EP2252540B1 - Jib comprising a metal hollow profile with a reinforcement layer consisting of a fibre-plastic composite and sensor element - Google Patents

Jib comprising a metal hollow profile with a reinforcement layer consisting of a fibre-plastic composite and sensor element Download PDF

Info

Publication number
EP2252540B1
EP2252540B1 EP09720189.1A EP09720189A EP2252540B1 EP 2252540 B1 EP2252540 B1 EP 2252540B1 EP 09720189 A EP09720189 A EP 09720189A EP 2252540 B1 EP2252540 B1 EP 2252540B1
Authority
EP
European Patent Office
Prior art keywords
jib
boom
profile
layer
hollow profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09720189.1A
Other languages
German (de)
French (fr)
Other versions
EP2252540A1 (en
Inventor
Peter Schmidt
Frank Schnittker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terex Global GmbH
Original Assignee
Terex Cranes Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terex Cranes Germany GmbH filed Critical Terex Cranes Germany GmbH
Publication of EP2252540A1 publication Critical patent/EP2252540A1/en
Application granted granted Critical
Publication of EP2252540B1 publication Critical patent/EP2252540B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/64Jibs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the invention relates to a boom for end-side receiving loads according to the preamble of claim 1. Furthermore, the invention relates to a method for producing such a boom.
  • Lightweight boom parts are an important prerequisite to meet the demands of mobile machinery such.
  • work platforms cranes, concrete pumps u. s. w. in terms of high load capacity, long boom length and long range to meet.
  • these performance data can be increased compared to conventional designs without increasing the overall weight of the machine or unfavorably shifting the center of gravity. So z.
  • the negative impact of the boom weight on the vehicle size and mass, the support base, the number of axles and the necessary counterweights are kept low.
  • FKV fiber-plastic composite
  • the production of box girders in monolithic fiber composite construction is very costly due to the complicated fiber structure in force applications or bearings.
  • monolithic FRPs are impact-sensitive, so they are not suitable for construction sites for use in construction machinery such as cranes.
  • the sensor element according to the invention serves, for example, for detecting a bending moment.
  • a bending moment for example, in a test phase of the cantilever and / or in the first application of a hybrid designed according to the invention with a metallic cantilevered hollow section and a fiber-plastic composite reinforcing layer, it can be detected whether damage occurs in the structure of the cantilevered hollow section.
  • the reinforcing layer can be dimensioned according to the load forces measured by the sensor element. Also, aging-related or overload-induced deformations of the structure of the cantilever can be reliably detected via the sensor element. Costly inspection procedures for fiber-plastic composites, such as thermography or ultrasonic inspection, can be avoided.
  • the specific properties of the fibers of the reinforcing layer are used to improve the bending stiffness and the bending strength of the metallic boom hollow profile.
  • a large part of, for example, the shear transmission and the introduction of force can be taken over by the metallic boom hollow profile in the boom according to the invention.
  • the boom can also have a plurality of sensor elements. By interconnecting a plurality of inventive sensor elements, for example, bending moments and a normal force in the boom can be detected.
  • a boom with such an inner reinforcing layer of a fiber-plastic composite in a metallic boom hollow profile can also be used without a sensor element for detecting load forces, since such a boom without the sensor element advantages over the example of EP 0 968 955 A2 known prior art has. Also, a protection of the reinforcing layer from the weather is given. Overall, the construction site suitability and thus the safety of the boom is increased.
  • the boom hollow profile or the profile sections thereof can then simultaneously serve as a tool for producing the hybrid boom. Investment costs for a winding system or for a corresponding tool eliminated. Attachments attached externally on the arm are not hindered by any possibly interfering fiber-plastic composite there. Attachments can then be welded in particular to the boom hollow profile.
  • An arrangement of at least one of the sensor elements on an inner wall of the reinforcing layer and at least one further of the sensor elements between the reinforcing layer and the boom hollow profile allows, in particular, detection of undesired delamination of the reinforcing layer from the boom hollow profile.
  • An external control device can process further information, such as hydraulic pressures, with which a construction machine, within which the boom is used, works, an inclination of the boom against the vertical or a tensile force in optionally existing guy elements.
  • the information obtained by the sensor elements according to the invention supplement this further, processable by the external control device information. This allows the external control device to more reliably detect unsafe conditions of the boom-mounted construction machines and to prevent them, for example, by switching off a hoist or a luffing mechanism.
  • an external control device in particular a control device which is regularly present in modern mobile cranes can be used.
  • a structure of the fiber-plastic composite according to claim 3 leads to a stable reinforcement with low weight.
  • a fiber arrangement according to claim 4 in particular increases the flexural rigidity of the cantilever.
  • a part of the fibers of the reinforcing layer can be arranged according to claim 5 obliquely or diagonally with respect to the boom longitudinal axis.
  • fibers assist in the transmission of shear forces from torsion and shear and increase flexural rigidity of cross-sectional parts of the cantilever.
  • An electrically insulating intermediate layer according to claim 6 protects the metallic boom hollow profile from corrosion, in particular when the FKV reinforcing layer has carbon fibers.
  • a fiber layer in particular a glass fiber layer, is preferably used.
  • Profile sections according to claim 7 simplify the production of the boom according to the invention.
  • a U-profile shape of the profile sections allows, for example, an arrangement of the reinforcing layers, in which they are spatially well separated from the connecting sections between the profiled sections constituting the boom-hollow profile.
  • the profile sections can then be welded together, for example via the legs of the U, without the risk of damaging the reinforcing layer arranged, for example, at the bottom of the U.
  • the profile sections can also be flat, designed as an L-profile or in cross-section with several kinks.
  • Such a cross-sectional design of the cantilever with profile sections bent several times in cross-section yields, for example, a boom with a hexagonal or octagonal cross-section.
  • a sensor element group according to claim 8 allows in particular a temperature-compensated measurement occurring load forces, for example, occurring bending moments.
  • Another object of the invention is to provide a low cost manufacturing process indicate for the boom according to the invention.
  • a manufacturing method uses in particular the advantages of a subdivision of the boom hollow profile in profile sections according to claim 7. If an already complete boom hollow section is provided as an output element for connection to the reinforcing layer, the reinforcing layer can also be inserted into the hollow profile or, as far as the Reinforcement layer is mounted outside of the hollow profile to be applied to this.
  • the sensor element can be introduced into the boom together with the reinforcement layer or can already be provided together with the boom hollow profile. Alternatively, it is possible to attach the sensor element before the application of the reinforcing layer or only thereafter. Under certain circumstances, can be dispensed with the introduction of a sensor element, in particular when the reinforcing layer is arranged in the cavity of the boom-hollow profile.
  • An application of the reinforcing layer according to claim 10 is suitable for an automated manufacture of the cantilever.
  • the fiber-plastic composite is produced when applying the reinforcing layer of the fiber layer and the polymeric resin. After laying the fiber layer, the injection of the resin / hardener mixture can be done under vacuum. There is no need to provide ready pre-produced fiber-plastic composite.
  • the reinforcing layer can easily adapt to the boom hollow profile or the profile section thereof in this manufacturing process. The boom hollow profile or the profile section thereof then serves as a tool for producing the hybrid boom.
  • Orienting fibers according to claim 11 may result in an improvement in the properties of the cantilever with respect to a given load, for example increasing the flexural rigidity.
  • the intermediate layer according to claim 12 can provide protection against contact corrosion of the metallic hollow profile.
  • a tearable layer on the fiber layer before injecting the polymeric Synthetic resin / hardener mixture can be applied, layers that are present after the production of the boom as a result of the manufacturing process, but do not form part of the final product, easy to separate from the reinforcing layer.
  • a dispensing ply that can be applied to the fiber ply prior to injection and over which the injected resin is first distributed transversely of the cantilever longitudinal axis enhances embedding of the fiber ply in the resin when performing a manufacturing process in which a polymeric resin is injected into the fiber ply becomes.
  • a prefabricated reinforcing layer made of a fiber-plastic composite can be used.
  • this can result in a result in a cost-effective production.
  • the sensor elements can be integrated in advance in the FKV reinforcements.
  • a pressure body disposed between the reinforcing plies in the interior of the cantilevered hollow profile along the cantilever longitudinal axis may be used in the manufacture of the cantilever to facilitate connection of the reinforcing plies to the cantilevered hollow profile in the manufacture of the cantilever.
  • the pressure body can be a pressurizable hose.
  • a fluid filling according to claim 16 allows a defined pressurization of the pressure hull in the bonding of the reinforcing layers.
  • a tempering, for example, for curing the adhesive is possible via such a pressure body by a corresponding temperature of the fluid.
  • An Indian Fig. 1 in perspective and in sections illustrated boom 1 is used for end-side recording of loads.
  • the boom 1 may for example be part of a working platform, a crane or a concrete pump.
  • the boom 1 has a runner designed as a box beam hollow profile 2 with a dashed line in Fig. 1 longitudinal axis 3.
  • the boom hollow section 2 is made of metal.
  • the boom hollow section 2 is composed of two profile sections 4, 5, each with a U-shaped Cross-section assembled.
  • the two profile sections 4, 5 are connected to each other via welds 6, which extend along the boom longitudinal axis 3.
  • the two reinforcing layers 7 are constructed the same, so that it is sufficient, the force applied to the profile section 5 reinforcing layer 7, in the Fig. 1 is described below.
  • the reinforcing layer 7 is arranged as a reinforcing lining in the cavity of the boom hollow section 2, so it abuts against an inner wall 8 of the profile section 5.
  • the reinforcing layer 7 is made of a fiber-plastic composite. This is in particular a carbon fiber-resin composite. Carbon fibers 9 of a fiber layer 10 of the reinforcing layer 7 are connected to one another and to the inner wall 8 via a polymeric synthetic resin matrix 11.
  • the fibers 9 of the reinforcing layer 7 may have different orientations. They can be arranged for the most part with a parallel to the longitudinal axis 3 of the boom 1 level component. They may also be arranged predominantly diagonally with respect to the longitudinal axis 3.
  • all the fibers 9 may be arranged diagonally with respect to the longitudinal axis 3. There may be two groups of fibers whose paths cross each other. These two fiber groups may belong to different and superimposed individual fiber layers of the fiber layer 10.
  • a sensor element 12 is arranged in the area of the reinforcing layer 7, a sensor element 12 is arranged. Signal or supply lines 12a, which are connected to the sensor element 12, are guided a little way along the boom hollow profile 2 and then led to the outside.
  • the sensor element 12 serves to detect load forces acting on the boom 1.
