombesin analog peptide antagonist of sequence C-1 to C-3.
- The metal chelator A' is a metal chelator free of radionuclide metal as defined in the first aspect for A.
- The spacer B and the bombesin analog peptide antagonist C are defined as above in the first aspect.
- The invention further refers to pharmaceutically acceptable salts of the bombesin analog peptide antagonist conjugates of an inorganic or organic acid thereof, and to hydrates, complexes, esters, amides, solvates and prodrugs of these compounds having general chemical Formula (I').
- In a preferred embodiment of the present invention, x is an integer from 1 to 2, preferably x is 1. When x is equal to or higher than 2, then (B)n is a linear spacer or a branched spacer linked to the N-terminal of the bombesin analog peptide antagonist (C).
- In a preferred embodiment of the present invention, in Formula (I'), n is an integer from 1 to 4, preferably n is 1 or 3, more preferably 1.
- In a third aspect, the invention relates to a pharmaceutical composition comprising bombesin analog peptide antagonist conjugates having Formula (I) or (I') and a pharmaceutical acceptable carrier.
- In a fourth aspect, the invention relates to the use of bombesin analog peptide antagonist conjugates having Formula (I) or (I') for binding to bombesin receptors and more particularly gastrin releasing peptide receptor (GRP) and/or for inhibiting bombesin receptors and more particularly gastrin releasing peptide receptor (GRP).
- In a fifth aspect, the invention relates to a method for preparing a bombesin analog peptide antagonist conjugate having general Formula (I)
(I) [A-(B)n]x-C
wherein n, x, A, B and C are defined as above,
comprising the step - Radiochelating the bombesin analog peptide antagonist conjugate having general Formula (I') as defined above with a suitable radionuclide metal or metal atom corresponding to radionuclide metal listed above.
- Preferably, the method for preparing a bombesin analog peptide antagonist conjugate having general Formula (I) comprises the step of radiochelating with a suitable radionuclide metal.
- In a further embodiment, the method for preparing a bombesin analog peptide antagonist conjugate having general Formula (I)
(II) [A-(B)n]x-C
wherein n, x, A, A', B and C are defined as above,
comprises additionally the steps: - a) Coupling a spacer B to a bombesin analog peptide antagonist C for obtaining a spacer-bombesin analog peptide antagonist of sequence C-1 to C-3, optionally repeating step a); and
- b) Coupling a spacer- bombesin analog peptide antagonist with a metal chelator A' for obtaining bombesin analog peptide antagonist conjugate having general Formula (I'), optionally repeating step b),
- In a preferred embodiment of the present invention, n, x, metal chelator A, metal chelator A' spacer B and bombesin analog peptide antagonist C are defined as above.
- In a sixth aspect, the invention relates to a method for imaging bombesin receptors and more particularly GRP Receptor expressing tumor cells and/or tumoral and peritumoral vessels in a patient, comprising the steps:
- Administering to a patient a radiopharmaceutical effective amount of a bombesin analog peptide antagonist conjugate having Formula (I); and
- Imaging the radionuclide metal in the patient.
- A preferred embodiment of the sixth aspect concerns the use of a radiopharmaceutically effective amount of a bombesin analog peptide antagonist conjugate having Formula (I) for the manufacture of an imaging agent for imaging bombesin receptors and more particularly GRP Receptor expressing tumor cells and/or tumoral and peritumoral vessels.
- In a preferred embodiment the tumor cells refer to cancers that are selected from the group comprising:
- prostate cancer, including metastases,
- breast cancer, including metastases,
- gastrointestinal stromal tumors,
- small cell lung carcinomas,
- renal cell carcinomas,
- gastroenteropancreatic neuroendocrine tumors,
- head and neck squamous cell cancers,
- neuroblastomas, and
- oesophageal squamous cell carcinomas.
- Even more preferably, tumor cells refer to cancers that are selected from
- prostate cancer, including metastases, and
- breast cancer, including metastases.
- In a further preferred embodiment tumoral and peritumoral vessels refer to cancers that are selected from
- Ovarian cancers,
- Endometrial cancers, and
- Pancreatic cancers.
- Preferably, the tumoral and peritumoral vessels refers to Ovarian cancers.
- A preferred embodiment concerns the use of a therapeutically effective amount of a bombesin analog peptide antagonist conjugate having Formula (I) for the manufacture of a medicament for treating or preventing tumor cell and/or tumoral and peritumoral vessel related diseases.
- In a preferred embodiment the tumor cell related diseases refer to cancers that are selected from the group comprising:
- prostate cancer, including metastases,
- breast cancer, including metastases,
- gastrointestinal stromal tumors,
- small cell lung carcinomas,
- renal cell carcinomas,
- gastroenteropancreatic neuroendocrine tumors,
- head and neck squamous cell cancers,
- neuroblastomas, and
- oesophageal squamous cell carcinomas.
- Even more preferably, the tumor cell related diseases refer to cancers that are selected from the group comprising:
- prostate cancer, including metastases, and
- breast cancer, including metastases.
- In a further preferred embodiment tumoral and peritumoral vessel related diseases refer to cancers that are selected from the group comprising:
- ovarian cancers,
- endometrial cancers, and
- pancreatic cancers.
- Preferably, the tumoral and peritumoral vessel related diseases refers to Ovarian cancers.
- In a seventh aspect, the invention relates to a kit for the preparation of a radiotherapeutical agent or radiopharmaceutical imaging agent having Formula (I), which kit comprises a vial containing a predetermined quantity of bombesin analog peptide antagonist conjugate of formual (I') and an acceptable carrier, diluent, excipient or adjuvant for the radiolabeling a metal chelator.
- In a eight aspect, the invention relates to bombesin analog peptide antagonist of sequence C-1 to C-3, wherein
- C-1: Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Xaa3 13-Xaa4 14-ZH,
wherein- Xaa1 is D-Phe, D-Cpa, D-Tyr, D-Trp or a residue having any one of the formulae described below:
- K is F, Cl, I, or NO2,
- Xaa2 is Gly or β-Ala,
- Xaa3 is Statine, Statine analogs and isomers, 4-Am,5-MeHpA, or 4-Am,5-MeHxA,
- Xaa4 is Leu, Cpa, Cba, CpnA, Cha, t-buGly, tBuAla, Met, Nle, or iso-Bu-Gly, and
- Z is NH or O;
- Xaa1 is D-Phe, D-Cpa, D-Tyr, D-Trp or a residue having any one of the formulae described below:
- C-2: Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Leuψ(CHOH-CH2)-(CH2)2-CH3,
wherein- Leuψ(CHOH-CH2)-(CH2)2-CH3 is
- Xaa1 is D-Phe, D-Cpa, D-Tyr, D-Trp or a residue having any one of the formulae described below:
- K is F, Cl, I, or NO2,
- Xaa2 is Gly or β-Ala;
- Leuψ(CHOH-CH2)-(CH2)2-CH3 is
- C-3: Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Xaa5 13-Xaa6 14-ZH,
wherein- Xaa1 is D-Phe:
- Xaa2 is Gly,
- Xaa5 is Leuψ-CH2NH-,
- Xaa6 is Cys or Phe,
and - Z is NH.
- As used hereinafter in the description of the invention and in the claims, the term "alkyl", by itself or as part of another group, refers to a straight chain or branched chain alkyl group with 1 to 20 carbon atoms, such as, for example, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, pentyl, iso-pentyl, neo-pentyl, heptyl, hexyl, decyl. Alkyl groups can also be substituted, such as by halogen atoms, hydroxyl groups, C1-C4-alkoxy groups or C6-C12-aryl groups. More preferably alkyl is C1-C10-alkyl, C1-C6-alkyl or C1-C4-alkyl.
- As used hereinafter in the description of the invention and in the claims, the term "lower unbranched or branched alkyl(en)" shall have the following meaning: a substituted or unsubstituted, straight or branched chain monovalent, divalent or trivalent radical consisting of carbon and hydrogen, containing no unsaturation and having from one to eight carbon atoms, e.g., but not limited to methyl, ethyl, n-propyl, n-pentyl, 1,1-dimethylethyl (t-butyl), n-heptyl and the like. This moiety may be unsubstituted or substituted, such as by halogen atoms, hydroxyl atoms, C1-C4-alkoxy groups or C6-C12-aryl groups.
- As used hereinafter in the description of the invention and in the claims, the term "phenylene" group is based on a di- or optionally tri-substituted benzene ring. For example, poly(p-phenylene) is a polymer built up from para-phenylene repeating units. Phenylene may be substituted or unsubstituted. It may be substituted with halogen, OH, alkoxy, preferably C1-C4-alkoxy, carboxy, ester, preferably C1-C4-ester, amide, nitro.
- As used hereinafter in the description of the invention and in the claims, the term "alkene" shall have the following meaning: an unsaturated aliphatic or alicyclic chemical compound containing at least one carbon-to-carbon double bond. The simplest acyclic alkenes, with only one double bond and no other functional groups, form a homologous series of hydrocarbons with the general formula CnH2n, e.g., ethylene (C2H4), propylene (C3H6). The alkenes may be substituted or unsubstituted. If the alkene are substituted, they may be substituted by halogen atoms, hydroxyl groups, C1-C4-alkoxy groups, C6-C12-aryl groups or the like.
- As used hereinafter in the description of the invention and in the claims, the term "aryl" shall have the meaning of an unsaturated ring system, preferably an aromatic ring system, more preferably having 6 to 12 carbon atoms in the ring skeleton. Examples thereof are phenyl and naphthalenyl. The aryl moieties may be unsubstituted or substituted, such as by halogen atoms, hydroxyl groups, C1-C4-alkoxy groups or C6-C12-aryl groups.
- As used hereinafter in the description of the invention and in the claims, the term "benzene" shall have the following meaning: an organic chemical compound with the formula C6H6. Benzene is an aromatic hydrocarbon and the second [n]-annulene ([6]-annulene), a cyclic hydrocarbon with a continuous pi bond. Benzene may be unsubstituted or substituted, such as by halogen atoms, hydroxyl groups, C1-C4-alkoxy groups or C6-C12-aryl groups.
- As used hereinafter in the description of the invention and in the claims, the terms "alkenyl" and "alkynyl" are similarly defined as for alkyl, but contain at least one carbon-carbon double or triple bond, respectively. Alkenyl may more preferably be C2-C6-alkenyl and alkynyl may more preferably be C2-C6-alkynyl.
- As used hereinafter in the description of the invention and in the claims, the term "halogen" shall have the meaning of F, Cl, Br or 1.
- As used hereinafter in the description of the invention and in the claims, the terms "salts of inorganic or organic acids", "inorganic acid" and "organic acid" refer to mineral acids, including, but not being limited to acids such as: carbonic, nitric, phosphoric, hydrochloric, perchloric or sulphuric acid or the acidic salts thereof such as the potassium, sodium, calcium, magnesium salts, for example potassium hydrogen sulfate, or to appropriate organic acids which include, but are not limited to: acids such as aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulphonic acids, examples of which are formic, acetic, trifluoracetic, propionic, succinic, glycolic, gluconic, lactic, malic, fumaric, pyruvic, benzoic, anthranilic, mesylic, fumaric, salicylic, phenylacetic, mandelic, embonic, methansulfonic, ethanesulfonic, benzenesulfonic, phantothenic, toluenesulfonic, trifluormethansulfonic and sulfanilic acid, respectively. Likewise, the organic acids may also be present as the salts thereof, such as the potassium, sodium, calcium, magnesium salts.
- As used hereinafter in the description of the invention and in the claims, the term "pharmaceutically acceptable salt" relates to salts of inorganic and organic acids, such as mineral acids, including, but not limited to, acids such as carbonic, nitric or sulfuric acid, or organic acids, including, but not limited to, acids such as aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulphonic acids, examples of which are formic, acetic, trifluoroacetic, propionic, succinic, glycolic, gluconic, lactic, malic, fumaric, pyruvic, benzoic, anthranilic, mesylic, salicylic, phenylacetic, mandelic, embonic, methansulfonic, ethanesulfonic, benzenesulfonic, phantothenic, toluenesulfonic and sulfanilic acid.
- As used hereinafter in the description of the invention and in the claims, the terms "amino acid sequence" and "peptide" are defined herein as a polyamide obtainable by (poly)condensation of at least two amino acids.
- As used hereinafter in the description of the invention and in the claims, the term "amino acid" means any molecule comprising at least one amino group and at least one carboxyl group, but no peptide bond within the molecule. In other words, an amino acid is a molecule that has a carboxylic acid functionality and an amine nitrogen having at least one free hydrogen, preferably in alpha position thereto, but no amide bond in the molecule structure. Thus, a dipeptide having a free amino group at the N-terminus and a free carboxyl group at the C-terminus is not to be considered as a single "amino acid" within the above definition. The amide bond between two adjacent amino acid residues which is obtained from such a condensation is defined as a "peptide bond".
- An amide bond as used herein means any covalent bond having the structure
-C(=O)-NH-CH- or -HC-HN-(O=)C-
wherein the carbonyl group is provided by one molecule and the NH-group is provided by the other molecule to be joined. An amide bond between two adjacent amino acid residues which is obtained from such a polycondensation is defined as a "peptide bond". Optionally, the nitrogen atoms of the polyamide backbone (indicated as NH above) may be independently alkylated, e.g., with -C1-C6-alkyl, preferably with -CH3. - As used hereinafter in the description of the invention and in the claims, an amino acid residue is derived from the corresponding amino acid by forming a peptide bond with another amino acid.
- As used hereinafter in the description of the invention and in the claims, an amino acid is a naturally occurring or unnatural amino acid wherein unnatural amino acid is a synthetic / artificial amino acid residue, proteinogenic and/or non-proteinogenic amino acid residue. The non-proteinogenic amino acid residues may be further classified as (a) homo analogues of proteinogenic amino acids, (b) β-homo analogues of proteinogenic amino acid residues and (c) further non-proteinogenic amino acid residues.
- Accordingly, the amino acid residues are derived from the corresponding amino acids, e.g., from
proteinogenic amino acids, namely Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val; or
non-proteinogenic amino acids, such as homo analogues of proteinogenic amino acids wherein the side chain has been extended by a methylene group, e.g., homoalanine (Hal), homoarginine (Har), homocysteine (Hcy), homoglutamine (Hgl), homohistidine (Hhi), homoisoleucine (Hil), homoleucine (Hle), homolysine (Hly), homomethionine (Hme), homophenylalanine (Hph), homoproline (Hpr), homoserine (Hse), homothreonine (Hth), homotryptophane (Htr), homotyrosine (Hty) and homovaline (Hva);
β-homoanalogues of proteinogenic amino acids wherein a methylene group has been inserted between the α-carbon and the carboxyl group yielding β-amino acids, e.g., β-homoalanine (βHal), β-homoarginine (βHar), β-homoasparagine (βHas), β-homocysteine (βHcy), β-homoglutamine (βHgl), β-homohistidine (βHhi), β-homoisoleucine (βHil), β-homoleucine (βHle), β-homolysine (βHly), β-homomethionine (βHme), β-homophenylalanine (βHph), β-homoproline (βHpr), β-homoserine (βHse), β-homothreonine (βHth), β-homotryptophane (βHtr), β-homotyrosine (βHty) and β-homovaline (βHva);
further non-proteinogenic amino acids, e.g., α-aminoadipic acid (Aad), β-aminoadipic acid (β Aad), α-aminobutyric acid (Abu), α-aminoisobutyric acid (Aib), β alanine (βAla), 4-aminobutyric acid (4-Abu), 5-aminovaleric acid (5-Ava), 6-aminohexanoic acid (6-Ahx), 8-aminooctanoic acid (8-Aoc), 9-aminononanoic acid (9-Anc), 10-aminodecanoic acid (10-Adc), 12-aminododecanoic acid (12-Ado), α-aminosuberic acid (Asu), azetidine-2-carboxylic acid (Aze), β-cyclohexylalanine (Cha), citrulline (Cit), dehydroalanine (Dha), γ-carboxyglutamic acid (Gla), α-cyclohexylglycine (Chg), propargylglycine (Pra), pyroglutamic acid (Glp), α-tert-butylglycine (Tle), 4-benzoylphenylalanine (Bpa), δ-hydroxylysine (Hyl), 4-hydroxyproline (Hyp), allo-isoleucine (aIle), lanthionine (Lan), (1-naphthyl)alanine (1-Na1), (2-naphthyl)alanine (2-Na1), norleucine (Nle), norvaline (Nva), ornithine (Orn), phenylglycin (Phg), pipecolic acid (Pip), sarcosine (Sar), selenocysteine (Sec), statine (Sta), β-thienylalanine (Thi), 1,2,3,4-tetrahydroisochinoline-3-carboxylic acid (Tic), allo-threonine (aThr), thiazolidine-4-carboxylic acid (Thz), γ-aminobutyric acid (GABA), iso-cysteine (iso-Cys), diaminopropionic acid (Dpr), 2,4-diaminobutyric acid (Dab), 3,4-diaminobutyric acid (γβDab), biphenylalanine (Bip), phenylalanine substituted in para-position with -C1-C6-alkyl, -halide, -NH2, -CO2H or Phe(4-R) (wherein R = -C1-C6-alkyl, -halide, -NH2, or -CO2H); peptide nucleic acids (PNA, cf., P.E. Nielsen, Acc. Chem. Res., 32, 624-30); or their N-alkylated analogues, such as their N-methylated analogues. - Cyclic amino acids may be proteinogenic or non-proteinogenic, such as Pro, Aze, Glp, Hyp, Pip, Tic and Thz.
- For further examples and details reference can be made to, e.g., J.H. Jones, J. Peptide Sci., 2003, 9, 1-8 the disclosure of which is incorporated herein by reference in its entirety.
- As used hereinafter in the description of the invention and in the claims, the terms "non-proteinogenic amino acid" and "non-proteinogenic amino acid residue" also encompass derivatives of proteinogenic amino acids. For example, the side chain of a proteinogenic amino acid residue may be derivatized thereby rendering the proteinogenic amino acid residue "non-proteinogenic". The same applies to derivatives of the C-terminus and/or the N-terminus of a proteinogenic amino acid residue terminating the amino acid sequence.
- As used hereinafter in the description of the invention and in the claims, a proteinogenic amino acid residue is derived from a proteinogenic amino acid selected from the group consisting of Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val either in L- or D-configuration; the second chiral center in Thr and Ile may have either R- or S-configuration. Therefore, for example, any posttranslational modification of an amino acid sequence, such as N-alkylation, which might naturally occur renders the corresponding modified amino acid residue "non-proteinogenic", although in nature said amino acid residue is incorporated in a protein. Preferably modified amino acids are selected from N-alkylated amino acids, ß-amino acids, γ-amino acids, lanthionines, dehydro amino acids, and amino acids with alkylated guanidine moieties.
- As used hereinafter in the description of the invention and in the claims, the term "carboxylic acid" or "dicarboxylic acid" means organic compounds having one COOH moiety or two COOH moieties, respectively, such as for example, formic acid, acetic acid, propionic acid, butyric acid, cyclohexane carboxylic acid, benzoic acid, salicyl acid, lactic acid (carboxylic acids) or oxalic acid, malonic acid, succinic acid, adipic acid, fumaric acid, maleic acid, malic acid, phthalic acid (dicarboxylic acids), respectively.
- As used hereinafter in the description of the invention and in the claims, the term "diamine" means organic compounds having two NR'R" moieties, wherein R' and R" may independently from each other be alkyl, alkenyl, alkynyl, aryl. Diamines may for example be ethylendiamine, 1,4-cyclohexane diamine, piperazine.
- As far as hereinbefore amino acids, carboxylic acids, dicarboxylic acids or diamines are referred to, this also specifically includes the respective radicals obtained when such amino acids, carboxylic acids, dicarboxylic acids or diamines, respectively, are comprised in the compounds of the invention, i.e., -HN-...-CO- (amino acid), -OC-... (carboxylic acid), -OC-...-CO- (dicarboxylic acid), -HN-...-NH- (diamine), for example.
- As used hereinafter in the description of the invention and in the claims, the term "metal chelator" is defined as a molecule that complexes a radionuclide metal to form a metal complex that is stable under physiological conditions and which may also be conjugated with a targeting group though a spacer. The metal chelator is complexed or not complexed with a metal radionuclide.
- As used hereinafter in the description of the invention and in the claims; the wording "radionuclide metal" is defined as a radionuclide which is an atom with an unstable nucleus, the nucleus being characterized by excess energy which is available to be imparted either to a newly-created radiation particle within the nucleus, or else to an atomic electron (see internal conversion). The radionuclide metals used herein are especially suitable for diagnostic or therapeutic use, more preferably for imaging or radiotherapy. The radionuclide, in this process, undergoes radioactive decay, and emits (a) gamma ray(s) and/or subatomic particles. These particles constitute ionizing radiation. Radionuclides may occur naturally, but can also be artificially produced.
- These radionuclide metals include, but are not limited to gallium (e.g., 67Ga, 68Ga) copper (e.g., 67Cu and 64Cu); technetium (e.g., and 99mTc and 94mTc); rhenium (e.g., 186Re and 188Re); lead (e.g., 212Pb); bismuth (e.g, 212Bi); and palladium (e.g., 109Pd). Methods for preparing these isotopes are known. Molybdenum/technetium generators for producing 99mTc are commercially available. Procedures for producing 186Re include the procedures described by Deutsch et al., (Nucl. Med. Biol., Vol. 13:4:465-477, 1986) and Vanderheyden et al. (Inorganic Chemistry, Vol. 24:1666-1673, 1985), and methods for the production of 188Re have been described by Blachot et al. (Intl. J. of Applied Radiation and Isotopes, Vol. 20:467-470, 1969) and by Klofutar et al. (J. of Radioanalytical Chem, Vol. 5:3-10, 1970). Production of 212Pd is described in Fawwaz et al., J. Nucl. Med, (1984), 25:796. Production of 212Pb and 21 Bi is described in Gansow et al., Amer. Chem. Soc. Symp, Ser. (1984), 241:215-217, and Kozah et al., Proc. Nat'l. Acad. Sci. USA, (January 1986), 83:474-478. 99mTc is preferred for diagnostic use, and the other radionuclides listed above have therapeutic use.
- As used hereinafter in the description of the invention and in the claims, the term "spacer" is defined as a linking group between the metal chelator and the bombesin peptide antagonists. As used hereinafter in the description of the invention and in the claims; the wording "agonist" means a substance (ligand) which binds to a specific site at a receptor molecule of a cell and thus activates signal transduction in the cell. This leads to a measurable effect.
- As used hereinafter in the description of the invention and in the claims; the wording "antagonist" means a substance (ligand) which binds to a site at receptor cell which is specific to an agonist substance, thus blocking this site to the agonist, without actuating an effect. Thus the antagonist inhibits the effect of the agonist.
-
- Statine R2 = OH, R1 can be varied significantly but typically are the same as amino acid side chains
- Statine Analogs R2 = H, R1 can be varied significantly but typically are the same as amino acid side chains
-
- NODASA = 1,4,7-TRIAZACYCLONONANE-1-SUCCINIC ACID-4,7-DIACETIC ACID
- NODAGA =1,4,7-triazacyclononane-N-glutaric acid-N',N"-diacetic acid
- TRITA = 1,4,7,10 tetraazacyclotridecane-1,4,7,10 N, N', N", N"'-tetraacetic acid
- Cpa = (S)-4-carboxamidophenylalanine
- 4-Am-5-MeHpA = 4-amino-5-methylheptanoic acid
- 4-Am-5-MeHxA = 4-amino-5-methylhexanoic acid
- DFO = N'-[5-(acetyl-hydroxy-amino)pentyl]-N-[5-[3-(5-aminopentyl-hydroxycarbamoyl)propanoylamino]pentyl]-N-hydroxy-butanediamide
- Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
-
-
Fig. 1 : Dose-response curves of bombesin analogues determined by the calcium release assay. The calcium release assay was performed as described in Materials and Methods. PC3 cells were treated either with bombesin at concentrations ranging between 0.01 nmol/L and 10 µmol/L (●) alone, or in the presence of 10 µmol/L of the bombesin analogues Compound 1 (▲), or In- Compound 1 (◆), or bombesin analogues Compound 1a (■).Compound 1, Tested alone at 1 µmol/L and 10 µmol/L Compound 1 (Δ), In- Compound 1 (×) and compound 1a (□) have no effect on calcium release in PC3 cells. Compound 1a refers to binding sequence of 1, without the linker and chelate (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2).Compound 1 refers to chelate (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2). In-Compound 1 refers to In-chelated (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2). -
Fig. 2 : HEK-GRPR cells immunofluorescence microscopy Immunofluorescence microscopy ofCompound 1, In-Compound 1, Compound 1b and GRPR-ANTAG using the mouse monoclonal HA-epitope antibody and HEK-GRPR cells. (a) no peptide, (b) 10 nmol/L bombesin, (c) Compound 1b, (d) Compound 1b + 10 nmol/L bombesin, (d, f, h, j) cells treated with 10 nmol/L bombesin in the presence of 1 µmol/L of the analogues Compound 1b, GRPR-ANTAG,Compound 1, and In-Compound 1, (c, e, g, i) cells treated with Compound 1b, GRPR-ANTAG, andCompound 1. -
Fig. 3a ,3b ,4a ,4b : PET-imaging in PC-3 (3) and LNCaP (4)-tumor bearing mice of Ga-68-DOTA Compound 2. a) 1h after injection of 10 MBq radiotracer, b)blocked with 100 µg bombesin -
Fig. 6 : SPECT/CT image of 99mTc-ARN4-06 (15 MBq/200 pmol) in PC-3-tumor bearing mice -
Fig.8 : SPECT/CT image of 99mTc-ARN4-05 (15 MBq/200 pmol) in PC-3-tumor bearing mice. -
Fig. 9 : HPLC analysis of Ga-68-DOTA Compound 2 on a reversed phase column. -
Fig. 10a ,b ,c ,d ,e : Stability assay of Ga-68-DOTA Compound 2 in mouse plasma and urine analysed by HPLC. -
Fig. 11 : Human serum stability of Lu-177-DOTA Compound 2. -
Fig. 12 : Comparison of tumor/tissue Ga-68 RM2 with F18 FDG and F18 choline - The entire disclosure[s] of all applications, patents and publications, cited herein are incorporated herein by reference in their entirety.
- The following examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
- From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.
- wherein A has the meaning of A but also A' as appropriate for all examples disclosed below.
- wherein A has the meaning of A but also A' as appropriate for all examples disclosed below.
- (A = DOTA, B = Spacer B1 - B2 , C = Peptide with N-terminal amide Z [Z = NH])
- DOTA-Spacer-Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Sta13-Leu14-NH2.