  • the sensor element 12 is designed as a strain sensor and in particular as a strain gauge. Via a signal connection, not shown, the sensor element 12 is in signal communication with an external control device 13.
  • the latter processes, in addition to measured values which the sensor element 12 receives, also further information, acquired by additional sensors, about the condition of a working or construction machine, the part of which represents the boom 1. at This additional information may be, for example, hydraulic pressures, an inclination of the boom 1 against the vertical or a tensile force in a guy element of the work machine, not shown.
  • the sensor element 12 may be embedded in the reinforcing layer 7. Alternatively, it is possible to arrange the sensor element 12 on the side facing the cavity of the boom hollow profile 2 side of the reinforcing layer 7. Finally, it is possible to arrange the sensor element 2 between the reinforcing layer 7 and the profile section 5.
  • the boom 1 has a plurality of sensor elements 12, which are all in signal communication with the control device 13.
  • the sensor element 12 is used in particular for detecting a bending moment and for detecting the presence of a damage of the jib 1.
  • Several of the sensor elements 12 may be part of a common measuring arrangement and z. B. be interconnected in a Wheatstone bridge. This interconnection can in particular be such that the influence of an uneven heating of the cantilever 1 on the measurement result of the sensor elements 12 is compensated.
  • an electrically insulating intermediate layer 14 is arranged, which is designed as a glass fiber layer.
  • Fig. 2 a method of manufacturing the cantilever 1 is described. This is a vacuum injection method in which the profile sections of the boom hollow section 2 take over the function of a tool. Compared to Fig. 1 shows the 2, the profile section 5 of the boom 1 with greater detail.
  • the fiber layer 10 is initially placed with non-matrix-connected fibers 9. During or after placing the fiber layer 10, the fibers 9 of the fiber layer 10 are oriented, that is aligned with the longitudinal axis 3, wherein an orientation of the fibers 9 is adjusted according to what was stated above.
  • a tear-able layer 15 launched on the oriented fiber layer 10 .
  • a distribution layer 16 in the form of a distribution fabric is placed on the tearable layer 15. Between the distributor fabric 16 and a resin-impermeable, but air-permeable film 17 disposed therealong, a resin conduit 18 extending along the longitudinal axis 3 is arranged.
  • a further air-impermeable film 20 is disposed between the legs of the profile section 5 and sealed by a further pair of sealing strips 19 against the inner wall 8 of the profile section 5.
  • a nonwoven layer 21 is arranged between the nonwoven layer 21 and the upper in the upper air-impermeable film 20.
  • an air line 22 is arranged, which also extends parallel to the longitudinal axis 3.
  • the air line 22 is in fluid communication with a vacuum pump 24 via a connection element 23.
  • the resin pipe 18 is branched via a mixing element 25 into a resin pipe section 26 and a hardener pipe section 27.
  • the resin conduit section 26 communicates with a resin reservoir 28 and the hardener conduit section 27 is in fluid communication with a hardener reservoir 29.
  • the mixing element 25 a combination of resin and harder in a predetermined mixing ratio, wherein a chemically reactive resin / hardener mixture is generated.
  • the reinforcing layer 7 can be laminated directly to the profile section 5, wherein then according to the reinforcing layers 7 prepared profile sections 4, 5 are connected to the boom 1 with each other.
  • the profile sections 4, 5 simultaneously serve as forming tools for the reinforcing layer 7.
  • the intermediate layer 14 is placed on the bottom of the profile section 5 after a surface treatment of the profile section 5, for example after degreasing and sandblasting of the profile section 5. Subsequently, the fibers 9 are laid dry as a fiber layer 10 on the intermediate layer 14 and oriented.
  • the oriented fibers are in particular designed as continuous fibers. This also applies if the boom hollow profile 2 over its course along the longitudinal axis 3 has a variable cross-section. As a rule, only a smaller proportion of the carbon fibers 9 has an orientation parallel to the longitudinal axis 3.
  • polymeric synthetic resin mixed with a hardener, is injected into the fiber layer 10 via the resin line 18.
  • the synthetic resin adheres the fibers 9 to the bottom of the profile section 5.
  • the resin emerging from the distribution line 16 is distributed over the distribution layer 16 transversely to the longitudinal axis 3 of the profile section 5, penetrates the tearable layer 15 and penetrates into the fiber layer 10 ,
  • the resin-impermeable film 17 ensures that no resin / hardener mixture can undesirably penetrate into other regions outside the fiber layer 10.
  • Curing of the resin / hardener mixture in the fiber layer 10 may be carried out at room temperature or at elevated temperatures, e.g. B. at 80 ° C, take place.
  • a heating for curing takes place in a heating furnace or by placing a heating mat.
  • the distributor fabric 16 and the two films 17, 20 with the intermediate nonwoven 21 and the two lines 18, 22 are removed by tearing off the tearable layer 15.
  • the sensor elements 12 can be mounted in the boom 1 either directly in the production of the reinforcing layers 7 or in the connection of the reinforcing layers 7 and the profile sections 4, 5 or only after the production of the hybrid structure of the profile sections 4 and 5 and the reinforcing layers 7.
  • Fig. 3 shows a cross section of a further variant of a boom 1, which can be produced by means of a variant of a manufacturing process.
  • Components and procedural details corresponding to those described above with reference to FIGS Fig. 1 and 2 have the same reference numbers and will not be discussed again in detail.
  • the reinforcing layers 7 are also produced in a separate method step.
  • the fibers 9 of the fiber layers 10 of the reinforcing layers 7 are oriented in such a way that, after being connected to the profile sections 4, 5, they have an orientation which corresponds to what has been described above in connection with FIGS Fig. 1 and 2 was explained.
  • the reinforcing layers 7 are coated on one side with an adhesive 30, for example an epoxy resin-based adhesive.
  • the reinforcing layers 7 are then inserted into the boom hollow section 2, so that the adhesive sides of the reinforcing layers 7 each face the inner walls 8 of the profile sections 4, 5.
  • two pressure plates 31 and a pressure body 32 in the form of a fluidbehellbaren tube are inserted into the boom-hollow section 2.
  • the pressure body 32 has a course along the longitudinal axis 3 of the boom. 1
  • the two pressure plates 31 are each arranged between the pressure body 32 and one of the two reinforcing layers 7.
  • the pressure body 32 is, in particular, a hollow pressure pad made of a rubber-elastic material. After inserting the pressure plates 31 and the pressure body 32, the latter is filled with a pressure fluid, that is to say a gaseous or liquid medium, so that a pressure p is generated in the pressure body 32. By this pressure, the reinforcing layers 7 are pressed against the inner wall 8 and thus against the two adhesive layers 30 via the pressure plates 31. This takes place until the adhesive 30 has cured. This hardening can again take place at room temperature or at elevated temperature. To harden the adhesive 30, the boom 1 is introduced into a heating furnace or a correspondingly preheated liquid, for example water or oil, is introduced into the pressure body 32.
  • a pressure fluid that is to say a gaseous or liquid medium
  • the stiffening layers 7 are already prepared with the sensor elements 12.
  • the sensor elements 12 may be arranged relative to the reinforcing layers 7 as explained above in connection with the embodiment according to FIGS. 1 and 2. Alternatively, it is possible to embed the sensor elements 12 in the adhesive layer 30 as well.
  • Fig. 4 schematically shows one to Fig. 1 similar perspective view of a boom 1 with a total of four sensor elements 12 1 , 12 2 , 12 3 and 12 4th which are housed in the manner of the sensor element 12 or the sensor elements 12 of the embodiments described above.
  • the sensor elements 12 1 to 12 4 serve for the temperature-compensated measurement of a bending moment of the cantilever 1 in a perspective view according to Fig. 4 vertically extending bending plane 33.
  • the sensor elements 12 1 to 12 4 are designed as strain gauges.
  • the sensor elements 12 1 and 12 3 are arranged on opposite profile walls of the boom hollow section 2 at the same height.
  • the sensor elements 12 2 and 12 4 are also arranged on opposite profile walls of the boom hollow section 2 at the same height.
  • the sensor element 12 1 is adjacent to the sensor element 12 2 .
  • the sensor element 12 3 is adjacent to the sensor element 12 4 .
  • the sensor elements 12 1 and 12 3 are aligned in the longitudinal direction of the boom 1.
  • the sensor elements 12 2 and 12 4 are aligned transversely to the longitudinal direction and perpendicular to the bending plane 33.
  • the sensor elements 12 1 and 12 3 When bending the boom 1 in the bending plane 33, the sensor elements 12 1 and 12 3 are stretched or compressed and therefore provide a signal contribution in the bending moment measurement.
  • the sensor elements 12 2 and 12 4 are used in the measurement of the bending moment in the bending plane 33 for temperature compensation to compensate for uneven heating of the boom. 1
  • Fig. 5 shows the interconnection of the sensor elements 12 1 to 12 4th These are interconnected in the manner of a measuring bridge, wherein at coupling points 34, 35 a supply voltage U sp coupled and tapped at tapping points 36, 37 a signal voltage U si is tapped.
  • the sensor element 12 1 is arranged between the coupling-in point 34 and the tapping point 36.
  • the sensor element 122 is arranged between the injection point 35 and the tapping point 36.
  • the sensor element 12 3 is arranged between the coupling-in point 34 and the tapping point 37.
  • the sensor element 12 4 is disposed between the injection point 35 and the tapping point 37.
  • Fig. 6 shows a further embodiment of a boom 1.
  • the reinforcing layer 7 is arranged as a reinforcing lining in a section of the boom hollow section 2.
  • a first sensor element group 38 with four sensor elements 12 1 to 12 4 on the type of sensor elements 12 1 to 12 4 after the 4 and 5 is disposed on an inner wall 39 of the reinforcing layer 7.
  • a second sensor element group 40 likewise with four sensor elements 12 1 to 12 4 in the manner of the sensor elements 12 1 to 12 4 of FIGS. 4 and 5, is arranged between the reinforcing layer 7 and the boom hollow profile 2.
  • the two sensor element groups 38, 40 is the detection of unwanted delamination of the reinforcing layer 7 in a region L between a wedge-shaped towards the inner wall 8 expiring end portion 41 of the reinforcing layer 7 and the sensor elements 12 1 to 12 4 of the sensor element group 38 possible, the end portion 41st As long as a connection between the boom hollow section 2 and the reinforcing layer 7 is intact in the region L, the two sensor element groups 38 and 40 provide very similar measuring signals U si for the same supply voltage U sp . The two sensor element groups 38, 40, ie the two measuring bridges formed thereby, are then redundant.
  • the stretching or compression of the sensor elements 12 1 and 12 3 of the inner sensor element group 38 decreases with a bending load of the extension arm 1 in the bending plane 33.
  • the sensor element group 38 shows then at a bending load of the boom 1 in the bending plane 33 a different measurement signal U si than the outer sensor element group 40.
  • An occurrence of a deviation of the measurement signals U si of the groups of sensor elements 38, 40 from each other is therefore an indicator for an occurring delamination of the reinforcing layer 7 from the boom hollow profile 2 ,
  • Fig. 7 shows a further variant of a boom 1. Shown is a boom-hollow profile of the boom 1 in cross section. Not shown is a reinforcing layer, which is arranged as a reinforcing lining in the boom hollow section 2 according to the embodiments discussed above.
  • the boom hollow section 2 is composed of two profile sections 4, 5 and has a total of octagonal cross-section. Each of the two profile sections 4, 5 is folded four times parallel to the longitudinal axis 3.
  • the reinforcing layer 7 can be arranged in the described embodiments along the entire boom hollow profile or only along sections thereof.
  • a boom assembly may be constructed of a plurality of such cantilevers 1, which may for example be telescoped into each other or may be connected to each other via joints.