Peptides were synthesized manually on solid phase using Fmoc-strategy. To obtain N-terminal amides, Rink amide MBHA resin LL (100-200 mesh) (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucyl-4-Methylbenzhydrylamine resin) was used. In general, Rink amide MBHA resin with a theoretical loading of 0.34 mmole/g resin was given to the reactor. N,N-Dimethylformamide (DMF) was added to the reactor and was shaken for 30 minutes to allow swelling of the resin. After removing the solvent, a solution of 20% piperidine in DMF was added and the resin was shaken for 15 minutes to remove the 9-Fluorenylmethoxycarbonyl (Fmoc) protecting group. This step was repeated twice. After this procedure, the resin was washed three times for 5 min with DMF. The piperidine solution and the DMF solution of the last three washings were collected and filled with ethanol to 100 mL. From this solution an aliquot was taken to determine the amount of removed Fmoc-protecting groups spectrophotometrically. - Before coupling the Fmoc-aminoacid derivative the resin was washed twice for 2 min with DMF. 2 equivalents of Fmoc-aminoacids, preactivated with 2 equivalents of N,N-Diisopropylcarbodiimide (DIC) / N-Hydroxybenzotriazole (HOBt) were added to the resin and the pH was adjusted to a value of 8-9 by adding about 4 equivalents of N-Ethyldiisopropylamine (DIPEA). The reaction was incubated for 2h under gentle shaking. After the reaction, the solution was removed and the solid phase was washed twice for 5 min with DMF. The reaction was monitored by Kaiser-test. A certain amount of beads of the resin were washed 3 times with ethanol, 50 µL of the solution 1 (20 g phenol in 10 mL ethanol were mixed with 1 mL of a solution of 0.01 M KCN in 49 mL pyridine) and 50 µL of solution 2 (500 g ninhydrine in 10 mL ethanol) were added and the beads were heated for 10 min at 95°C. Blue beads indicated uncoupled free amino functions.
- All amino acids were used as N-terminalFmoc-protected derivates and they were coupled in a similar manner. Tryptophan was used with tert-butyloxycarbonyl (Boc) protecting group on the side chain while histidine and glutamine were Trt protected. If Kaiser test performed after coupling of each amino acids, indicated incomplete coupling of amino functions, the coupling was repeated.
- After building of the whole desidered peptide sequence, the resin was washed 5 times with DCM followed by 5 times washing with diethyl ether, each for 2 minutes and dried under vacuum.
- The prochelator DOTA( t Bu)3 was purchased from Macrocyclics Inc., Dallas, USA. Prior to coupling the SPACER, the N-terminal Fmoc-protection was removed from the resin bound peptides. The resin was swelled for 15 min in DMF, tretated twice with a solution of 20% piperidine in DMF (15 min) and washed three times with DMF. The solution from the piperidine treatments and the following DMF washings were collected to determine the amount of cleaved Fmoc groups.
- 2 equivalents of the SPACER, preactivated with 2-(1H-9-Azabenzotriazole-1-yl)-1,1,3,3-tetramethyl-aminium hexafluorophosphate (HATU) for 20 min in DMF, were added to the resin. The pH was adjusted to 8-9 by adding DIPEA. The reaction mixture was shaken for 2 h and the coupling was monitored by Kaiser test. The prochelator DOTA( t Bu)3 was coupled in the same manner after removal of Fmoc as previously described. The DOTA( t Bu)3 coupling was shaken overnight. After removing the solution, the resin was washed 3 times with DMF, 5 times with DCM followed by 5 times washing with diethyl ether, each for 2 minutes and dried under vacuum.
- The peptide-resin was taken in a syringe equipped with a frit. A solution of trifluoroacetic acid (TFA)/Thioanisol (TA)/Triisopropylsilane (TIS)/H2O (94/2/2/1) was added and the syringe was agitated for 2h. The solution was added to a mixture of 50% diisopropylether and 50% diethylether on ice to allow the precipitation of the peptide. The peptide was collected by centrifugation at 3000 rpm for 5 min and the supernatant was decanted. The precipitate was washed several times with diethylether and dried under vacuum. The crude product was dissolved in water and purified by semi-preparative RP-HPLC on a Metrohm HPLC system LC-CaDI 22-14 (Herisau, Switzerland) with a Macherey-Nagel VP 250/21 Nucleosil 100-5 C18 column (eluents:
eluent 1 =0.1% TFA in water and eluent 2 = acetonitrile; gradient: 0-20 min, 90%-50% eluent 1; flow: 15 mL/min). - The conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
A-B-C-1
DOTA-Spacer-Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12- Xaa3 13- Xaa4 14-ZH (Z = NH) - Compound 1: A = DOTA, B1 = Gly, B2 = 4-aminobenzoyl; Xaa1 = DPhe; Xaa2 = Gly; Xaa3 = Sta; Xaa4 = Leu,
DOTA-Gly-aminobenzoyl-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2; C80H114N20O20, calculated (m/z): 1675.8, found [M+K]+: 1715.1. - Compound 2: A = DOTA, B1 = 4-amino-1-carboxymethyl-piperidinyl; B2 = none, Xaa1 = DPhe; Xaa2 = Gly; Xaa3 = Sta; Xaa4 = Leu
DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2; C79H118N20O19; calculated (m/z): 1639.9, found [M+K]+: 1678.1 - Compound 3: A = DOTA, B1 = 4-amino-1-piperidine-4-carboxy; B2 = none, Xaa1 = DPhe; Xaa2 = Gly; Xaa3 = Sta; Xaa4 = Leu
DOTA-4-amino-1-piperidine-4-carboxylicacid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 C77H116N20O19, calculated (m/z): 1624.9, found [M+K]+: 1663.7 - Compound 4: A = DOTA, B1 = 15-amino-4,7,10,13-tetraoxapentadecanoyl; B2 = none, Xaa1 = DPhe; Xaa2 = Gly; Xaa3 = Sta; Xaa4 = Leu
DOTA-15-amino-4,7,10,13-tetraoxapentadecanoic acid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2; C82H127N19O23, calculated (m/z): 1747.8, found [M+K]+: 1785.1 - Compound 5: A = DOTA, B1 = 15-amino-4,7,10,13-tetraoxapentadecanoyl; B2 = 4-amino-1-piperidine-4-carboxy, Xaa1 = DPhe; Xaa2 = Gly; Xaa3 = Sta; Xaa4= Leu
DOTA-(15-amino-4,7,10,13-tetraoxapentadecanoic acid)-(4-amino-1-carboxymethyl-piperidine)-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2; C89H139N21O24, calculated (m/z): 1886.0, found [M+K]+: 1924.9 - Compound 6: A = DOTA, B1 = diaminobutyricacid; B2 = none, Xaa1 = DPhe; Xaa2 = Gly; Xaa3 = Sta; Xaa4 = Leu
DOTA-diaminobutyricacid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2; C75H114N20o19, calculated (m/z): 1598.9, found [M+K]+: 1638.4 - Compound 7: A = DOTA, B1 =4-(2-aminoethyl)-1-carboxymethyl-piperazinyl; B2 = none, Xaa1 = DPhe; Xaa2 = Gly; Xaa3 = Sta; Xaa4 = Leu
DOTA-4-(2-aminoethyl)-1-carboxymethyl-piperazine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2; C79H121N21O19, calculated (m/z): 1667.9, found [M+Na]+: 1691.2 - Compound 8: A = DOTA, B1 = (5-amino-3-oxa-pentyl)-succinamic acid; B2 = none, Xaa1 = DPhe; Xaa2 = Gly; Xaa3 = Sta; Xaa4 = Leu
DOTA-(5-amino-3-oxa-pentyl)-succinamic acid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
C79H120N20O21, calculated (m/z): 1685.9, found [M+K]+: 1723.7 - (A = N4-azido, B = Spacer B1 - B2 , C = Peptide with N-terminal amide Z [Z = NH2])
- N4-triazoles-dPEG1-Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Sta13-Leu14-NH2
- Peptides were synthesized manually on solid phase using Fmoc-strategy. To obtain N-terminal amides, Rink amide MBHA resin LL (100-200 mesh) was used. The synthesis was performed as described in the Example 1.
- Prior to coupling with the alkyl group, the N-terminalFmoc-protection was removed from the resin bound peptides. The resin was swelled for 15 min in DMF, treated twice with a solution of 20% piperidine in DMF (15 min) and washed three times with DMF. The solution from the piperidine treatment and the following DMF washings were collected for Fmoc determination.
- 2 equivalents of the propargyl-dPEG1-NHS-ester were added to the resin. The pH was adjusted to 8-9 by adding DIPEA. The reaction mixture was shaken for 24 h and the coupling was monitored by Kaiser test.
- The peptide-resin was taken in a syringe equipped with a frit. A solution of TFA/TIS/H2O (94/2.5/2.5) was added and the syringe was agitated for 2h. The solution was added to a mixture of 50% diisopropylether and 50% diethylether on ice to allow the precipitation of the peptide. The peptide was collected by centrifugation at 3000 rpm for 5 min and the supernatant was decanted. The precipitate was washed several times with diethylether and dried under vacuum. The crude product was dissolved in water and purified by semi-preparative RP-HPLC as described before.
- The conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
-
- a) N,N',N",N"'-tetrakis(tert-butyloxycabonyl)-6-(hydroxy)-1,4,8,11-tetraazaundecane (N4(Bob)4-OH) [1]: A solution of 6-(hydroxy)-1,4,8,11-tetraazaundecane (1 g, 3.1 mmol) in DMF (10 mL) was cooled to 0 °C. To this was added a solution of Di-tert-butyldicarbonate (3.32 mL, 15.5 mmol) in DMF (5 mL) followed by DIPEA (2.7 mL, 15.5 mmol). The raction mixture was then stirred at room temperature for 18h. After this reaction time, the reaction mixture was partitioned between water and ethyl acetate. The aqueous layer was extracted thrice with ethyl acetate and the combined ethyl actetate phase was washed with sodium chloride solution and dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent under reduced pressure yielded the title compound in 86% yield.
- To a solution of 1 (300 mg, 0.54 mmol) in pyridine (3 mL) was added methylsulfonyl chloride (84 µL, 1.08 mmol). The reaction mixture was stirred at room temperature till it was completed as monitored by TLC. The solvent was evaporated under reduced pressure, the residue was taken into ethyl acetate. The ethyl acetate was washed thrice with 10% NaHCO3 and water and dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent under reduced pressure yielded the crude product, which was further purified by silica gel column chromatography to yield title compound in 84%.
- A suspension of 2 (250 mg, 0.38 mmol) and sodium azide (100 mg, 1.52 mmol) in DMF (3 mL) was stirred at 75 °C for 5h. Later the reaction mixture was stirred at room temperature for 18h. The reaction mixture was then portioned between water and ethyl acetate. The aqueous layer was extracted thrice with ethyl acetate and the combined ethyl acetate was washed with sodium chloride solution and dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent under reduced pressure yielded crude product, which was then purified by column chromatography. (yield 88%).
- The peptide (6.2 mg, 5 µm) with terminal alkyl group and 3 (3 mg, 5 µm) were dissolved in a 1:1 mixture of water and tert-butyl alcohol (1 mL). Copper powder (10 mg) was added followed by 0.1 M aqueous copper(II) sulfate pentahydrate (60 µL, 6 µm, 1.2 equiv) and the reaction mixture was stirred at room temperature for 24 h. The copper powder was filtered off, the solvent removed under reduced pressure. The crude peptide was purified by semi-preparative RP-HPLC.
- The chelator-peptide conjugate was treated with TFA:TIS:H2O (95:2:3) for 2h. The solvent was removed under reduced pressure. The crude product was titurated with diethyl ether and purified by semi-preparative RP-HPLC as described before.
- The conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
- Compound 14: A =N4-azido, B1 = propargyl-dPEG1-NHS-ester; B2 = none, Xaa1 = DPhe; Xaa2 = Gly; Xaa3 = Sta; Xaa4 = Leu
N4-triazoles-dPEG1-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2; C68H105N21O13, calculated (m/z): 1424.7, found [M+H]+: 1425.5 - DOTA-Spacer-Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Leuψ(CHOH)-(CH2)2-CH3
- All the pseudopeptides were synthesized in solution phase by condensation of the heptapeptide Fmoc-D-Phe-Gln-Trp-Ala-Val-Xaa2-His-OH with the modified aminoacid H-Leuψ(CHOH)-(CH2)3-CH3.
- Peptides were synthesized manually on 2-chlorotrityl chloride resin using Fmoc strategy. In general, 2-chlorotrityl chloride resin with a theoretical loading of 1.4 mmole/g resin was given to the reactor. The resin was swelled in DCM for 30 min and the first amino acid was coupled by adding 1 equivalent of amino acid, mixed with 4-fold molar excess of DIPEA in DCM. The coupling reaction mixture was stirred at room temperature for 2 h and then the resin was washed twice with a mixture of DCM/MeOH/DIPEA (17/2/1), twice with DCM and finally swelled in DMF. The Fmoc was deprotected using 20% of piperidine in DMF and the amount of removed Fmoc-protecting group was determined spectrophotometrically at 300 nm. The next amino acid was coupled by adding 2-fold molar excess of amino acid, mixed with equimolar amounts of DIC/HOBt, and 4-fold molar excess of DIPEA in DMF. The resin was agitated at room temperature for 2h and the coupling was monitored by Kaiser ninhydrin test. Each amino acid was coupled using the same strategy.
- The couplings were performed as described above.
- The fully protected peptides were cleaved from the solid support by suspending the resin in a mixture of TFA/TIS/DCM (1/5/94). Several times were drawn up a volume of 5 mL of the cleaving solution with the syringe, incubated 10 min and the cleaved fractions were collected in a 50 mL flask. After all the fractions were collected 3X10 mL of toluene were added into the flask, the solvents were evaporated and the product was dried afterwards for 1 h at the oil pump vacuum.
- Boc-Leu-OH (1 g, 4.3 mmol) was dissolved in DCM (30 mL) and 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU)(1.380 g, 4.3 mmol), HOBt (0.581 g, 4.3 mmol) and DIPEA (743 µL, 4.3 mmol) were added at 0°C. After 5 min of stirring, O,N-dimethylhydroxylamine hydrochloride (0.461 g, 4.73 mmol) and DIPEA (817 µL, 4.73 mmol) were added. All solid material dissolved within 10 min and the mixture was stirred overnight at RT. The solvent was evaporated, the reaction mixture redissolved in AcOEt and washed with H2O, 5% citric acid, H2O, 5% aqueous NaHCO3 solution, saturated NaCl solution several times. The solution was dried over MgSO4 and the solvent removed in vacuo. The desired compound was purified by silica gel column chromatography. ESI-MS: calcd. 269; found 292 [M +Na]+.
- Magnesium (0.330 g, 13.6 mmol) was activated by suspending in toluene for 30 min under N2. The toluene was removed and the Mg was dried under N2. To the suspension of Mg in THF (20 mL) was added bromobutane (1.46 mL, 13.6 mmol) dropwise and the mixture was heated at reflux. When all the magnesium was dissolved, Boc-Leu-N(OCH3)CH3 in THF was added dropwise and the reaction was stirred for 2h at 0°C. 1M HCl (150 mL) was added followed by ethylacetate (100 mL). The organic layer was washed with 1M potassium hydrogen sulfate, water, dried (Na2SO4) and concentrated in vacuum. The expected product was purified by silica gel column chromatography. The product was characterized by 1H-NMR and 13C-NMR. ESI-MS: calcd. 271; found 293.3 [M +Na]+.
- To a solution of Boc-Leu-(CH2)3-CH3 (0.190 g, 0.7 mmol) in methanol (5 mL) NaBH4 (0.104 g, 2.8 mmol) was added. The reaction mixture was further stirred for 1h, then neutralized with acetic acid and the solvent was removed under reduced pressure. The expected product was precipitated with a saturated bicarbonate solution. The peptide was collected by filtration, washed with water, hexane and dried. The product was characterized by 1H-NMR and 13C-NMR. ESI-MS: calcd. 272; found 273 [M +H]+; 547.7 [2M+H]+.
- Boc-Leuψ(CHOH)-(CH2)3-CH3 was deprotected using a solution of 80% TFA in DCM. After 1h the solution was concentrated, washed several time with DCM and dried. The chelator-spacer-peptide was dissolved in DMF, HATU (1.2 equivalents) was added and the mixture was stirred for 1h. H-Leuψ(CHOH)-(CH2)3-CH3 was dissolved in DMF and added to the peptide. The pH was adjusted to 8 using DIPEA and the reaction was stirred for 4h at RT.
- The solvent was concentrated and the peptide, fully protected, was obtained by precipitation with H2O on ice. The crude peptide was precipitated, cooled, centrifuged and separated from the solvent by decantation. In order to get the peptide fully deprotected it was solubilized in a mixture of DCM/TFA/TIS/H2O 10/85/2.5/2.5. After 4h the solution was concentrated and the peptide was precipitated using a mixture of 50% diethyl ether and 50% diisopropylether on ice. The peptide was then collected by centrifugation at 3000 rpm for 5 min and the supernatant was decanted. The precipitate was washed several times with diethylether and the crude product was kept then at a vacuum overnight to remove the remaining solvents. The crude product was dissolved in water and purified by preparative as describe earlier.
- The conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
- Compound 9: A = DOTA, B1 = 4-amino-1-carboxymethyl-piperidine: B2 = none, Xaa1 DPhe; Xaa2 = Gly;
DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2 (CH2)2-CH3, C74H112N18O17, calculated (m/z): 1524.8, found [M+K]+: 1564.3 - Compound 10: A = DOTA, B1 = 15-amino-4,7.10,13-tetraoxapentadecanoyl; B2 = 4-amino-1-carboxymethyl-piperidine, Xaa1 = DPhe; Xaa2 = Gly;
DOTA-PEG4-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3; C86H135N19O22, calculated (m/z): 1786.9, found [M+K]+: 1811.1 - Compound 11: A = DOTA, B1 = 15-amino-4,7,10,13-tetraoxapentadecanoyl; B2 = none, Xaa1 = DPhe; Xaa2 = Gly;
DOTA-PEG4-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3
C78H121N17O21, calculated (m/z): 1632.8, found [M+K]+: 1672.2 - DOTA-Spacer-Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Xaa3 13-Xaa4 14-NH2
- Synthesis of bombesin conjugates with general sequence: DOTA-Spacer-Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12- Leuψ(CH2NH)-Phe-NH2
- Peptides were synthesized manually on MBHA resin LL (100-200 mesh) HCl using Boc strategy. In general, MBHA resin with a theoretical loading of 0.59 mmol/g was given to the reactor and it was swelled in DCM for 30 min. The resin was treated 3 times (10 min) with a solution of 10% DIPEA in DCM. The first coupling of the Boc-Leuψ(CH2NH)-Phe-OH was achieved using 2 equivalent of Boc-amino acid activated with 2 equivalents of HOBt and 2 equivalents of DIC. The coupling reaction mixture was stirred at room temperature for 2h and the reaction was monitored with the Kaiser ninhydrin test. The Boc was deprotected using 30% of TFA in DCM and this step was repeated twice. The resin was, then, treated with a solution of 10% DIPEA in DCM and the couplings were performed as described above.
- (H-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CH2NH)-Phe-NH2: C56H76N14O9, calculated (m/z): 1089.3, found [M+H]+: 1089.8
- The couplings were performed as described above.
- The peptide was treated with TFA (1 mL) and TIS (30 µL) and the mixture stirred at room temperature for 5 min. The mixture was then cooled in ice bath and trifluoromethanesulfonic acid (TFMSA) (100 µL) added dropwise with stirring. The flask was sealed with a stopper and the mixture stirred at room temperature for 2 h. The volume was reduced under vacuum and the peptide was precipitated adding cold diethyl ether. The precipitate was washed several times with diethylether and the crude product was dried under vacuum. The crude product was dissolved in water and purified by HPLC preparative as describe above.
- The conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
-
- Synthesis of bombesin conjugates with general sequence: DOTA-Spacer-Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Leuψ(CH2NH)-Cys-NH2
- Peptides were synthetized manually by solid phase on MBHA resin (0.59 mmol/g) using Boc-strategy. Boc-Cys(4-MeOBzl)-OH (2.5 eq.) was coupled to the resin using DIC (2.5 eq.) and HOBt (2.5 eq.) as activating reagent. The pH was adjusted to 8 with DIPEA (5 eq.). Introduction of reduced bond 13ψ14(CH2-NH) was carried out using Boc-Leu-aldehyde (2.5 eq.) dissolved in acified dimethylformamide. NaBH3CN (2.5 eq.) in DMF was added slowly, in 20 min, and the reaction was stirred for 1h at RT. After the formation of a reduced peptide bond, all of the coupling reactions were performed using N-Boc-protected aminoacids.
- The couplings were performed as described above.
- The deprotection, cleavage and purification were performed as described previously. The conjugates were analyzed by analytical RP-HPLC and characterized by mass spectroscopy (ESI-MS).
-
- To 10 µg aliquot of the chelator-bombesin peptide antagonist conjugate in water was added 1-2 mCi of an aqueous solution of (111InCl3, 171LuCl3 or 67/68GaCl3) and 250-500 µL of 0.4M sodium acetate buffer (pH=5). This solution was heated for 30 min at 95°C and cooled to room temperature for 10 min. An aliquot of 5 µl of the reaction mixture was added to 25 µl of Ca-DTPA solution (0.1 M, pH 5.2) and analyzed by HPLC for determining the amount of unlabeled radionuclide.
- Labeling of the synthesized conjugates with 115In.
- The complexation of the bombesin analogs with natIn was performed following the same protocol. The natIn was used in the form of natInCl3 solution and in a molar ratio of 1:1.
- All reagents were of the best grade available and were purchased from common suppliers. The mouse monoclonal hemagglutinin (HA) epitope antibody was purchased from Covance (Berkeley, CA). The secondary antibodies Alexa Fluor 488 goat anti-mouse IgG (H+L) was from Molecular Probes, Inc. (Eugene, OR). Bombesin and the antagonist [D-Phe6, Leu-NHEt13, des-Met14]-bombesin(6-14) (GRPR-ANTAG) were purchased from Bachem (Bubendorf, Switzerland). RM26, RM1b, In-RMlb, and 175Lu-AMBA were provided by H.R. Mäcke (Basel, Switzerland). The Fluo-4NW Calcium Assay kit was from Molecular Probes, Inc. (Eugene, OR).
- Human embryonic kidney 293 (HEK293) cells stably expressing the HA-epitope tagged human GRP receptor (HEK-GRPR), were generated as previously described (Cescato at al., 2008) and cultured at 37°C and 5% CO2 in Dulbecco's Modified Eagle Medium with GlutaMAX™-I (DMEM) containing 10% (v/v) fetal bovine serum (FBS), 100 U/ml penicillin, 100 µg/ml streptomycin and 750 µg/ml G418. Human prostate cancer cells (PC3 cells) were obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; DSMZ No: ACC465) and cultured at 37°C and 5% CO2 in Ham's F12K containing 2 mM L-glutamine and supplemented with 10% (v/v) FBS, 100 U/ml penicillin and 100 µg/ml streptomycin. All culture reagents were from Gibco BRL (Grand Island, NY).
- The GRP receptor binding affinity of the various compounds was determined by in vitro receptor autoradiography on cryostat sections of either well characterized prostate carcinomas, or on sections from HEK-GRPR or PC3 cell pellets as described previously ( Markwalder et al., Can. Res., 1999; 59, 1152-1159; Reubi et al., Eur. J. Nucl. Med., 2000;27: 273-282; Reubi et al., Clin. Cancer Res. 2002;8 1139-1146). The radioligands used were I25I-[Tyr4]-bombesin, known to preferentially label GRP receptors (Vigna et al., Gastroenterology. 1987;93: 1287-1295) and 125I-[D-Tyr6, β-Ala11, Phe13, Nle14]-bombesin(6-14) as universal bombesin receptor ligand (Gastroenterology. 1987;93: 1287-1295).
See results in table 1. - Immunofluorescence microscopy based internalization assays with HEK-GRPR cells were performed as previously described (Cescato et al., 2006; Cescato et al., 2008). Briefly, HEK-GRPR cells were grown on poly-D-lysine (20 µg/ml) (Sigma-Aldrich, St. Louis, MO) coated 35 mm four-well plates (Cellstar, Greiner Bio-One GmbH, Frickenhausen, Germany). For the experiment, cells were treated either with 10 nM bombesin, or with 1 µM of the various bombesin analogs, or, to evaluate potential antagonism, with 10 nM bombesin in the presence of a 100-fold excess of these various analogs for 30 min at 37°C and 5% CO2 in growth medium, and then processed for immunofluorescence microscopy using the mouse monoclonal HA-epitope antibody at a dilution of 1:1,000 as first antibody and Alexa Fluor 488 goat anti-mouse IgG (H+L) at a dilution of 1:600 as secondary antibody. The cells were imaged using a Leica DM RB immunofluorescence microscope and an Olympus DP10 camera.
- GRP receptor internalization induced by bombesin is efficiently antagonized by the
bombesin analogues Compound 1, In-Compound 1, Compound 1b and GRPR-ANTAG. HEK-GRPR cells were treated for 30 min either with vehicle (no peptide, a), or with 10 nmol/L bombesin (b), a concentration inducing a sub-maximal internalization effect. Panels (d, f, h, j) show cells treated with 10 nmol/L bombesin in the presence of 1 µmol/L of the analogues Compound 1b, GRPR-ANTAG,Compound 1, and In-Compound 1. The effect of Compound 1b, GRPR-ANTAG,Compound 1, and In-Compound 1 alone at a concentration of 1 µmol/L is shown in panels (c, e, g, i, k). Following incubation with the peptides, the cells were processed for immunocytochemistry as described in above. A clear punctate perinuclear staining is detectable for bombesin treated cells. This punctate staining is efficiently abolished by an excess of theanalogues Compound 1, In-Compound 1, Compound 1b and GRPR-ANTAG. Compound-1, In-Compound 1, Compound 1b and GRPR-ANTAG given alone have no effect on GRP receptor internalization.
See results in Table 1 andFig. 2 . - Intracellular calcium release was measured in PC3 cells using the Fluo-4NW Calcium Assay kit as described previously (Magrys et al., J. Clin. Immunol. 2007, 27, 181-192; Michel et al.,; Cescato et al., J. Nucl. Med. 2008; 49: 318-326). In brief, PC3 cells were seeded (10,000 cells per well) in 96 well plates and cultured for 2 day at 37°C and 5% CO2 in culture medium. At the day of the experiment, the cells were washed with assay buffer (1 x HBSS, 20 mM HEPES) containing 2.5 mM probenecid, and then loaded with 100 µL/well Fluo-4NW dye in assay buffer containing 2.5 mM probenecid for 30 min at 37°C and 5% CO2 and then for further 30 min at room temperature. To measure the intracellular calcium mobilization after stimulation with the bombesin analogues to be tested, the dye-loaded cells were transferred to a SpectraMax M2e (Molecular Devices, Sunnyvale, CA). Intracellular calcium mobilization was recorded in a kinetic for 60 sec at room temperature monitoring fluorescence emission at 520 nm (with λex = 485 nm) in the presence of the analogues at the concentrations indicated. Maximum fluorescence (F-max) was measured after the addition of 25 µM ionomycin. Baseline (F-baseline) measurements were taken for dye-loaded, untreated cells. Data are shown as percentage of maximum calcium response (F-max - F-baseline = 100 % of maximum calcium response) as reported previously (Magrys et al., J. Clin. Immunol 2007, 27, 181-192; Michel et al., Cescato et al., J. Nucl. Med. 2008; 49: 318-326).). All experiments were repeated at least three times in triplicate.
-
Fig. 1 shows that In-Compound 1 and compound 1a behave like antagonists shifting the dose-response curve of bombesin to the right in presence of bombesin (BB).