Description

Die Erfindung betrifft einen Ausleger zur endseitigen Aufnahme von Lasten nach dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines derartigen Auslegers.The invention relates to a boom for end-side receiving loads according to the preamble of claim 1. Furthermore, the invention relates to a method for producing such a boom.

Leichtgewichtige Auslegerteile sind eine wichtige Voraussetzung, um die Anforderungen an mobile Arbeitsmaschinen wie z. B. Arbeitsbühnen, Krane, Betonpumpen u. s. w. bezüglich hoher Tragfähigkeit, großer Auslegerlänge und großer Reichweite zu erfüllen. Durch Leichtbau können diese Leistungsdaten gegenüber konventionellen Bauarten gesteigert werden, ohne das Gesamtgewicht der Maschine zu erhöhen oder die Schwerpunktlage ungünstig zu verschieben. So können z. B. bei Mobilkranen, mobilen Arbeitsbühnen und mobilen Betonpumpen die negativen Auswirkungen des Auslegergewichts auf die Fahrzeuggröße und -masse, die Stützbasis, die Achsanzahl und die notwendigen Gegengewichte gering gehalten werden.Lightweight boom parts are an important prerequisite to meet the demands of mobile machinery such. As work platforms, cranes, concrete pumps u. s. w. in terms of high load capacity, long boom length and long range to meet. By means of lightweight construction, these performance data can be increased compared to conventional designs without increasing the overall weight of the machine or unfavorably shifting the center of gravity. So z. As in mobile cranes, mobile work platforms and mobile concrete pumps, the negative impact of the boom weight on the vehicle size and mass, the support base, the number of axles and the necessary counterweights are kept low.

Monolithische Bauweisen aus Faser-Kunststoff-Verbund (FKV), wie sie z. B. in der Luft- und Raumfahrt verwendet werden, sind eine Möglichkeit, einen solchen Leichtbau zu verwirklichen. Sie sind zwar sehr leicht, aber aus wirtschaftlichen und sicherheitstechnischen Aspekten für den Bau mobiler Arbeitsmaschinen ungeeignet. Die Herstellung von Kastenträgern in monolithischer Faserverbundbauweise ist aufgrund des komplizierten Faseraufbaus bei Krafteinleitungen oder Lagerstellen sehr kostenintensiv. Zudem sind monolithische FKV schlagempfindlich, so dass sie nicht baustellentauglich für den Einsatz in Baumaschinen wie Krane sind.Monolithic construction methods of fiber-plastic composite (FKV), as z. As used in aerospace, are a way to realize such a lightweight construction. Although they are very light, but for economic and safety aspects for the construction of mobile machines unsuitable. The production of box girders in monolithic fiber composite construction is very costly due to the complicated fiber structure in force applications or bearings. In addition, monolithic FRPs are impact-sensitive, so they are not suitable for construction sites for use in construction machinery such as cranes.

Eine Alternative zur reinen FKV-Bauweise ist die Hybridbauweise, bei der metallische Werkstoffe mit FKV kombiniert werden. Ein Ausleger in dieser Hybridbauweise ist bekannt aus der EP 0 968 955 A2 . Die DE 195 08193 A1 offenbart einen Ausleger nach dem Oberbegriff Anspruchs 1.An alternative to pure FKV construction is the hybrid construction, in which metallic materials are combined with FKV. A boom in this hybrid construction is known from the EP 0 968 955 A2 , The DE 195 08193 A1 discloses a boom according to the preamble of claim 1.

Aus der US 6 786 233 B1 ist eine Autobetonpumpe mit einem Ausleger bekannt, der aus einem Ausleger-Hohlprofil mit einer hiermit verbundenen Verstärkungsanlage aus einem Faser-Kunststoff-Verbund besteht. Des Weiteren beschreibt die GB 1 389 139 bereits eine Lastmessvorrichtung für einen Teleskopmast mit mindestens einem Dehnungsmessstreifen, der vorzugsweise in den oberen oder unteren Teilen des Teleskopmastes angeordnet ist.From the US 6,786,233 B1 is a truck-mounted concrete pump with a boom, which consists of a boom-hollow profile with an affiliated reinforcement system of a fiber-plastic composite. Furthermore, the describes GB 1 389 139 already a load measuring device for a telescopic mast with at least one Strain gauge, which is preferably arranged in the upper or lower parts of the telescopic mast.

Es ist eine Aufgabe der vorliegenden Erfindung, einen Ausleger der eingangs genannten Art derart weiterzubilden, dass die Verstärkungslage genau auf den jeweiligen Anwendungszweck dimensioniert sein kann, wobei insbesondere die Baustellentauglichkeit und somit die Sicherheit erhöht werden soll.It is an object of the present invention to develop a boom of the type mentioned in such a way that the reinforcing layer can be dimensioned exactly to the particular application, in particular the construction site suitability and thus safety should be increased.

Diese Aufgabe ist erfindungsgemäß gelöst durch einen Ausleger mit den im Anspruch 1 angegebenen Merkmalen.This object is achieved by a boom with the features specified in claim 1.

Das erfindungsgemäße Sensorelement dient beispielsweise zur Erfassung eines Biegemoments. Hierbei kann beispielsweise in einer Erprobungsphase des Auslegers und/oder bei der ersten Anwendung eines erfindungsgemäß hybrid mit einem metallischen Ausleger-Hohlprofil und einer Faser-Kunststoff-Verbund-Verstärkungslage ausgeführten Auslegers erfasst werden, ob in der Struktur des Ausleger-Hohlprofils Schäden auftreten. Die Verstärkungslage kann entsprechend den vom Sensorelement gemessenen Lästkräften dimensioniert werden Auch alterungsbedingte oder überlastbedingte Deformationen der Struktur des Auslegers können über das Sensorelement sicher erkannt werden. Kostenintensive Inspektionsverfahren für Faser-Kunststoff-Verbunde, beispielsweise Thermographie oder Ultraschallinspektion, können vermieden werden. Bei der erfindungsgemäßen Hybridbauweise, also des Einsatzes einer metallischen Komponente und einer Faser-Kunststoff-Komponente, werden die spezifischen Eigenschaften der Fasern der Verstärkungslage zur Verbesserung der Biegesteifigkeit und der Biegefestigkeit des metallischen Ausleger-Hohlprofils genutzt. Im Unterschied zu einem reinen Faser-Kunststoff-Verbundbauteil ohne metallische Komponente kann beim erfindungsgemäßen Ausleger ein Großteil beispielsweise der Schubübertragung und der Krafteinleitung vom metallischen Ausleger-Hohlprofil übernommen werden. Der Ausleger kann auch mehrere Sensorelemente aufweisen. Durch die Zusammenschaltung mehrerer erfindungsgemäßer Sensorelemente können beispielsweise Biegemomente und eine Normalkraft im Ausleger erfasst werden. Bei geeigneter Anordnung der Sensorelemente kann eine Änderung der Verteilung der Dehnungen zwischen einerseits dem metallischen Ausleger-Hohlprofil und andererseits dem FKV erkannt werden. Eine solche Änderung der Verteilung ist ein Hinweis auf eingetretene Schäden, zum Beispiel auf eine Delamination oder auf einen Faserbruch. Eine innere Verstärkungslage, also eine im Ausleger-Hohlprofil angeordnete Verstärkungslage, ist gegen Einflüsse von außen geschützt. Auch dies ist ein entscheidender Vorteil gegenüber einem Aufbau, wie er aus der EP 0 968 955 A2 bekannt ist, wo der schlag-empfindliche FKV außen angeordnet ist. Ein Ausleger mit einer derartigen inneren Verstärkungslage aus einem Faser-Kunststoff-Verbund in einem metallischen Ausleger-Hohlprofil kann auch ohne ein Sensorelement zur Erfassung von Lastkräften zum Einsatz kommen, da ein solcher Ausleger auch ohne das Sensorelement Vorteile gegenüber dem beispielsweise aus der EP 0 968 955 A2 bekannten Stand der Technik hat. Auch ein Schutz der Verstärkungslage vor Witterungseinflüssen ist gegeben. Insgesamt ist die Baustellentauglichkeit und damit die Sicherheit des Auslegers erhöht. Das Ausleger-Hohlprofil bzw. die Profilabschnitte hiervon können dann gleichzeitig als Werkzeug zur Herstellung des hybriden Auslegers dienen. Investitionskosten für eine Wickelanlage oder für ein entsprechendes Werkzeug entfallen. Am Ausleger außen angebrachte Anbauteile sind nicht durch einen dort eventuell störenden Faser-Kunststoff-Verbund behindert. Anbauteile können dann insbesondere an das Ausleger-Hohlprofil angeschweißt werden. Eine Anordnung von mindestens einem der Sensorelemente an einer Innenwand der Verstärkungslage und mindestens eines weiteren der Sensorelemente zwischen der Verstärkungslage und dem Ausleger-Hohlprofil erlaubt insbesondere eine Erfassung einer unerwünschten Delamination der Verstärkungslage vom Ausleger-Hohlprofil.The sensor element according to the invention serves, for example, for detecting a bending moment. In this case, for example, in a test phase of the cantilever and / or in the first application of a hybrid designed according to the invention with a metallic cantilevered hollow section and a fiber-plastic composite reinforcing layer, it can be detected whether damage occurs in the structure of the cantilevered hollow section. The reinforcing layer can be dimensioned according to the load forces measured by the sensor element. Also, aging-related or overload-induced deformations of the structure of the cantilever can be reliably detected via the sensor element. Costly inspection procedures for fiber-plastic composites, such as thermography or ultrasonic inspection, can be avoided. In the hybrid construction according to the invention, ie the use of a metallic component and a fiber-plastic component, the specific properties of the fibers of the reinforcing layer are used to improve the bending stiffness and the bending strength of the metallic boom hollow profile. In contrast to a pure fiber-plastic composite component without a metallic component, a large part of, for example, the shear transmission and the introduction of force can be taken over by the metallic boom hollow profile in the boom according to the invention. The boom can also have a plurality of sensor elements. By interconnecting a plurality of inventive sensor elements, for example, bending moments and a normal force in the boom can be detected. With a suitable arrangement of the sensor elements, it is possible to detect a change in the distribution of the expansions between, on the one hand, the metal boom hollow profile and, on the other hand, the FRP. Such a change of distribution is a Indication of damage, for example delamination or fiber breakage. An inner reinforcing layer, that is to say a reinforcing layer arranged in the cantilevered hollow profile, is protected against external influences. This, too, is a decisive advantage over a structure as it is known from the EP 0 968 955 A2 It is known where the shock-sensitive FKV is located outside. A boom with such an inner reinforcing layer of a fiber-plastic composite in a metallic boom hollow profile can also be used without a sensor element for detecting load forces, since such a boom without the sensor element advantages over the example of EP 0 968 955 A2 known prior art has. Also, a protection of the reinforcing layer from the weather is given. Overall, the construction site suitability and thus the safety of the boom is increased. The boom hollow profile or the profile sections thereof can then simultaneously serve as a tool for producing the hybrid boom. Investment costs for a winding system or for a corresponding tool eliminated. Attachments attached externally on the arm are not hindered by any possibly interfering fiber-plastic composite there. Attachments can then be welded in particular to the boom hollow profile. An arrangement of at least one of the sensor elements on an inner wall of the reinforcing layer and at least one further of the sensor elements between the reinforcing layer and the boom hollow profile allows, in particular, detection of undesired delamination of the reinforcing layer from the boom hollow profile.