See results in Table 1 andFig. 1 . - Compound 1: DOTA-Gly-aminobenzoyl-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
- Compound 2: DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
- Compound 3: DOTA-4-amino-1-piperidine-4-carboxylicacid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
- Compound 4: DOTA-15-amino-4,7,10,13-tetraoxapentadecanoic acid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
- Compound 5: DOTA-(15-amino-4,7,10,13-tetraoxapentadecanoic acid)-(4-amino-1-carboxymethyl-piperidine)-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
- Compound 6: DOTA-diaminobutyricacid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
- Compound 7: DOTA-4-(2-aminoethyl)-1-carboxymethyl-piperazine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
- Compound 8: DOTA-(5-amino-3-oxa-pentyl)-succinamic acid-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
- Compound 9: DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3
- Compound 10: DOTA-(15-amino-4,7,10,13-tetraoxapentadecanoic acid-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3
- Compound 11: DOTA-15-amino-4,7,10,13-tetraoxapentadecanoic acid -D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3
- Compound 12: DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CH2NH)-Phe-NH2
- Compound 13: DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CH2NH)-Cys-NH2
- Compound 14: N4-triazoles-dPEG1-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2.
TABLE 1. In vitro GRP receptor binding, signaling and internalization properties of BN analogs Compound BINDING IC50 (nM) mean ± SEM Signaling Ca ++ mobilization Receptor internalization 1 30 ± 4,5 ANTAG / no agonist effect Antag / no agonist effect 115In-1 16 ± 5,3 ANTAG / no agonist effect Antag / no agonist effect 2 9,7 ± 3,8 ANTAG / no agonist effect Antag / no agonist effect 115In-2 9,3 ± 1,9 ANTAG / no agonist effect Antag / no agonist effect 3 43 ± 14 ANTAG / no agonist effect Antag / no agonist effect 4 21 ± 6,5 ANTAG / no agonist effect Antag / no agonist effect 5 7,3 ± 0,6 ANTAG / no agonist effect Antag / no agonist effect 6 7,4 ± 2,2 ANTAG / no agonist effect Antag / no agonist effect 7 11 ± 0 NA NA 8 19 ± 3,0 NA NA 9 3,2 ± 1,3 ANTAG / no agonist effect Antag / no agonist effect 115In-9 2,5 ± 0,2 ANTAG / no agonist effect Antag / no agonist effect 10 6,9 ± 0,5 ANTAG / no agonist effect NA - Binding affinities of
Compounds - Cescato R, Schulz S, Waser B, et al. Internalization of sst2, sst3 and sst5 receptors: Effects of somatostatin agonists and antagonists. J. Nucl. Med., 2006;47:502-511.
- Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC. Bombesin Receptor Antagonists May Be Preferable to Agonists for Tumor Targeting. J. Nucl. Med.. 2008; 49:318-326.
- Magrys, A.; Anekonda, T.; Ren, G.; Adamus, G. The role of anti-alpha-enolase autoantibodies in pathogenicity of autoimmune-mediated retinopathy. J. Clin. Immunol. 2007, 27, 181-192.
- Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res. 1999;59:1152-1159.
- Michel, N.; Ganter, K.; Venzke, S.; Bitzegeio, J.; Fackler, O. T.; Kepplet, O. T. The Nef protein of human immunodeficiency virus is a broad-spectrum modulator of chemokine receptor cell surface levels that acts independently of classical motifs for receptor endocytosis and Galphai signaling. Mol. Biol. Cell. 2006, 17, 3578-3590
- Reubi JC, Schaer JC, Waser B, et al. Affinity profiles for Human somatostatin receptor sst1-sst5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med., 2000;27:273-282.
- Reubi JC, Wenger S, Schmuckli-Maurer J, et al. Bombesin Receptor Subtypes in Human Cancers: Detection with the Universal Radioligand (125)I-[D-TYR(6), beta ALA(11), PHE(13), NLE(14)] Bonabesin(6-14). Clin. Cancer Res., 2002;8:1139-1146.
- Vigna SR, Mantyh CR, Giraud AS, et al. Localization of specific binding sites for bombesin in the canine gastrointestinal tract. Gastroenterology. 1987;93:1287-1295.
- Female nude mice were implanted subcutaneously with 10 millions PC-3 tumor cells, which were freshly expanded in a sterilized solution phosphate-buffered saline (PBS, pH 7.4). Eleven days after inoculation the mice were injected into the tail vein with 10 pmol of radiolabeled peptides (about 0.18 MBq), diluted in NaCl (0.1% bovine serum albumin, pH 7.4, total injected volume =100 µL). For the determination of the nonspecific uptake in tumor or in receptor positive organs, a group of 4 animals was pre-injected with 0.02 µmol of unlabeled peptide in 0.9% NaCl solution and after 5 min radiolabeled peptide was injected. At 1, 4, 24, 48, and 72 h intervals, the mice (in groups of 3-4) were sacrificed and the organs of interest were collected, rinsed of excess blood, weighed and counted in a γ-counter.
- 111In- DOTA-Gly-aminobenzoyl-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
Injection amount: 5 µCi / 10 pmol / 100 µl/mice Blocking compound 2000 fold Animal: nude mice bearing PC3 tumour: 3 mice/group Time point: 1h, 4h, 4h blocking, 24h,48h, 72 h Organ 1h 4h 4h blocking 24 h 48 h 72 h blood 0.86±0.17 0.04±0.00 0.02±0.01 0.01±0.00 0.00±0.00 0.00±0.00 heart 0.28±0.05 0.04±0.01 0.04±0.01 0.03±0.01 0.00±0.00 0.01±0.00 Liver 1.93±0.29 0.38±0.05 0.39±0.08 0.19±0.01 0.10±0.01 0.09±0.02 spleen 0.57±0.21 0.12±0.01 0.09±0.01 0.05±0.01 0.04±0.01 0.02±0.00 lung 0.82±0.13 0.12±0.04 0.10±0.03 0.05±0-01 0.02±0.01 0.01±0.00 kidney 3.99±0.33 1.93±0.18 2.67±0.10 1.01±:0.06 0.50+0.09 0.28±0.02 stomach 3.31±0.63 0.76±0.14 0.07±0.03 0.05±0.02 0.01±0.00 0.02±0.01 intestine 1.73±0.48 0.20±0.10 0.07±0.01 0.04±0.00 0.01±0.00 0.01±0.00 adrenal 4.14±1.46 1.20±0.12 0.10±0.06 1.24±0.16 0.38±0.09 0.36±0.04 pancreas 21.92±1.34 0.32±0.31 0.07±0.02 0.15±0.02 0.06±0.01 0.06±0.01 pituitary 7.80±1.90 0.85±0.45 0.11±0.09 0.21±0.19 0.03±0.03 0.05±0.07 muscle 0.19±0.06 0.03±0.01 0.02±0.00 0.03±0.00 0.00+0.00 0.00±0.00 bone 0.40±0.10 0.18±0.07 0.04±0.01 0.14±0.03 0.03±0.00 0.03±0.01 tumor 14.24±1.75 13.46±0.80 0.46±0.00 6.58±1.14 2.08±0.12 1.31±023 Tumor to tissue 1 h 4h 24 h 48 h 72 h tumor: kidney 3.6 7.0 6.5 4.2 4.7 tumor:liver 7.4 35.4 34.6 20.8 14.5 tumor:blood 16.5 336.5 658.0 1600.0 1871.4 tumor:muscle 75.0 448.7 219.3 693.3 1091.7 - 68Ga-DOTA-Gly-aminobenzoyl-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
Animal: nude mice bearing PC3 tumor; 3 mice/group Injection amount: 1.27 µCi / 10 pmol / 100 µl/mice Blocking compound 3000 fold Compound 1Time point: 1h, 1h blocking, 2h, Organ 1h 1h blocking 2h blood 0.86±0.09 0.55±0.30 0.39±0.15 heart 0.33±0.21 0.30±0.18 0.14±0.02 Liver 1.14±0.37 1.05±0.60 0.98±0.32 spleen 1.29±0.53 0.08±0.05 0.03±0.01 lung 0.80±0.33 0.71±0.23 0.21±0.09 kidney 2.79±0.39 3.18±1.79 1.21±0.12 stomach 3.09±0.51 0.41±0.31 1.68±0.02 intestine 2.09±0.17 1.06±0.55 5.39±0.52 adrenal 3.31±0.78 0.07±0.06 0.89±0.62 pancreas 27.84±4.88 0.96±0.45 10.73±2.76 pituitary 13.35±1.32 0.28±0.08 0.22±0.00 muscle 0.26±0.08 0.07±0.05 0.20±0.02 bone 0.03±0.01 0.18±0.11 0.03±0.01 tumor 8.71±0.67 2.04±1.04 10.45±1.61 1 h 2h tumor: kidney 3.13 8.64 tumor: liver 7.66 10.68 tumor:pancreas 0.31 0.97 tumor:blood 10.18 27.08 tumor: muscle 33.74 53.51 - 111In-DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
Injection amount: 5 µCi / 10 pmol / 100 µl/mice Blocking compound 2000 fold Animal: nude mice bearing PC3 tumor: 3 mice/group Time point: 1h, 4h, 4h blocking, 24h,48h, 72 h Organ 1h 4h 4h blocking 24 h 48 h 72 h blood 0.77±0.28 0.05±0.04 0.13±0.02 0.00±0.00 0.00±0.00 0.00±0.00 heart 0.32±0.09 0.04±0.03 0.09±0.01 0.02±0.01 0.01±0.00 0.02±0.02 Liver 0.49±0.12 0.118±0.06 0.34±0.03 0.09±0.01 0.07±0.01 0.06±0.02 spleen 0.53±0.20 0.12±0.06 0.16±0.02 0.06±0.02 0.05±0.01 0.06±0.03 lung 0.70±0.30 0.10±0.07 0.19±0.01 0.04±0.03 0.11±0.24 0.04±0.02 Kidney 4.78±1.11 2.14±0.73 2.98±0.20 1.25±0.16 0.91±0.09 0.74±0.18 stomach 3.15±0.78 1.07±0.15 0.12±0.02 0.06±0.02 0.03±0.01 0.05±001 intestine 2.11±0.47 0.25±0.15 0.11±0,01 0.04±0.01 0.03±0.01 0.03±0.01 adrenal 3.46±2.07 1.17±0.54 1.10±0.60 0.71±0.29 0.54±0.29 1.01±0.74 pancreas 22.64±4.71 1.55±0.48 0.10±0.00 0.32±0.09 0.19±0.04 0.19±0.02 pituitary 7.00±5.68 0.59±0.55 0.58±0.49 0.07±0.33 0.21±0.33 0.51±0.24 muscle 0.29±0.17 0.05±004 0.06±0.02 0.02±0.01 0.01±0.01 0.02±0.01 bone 0.91±0.68 0.35±0.57 0.35±0.11 0.20±0.18 0.12±0.11 0.15±0.05 tumor 15.23±4.78 11.75±2043 0.45±0.04 6.84±1.02 4.67±0.39 4.07±0.34 Tumor to tissue 1 h 4h 24 h 48 h 72 h tumor: kidney 3.2 5.5 5.5 5.1 5.5 tumor:liver 30.9 64.6 74.1 67.2 63.0 tumor:blood 19.9 243.9 2744.6 3823.7 3391.2 tumour:pancreas 0.7 7.6 21.4 24.6 21.4 tumor:muscle 52.0 260.2 436.6 354.5 165.4 - 68Ga-DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
Radioligand: 68Ga-COMPOUND 2 Animal: nude mice bearing PC3 tumor; 3 mice/group Injection amount: 1.27 µCi / 10 pmol / 100 µl/mice Time point: 1h Organ 1h blood 0.03±0.01 heart 0.19±0.02 Liver 0.41±0.04 spleen 0.36±0.01 lung 0.34±0.03 kidney 1.87±0.08 stomach 2.13±0.34 intestine 1.54±0.22 adrenal 2.48±0.48 pancreas 11.63±0.19 pituitary 0.36±019 muscle 0.13±0.00 bone 0.23±0.03 tumor 9.31±1.58 1 h tumor: kidney 4.98 tumor: liver 22.60 tumor:pancreas 0.80 tumor:blood 20.85 tumor:muscle 74.02 - 111In-DOTA-(15-amino-4,7,10,13-tetraoxapentadecanoic acid)-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
Injection amount: 5 µCi / 10 pmol / 100 µl/mice Blocking compound 2000 fold Animal: nude mice bearing PC3 tumor: 3 mice/group Time point: 1h, 4h, 4h blocking, 24h,48h, 72 h Organ 1h 4h 4h blocking 24 h blood 0.21±0.02 0.02±0.00 0.01±0.00 0.00±0.00 heart 0.08±0.01 0.02±0.00 0.02±0.00 0.00±0.00 Liver 0.22±0.01 0.09±0.01 0.09±0.01 0.03±0.01 spleen 0.18±0.10 0.07±0.02 0.04±0.01 0.01±0.00 lung 0,24±0.01 0.07±0.01 0.04±0.01 0.01±0.01 kidney 1.85±0.15 1.38±0.37 1.40±0.29 0.24±0.01 stomach 2.01±0.36 0.56±0.18 0.03±0.01 0.01±0.01 intestine 1.16±0.24 0.10±0.04 0.05±0.04 0.02±0.00 adrenal 2.18±0.93 0.86±0.17 0.07±0.06 0.59±0.16 pancreas 10.96±0.57 0.52±0.05 0.02±0.00 0.01±0.01 pituitary 4.23±1.46 0.55±0.20 0.17±0.10 0.00±0.00 muscle 0.08±0.02 0.02±0.01 0.01±0.00 0.00±0.00 bone 0.16±0.06 0.12±0.04 0.02±0.01 0.04±0.02 tumor 10.56±0.70 8.63±1.13 0.45±0.06 3.23±0.52 Tumor to tissue 1 h 4h 24 h tumor:kidney 5.71 6.27 13.40 tumor:pancreas 0.96 16.71 345.16 tumor:blood 49.67 552.10 3457.24 tumor:muscle 140.10 349.48 808.55 tumor:bone 64.16 71.75 86.62 - 111In-DOTA-(15-amino-4,7,10,13-tetraoxapentadecanoic acid)-(4-amino-1-carboxy-methyl-piperidine)-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2