Eine externe Steuereinrichtung nach Anspruch 2 kann weitere Informationen verarbeiten, beispielsweise hydraulische Drücke, mit denen eine Baumaschine, innerhalb der der Ausleger zum Einsatz kommt, arbeitet, eine Neigung des Auslegers gegen die Vertikale oder eine Zugkraft in gegebenenfalls vorhandenen Abspannelementen. Die von den erfindungsgemäßen Sensorelementen gewonnenen Informationen ergänzen diese weiteren, von der externen Steuereinrichtung verarbeitbaren Informationen. Dies ermöglicht es der externen Steuereinrichtung, unsichere Zustände der den Ausleger aufweisenden Baumaschinen zuverlässiger zu erkennen und beispielsweise durch Abschalten eines Hubwerkes oder eines Wippwerkes zu verhindern. Als externe Steuereinrichtung kann insbesondere eine bei modernen Mobilkranen regelmäßig vorhandene Steuereinrichtung genutzt werden.An external control device according to claim 2 can process further information, such as hydraulic pressures, with which a construction machine, within which the boom is used, works, an inclination of the boom against the vertical or a tensile force in optionally existing guy elements. The information obtained by the sensor elements according to the invention supplement this further, processable by the external control device information. This allows the external control device to more reliably detect unsafe conditions of the boom-mounted construction machines and to prevent them, for example, by switching off a hoist or a luffing mechanism. As an external control device, in particular a control device which is regularly present in modern mobile cranes can be used.

Ein Aufbau des Faser-Kunststoff-Verbundes nach Anspruch 3 führt zu einer stabilen Verstärkung mit gleichzeitig geringem Gewicht.
Eine Faseranordnung nach Anspruch 4 erhöht insbesondere die Biegesteifigkeit des Auslegers.
A structure of the fiber-plastic composite according to claim 3 leads to a stable reinforcement with low weight.
A fiber arrangement according to claim 4 in particular increases the flexural rigidity of the cantilever.

Insbesondere ein Teil der Fasern der Verstärkungslage kann nach Anspruch 5 schräg oder diagonal in Bezug auf die Ausleger-Längsachse angeordnet sein. Dabei kann es insbesondere zwei Faser-Gruppen geben, die einander kreuzen. So angeordnete Fasern unterstützen die Übertragung von Schubkräften aus Torsion und Querkraft und erhöhen eine Biegesteifigkeit von Querschnittsteilen des Auslegers.In particular, a part of the fibers of the reinforcing layer can be arranged according to claim 5 obliquely or diagonally with respect to the boom longitudinal axis. In particular, there may be two fiber groups crossing each other. Thus arranged fibers assist in the transmission of shear forces from torsion and shear and increase flexural rigidity of cross-sectional parts of the cantilever.

Eine elektrisch isolierende Zwischenlage nach Anspruch 6 schützt das metallische Ausleger-Hohlprofil vor Korrosion, insbesondere wenn die FKV-Verstärkungslage Kohlenstofffasern aufweist. Dabei wird bevorzugt eine Faserlage, insbesondere eine Glasfaserlage, eingesetzt.An electrically insulating intermediate layer according to claim 6 protects the metallic boom hollow profile from corrosion, in particular when the FKV reinforcing layer has carbon fibers. In this case, a fiber layer, in particular a glass fiber layer, is preferably used.

Profilabschnitte nach Anspruch 7 vereinfachen die Herstellung des erfindungsgemäßen Auslegers.Profile sections according to claim 7 simplify the production of the boom according to the invention.

Eine U-Profilform der Profilabschnitte ermöglicht beispielsweise eine Anordnung der Verstärkungslagen, bei der diese räumlich gut getrennt von Verbindungsabschnitten zwischen den das Ausleger-Hohlprofil aufbauenden Profilabschnitten vorliegen. Die Profilabschnitte können dann beispielsweise über die Schenkel des U miteinander verschweißt werden, ohne dass Gefahr besteht, die beispielsweise am Boden des U angeordnete Verstärkungslage zu beschädigen. Alternativ zu einer U-Profilform können die Profilabschnitte auch eben, als L-Profil oder im Querschnitt mit mehreren Knicken ausgeführt sein. Eine solche Querschnitts-Ausführung des Auslegers mit im Querschnitt mehrfach geknickten Profilabschnitten ergibt beispielsweise einen Ausleger mit sechs- oder achteckigem Querschnitt.A U-profile shape of the profile sections allows, for example, an arrangement of the reinforcing layers, in which they are spatially well separated from the connecting sections between the profiled sections constituting the boom-hollow profile. The profile sections can then be welded together, for example via the legs of the U, without the risk of damaging the reinforcing layer arranged, for example, at the bottom of the U. Alternatively to a U-profile shape, the profile sections can also be flat, designed as an L-profile or in cross-section with several kinks. Such a cross-sectional design of the cantilever with profile sections bent several times in cross-section yields, for example, a boom with a hexagonal or octagonal cross-section.

Eine Sensorelementgruppe nach Anspruch 8 ermöglicht insbesondere eine temperaturkompensierte Messung auftretender Lastkräfte, beispielsweise auftretender Biegemomente.A sensor element group according to claim 8 allows in particular a temperature-compensated measurement occurring load forces, for example, occurring bending moments.

Eine weitere Aufgabe der Erfindung ist es, ein kostengünstiges Herstellungsverfahren für den erfindungsgemäßen Ausleger anzugeben.Another object of the invention is to provide a low cost manufacturing process indicate for the boom according to the invention.

Diese Aufgabe ist erfindungsgemäß gelöst durch ein Verfahren nach Anspruch 9.This object is achieved by a method according to claim 9.

Ein Herstellungsverfahren nach Anspruch 9 nutzt insbesondere die Vorteile einer Unterteilung des Ausleger-Hohlprofils in Profilabschnitte nach Anspruch 7. Soweit ein schon komplettes Ausleger-Hohlprofil als Ausgangselement zur Verbindung mit der Verstärkungslage bereitgestellt wird, kann die Verstärkungslage auch in das Hohlprofil eingeschoben oder, soweit die Verstärkungslage außerhalb des Hohlprofils angebracht ist, auf diesem aufgebracht werden. Das Sensorelement kann zusammen mit der Verstärkungslage in den Ausleger eingebracht werden oder kann bereits zusammen mit dem Ausleger-Hohlprofil schon bereitgestellt werden. Alternativ ist es möglich, das Sensorelement vor dem Aufbringen der Verstärkungslage oder erst im Anschluss hieran anzubringen. Unter Umständen kann auf das Einbringen eines Sensorelementes, insbesondere dann, wenn die Verstärkungslage im Hohlraum des Ausleger-Hohlprofils angeordnet ist, auch verzichtet werden.A manufacturing method according to claim 9 uses in particular the advantages of a subdivision of the boom hollow profile in profile sections according to claim 7. If an already complete boom hollow section is provided as an output element for connection to the reinforcing layer, the reinforcing layer can also be inserted into the hollow profile or, as far as the Reinforcement layer is mounted outside of the hollow profile to be applied to this. The sensor element can be introduced into the boom together with the reinforcement layer or can already be provided together with the boom hollow profile. Alternatively, it is possible to attach the sensor element before the application of the reinforcing layer or only thereafter. Under certain circumstances, can be dispensed with the introduction of a sensor element, in particular when the reinforcing layer is arranged in the cavity of the boom-hollow profile.

Ein Aufbringen der Verstärkungslage nach Anspruch 10 eignet sich zu einer automatisierten Herstellung des Auslegers. Der Faser-Kunststoff-Verbund wird beim Aufbringen der Verstärkungslage aus der Faserlage und dem polymeren Kunstharz hergestellt. Nach dem Legen der Faserlage kann das Injizieren des Kunstharz/Härter-Gemisches kann unter Vakuum erfolgen. Es muss kein fertig vorproduzierter Faser-Kunststoff-Verbund bereitgestellt werden. Die Verstärkungslage kann sich bei diesem Herstellungsverfahren gut an das Ausleger-Hohlprofil bzw. den Profilabschnitt hiervon anpassen. Das Ausleger-Hohlprofil bzw. der Profilabschnitt hiervon dient dann gleichzeitig als Werkzeug zur Herstellung des hybriden Auslegers.An application of the reinforcing layer according to claim 10 is suitable for an automated manufacture of the cantilever. The fiber-plastic composite is produced when applying the reinforcing layer of the fiber layer and the polymeric resin. After laying the fiber layer, the injection of the resin / hardener mixture can be done under vacuum. There is no need to provide ready pre-produced fiber-plastic composite. The reinforcing layer can easily adapt to the boom hollow profile or the profile section thereof in this manufacturing process. The boom hollow profile or the profile section thereof then serves as a tool for producing the hybrid boom.

Ein Orientieren von Fasern nach Anspruch 11 kann zu einer Verbesserung der Eigenschaften des Auslegers in Bezug auf eine vorgegebene Belastung führen, zum Beispiel die Biegesteifigkeit erhöhen.Orienting fibers according to claim 11 may result in an improvement in the properties of the cantilever with respect to a given load, for example increasing the flexural rigidity.

Die Zwischenlage nach Anspruch 12 kann Schutz vor einer Kontakt-Korrosion des metallischen Hohlprofils bieten.The intermediate layer according to claim 12 can provide protection against contact corrosion of the metallic hollow profile.

Eine abreißfähige Lage, die auf die Faserlage vor dem Injizieren des polymeren Kunstharz/Härter-Gemisches aufgebracht werden kann, ermöglicht es, Schichten, die nach der Herstellung des Auslegers als Resultat des Herstellungsverfahrens vorliegen, jedoch keinen Bestandteil des Endprodukts darstellen, einfach von der Verstärkungslage zu trennen.A tearable layer on the fiber layer before injecting the polymeric Synthetic resin / hardener mixture can be applied, layers that are present after the production of the boom as a result of the manufacturing process, but do not form part of the final product, easy to separate from the reinforcing layer.

Eine Verteilerlage, die vor dem Injizieren auf die Faserlage aufgebracht werden kann und über die das injizierte Kunstharz zunächst quer zur Ausleger-Längsachse verteilt wird, verbessert die Einbettung der Faserlage im Kunstharz bei der Durchführung eines Herstellungsverfahrens, bei dem ein polymeres Kunstharz in die Faserlage injiziert wird.A dispensing ply that can be applied to the fiber ply prior to injection and over which the injected resin is first distributed transversely of the cantilever longitudinal axis enhances embedding of the fiber ply in the resin when performing a manufacturing process in which a polymeric resin is injected into the fiber ply becomes.