Animal: nude mice bearing PC3 tumor: 3-4 mice/group Injection amount: 5 µCi / 10 pmol / 100 µl/mice Blocking compound 2000 fold Time point: 1h, 4h, 4h blocking, 24h Organ 1 h 4h blocking 4 h 24 h blood 0.75 ± 0.21 0.02 ± 0.00 0.03 ± 0.01 0.01 ± 0.00 heart 0.28 ± 0.06 0.02 ± 0.00 0.03 ± 0.01 0.02 ± 0.00 Liver 0.40 ± 0.09 0.14 ± 0.01 0.15 ± 0.05 0.11 ± 0.02 spleen 0.80 ± 0.28 0.06 ± 0.01 0.09 ± 0.03 0.07 ± 0.01 lung 0.62 ± 0.15 0.05 ± 0.01 0.15 ± 0.19 0.51 ± 0.73 kidney 5.08 ± 0.72 1.76 ± 0.36 2.04 ± 0.15 1.37 ± 0.22 stomach 3.92 ± 1.26 0.06 ± 0.01 0.87 ± 0.58 0.05 ± 0.01 intestine 2.39 ± 0.42 0.03 ± 0.01 0.17 ± 0.10 0.05 ± 0.02 adrenal 3.63 ± 0.53 0.07 ± 0.02 0.68 ± 0.31 0.62 ± 0.16 pancreas 26.83 ± 4.34 0.06 ± 0.02 1.36 ± 0.81 0.33 ± 0.05 pituitary 9.02 ± 0.99 0.23 ± 0.14 0.38 ±0.16 0.46 ± 0.52 muscle 0.19 ± 0.07 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 bone 0.34 ± 0.04 0.03 ± 0.03 0.08 ± 0.02 0.08 ± 0.02 tumor 10.27 ± 0.36 0.61 ± 0.07 9.35 ± 0.73 6.33 ± 0.76 Tumor to tissue 1 h 4h 24 h tumor:blood 13.73 319.66 1155.51 tumor:kidney 2.02 4.59 4.62 tumor:pancreas 0.38 6.90 19.16 tumor:muscle 53.65 475.17 364.92 tumor:bone 29.93 124.55 76.65 - 111In-DOTA-DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3
Injection amount: 5 µCi / 10 pmol / 100 µml/mice Blocking compound 2000 fold Animal: nude mice bearing PC3 tumor: 3 mice/group Time point: 1h, 4h, 4h blocking, 24h,48h, 72 h Organ 1h 4h 4h blocking 24 h 48 h 72 h blood 0.43±0.10 0.12±0.03 0.04±0.00 0.01±0.00 0.01±0.00 0.01±0.00 heart 0.17±0.03 0.09±0.02 0.15±0.05 0.03±0.01 0.02±0.00 0.08±0.03 Liver 0.73±0.12 0.49±0.14 0.40±0.02 0.20±0.02 0.11±0.01 0.10±0.02 spleen 1.13±0.41 0.57±0.24 0.23±0.03 0.21±0.06 0.15±0.04 0.15±0.04 lung 0.45±0.05 0.21±0.06 0.38±0.06 0.08±0.04 0.05±0.02 0.18±0.07 kidney 5.23±3.01 2.43±0.47 2.88±1.52 1.41±0.22 0.97±0.06 0.55±0.15 stomach 4.433±2.48 5.72±4.04 0.16±0.03 1.08±0.15 0.43±0.10 0.28±0.09 intestine 3.61±0.61 3.31±1.61 0.14±0.02 0.35±0.05 0.16±0.07 0.10±0.01 adrenal 10.66±2.64 5.16±1.55 1.36±0.56 2.31±0.96 2.24±1.43 1.84±0.36 pancreas 65.69±8.14 39.80±9..25 0.18±0.04 4.52±0.53 2.30±0.19 1.06±0.19 pituitary 12.63±3.26 5.54±2.07 3.72±1.62 0.71±0.37 0.56±0.24 2.56±0.28 muscle 0.22±0.06 0.14±0.04 0.13±0.07 0.05±0.01 0.03±0.01 0.08±0.04 bone 1.31±1.29 0.71±0.25 1.61±0.52 0.29±0.14 0.23±0.13 1.08±0.83 tumor 9.18±1.16 13.17±5.01 038±0.08 8.39±0.88 5.89±0.351 3.04±1.44 Tumor to tissue 1 h 4h 24 h 48 h 72 h tumor:kidney 1.8 5.4 6.0 6.1 6.2 tumor:liver 12.7 26.7 42.4 53.0 35.0 tumor: blood 21.1 109.7 631.4 803.8 304.0 tumor:pancreas 0.2 0.3 1.9 2.6 2.9 tumor:muscle 42.6 94.7 169.2 191.9 42.9 -
- Empirical Formula: C78H115N20O19Ga; Molecular Weight: 1704.89
- Ga-68-DOTA- Compound 2 was imaged on a microPET/ CT (Inveon, Siemens) in PC-3 and LNCaP tumor-bearing mice 1h after injection of 10 MBq radiotracer. Due to the rapid renal clearance of this bombesin antagonist very low background activity was observed with only some kidney and bladder uptake. High tumor-contrast visible in both xenografts was effectively blocked by either 100 µg bombesin or non-radioactive Compound 2 itself. Bombesin receptors were successfully blocked with Bombesin leading to a critical lost of signal in tumor
Fig. 3a and3b in PC-3 tumor bearing mice +Fig. 4a and4b LNCaP-tumor bearing mice). - The binding affinity of Ga-68-DOTA- Compound 2 to the GRPr was determined via two different methods comprising receptor autoradiography on human tissues and a cellular assay using PC-3 cells. Both methods yielded high binding affinity of Compound 2 with an IC50 of ~8 nM based on the non-radioactive DOTA-Compond 2 peptide.
- Ga-68-DOTA- Compound 2 shows good metabolic stability measured by different in vitro and in vivo methods. In vivo plasma stability of Ga-68-DOTA- Compound 2 was investigated in non-tumor bearing mice Mouse plasma and urine was analysed by HPLC at 1, 3, 5, 10 and 15 min after intraveneous injection of approx. 20 MBq of Ga-68-DOTA- Compound 2 (
Fig. 10a , b, c, d, e). After some minutes, minor plasma degradation of the radiotracer was found showing two very small/ polar metabolites at 1.3 min and 1.5 min retention time which also occurred as main metabolites in the urine. The compound itself appeared with a retention time of 11.6-11.7 showing a double peak starting 5 min p.i.. - Microsomal stability of Ga-68-DOTA- Compound 2 was determined using mouse and human microsomes incubated with the radiotracer and analysed by HPLC. No degradation by mouse or human microsomes of Ga-68-DOTA- Compound 2 was found. Minor impurities detected on the chromatograms also occurred without the microsomal co-factor.
- SPECT/CT-imaging and biodistribution experiment in PC-3-tumor bearing mice of 99mTc-ARN4-06
- See experiment protocol above
Radioligand: 99mTc-ARN4-06 Animal: nude mice bearing PC-3 tumor; 3 mice/group Injection amount: 10 µCi / 10 pmol / 100 µl/mice Time point: 1h, 4h and 24 h organ 1 h Std Dev 4 h Std Dev 24 h Std Dev blood 1.32 0.07 0.33 0.05 0.04 0.01 heart 0.64 0.15 0.22 0.03 0.10 0.04 liver 6.31 1.16 3.62 1.16 1.19 0.36 spleen 3.91 0.66 1.29 0.53 0.87 0.18 lung 5.11 1.00 3.17 1.51 1.69 0.84 left kidney 6.55 0.59 2.73 0.42 1.28 0.30 stomach 8.09 1.45 5.44 1.26 0.61 0.19 intestine 8.41 2.39 2.02 0.80 0.16 0.08 adrenal 11.99 1.62 6.31 0.27 1.41 0.45 pancreas 72.50 8.98 11.18 2.89 0.41 0.20 pituitary 6.86 2.85 2.12 0.59 0.83 0.31 muscle 0.27 0.03 0.07 0.00 0.18 0.12 bone 0.78 0.13 0.45 0.18 0.35 0.20 tumor 28.66 1.75 34.68 3.71 18.40 2.58 Kidney 6.26 0.48 2.84 0.49 1.24 0.32 Radioligand: 99mTc-ARN4-05 Radioligand: 99mTc-ARN4-05 Tumor:Organ Ratio 1 h 4 h 24 h tumor:blood 20.79 85.11 455.94 tumor:heart 36.75 150.38 176.45 tumor:liver 4.37 9.50 15.47 tumor:spleen 7.50 20.51 21.05 tumor:lung 5.64 11.78 10.88 tumor:kidney 4.26 12.92 14.35 tumor:stomach 3.32 5.83 30.02 tumor:intestine 3.20 16.51 117.53 tumor:adrenal 2.31 2.62 13.07 tumor:pancreas 0.38 3.28 44.93 tumor:pituitary 4.43 4.40 22.14 tumor:muscle 116.82 283.06 99.65 tumor:bone 34.10 35.16 52.06 tumor:kidney 4.25 12.25 14.87 -
Figure 6 shows a SPECT/CT image of 99mTc-ARN4-06 (15 MBq/200 pmol) - SPECT/CT-imaging and biodistribution experiment in PC-3-tumor bearing mice of 99mTc-ARN4-05
- See experiment protocol above
Animal: nude mice bearing PC-3 tumor; 6-9 mice/group Injection amount: 10 µCi /10 pmol /100 µl/mice Time point: 1h, 4h, 24h organ 1 h Std Dev 4 h Std Dev 24 h Std Dev blood 1.69 0.14 0.40 0.05 0.09 0.02 heart 0.68 0.02 0.20 0.03 0.14 0.07 liver 12.32 1.01 7.75 0.62 3.88 0.40 spleen 4.00 0.60 1.72 0.34 0.83 0.22 lung 3.11 0.47 1.24 0.41 1.15 1.47 left kidney 10.50 1.20 6.12 1.17 1.42 0.13 stomach 5.68 0.01 4.86 1.04 0.42 0.15 intestine 6.97 1.57 2.12 0.37 0.12 0.01 adrenal 19.05 3.06 7.91 2.70 2.08 0.31 pancreas 64.86 6.72 19.86 2.35 0.57 0.21 pituitary 3.67 2.03 1.15 0.11 1.53 1.33 muscle 0.43 0.16 0.08 0.02 0.11 0.04 bone 1.34 0.26 0.57 0.11 0.41 0.19 tumor 22.50 2.62 29.91 4.00 15.16 0.45 Tumor:Organ Ratio 1 h 4 h 24 h tumor:blood 13.30 74.77 167.74 tumor: heart 33.19 149.55 105.06 tumor:liver 1.83 3.86 3.91 tumor:spleen 5.62 17.41 18.21 tumor:lung 7.24 24.11 13.21 tumor:kidney 2.14 4.89 10.71 tumor:stomach 3.96 6.15 35.99 tumor:intestine 3.23 14.09 129.43 tumor:adrenal 1.18 3.78 7.30 tumor: pancreas 0.35 1.51 26.66 tumor:pituitary 6.14 25.96 9.93 tumor:muscle 52.54 364.22 133.21 tumor:bone 16.80 52.85 37.06 -
Figure 8 shows a SPECT/CT image of 99mTc-ARN4-05 (15 MBq/200 pmol) - Synthesis of Ga-68-DOTA Compound 2
- Step 1: Non-radioactive peptides were synthesized by solid phase peptide synthesis (SPPS) following standard Fmoc strategy using polystyrene-supported Rink amide resin. Step 2:
- 350µl 0.25M HEPES in Wheaton V vial
- Add [68Ga]GaCl3 in 400µl 97.6% acetone/0.05N HCl
- Adjust pH to ∼3.5 with 0.1M HCl
- Add 40µg peptide in 40µl water
- Heat 75W (95°C) for 30s
- Stand for 30s
- Repeat heating and resting three more times
- Add 5ml water to the reaction mixture
- Immobilize on tC 18 Light SPE
- Wash water (5ml)
- Elute EtOH (500µl)
-
Figure 9 shows HPLC analysis of Ga-68-DOTA Compound 2 on a reversed phase column. Product PurityColumn: ACE 5µ C18 50 x 4,6mm Solvent: Solvent A: H2O + 0.1 %TFA Solvent B: MeCN + 0.1%TFA Gradient: 5 - 95% in 7 min Flow. 2ml/min - Serum stability of Lu-177-DOTA Compound 2
Compound 2: DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 - Serum stability of Lu-177-DOTA Compound 2 radiolabeled with Lu-177 was also investigated in human serum. After 96h incubation of Lu-177-DOTA Compound 2 in human serum still 70% of the compound was intact as analysed by HPLC methods (
Fig. 11 ). To 1 mL of freshly prepared human serum, previously equilibrated in a 5% CO2 environment at 37°C, was added 0.03 nmol 177Lu-labeled peptide standard solution. The mixture was incubated in a 5% CO2, 37°C environment. At different time points, 100-µL aliquots (in triplicate) were removed and treated with 200 µL of EtOH to precipitate serum proteins. Samples were then centrifuged for 15 min at 5000 rpm. 50 µL of supernatant were removed for activity counting in a γ-well counter, the sediment was washed twice with 1 mL of EtOH and counted, and the activity in the supernatant was compared with the activity in the pellet to give the percentage of peptides not bound to proteins or radiometal transferred to serum proteins. The supernatant was analyzed with HPLC (eluents: A = 0.1% trifluoroacetic acid in water and B = acetonitrile; gradient: 0 min 95% A; 20minutes 50% A) to determine the stability of the peptide in serum. -
Fig. 11 shows stability of Lu-177-DOTA Compound 2 in Human serum. - Comparison with F18-Choline and F18-FDG
- Biodistribution of Ga-68 RM2 see table below
Ga-68- DOTA- 4-amino-1-carboxymethyl-piperidine- D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 - See
figure 12 .