Bei einem Herstellungsverfahren nach Anspruch 13 kann eine vorgefertigte Verstärkungslage aus einem Faser-Kunststoff-Verbund zum Einsatz kommen. Insbesondere bei geometrisch einfach gestalteten Ausleger-Hohlprofilen kann dies im Ergebnis zu einer kostengünstigen Herstellung führen. Bei diesem Herstellungsverfahren können die Sensorelemente vorab in die FKV-Verstärkungen integriert werden.In a manufacturing method according to claim 13, a prefabricated reinforcing layer made of a fiber-plastic composite can be used. In particular, in geometrically simple design boom hollow sections, this can result in a result in a cost-effective production. In this manufacturing process, the sensor elements can be integrated in advance in the FKV reinforcements.

Bei einem Verkleben nach Anspruch 14 resultiert ein sicherer Verbund der Verstärkungslage mit dem Ausleger-Hohlprofil bzw. dem Profilabschnitt hiervon.In a bonding according to claim 14 results in a secure bond of the reinforcing layer with the boom-hollow profile or the profile section thereof.

Der Einsatz eines Druckkörpers nach Anspruch 15 nutzt elegant die Geometrie des Ausleger-Hohlprofils bei der Einbringung von zwei Verstärkungslagen gleichzeitig.The use of a pressure hull according to claim 15 elegantly uses the geometry of the boom hollow profile in the introduction of two reinforcing layers simultaneously.

Ein Druckkörper, der zwischen den Verstärkungslagen im Inneren des Ausleger-Hohlprofils längs der Ausleger-Längsachse angeordnet ist, kann bei der Herstellung des Auslegers zur Vereinfachung der Verbindung der Verstärkungslagen mit dem Ausleger-Hohlprofil bei der Herstellung des Auslegers dienen. Beim Druckkörper kann es sich um einen druckbeaufschlagbaren Schlauch handeln.A pressure body disposed between the reinforcing plies in the interior of the cantilevered hollow profile along the cantilever longitudinal axis may be used in the manufacture of the cantilever to facilitate connection of the reinforcing plies to the cantilevered hollow profile in the manufacture of the cantilever. The pressure body can be a pressurizable hose.

Eine Fluidfüllung nach Anspruch 16 ermöglicht eine definierte Druckbeaufschlagung des Druckkörpers bei der Verklebung der Verstärkungslagen. Auch eine Temperierung, beispielsweise zur Kleberaushärtung, ist über einen solchen Druckkörper durch eine entsprechende Temperierung des Fluids möglich.A fluid filling according to claim 16 allows a defined pressurization of the pressure hull in the bonding of the reinforcing layers. A tempering, for example, for curing the adhesive is possible via such a pressure body by a corresponding temperature of the fluid.

Ausführungsbeispiele werden nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:

  • Fig. 1 einen Querschnitt durch einen Ausleger zur endseitigen Aufnahme von Lasten, ausgeführt als Kastenträger, in einem perspektivischen Ausschnitt;
  • Fig. 2 einen auch als Profilsegment bezeichneten Profilabschnitt des Auslegers, ebenfalls in perspektivischer Darstellung, während der Verbindung einer Verstärkungslage mit dem Profilabschnitt im Zuge einer Herstellung des Auslegers;
  • Fig. 3 einen Querschnitt durch eine weitere Ausführung eines Auslegers, ebenfalls ausgeführt als Kastenträger, während der Verbindung einer Verstärkungslage mit einem Ausleger-Hohlprofil im Zuge einer weiteren Variante eines Verfahrens zur Herstellung des Auslegers;
  • Fig. 4 in einer zu Fig. 1 ähnlichen, schematischen Darstellung die Anordnung von vier Sensorelementen am Ausleger nach 1 zum temperaturkompensierten Messen eines Biegemoments bei einer Biegung des Auslegers in einer in der Fig. 4 vertikal verlaufenden Biegeebene;
  • Fig. 5 eine Verschaltung der vier Sensorelemente nach Fig. 4;
  • Fig. 6 eine weitere Ausführung eines Auslegers im Längsschnitt, wobei zwei Gruppen jeweils miteinander nach Fig. 5 verschalteter Sensorelemente zu je vier nach Fig. 4 angeordneter Sensorelementen vorgesehen sind; und
  • Fig. 7 schematisch einen Querschnitt eines Ausleger-Hohlprofils einer weiteren Ausführung eines Auslegers.
Embodiments will be explained in more detail with reference to the drawing. In this show:
  • Fig. 1 a cross section through a boom for end-side recording of loads, designed as a box girder, in a perspective cutout;
  • Fig. 2 a profile section of the cantilever also referred to as a profile segment, likewise in a perspective view, during the connection of a reinforcing layer to the profile section in the course of production of the cantilever;
  • Fig. 3 a cross section through a further embodiment of a boom, also designed as a box girder, during the connection of a reinforcing layer with a boom hollow section in the course of another variant of a method for producing the boom;
  • Fig. 4 in one too Fig. 1 Similarly, the schematic arrangement of the arrangement of four sensor elements on the boom of Figure 1 for temperature compensated measuring a bending moment in a bending of the cantilever in a in the Fig. 4 vertical bending plane;
  • Fig. 5 an interconnection of the four sensor elements after Fig. 4 ;
  • Fig. 6 a further embodiment of a cantilever in longitudinal section, wherein two groups each with each other after Fig. 5 interconnected sensor elements to four each Fig. 4 arranged sensor elements are provided; and
  • Fig. 7 schematically a cross section of a boom-hollow profile of another embodiment of a boom.

Ein in der Fig. 1 perspektivisch und abschnittsweise dargestellter Ausleger 1 dient zur endseitigen Aufnahme von Lasten. Der Ausleger 1 kann beispielsweise Bestandteil einer Arbeitsbühne, eines Krans oder auch einer Betonpumpe sein. Der Ausleger 1 hat ein als Kastenträger ausgeführtes Ausleger-Hohlprofil 2 mit einer in der 1 gestrichelt dargestellten Längsachse 3. Das Ausleger-Hohlprofil 2 ist aus Metall. Das Ausleger-Hohlprofil 2 ist aus zwei Profilabschnitten 4, 5 mit jeweils U-förmigem Querschnitt zusammengesetzt. Die beiden Profilabschnitte 4, 5 sind über Schweißnähte 6 miteinander verbunden, die längs der Ausleger-Längsachse 3 verlaufen.An Indian Fig. 1 in perspective and in sections illustrated boom 1 is used for end-side recording of loads. The boom 1 may for example be part of a working platform, a crane or a concrete pump. The boom 1 has a runner designed as a box beam hollow profile 2 with a dashed line in Fig. 1 longitudinal axis 3. The boom hollow section 2 is made of metal. The boom hollow section 2 is composed of two profile sections 4, 5, each with a U-shaped Cross-section assembled. The two profile sections 4, 5 are connected to each other via welds 6, which extend along the boom longitudinal axis 3.

Je eine Verstärkungslage 7 ist auf dem Boden der Profilabschnitte 4, 5 aufgebracht. Die beiden Verstärkungslagen 7 sind gleich aufgebaut, so dass es genügt, die auf den Profilabschnitt 5 aufgebrachte Verstärkungslage 7, die in der Fig. 1 unten dargestellt ist, zu beschreiben. Die Verstärkungslage 7 ist als Verstärkungs-Auskleidung im Hohlraum des Ausleger-Hohlprofils 2 angeordnet, liegt also an einer Innenwand 8 des Profilabschnitts 5 an. Die Verstärkungslage 7 ist aus einem Faser-Kunststoff-Verbund gefertigt. Hierbei handelt es sich insbesondere um einen Kohlenstofffaser-Kunstharz-Verbund. Kohlenstofffasern 9 einer Faserlage 10 der Verstärkungslage 7 sind über eine polymere Kunstharzmatrix 11 miteinander und mit der Innenwand 8 verbunden.Depending on a reinforcing layer 7 is applied to the bottom of the profile sections 4, 5. The two reinforcing layers 7 are constructed the same, so that it is sufficient, the force applied to the profile section 5 reinforcing layer 7, in the Fig. 1 is described below. The reinforcing layer 7 is arranged as a reinforcing lining in the cavity of the boom hollow section 2, so it abuts against an inner wall 8 of the profile section 5. The reinforcing layer 7 is made of a fiber-plastic composite. This is in particular a carbon fiber-resin composite. Carbon fibers 9 of a fiber layer 10 of the reinforcing layer 7 are connected to one another and to the inner wall 8 via a polymeric synthetic resin matrix 11.

Die Fasern 9 der Verstärkungslage 7 können unterschiedliche Orientierungen aufweisen. Sie können zum überwiegenden Teil mit einer zur Längsachse 3 des Auslegers 1 parallelen Verlaufskomponente angeordnet sein. Sie können auch zum überwiegenden Teil diagonal in Bezug auf die Längsachse 3 angeordnet sein.The fibers 9 of the reinforcing layer 7 may have different orientations. They can be arranged for the most part with a parallel to the longitudinal axis 3 of the boom 1 level component. They may also be arranged predominantly diagonally with respect to the longitudinal axis 3.

Insbesondere können alle Fasern 9 diagonal in Bezug auf die Längsachse 3 angeordnet sein. Hierbei kann es zwei Faser-Gruppen geben, deren Verläufe einander kreuzen. Diese beiden Faser-Gruppen können zu unterschiedlichen und übereinander angeordneten Faser-Einzellagen der Faserlage 10 gehören.In particular, all the fibers 9 may be arranged diagonally with respect to the longitudinal axis 3. There may be two groups of fibers whose paths cross each other. These two fiber groups may belong to different and superimposed individual fiber layers of the fiber layer 10.

Im Bereich der Verstärkungslage 7 ist ein Sensorelement 12 angeordnet. Signal- bzw. Versorgungsleitungen 12a , die mit dem Sensorelement 12 verbunden sind, sind ein Stück weit längs des Ausleger-Hohlprofils 2 geführt und dann nach außen geführt. Das Sensorelement 12 dient zur Erfassung von auf den Ausleger 1 wirkenden Lastkräften. Das Sensorelement 12 ist als Dehnungssensor und insbesondere als Dehnungsmessstreifen ausgeführt. Über eine nicht dargestellte Signalverbindung steht das Sensorelement 12 mit einer externen Steuereinrichtung 13 in Signalverbindung. Letztere verarbeitet neben Messwerten, die das Sensorelement 12 aufnimmt, auch weitere, von zusätzlichen Sensoren erfasste Informationen über den Zustand einer Arbeits- bzw. Baumaschine, deren Teil der Ausleger 1 darstellt. Bei diesen zusätzlichen Informationen kann es sich beispielsweise um hydraulische Drücke, eine Neigung des Auslegers 1 gegen die Vertikale oder um eine Zugkraft in einem nicht dargestellten Abspannelement der Arbeitsmaschine handeln.In the area of the reinforcing layer 7, a sensor element 12 is arranged. Signal or supply lines 12a, which are connected to the sensor element 12, are guided a little way along the boom hollow profile 2 and then led to the outside. The sensor element 12 serves to detect load forces acting on the boom 1. The sensor element 12 is designed as a strain sensor and in particular as a strain gauge. Via a signal connection, not shown, the sensor element 12 is in signal communication with an external control device 13. The latter processes, in addition to measured values which the sensor element 12 receives, also further information, acquired by additional sensors, about the condition of a working or construction machine, the part of which represents the boom 1. at This additional information may be, for example, hydraulic pressures, an inclination of the boom 1 against the vertical or a tensile force in a guy element of the work machine, not shown.

Das Sensorelement 12 kann in die Verstärkungslage 7 eingebettet sein. Alternativ ist es möglich, das Sensorelement 12 auf der zum Hohlraum des Ausleger-Hohlprofils 2 zugewandten Seite der Verstärkungslage 7 anzuordnen. Schließlich ist es möglich, das Sensorelement 2 zwischen der Verstärkungslage 7 und dem Profilabschnitt 5 anzuordnen.The sensor element 12 may be embedded in the reinforcing layer 7. Alternatively, it is possible to arrange the sensor element 12 on the side facing the cavity of the boom hollow profile 2 side of the reinforcing layer 7. Finally, it is possible to arrange the sensor element 2 between the reinforcing layer 7 and the profile section 5.

In der Praxis weist der Ausleger 1 mehrere Sensorelemente 12 auf, die alle mit der Steuereinrichtung 13 in Signalverbindung stehen.In practice, the boom 1 has a plurality of sensor elements 12, which are all in signal communication with the control device 13.

Das Sensorelement 12 dient insbesondere zur Erfassung eines Biegemoments sowie zur Erfassung des Vorhandenseins eines Schadens des Auslegers 1.The sensor element 12 is used in particular for detecting a bending moment and for detecting the presence of a damage of the jib 1.

Mehrere der Sensorelemente 12 können Teil einer gemeinsamen Messanordnung und z. B. in einer Wheatstoneschen Brücke verschaltet sein. Diese Verschaltung kann insbesondere so sein, dass der Einfluss einer ungleichmäßigen Erwärmung des Auslegers 1 auf das Messergebnis der Sensorelemente 12 kompensiert ist.Several of the sensor elements 12 may be part of a common measuring arrangement and z. B. be interconnected in a Wheatstone bridge. This interconnection can in particular be such that the influence of an uneven heating of the cantilever 1 on the measurement result of the sensor elements 12 is compensated.

Zwischen der Verstärkungslage 7 und der Innenwand 8 ist eine elektrisch isolierende Zwischenlage 14 angeordnet, die als Glasfaserlage ausgeführt ist.Between the reinforcing layer 7 and the inner wall 8, an electrically insulating intermediate layer 14 is arranged, which is designed as a glass fiber layer.

Nachfolgend wird anhand der Fig. 2 ein Verfahren zur Herstellung des Auslegers 1 beschrieben. Es handelt sich hierbei um ein Vakuum-Injektionsverfahren, bei dem die Profilabschnitte des Ausleger-Hohlprofils 2 die Funktion eines Werkzeugs übernehmen. Im Vergleich zu Fig. 1 zeigt die 2 den Profilabschnitt 5 des Auslegers 1 mit größerer Detailfülle.The following is based on the Fig. 2 a method of manufacturing the cantilever 1 is described. This is a vacuum injection method in which the profile sections of the boom hollow section 2 take over the function of a tool. Compared to Fig. 1 shows the 2, the profile section 5 of the boom 1 with greater detail.

Auf die Zwischenlage 14 ist die Faserlage 10 zunächst noch mit nicht matrixverbundenen Fasern 9 aufgelegt. Beim oder nach dem Auflegen der Faserlage 10 werden die Fasern 9 der Faserlage 10 orientiert, also zur Längsachse 3 ausgerichtet, wobei eine Orientierung der Fasern 9 entsprechend dem, was vorstehend ausgeführt wurde, eingestellt wird. Auf die orientierte Faserlage 10 ist eine abreißfähige Lage 15 aufgelegt. Auf die abreißfähige Lage 15 wiederum aufgelegt ist eine Verteilerlage 16 in Form eines Verteilergewebes. Zwischen dem Verteilergewebe 16 und einer darüber angeordneten harzundurchlässigen, aber luftdurchlässigen Folie 17 ist eine längs der Längsachse 3 verlaufende Harzleitung 18 angeordnet. Über längs der Längsachse 3 verlaufende und an der Innenwand 8 des Profilabschnitts 5 angebrachte Dichtstreifen 19 ist die Folie 17 gegen den Profilabschnitt 5 abgedichtet. Oberhalb der Folie 17 ist eine weitere luftundurchlässige Folie 20 zwischen den Schenkeln des Profilabschnitts 5 angeordnet und über ein weiteres Paar von Dichtstreifen 19 gegen die Innenwand 8 des Profilabschnitts 5 abgedichtet. Zwischen den beiden übereinanderliegenden Folien 17, 20 ist eine Vlieslage 21 angeordnet. Zwischen der Vlieslage 21 und der in der 2 oberen luftundurchlässigen Folie 20 ist eine Luftleitung 22 angeordnet, die ebenfalls parallel zur Langsachse 3 verläuft. Die Luftleitung 22 ist über ein Anschlusselement 23 mit einer Vakuumpumpe 24 in Fluidverbindung.On the intermediate layer 14, the fiber layer 10 is initially placed with non-matrix-connected fibers 9. During or after placing the fiber layer 10, the fibers 9 of the fiber layer 10 are oriented, that is aligned with the longitudinal axis 3, wherein an orientation of the fibers 9 is adjusted according to what was stated above. On the oriented fiber layer 10 is a tear-able layer 15 launched. In turn, a distribution layer 16 in the form of a distribution fabric is placed on the tearable layer 15. Between the distributor fabric 16 and a resin-impermeable, but air-permeable film 17 disposed therealong, a resin conduit 18 extending along the longitudinal axis 3 is arranged. Over along the longitudinal axis 3 extending and attached to the inner wall 8 of the profile section 5 sealing strip 19, the film 17 is sealed against the profile section 5. Above the film 17, a further air-impermeable film 20 is disposed between the legs of the profile section 5 and sealed by a further pair of sealing strips 19 against the inner wall 8 of the profile section 5. Between the two superimposed films 17, 20, a nonwoven layer 21 is arranged. Between the nonwoven layer 21 and the upper in the upper air-impermeable film 20, an air line 22 is arranged, which also extends parallel to the longitudinal axis 3. The air line 22 is in fluid communication with a vacuum pump 24 via a connection element 23.

Die Harzleitung 18 verzweigt sich über ein Mischerelement 25 in einen Harz-Leitungsabschnitt 26 und einen Härter-Leitungsabschnitt 27 . Der Harz-Leitungsabschnitt 26 steht mit einem Harz-Vorratsbehälter 28 und der Härter-Leitungsabschnitt 27 steht mit einem Härter-Vorratsbehälter 29 in Fluidverbindung. Im Mischerelement 25 erfolgt eine Zusammenführung von Harz und Harter in einem vorgegebenen Mischungsverhältnis, wobei ein chemisch reaktives Harz/Härter-Gemisch erzeugt wird.The resin pipe 18 is branched via a mixing element 25 into a resin pipe section 26 and a hardener pipe section 27. The resin conduit section 26 communicates with a resin reservoir 28 and the hardener conduit section 27 is in fluid communication with a hardener reservoir 29. In the mixing element 25, a combination of resin and harder in a predetermined mixing ratio, wherein a chemically reactive resin / hardener mixture is generated.

Mit Hilfe des in der Fig. 2 dargestellten Aufbaus kann die Verstärkungslage 7 direkt auf den Profilabschnitt 5 laminiert werden, wobei anschließend entsprechend mit den Verstärkungslagen 7 vorbereitete Profilabschnitte 4, 5 zum Ausleger 1 miteinander verbunden werden. Beim Laminieren der Verstärkungslage 7 dienen die Profilabschnitte 4, 5 gleichzeitig als Formwerkzeuge für die Verstärkungslage 7.With the help of in the Fig. 2 illustrated construction, the reinforcing layer 7 can be laminated directly to the profile section 5, wherein then according to the reinforcing layers 7 prepared profile sections 4, 5 are connected to the boom 1 with each other. When laminating the reinforcing layer 7, the profile sections 4, 5 simultaneously serve as forming tools for the reinforcing layer 7.

Die Zwischenlage 14 wird auf den Boden des Profilabschnitts 5 nach einer Oberflächenbehandlung des Profilabschnitts 5, beispielsweise nach einem Entfetten und Sandstrahlen des Profilabschnitts 5 , aufgelegt. Anschließend werden die Fasern 9 trocken als Faserlage 10 auf die Zwischenlage 14 aufgelegt und orientiert. Die ausgerichteten Fasern werden insbesondere als Endlosfasern ausgeführt. Dies gilt auch dann, wenn das Ausleger-Hohlprofil 2 über seinen Verlauf längs der Längsachse 3 einen veränderlichen Querschnitt hat. In der Regel hat lediglich ein kleinerer Anteil der Kohlenstofffasern 9 eine Orientierung parallel zur Längsachse 3.The intermediate layer 14 is placed on the bottom of the profile section 5 after a surface treatment of the profile section 5, for example after degreasing and sandblasting of the profile section 5. Subsequently, the fibers 9 are laid dry as a fiber layer 10 on the intermediate layer 14 and oriented. The oriented fibers are in particular designed as continuous fibers. This also applies if the boom hollow profile 2 over its course along the longitudinal axis 3 has a variable cross-section. As a rule, only a smaller proportion of the carbon fibers 9 has an orientation parallel to the longitudinal axis 3.

Zur Herstellung der Verstärkungslage 7 wird polymeres Kunstharz, vermischt mit einem Härter über die Harzleitung 18 in die Faserlage 10 injiziert. Das Kunstharz verklebt die Fasern 9 mit dem Boden des Profilabschnitts 5. Das aus längs der Harzleitung 18 angeordneten Verteileröffnungen austretende Kunstharz wird dabei über die Verteilerlage 16 quer zur Längsachse 3 des Profilabschnitts 5 verteilt, durchdringt die abreißfähige Lage 15 und dringt in die Faserlage 10 ein. Die harzundurchlässige Folie 17 stellt sicher, dass kein Harz/Härter-Gemisch unerwünscht in andere Bereiche außerhalb der Faserlage 10 eindringen kann.To produce the reinforcing layer 7, polymeric synthetic resin, mixed with a hardener, is injected into the fiber layer 10 via the resin line 18. The synthetic resin adheres the fibers 9 to the bottom of the profile section 5. The resin emerging from the distribution line 16 is distributed over the distribution layer 16 transversely to the longitudinal axis 3 of the profile section 5, penetrates the tearable layer 15 and penetrates into the fiber layer 10 , The resin-impermeable film 17 ensures that no resin / hardener mixture can undesirably penetrate into other regions outside the fiber layer 10.