Radiochemical Yield (Not optimized) | 79 -231 MBq (32 - 60% d.c.) |
Starting Activity | 189 - 593 MBq |
No of | 10 |
| 0 |
Radiochemical Purity | >98% (by HPLC and ITLC) |
| 3,2 -11.8 GBq/µmol |
Claims (18)
- A bombesin analog peptide antagonist conjugate having general formula (I)
(I) [A-(B)n]x-C
whereinx is an integer from 1 to 3,n is an integer from 1 to 6,A is a metal chelator comprising at least one radionuclide metal,B is a spacer linked to N-terminal of C or a covalent bond ,C is a bombesin analog peptide antagonist of sequence C-1 to C-3, wherein:C-1: Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12-Xaa3 13-Xaa4 14-ZH,
wherein:K is F, Cl, I, or NO2,Xaa2 is Gly or β-Ala,Xaa3 is Statine,4-Am,5-MeHpA, or 4-Am,5-MeHxA,Xaa4 is Leu, Cpa, Cba, CpnA, Cha, t-buGly, tBuAla, Met, Nle, or iso-Bu-Gly, andZ is NH, O;C-2: Xaa1 6-Gln7-Trp8-Ala9-Val 10 -Xaa2 11-His12-Leuψ(CHOH-CH 2 )-(CH2)2 -CH3,
wherein:K is F, Cl, I, or NO2,Xaa2 is Gly or β-Ala;C-3: Xaa1 6-Gln7-Trp8-Ala9-Val10-Xaa2 11-His12 -Xaa5 13-Xaa6 14-ZH, wherein:Xaa1 is D-Phe,Xaa2 is Gly,Xaa5 is Leuiψ-CH2NH-,Xaa6 is Cys or Phe,andZ is NH,and pharmaceutically acceptable salts of an inorganic or organic acid thereof, hydrates, complexes, esters, amides and solvates thereof. - The bombesin analog peptide antagonist conjugate according to claim 1 wherein the metal chelator (A) is a metal chelator for trivalent metals or for pentavalent metals.
- The bombesin analog peptide antagonist conjugate according to claim 2 wherein the metal chelator for trivalent metals is selected from the group comprising DOTA-, NODASA-, NODAGA-, NOTA-, DTPA-, EDTA-, TETA-, and TRITA- based chelators.
- The bombesin analog peptide antagonist conjugate according to claim 2 wherein the metal chelator for pentavalent metals is selected from the group comprising:R1-R15 are independently from each other hydrogen atoms or (C1-C4) alkyl groups, wherein, in theR16 is a hydrogen atom or a CO2 (C1 -C4)-alkyl group;R17 and R18 are independently from each other (C1-C4)-alkyl groups or phenyl groups;R19 is CH2-COOH or a functional derivative thereof;E is (C1-C4)-alkylene, or phenyleneoptionally (C1-C4)-alkylene is substituted by CO2-alkyl, CH2-CO-alkyl, CONH2, or CONHCH2-CO2-alkyl,optionally phenylene is substituted by CO2-alkyl,wherein the alkyl groups have 1 to 4 carbon atoms;G is NH or S;Y is a functional group capable of binding with a free amino group of the peptide (N-terminal) or with the spacer, andZ' is S or O.
- The bombesin analog peptide antagonist conjugate according to claim 1 wherein the radionuclide metal for imaging is selected from the group comprising 133mIn, 99mTc, 67Ga, 52Fe, 68Ga, 72As, 111In, 97Ru, 203Pb, 62Cu, 64Cu, 51Cr, 52m Mn, 157Gd, 123I, 124I, 131I, 75Br, 76Br, 77Br, and 82Br.
- The bombesin analog peptide antagonist conjugate according to claim 1 wherein the radionuclide metal for radiotherapy is selected from the group comprising 186Re, 90Y, 67Cu, 69Er, 121Sn, 127Te, 142Pr, 143Pr, 198Au, 199Au, 161Tb, 109Pd, 188Rd, 186Re, 188Re, 77As, 166Dy, 166Ho, 149Pm, 151Pm, 153Sm, 159Gd, 172Tm, 90Y, 111In, 169Yb, 175Yb, 177Lu, 105Rh, 111Ag, 125I, 123I, 213Bi, 225Ac, 129I and 177mSn.
- The bombesin analog peptide antagonist conjugate according to claim 1 wherein the spacer B linked to the N-terminal of C has general Formula II:
II B1-B2
whereinB1 is a covalent bond or a natural amino acid or an unnatural amino acid or a linear diamine or a cyclic diamine,B2 is a covalent bond or a natural amino acid or an unnatural amino acid or a linear carboxylic acid or a cyclic carboxylic acid,with the proviso that both B1 and B2 cannot be covalent bonds at the same time and that, when B1 is a diamine, B2 is a carboxylic acid. - The bombesin analog peptide antagonist conjugate according to claim 7 wherein the unnatural amino acid is a compound having any one of general Formulae III, IV, V or VI whereina is an integer from 0 to 3,b is an integer from 0 to 3,and relative substitution patterns or optionally 1,2-, 1,3- or 1,4-;c is an integer from 1 to 24,d is an integer from 1 to 6;E' is NH, or CH2,f is an integer from 0 to 6,g is an integer from 0 to 6;when E' is CH2, then the 6-membered ring is optionally substituted at any carbon position of the 6-membered ring on the same carbon of the ring or on different carbons,when E' is NH , then the 6-membered ring is optionally substituted at any carbon position of the 6-membered ring on the same carbon atom of the ring or on different carbon atoms and/or on the nitrogen atom with the proviso that f or g is an integer equal to or higher than 1;i is an integer from 1 to 6,j is an integer from 1 to 6,P is O or H2.
preferably,i is an integer from 1 to 3,j is an integer from 1 to 3,PisO. - The bombesin analog peptide antagonist conjugate according to any one of claims 1 - 8, with the proviso that the bombesin analog peptide antagonist conjugate has general Formula (I')
(I') [A'-(B)n)x-C
wherein
A' is included instead of A and has the same meaning as A except that it is a metal chelator free of radionuclide metal. - A pharmaceutical composition comprising any one of the bombesin analog peptide antagonist conjugates according to any one of claims 1 - 8.
- Use of any one of the bombesin analog peptide antagonist conjugates according to any one of claims 1 - 8 for binding to bombesin receptors, preferably to gastrin releasing peptide receptor (GRP) and/or for inhibiting bombesin receptors, preferably gastrin releasing peptide receptor (GRP).
- A method for preparing any one of the bombesin analog peptide antagonist conjugates according to claim 1,
comprising the step- Radiochelating the bombesin analog peptide antagonist conjugate having general Formula (I') as defined above with a suitable radionuclide metal or metal atom. - A bombesin analog peptide antagonist conjugate according to any one of claims 1-8 for use in a method for imaging bombesin receptors, preferably a GRP Receptor expressing tumor cells and/or tumoral and peritumoral vessels, in a patient, comprising the steps:- Administering to a patient a radiopharmaceutical effective amount of said bombesin analog peptide antagonist conjugate; and- Imaging the radionuclide metal in the patient.
- Use of a radiopharmaceutically effective amount of a bombesin analog peptide antagonist conjugate according to any one of claims 1 - 8 for the manufacture of an imaging agent for imaging bombesin receptors, preferably GRP Receptor expressing tumor cells and/or tumoral and peritumoral vessels.
- The use according to claim 14, wherein said tumor cells refer to cancers that are selected from the group comprising:- prostate cancer, including metastases- breast cancer, including metastases- gastrointestinal stromal tumors- small cell lung carcinomas- renal cell carcinomas,- gastroenteropancreatic neuroendocrine tumors,- head and neck squamous cell cancers,- neuroblastomas, and- oesophageal squamous cell carcinomasand wherein
said tumoral and peritumoral vessels refer to cancers that are selected from the group comprising:- ovarian cancers,- endometrial cancers, and- pancreatic cancers. - Use of a therapeutically effective amount of a bombesin analog peptide antagonist conjugate according to any one of claims 1 - 8 for the manufacture of a medicament for treating or preventing tumor cell and/or tumoral and peritumoral vessel related diseases.
- The use according to claim 16, wherein said tumor cell related diseases are selected from the group comprising:- prostate cancer, including metastases,- breast cancer, including metastases,- gastrointestinal stromal tumors,- small cell lung carcinomas,- renal cell carcinomas,- gastroenteropancreatic neuroendocrine tumors,- head and neck squamous cell cancers,- neuroblastomas, and- oesophageal squamous cell carcinomasand wherein
said tumoral and peritumoral vessel related diseases are selected from the group comprising:- prostate cancer, including metastases, and- breast cancer, including metastases. - Use of the bombesin analog peptide antagonist conjugate according to claim 9 and an acceptable carrier, diluent, excipient or adjuvant for the radiolabeling a metal chelator in a kit for the preparation of a radiotherapeutical agent or of a radiopharmaceutical imaging agent comprising a vial containing a predetermined quantity of said conjugate.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL09717301T PL2252628T3 (en) | 2008-03-07 | 2009-02-27 | Bombesin analog peptide antagonist conjugates |
EP09717301.7A EP2252628B1 (en) | 2008-03-07 | 2009-02-27 | Bombesin analog peptide antagonist conjugates |
SI200931607A SI2252628T1 (en) | 2008-03-07 | 2009-02-27 | Bombesin analog peptide antagonist conjugates |
CY20171100170T CY1118687T1 (en) | 2008-03-07 | 2017-02-07 | BOBESIN COMPETITION RELATED COMPETITORS |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08075180A EP2100900A1 (en) | 2008-03-07 | 2008-03-07 | Bombesin analog peptide antagonist conjugates |
EP09717301.7A EP2252628B1 (en) | 2008-03-07 | 2009-02-27 | Bombesin analog peptide antagonist conjugates |
PCT/EP2009/001403 WO2009109332A1 (en) | 2008-03-07 | 2009-02-27 | Bombesin analog peptide antagonist conjugates |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2252628A1 EP2252628A1 (en) | 2010-11-24 |
EP2252628B1 true EP2252628B1 (en) | 2016-12-28 |
Family
ID=39677415
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08075180A Withdrawn EP2100900A1 (en) | 2008-03-07 | 2008-03-07 | Bombesin analog peptide antagonist conjugates |
EP09717301.7A Active EP2252628B1 (en) | 2008-03-07 | 2009-02-27 | Bombesin analog peptide antagonist conjugates |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08075180A Withdrawn EP2100900A1 (en) | 2008-03-07 | 2008-03-07 | Bombesin analog peptide antagonist conjugates |
Country Status (32)
Country | Link |
---|---|
US (2) | US9035023B2 (en) |
EP (2) | EP2100900A1 (en) |
JP (1) | JP5784911B2 (en) |
KR (2) | KR20160128425A (en) |
CN (1) | CN101965358B (en) |
AR (1) | AR070809A1 (en) |
AU (1) | AU2009221204C1 (en) |
BR (1) | BRPI0909823B1 (en) |
CA (1) | CA2717427C (en) |
CL (1) | CL2009000537A1 (en) |
CO (1) | CO6290707A2 (en) |
CR (1) | CR11671A (en) |
CY (1) | CY1118687T1 (en) |
DK (1) | DK2252628T3 (en) |
DO (1) | DOP2010000269A (en) |
EC (1) | ECSP10010467A (en) |
ES (1) | ES2615805T3 (en) |
HU (1) | HUE032980T2 (en) |
MX (1) | MX2010009843A (en) |
NZ (1) | NZ587795A (en) |
PA (1) | PA8818501A1 (en) |
PE (1) | PE20091753A1 (en) |
PL (1) | PL2252628T3 (en) |
PT (1) | PT2252628T (en) |
RU (1) | RU2523531C2 (en) |
SI (1) | SI2252628T1 (en) |
SV (1) | SV2010003660A (en) |
TW (1) | TWI515011B (en) |
UA (1) | UA103314C2 (en) |
UY (1) | UY31693A (en) |
WO (1) | WO2009109332A1 (en) |
ZA (1) | ZA201006385B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022063850A1 (en) * | 2020-09-28 | 2022-03-31 | Orano Med | Conjugate or its salt comprising a gastrin-releasing peptide receptor antagonist and uses thereof |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2380596A1 (en) | 2010-04-20 | 2011-10-26 | Technische Universität München | Cyclopentapeptide derivatives and uses thereof |
EP2380597A1 (en) | 2010-04-20 | 2011-10-26 | Technische Universität München | Cyclopeptide derivatives and uses thereof |
AU2011333948A1 (en) * | 2010-11-22 | 2013-06-06 | Piramal Imaging Sa | 177 Lutetium-labeled bombesin analogs for radiotherapy |
EP2710027A1 (en) * | 2011-05-19 | 2014-03-26 | Universitätsspital Basel | Bombesin receptor targeting peptide incorporating a 1, 2, 3-triazole group in the backbone for preparing in vivo diagnostic and therapeutic agents |
IL312551A (en) | 2012-09-25 | 2024-07-01 | Advanced Accelerator Applications Usa Inc | Grpr-antagonists for detection, diagnosis and treatment of grpr-positive cancer |
EP2740726A1 (en) | 2012-12-07 | 2014-06-11 | 3B Pharmaceuticals GmbH | Neurotensin receptor ligands |
WO2014164988A1 (en) * | 2013-03-13 | 2014-10-09 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Tetrahydroxamate chelators of zirconium89 and niobium90 for use in diagnostic applications |
WO2015119763A1 (en) * | 2014-02-06 | 2015-08-13 | Immunomedics, Inc. | Al-f-18-labeled, al-f-19-labeled and ga-68-labeled gastrin-releasing peptide receptor (grpr)-antagonists for imaging of prostate cancer |
HUE044571T2 (en) | 2014-06-06 | 2019-11-28 | Univ Muenchen Tech | Modified cyclopentapeptides and uses thereof |
EP3154638A1 (en) | 2014-06-10 | 2017-04-19 | 3B Pharmaceuticals GmbH | Conjugate comprising a neurotensin receptor ligand and use thereof |
EP2954933A1 (en) | 2014-06-10 | 2015-12-16 | 3B Pharmaceuticals GmbH | Conjugate comprising a neurotensin receptor ligand |
EP2954934A1 (en) | 2014-06-11 | 2015-12-16 | 3B Pharmaceuticals GmbH | Conjugate comprising a neurotensin receptor ligand and use thereof |