Über die Luftleitung 22 kann der das Vlies 21 enthaltende Raum zwischen den Folien 17 , 20 evakuiert werden. Die Evakuierung verhindert Lufteinschlüsse, die zu einer potenziellen Delaminierung und damit zu einer Materialinkonsistenz führen können. Eine über die Evakuierung erzeugte Druckdifferenz treibt das Harz/Härter-Gemisch in die Zwischenräume zwischen den Fasern der Faserlage 10.Via the air line 22 of the fleece 21 containing space between the sheets 17, 20 are evacuated. The evacuation prevents trapped air, which can lead to a potential delamination and thus to a material inconsistency. A pressure difference generated by the evacuation drives the resin / hardener mixture into the spaces between the fibers of the fiber layer 10.

Eine Aushärtung des Harz/Härter-Gemischs in der Faserlage 10 kann bei Raumtemperatur oder bei erhöhten Temperaturen, z. B. bei 80°C, erfolgen.Curing of the resin / hardener mixture in the fiber layer 10 may be carried out at room temperature or at elevated temperatures, e.g. B. at 80 ° C, take place.

Ein Aufheizen zum Aushärten erfolgt in einem Wärmeofen oder durch Auflegen einer Heizmatte.A heating for curing takes place in a heating furnace or by placing a heating mat.

Nach dem Aushärten werden das Verteilergewebe 16 sowie die beiden Folien 17, 20 mit dem zwischenliegenden Vlies 21 und den beiden Leitungen 18, 22 durch Abreißen über die abreißfähige Lage 15 entfernt.After curing, the distributor fabric 16 and the two films 17, 20 with the intermediate nonwoven 21 and the two lines 18, 22 are removed by tearing off the tearable layer 15.

Die so mit Verstärkungslagen 7 vorbereiteten Profilabschnitte 4, 5 werden anschließend verschweißt, wobei die Schweißnähte 6 hergestellt werden.The thus prepared with reinforcing layers 7 profile sections 4, 5 are then welded, wherein the welds 6 are produced.

Die Sensorelemente 12 können im Ausleger 1 entweder direkt bei der Herstellung der Verstärkungslagen 7 oder bei der Verbindung der Verstärkungslagen 7 und den Profilabschnitten 4, 5 oder auch erst nach der Herstellung der Hybridstruktur aus den Profilabschnitten 4 und 5 und den Verstärkungslagen 7 angebracht werden.The sensor elements 12 can be mounted in the boom 1 either directly in the production of the reinforcing layers 7 or in the connection of the reinforcing layers 7 and the profile sections 4, 5 or only after the production of the hybrid structure of the profile sections 4 and 5 and the reinforcing layers 7.

Fig. 3 zeigt einen Querschnitt einer weiteren Variante eines Auslegers 1, der mit Hilfe einer Variante eines Herstellungsverfahrens erzeugt werden kann. Komponenten und verfahrenstechnische Einzelheiten, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf die Fig. 1 und 2 erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. Bei dieser Herstellungsvariante werden zunächst die Profilabschnitte 4, 5 separat angefertigt und zum Ausleger-Hohlprofil 2 über die Schweißnähte 6 zusammengefügt. Auch die Verstärkungslagen 7 werden in einem separaten Verfahrensschritt hergestellt. Dabei werden die Fasern 9 der Faserlagen 10 der Verstärkungslagen 7 so orientiert, dass sie nach dem Verbinden mit den Profilabschnitten 4, 5 eine Orientierung aufweisen, die dem entspricht, was vorstehend im Zusammenhang mit den Fig. 1 und 2 erläutert wurde. Fig. 3 shows a cross section of a further variant of a boom 1, which can be produced by means of a variant of a manufacturing process. Components and procedural details corresponding to those described above with reference to FIGS Fig. 1 and 2 have the same reference numbers and will not be discussed again in detail. In this production variant, first the profile sections 4, 5 are made separately and assembled to the boom hollow section 2 via the welds 6. The reinforcing layers 7 are also produced in a separate method step. In this case, the fibers 9 of the fiber layers 10 of the reinforcing layers 7 are oriented in such a way that, after being connected to the profile sections 4, 5, they have an orientation which corresponds to what has been described above in connection with FIGS Fig. 1 and 2 was explained.

Anschließend werden die Verstärkungslagen 7 einseitig mit einem Klebstoff 30 , beispielsweise einem Klebstoff auf Epoxidharzbasis, bestrichen. Die Verstärkungslagen 7 werden dann in das Ausleger-Hohlprofil 2 eingeschoben, so dass die Klebstoffseiten der Verstärkungslagen 7 jeweils den Innenwänden 8 der Profilabschnitte 4 , 5 zugewandt sind. Nach dem Einlegen der Verstärkungslagen 7 werden in das Ausleger-Hohlprofil 2 zwei Druckplatten 31 sowie ein Druckkörper 32 in Form eines fluidbefüllbaren Schlauches eingelegt. Der Druckkörper 32 hat dabei einen Verlauf längs der Längsachse 3 des Auslegers 1 . Die beiden Druckplatten 31 sind jeweils zwischen dem Druckkörper 32 und einer der beiden Verstärkungslagen 7 angeordnet.Subsequently, the reinforcing layers 7 are coated on one side with an adhesive 30, for example an epoxy resin-based adhesive. The reinforcing layers 7 are then inserted into the boom hollow section 2, so that the adhesive sides of the reinforcing layers 7 each face the inner walls 8 of the profile sections 4, 5. After inserting the reinforcing layers 7 two pressure plates 31 and a pressure body 32 in the form of a fluidbefüllbaren tube are inserted into the boom-hollow section 2. The pressure body 32 has a course along the longitudinal axis 3 of the boom. 1 The two pressure plates 31 are each arranged between the pressure body 32 and one of the two reinforcing layers 7.

Bei dem Druckkörper 32 handelt es sich insbesondere um ein hohles Druckkissen aus einem gummielastischen Material. Nach dem Einlegen der Druckplatten 31 und des Druckkörpers 32 wird letzterer mit einem Druckfluid, also einem gasförmigen oder flüssigen Medium, befüllt, so dass im Druckkörper 32 ein Druck p erzeugt ist. Durch diesen Druck werden die Verstärkungslagen 7 über die Druckplatten 31 gegen die Innenwand 8 und damit gegen die beiden Klebstofflagen 30 gedrückt. Dies erfolgt so lange, bis der Klebstoff 30 ausgehärtet ist. Diese Härtung kann wiederum bei Raumtemperatur oder bei erhöhter Temperatur erfolgen. Zum Harten des Klebstoffs 30 wird der Ausleger 1 in einen Wärmeofen eingebracht oder es wird eine entsprechend vorgewärmte Flüssigkeit, beispielsweise Wasser oder Öl, in den Druckkörper 32 eingeleitet.The pressure body 32 is, in particular, a hollow pressure pad made of a rubber-elastic material. After inserting the pressure plates 31 and the pressure body 32, the latter is filled with a pressure fluid, that is to say a gaseous or liquid medium, so that a pressure p is generated in the pressure body 32. By this pressure, the reinforcing layers 7 are pressed against the inner wall 8 and thus against the two adhesive layers 30 via the pressure plates 31. This takes place until the adhesive 30 has cured. This hardening can again take place at room temperature or at elevated temperature. To harden the adhesive 30, the boom 1 is introduced into a heating furnace or a correspondingly preheated liquid, for example water or oil, is introduced into the pressure body 32.

Nach der Härtung werden der Druckkörper 32 sowie die beiden Druckplatten 31 aus dem Ausleger-Hohlprofil 2 entnommen.After curing, the pressure body 32 and the two pressure plates 31 are removed from the boom hollow section 2.

Die Versteifungslagen 7 sind mit den Sensorelementen 12 bereits vorbereitet. Die Sensorelemente 12 können relativ zu den Verstärkungslagen 7 so angeordnet sein, wie vorstehend im Zusammenhang mit der Ausführung nach den 1 und 2 erläutert. Alternativ ist es möglich, die Sensorelemente 12 auch in die Klebstofflage 30 einzubetten.The stiffening layers 7 are already prepared with the sensor elements 12. The sensor elements 12 may be arranged relative to the reinforcing layers 7 as explained above in connection with the embodiment according to FIGS. 1 and 2. Alternatively, it is possible to embed the sensor elements 12 in the adhesive layer 30 as well.

Fig. 4 zeigt schematisch eine zu Fig. 1 ähnliche perspektivische Ansicht eines Auslegers 1 mit insgesamt vier Sensorelementen 121, 122, 123 und 124. die nach Art des Sensorelements 12 oder der Sensorelemente 12 der vorstehend beschriebenen Ausführungen untergebracht sind. Die Sensorelemente 121 bis 124 dienen dabei zur temperaturkompensierten Messung eines Biegemoments des Auslegers 1 in einer in der perspektivischen Darstellung nach Fig. 4 vertikal verlaufende Biegeebene 33. Die Sensorelemente 121 bis 124 sind als Dehnungsmessstreifen ausgeführt. Die Sensorelemente 121 und 123 sind an einander gegenüberliegenden Profilwänden des Ausleger-Hohlprofils 2 auf gleicher Höhe angeordnet. Die Sensorelemente 122 und 124 sind ebenfalls an einander gegenüberliegenden Profilwänden des Ausleger-Hohlprofils 2 auf gleicher Höhe angeordnet. Das Sensorelement 121 ist dem Sensorelement 122 benachbart. Das Sensorelement 123 ist dem Sensorelement 124 benachbart. Fig. 4 schematically shows one to Fig. 1 similar perspective view of a boom 1 with a total of four sensor elements 12 1 , 12 2 , 12 3 and 12 4th which are housed in the manner of the sensor element 12 or the sensor elements 12 of the embodiments described above. The sensor elements 12 1 to 12 4 serve for the temperature-compensated measurement of a bending moment of the cantilever 1 in a perspective view according to Fig. 4 vertically extending bending plane 33. The sensor elements 12 1 to 12 4 are designed as strain gauges. The sensor elements 12 1 and 12 3 are arranged on opposite profile walls of the boom hollow section 2 at the same height. The sensor elements 12 2 and 12 4 are also arranged on opposite profile walls of the boom hollow section 2 at the same height. The sensor element 12 1 is adjacent to the sensor element 12 2 . The sensor element 12 3 is adjacent to the sensor element 12 4 .

Die Sensorelemente 121 und 123 sind in Längsrichtung des Auslegers 1 ausgerichtet. Die Sensorelemente 122 und 124 sind quer zur Längsrichtung und senkrecht zur Biegeebene 33 ausgerichtet.The sensor elements 12 1 and 12 3 are aligned in the longitudinal direction of the boom 1. The sensor elements 12 2 and 12 4 are aligned transversely to the longitudinal direction and perpendicular to the bending plane 33.