EP3943104A1 (en) | 2014-06-16 | 2022-01-26 | Codexis, Inc. | Compositions and methods for treating gluten intolerance and disorders arising therefrom |
CN104610431B (en) * | 2014-11-26 | 2017-12-15 | 南京市第一医院 | A kind of polypeptide and its application |
EP3393502A4 (en) | 2015-12-16 | 2019-06-12 | Nepetx, LLC | Compositions and methods for treating gluten intolerance and disorders arising therefrom |
EP3279197A1 (en) | 2016-08-03 | 2018-02-07 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Diagnosis, treatment and prevention of neurotensin receptor-related conditions |
US11241511B2 (en) | 2016-12-29 | 2022-02-08 | The General Hospital Corporation | HER3 peptides for imaging and radiotherapy |
AU2018207190B2 (en) | 2017-01-12 | 2020-12-03 | Orano Med | Treatment of cancer cells overexpressing somatostatin receptors using ocreotide derivatives chelated to radioisotopes |
RU2681318C1 (en) * | 2017-11-24 | 2019-03-06 | Федеральное государственное бюджетное учреждение науки институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН) | Method of obtaining abm-tgiris-abu immunosuppressor peptide labaled by gd3+ ion |
US20210402016A1 (en) * | 2018-11-13 | 2021-12-30 | Provincial Health Services Authority | Radiolabeled bombesin-derived compounds for in vivo imaging of gastrin-releasing peptide receptor (grpr) and treatment of grpr-related disorders |
EP3763726A1 (en) | 2019-07-08 | 2021-01-13 | 3B Pharmaceuticals GmbH | Compounds comprising a fibroblast activation protein ligand and use thereof |
CN114341158B (en) | 2019-07-08 | 2024-08-06 | 3B制药有限公司 | Compounds comprising fibroblast activation protein ligands and uses thereof |
CA3153267A1 (en) * | 2019-12-19 | 2021-06-24 | Hans-Jurgen Wester | Modified grpr antagonist peptides for imaging and therapy of cancer |
WO2021250240A1 (en) | 2020-06-12 | 2021-12-16 | Orano | Diaza-18-crown-6 derivative useful for chelating radium, conjugate and radium chelate comprising the same, and uses thereof |
WO2022123462A1 (en) | 2020-12-09 | 2022-06-16 | 3B Pharmaceuticals Gmbh | Radiolabelled prostate specific membrane antigen (psma) inhibitors and use thereof |
EP4050018A1 (en) | 2021-01-07 | 2022-08-31 | 3B Pharmaceuticals GmbH | Compounds comprising a fibroblast activation protein ligand and use thereof |
KR20240133798A (en) | 2021-12-17 | 2024-09-04 | 쓰리비 파마슈티컬스 게엠베하 | Carbonic anhydrase IX ligand |
WO2024052431A1 (en) | 2022-09-07 | 2024-03-14 | 3B Pharmaceuticals Gmbh | Prostate specific membrane antigen (psma) ligands and use thereof |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4885363A (en) | 1987-04-24 | 1989-12-05 | E. R. Squibb & Sons, Inc. | 1-substituted-1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecane and analogs |
US5021556A (en) | 1987-07-22 | 1991-06-04 | Neorx Corporation | Method of radiolabeling chelating compounds comprising sulfur atoms with metal radionuclides |
US5075099A (en) | 1988-05-31 | 1991-12-24 | Neorx Corporation | Metal radionuclide chelating compounds for improved chelation kinetics |
US5364613A (en) | 1989-04-07 | 1994-11-15 | Sieving Paul F | Polychelants containing macrocyclic chelant moieties |
CA2032499C (en) * | 1989-07-20 | 2002-05-14 | Rainer Albert | Polypeptide derivatives |
US5686410A (en) * | 1989-07-20 | 1997-11-11 | Novartis Ag | Polypeptide derivatives |
US5367080A (en) | 1990-11-08 | 1994-11-22 | Sterling Winthrop Inc. | Complexing agents and targeting radioactive immunoreagents useful in therapeutic and diagnostic imaging compositions and methods |
US5369094A (en) * | 1990-11-29 | 1994-11-29 | The Administrators Of The Tulane Educational Fund | Polypeptide bombesin antagonists |
US5965107A (en) | 1992-03-13 | 1999-10-12 | Diatide, Inc. | Technetium-99m labeled peptides for imaging |
DE69840647D1 (en) | 1997-04-22 | 2009-04-23 | Curator Of The University Of M | CONJUGATES FROM PEPTIDES, WHICH ARE LIGANDS OF GASTRIN RECEPTORS |
CA2346154A1 (en) | 2001-05-02 | 2002-11-02 | University Of Missouri | Gastrin receptor-avid peptide conjugates |
US5886142A (en) | 1997-05-20 | 1999-03-23 | Thomas Jefferson University | Radiolabeled thrombus imaging agents |
AU2010299A (en) | 1997-12-24 | 1999-07-19 | Vertex Pharmaceuticals Incorporated | Prodrugs os aspartyl protease inhibitors |
US6436989B1 (en) | 1997-12-24 | 2002-08-20 | Vertex Pharmaceuticals, Incorporated | Prodrugs of aspartyl protease inhibitors |
AU2012199A (en) | 1997-12-24 | 1999-07-19 | Vertex Pharmaceuticals Incorporated | Prodrugs of aspartyl protease inhibitors |
BR9814484A (en) | 1997-12-24 | 2000-10-10 | Vertex Pharma | "aspartyl protease inhibitor prodrugs" |
GR1003661B (en) * | 2000-05-25 | 2001-09-05 | Εθνικο Κεντρο Ερευνας Φυσικων Επιστημων (Εκεφε) "Δημοκριτος"... | SYNTHESIS, BIOLOGICAL AND PRECLINICAL EVALUATION OF (D-PHE6, LEU-NHEt13, des-Met14)BOMBESIN(6-14) ANALOGS MIDIFIED WITH 1,4,8,11-TETRAAZAUNDECANE DERIVATIVES AND LABELLED WITH TECHNETIUM-99M ÷OR APPLICATION IN ONCOLOGY |
HUP0302496A2 (en) * | 2000-12-20 | 2003-12-29 | Warner-Lambert Company Llc | Novel uses of non-peptide bombesin receptor antagonists for treating anxiety and panic disorders |
US20080008649A1 (en) | 2003-01-13 | 2008-01-10 | Bracco Imaging S.P.A. | Gastrin Releasing Peptide Compounds |
US7922998B2 (en) * | 2003-01-13 | 2011-04-12 | Bracco Imaging S.P.A. | Gastrin releasing peptide compounds |
US7850947B2 (en) | 2003-01-13 | 2010-12-14 | Bracco Imaging S.P.A. | Gastrin releasing peptide compounds |
US7226577B2 (en) | 2003-01-13 | 2007-06-05 | Bracco Imaging, S. P. A. | Gastrin releasing peptide compounds |
CA2783275A1 (en) * | 2003-07-24 | 2005-02-03 | Bracco Imaging S.P.A. | Stable radiopharmaceutical compositions and methods for their preparation |
WO2007109475A2 (en) | 2006-03-16 | 2007-09-27 | Bracco Imaging S.P.A. | Chelation of metals to thiol groups using in situ reduction of disulfide-containing compounds by phosphines |
AU2011333948A1 (en) * | 2010-11-22 | 2013-06-06 | Piramal Imaging Sa | 177 Lutetium-labeled bombesin analogs for radiotherapy |
-
2008
- 2008-03-07 EP EP08075180A patent/EP2100900A1/en not_active Withdrawn
-
2009
- 2009-02-27 JP JP2010549043A patent/JP5784911B2/en active Active
- 2009-02-27 HU HUE09717301A patent/HUE032980T2/en unknown
- 2009-02-27 SI SI200931607A patent/SI2252628T1/en unknown
- 2009-02-27 CA CA2717427A patent/CA2717427C/en active Active
- 2009-02-27 PL PL09717301T patent/PL2252628T3/en unknown
- 2009-02-27 US US12/921,209 patent/US9035023B2/en active Active
- 2009-02-27 UA UAA201011560A patent/UA103314C2/en unknown
- 2009-02-27 BR BRPI0909823-2A patent/BRPI0909823B1/en active IP Right Grant
- 2009-02-27 WO PCT/EP2009/001403 patent/WO2009109332A1/en active Application Filing
- 2009-02-27 PT PT97173017T patent/PT2252628T/en unknown
- 2009-02-27 KR KR1020167029634A patent/KR20160128425A/en not_active Application Discontinuation
- 2009-02-27 ES ES09717301.7T patent/ES2615805T3/en active Active
- 2009-02-27 KR KR1020107022308A patent/KR101734553B1/en active IP Right Grant
- 2009-02-27 NZ NZ587795A patent/NZ587795A/en unknown
- 2009-02-27 RU RU2010140846/04A patent/RU2523531C2/en active
- 2009-02-27 CN CN200980107992.5A patent/CN101965358B/en active Active
- 2009-02-27 AU AU2009221204A patent/AU2009221204C1/en active Active
- 2009-02-27 MX MX2010009843A patent/MX2010009843A/en not_active Application Discontinuation
- 2009-02-27 DK DK09717301.7T patent/DK2252628T3/en active
- 2009-02-27 EP EP09717301.7A patent/EP2252628B1/en active Active
- 2009-03-06 CL CL2009000537A patent/CL2009000537A1/en unknown
- 2009-03-06 UY UY0001031693A patent/UY31693A/en not_active Application Discontinuation
- 2009-03-06 AR ARP090100799A patent/AR070809A1/en not_active Application Discontinuation
- 2009-03-06 PE PE2009000339A patent/PE20091753A1/en not_active Application Discontinuation
- 2009-03-06 TW TW098107446A patent/TWI515011B/en active
- 2009-03-06 PA PA20098818501A patent/PA8818501A1/en unknown
-
2010
- 2010-09-06 CO CO10110036A patent/CO6290707A2/en not_active Application Discontinuation
- 2010-09-06 ZA ZA2010/06385A patent/ZA201006385B/en unknown
- 2010-09-07 SV SV2010003660A patent/SV2010003660A/en not_active Application Discontinuation
- 2010-09-07 CR CR11671A patent/CR11671A/en not_active Application Discontinuation
- 2010-09-07 DO DO2010000269A patent/DOP2010000269A/en unknown
- 2010-09-07 EC EC2010010467A patent/ECSP10010467A/en unknown
-
2015
- 2015-03-27 US US14/671,106 patent/US20150265733A1/en not_active Abandoned
-
2017
- 2017-02-07 CY CY20171100170T patent/CY1118687T1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022063850A1 (en) * | 2020-09-28 | 2022-03-31 | Orano Med | Conjugate or its salt comprising a gastrin-releasing peptide receptor antagonist and uses thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2252628B1 (en) | Bombesin analog peptide antagonist conjugates | |
US8414864B2 (en) | Gastrin releasing peptide compounds | |
JP5676673B2 (en) | Cancer imaging and treatment | |
FI101938B (en) | polypeptide | |
US20120065365A1 (en) | Stable Radiopharmaceutical Compositions and Methods for Their Preparation | |
CA2697949A1 (en) | Cancer imaging and treatment | |
US7481993B2 (en) | Chelators for radioactively labeled conjugates comprising a stabilizing sidechain | |
Failla et al. | Peptide-based positron emission tomography probes: Current strategies for synthesis and radiolabelling | |
Gaonkar et al. | Development of a peptide-based bifunctional chelator conjugated to a cytotoxic drug for the treatment of melanotic melanoma | |
US20120178906A1 (en) | Chelation of metals to thiol groups using in situ reduction of disulfide-containing compounds by phosphines | |
EP1700608A1 (en) | Chelators for radioactively labeled conjugates comprising a stabilizing sidechain | |
Floresta et al. | RSC Medicinal Chemistry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101007 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20111209 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160321 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160715 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 857186 Country of ref document: AT Kind code of ref document: T Effective date: 20170115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20170202 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 2252628 Country of ref document: PT Date of ref document: 20170210 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20170131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009043364 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20161228 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2615805 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170428 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009043364 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E032980 Country of ref document: HU |
|
26N | No opposition filed |
Effective date: 20170929 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170227 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 857186 Country of ref document: AT Kind code of ref document: T Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CY Payment date: 20230223 Year of fee payment: 15 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240226 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20240221 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240220 Year of fee payment: 16 Ref country code: ES Payment date: 20240308 Year of fee payment: 16 Ref country code: NL Payment date: 20240226 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240220 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240215 Year of fee payment: 16 Ref country code: FI Payment date: 20240226 Year of fee payment: 16 Ref country code: DE Payment date: 20240228 Year of fee payment: 16 Ref country code: CZ Payment date: 20240208 Year of fee payment: 16 Ref country code: GB Payment date: 20240220 Year of fee payment: 16 Ref country code: PT Payment date: 20240206 Year of fee payment: 16 Ref country code: SK Payment date: 20240212 Year of fee payment: 16 Ref country code: CH Payment date: 20240301 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20240207 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240207 Year of fee payment: 16 Ref country code: SE Payment date: 20240226 Year of fee payment: 16 Ref country code: PL Payment date: 20240201 Year of fee payment: 16 Ref country code: NO Payment date: 20240220 Year of fee payment: 16 Ref country code: IT Payment date: 20240222 Year of fee payment: 16 Ref country code: FR Payment date: 20240226 Year of fee payment: 16 Ref country code: DK Payment date: 20240226 Year of fee payment: 16 Ref country code: BE Payment date: 20240226 Year of fee payment: 16 |