Beim Biegen des Auslegers 1 in der Biegeebene 33 werden die Sensorelemente 121 und 123 gedehnt bzw. gestaucht und liefern daher einen Signalbeitrag bei der Biegemomentmessung. Die Sensorelemente 122 und 124 dienen bei der Messung des Biegemoments in der Biegeebene 33 zur Temperaturkompensation zum Ausgleich einer ungleichmäßigen Erwärmung des Auslegers 1.When bending the boom 1 in the bending plane 33, the sensor elements 12 1 and 12 3 are stretched or compressed and therefore provide a signal contribution in the bending moment measurement. The sensor elements 12 2 and 12 4 are used in the measurement of the bending moment in the bending plane 33 for temperature compensation to compensate for uneven heating of the boom. 1

Fig. 5 zeigt die Verschaltung der Sensorelemente 121 bis 124. Diese sind nach Art einer Messbrücke miteinander verschaltet, wobei an Einkopplungspunkten 34 , 35 eine Speisespannung Usp eingekoppelt und an Abgriffspunkten 36 , 37 eine Signalspannung Usi abgegriffen wird. Das Sensorelement 121 ist zwischen dem Einkopplungspunkt 34 und dem Abgriffspunkt 36 angeordnet. Das Sensorelement 122 ist zwischen dem Einkopplungspunkt 35 und dem Abgriffspunkt 36 angeordnet. Das Sensorelement 123 ist zwischen dem Einkopplungspunkt 34 und dem Abgriffspunkt 37 angeordnet. Das Sensorelement 124 ist zwischen dem Einkopplungspunkt 35 und dem Abgriffspunkt 37 angeordnet. Fig. 5 shows the interconnection of the sensor elements 12 1 to 12 4th These are interconnected in the manner of a measuring bridge, wherein at coupling points 34, 35 a supply voltage U sp coupled and tapped at tapping points 36, 37 a signal voltage U si is tapped. The sensor element 12 1 is arranged between the coupling-in point 34 and the tapping point 36. The sensor element 122 is arranged between the injection point 35 and the tapping point 36. The sensor element 12 3 is arranged between the coupling-in point 34 and the tapping point 37. The sensor element 12 4 is disposed between the injection point 35 and the tapping point 37.

Fig. 6 zeigt eine weitere Ausführung eines Auslegers 1. Komponenten, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf die Fig. 1 bis 5 bereits erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen erläutert. Beim Längsschnitt durch eine weitere Ausführung eines Auslegers 1 nach Fig. 6 ist die Verstärkungslage 7 als Verstärkungs-Auskleidung in einem Abschnitt des Ausleger-Hohlprofils 2 angeordnet. Eine erste Sensorelementgruppe 38 mit vier Sensorelementen 121 bis 124 nach Art der Sensorelemente 121 bis 124 nach den Fig. 4 und 5 ist auf einer Innenwand 39 der Verstärkungslage 7 angeordnet. Eine zweite Sensorelementgruppe 40 , ebenfalls mit vier Sensorelementen 121 bis 124 nach Art der Sensorelemente 121 bis 124 der 4 und 5 , ist zwischen der Verstärkungslage 7 und dem Ausleger-Hohlprofil 2 angeordnet. Fig. 6 shows a further embodiment of a boom 1. Components which correspond to those described above with reference to the Fig. 1 to 5 have already been explained, bear the same reference numbers and will not be explained again in detail. When longitudinal section through a further embodiment of a jib 1 after Fig. 6 the reinforcing layer 7 is arranged as a reinforcing lining in a section of the boom hollow section 2. A first sensor element group 38 with four sensor elements 12 1 to 12 4 on the type of sensor elements 12 1 to 12 4 after the 4 and 5 is disposed on an inner wall 39 of the reinforcing layer 7. A second sensor element group 40, likewise with four sensor elements 12 1 to 12 4 in the manner of the sensor elements 12 1 to 12 4 of FIGS. 4 and 5, is arranged between the reinforcing layer 7 and the boom hollow profile 2.

Mit den beiden Sensorelementgruppen 38, 40 ist das Erkennen einer unerwünschten Delamination der Verstärkungslage 7 in einem Bereich L zwischen einem keilförmig hin zur Innenwand 8 auslaufenden Endabschnitt 41 der Verstärkungslage 7 und den Sensorelementen 121 bis 124 der Sensorelementgruppe 38 möglich, die dem Endabschnitt 41 näher benachbart ist als die Sensorelementgruppe 40. Solange im Bereich L eine Verbindung zwischen dem Ausleger-Hohlprofil 2 und der Verstärkungslage 7 intakt ist, liefern die beiden Sensorelementgruppen 38 und 40 bei gleicher Speisespannung Usp sehr ähnliche Messsignale Usi. Die beiden Sensorelementgruppen 38, 40, also die beiden hierdurch gebildeten Messbrücken, sind dann redundant.With the two sensor element groups 38, 40 is the detection of unwanted delamination of the reinforcing layer 7 in a region L between a wedge-shaped towards the inner wall 8 expiring end portion 41 of the reinforcing layer 7 and the sensor elements 12 1 to 12 4 of the sensor element group 38 possible, the end portion 41st As long as a connection between the boom hollow section 2 and the reinforcing layer 7 is intact in the region L, the two sensor element groups 38 and 40 provide very similar measuring signals U si for the same supply voltage U sp . The two sensor element groups 38, 40, ie the two measuring bridges formed thereby, are then redundant.

Sobald im Bereich L eine Delamination der Verstärkungslage 7 vom Ausleger-Hohlprofil 2 eingetreten ist, verringert sich bei einer Biegebelastung des Auslegers 1 in der Biegeebene 33 die Dehnung bzw. Stauchung der Sensorelemente 121 und 123 der inneren Sensorelementgruppe 38. Die Sensorelementgruppe 38 zeigt dann bei einer Biegebelastung des Auslegers 1 in der Biegeebene 33 ein anderes Messsignal Usi als die äußere Sensorelementgruppe 40. Ein Auftreten einer Abweichung der Messsignale Usi der Sensorelementgruppen 38, 40 voneinander ist daher ein Kennzeichen für eine auftretende Delamination der Verstärkungslage 7 vom Ausleger-Hohlprofil 2.As soon as a delamination of the reinforcement layer 7 from the boom hollow section 2 has occurred in the region L, the stretching or compression of the sensor elements 12 1 and 12 3 of the inner sensor element group 38 decreases with a bending load of the extension arm 1 in the bending plane 33. The sensor element group 38 shows then at a bending load of the boom 1 in the bending plane 33 a different measurement signal U si than the outer sensor element group 40. An occurrence of a deviation of the measurement signals U si of the groups of sensor elements 38, 40 from each other is therefore an indicator for an occurring delamination of the reinforcing layer 7 from the boom hollow profile 2 ,

Fig. 7 zeigt eine weitere Variante eines Auslegers 1. Dargestellt ist ein Ausleger-Hohlprofil des Auslegers 1 im Querschnitt. Nicht dargestellt ist eine Verstärkungslage, die als Verstärkungs-Auskleidung im Ausleger-Hohlprofil 2 entsprechend der vorstehend diskutierten Ausführungen angeordnet ist. Das Ausleger-Hohlprofil 2 ist aus zwei Profilabschnitten 4, 5 zusammengesetzt und hat einen insgesamt achteckigen Querschnitt. Jeder der beiden Profilabschnitte 4, 5 ist dabei parallel zur Längsachse 3 vierfach geknickt. Fig. 7 shows a further variant of a boom 1. Shown is a boom-hollow profile of the boom 1 in cross section. Not shown is a reinforcing layer, which is arranged as a reinforcing lining in the boom hollow section 2 according to the embodiments discussed above. The boom hollow section 2 is composed of two profile sections 4, 5 and has a total of octagonal cross-section. Each of the two profile sections 4, 5 is folded four times parallel to the longitudinal axis 3.

Die Verstärkungslage 7 kann bei den beschriebenen Ausführungsvarianten längs des gesamten Ausleger-Hohlprofils oder auch nur längs von Abschnitten hiervon angeordnet sein.The reinforcing layer 7 can be arranged in the described embodiments along the entire boom hollow profile or only along sections thereof.

Eine Ausleger-Baugruppe kann aus mehreren derartigen Auslegern 1 aufgebaut sein, die beispielsweise teleskopisch ineinander geschoben werden können oder miteinander über Gelenke verbunden sein können.A boom assembly may be constructed of a plurality of such cantilevers 1, which may for example be telescoped into each other or may be connected to each other via joints.

Claims (16)

  1. A jib (1) for receiving loads at its end including a metallic jib hollow profile (2) extending along a jib longitudinal axis (3) and a reinforcing layer (7) of a fibre-plastic composite, which is present at least in sections, wherein the reinforcing layer (7) is arranged in the form of a reinforcing lining in the cavity of the boom hollow profile (2), characterised in that sensor elements for detecting load forces acting on the jib are arranged in the vicinity of the reinforcing layer and that at least one of the sensor elements (121 to 124) is arranged on an inner wall (39) of the reinforcing layer (7) and at least one further sensor element (121 to 124) is arranged between the reinforcing layer (7) and the boom hollow profile (2).
  2. A jib as claimed in Claim 1, characterised in that the sensor element (121) is in signal connection with an external control device (13).
  3. A jib as claimed in one of Claims 1 to 2, characterised in that the fibre-plastic composite is constructed with carbon fibres.
  4. A jib as claimed in one of Claims 1 to 3, characterised in that at least a predominant proportion of the fibres (9) of the reinforcing layer (7) is arranged with a lengthy component parallel to the longitudinal axis (3) of the jib (1).
  5. A jib as claimed in one of Claims 1 to 4, characterised in that at least a predominant proportion of the fibres (9) of the reinforcing layer (7) is arranged obliquely to the longitudinal axis of the jib (1), wherein, in particular, different and particularly intersecting fibre orientations are present.
  6. A jib as claimed in one of Claims 1 to 5, characterised in that arranged between the reinforcing layer (7) and the jib hollow profile (2) there is an electrically insulating intermediate layer (14), which is preferably constructed in the form of a fibre layer, particularly a glass fibre layer.
  7. A jib as claimed in one of Claims 1 to 6, characterised in that the jib hollow profile (2) is composed of at least two profile sections (4, 5), which are connected together along the jib longitudinal axis (3).
  8. A jib as claimed in one of Claims 1 to 7, characterised by at least one group (38, 40) with four sensor elements (121 to 124) connected together in the form of a measuring bridge for detecting load forces acting on the jib (1).
  9. A method of manufacturing the jib (1) as claimed in one of Claims 1 to 8 including the following method steps:
    - providing the boom hollow profile (2) or the profile sections (4, 5) thereof,
    - applying the reinforcing layer (7) to the beam hollow profile (2) or the profile section (4, 5),
    - connecting the profile sections (4, 5), if necessary.
  10. A method as claimed in Claim 9, characterised in that the application of the reinforcing layer (7) is effected by
    - placing a fibre layer (10) into the boom hollow profile (2) or onto the profile sections (4, 5) thereof,
    - injecting a polymer synthetic resin/curing agent mixture into the fibre layer (10),
    - curing the synthetic resin/curing agent mixture.
  11. A method as claimed in Claim 10, characterised in that after the placing process or during the placing process orientation of the fibres (9) of the fibre layer (10) is effected.
  12. A method as claimed in one of Claims 9 to 11, characterised in that the intermediate layer (14) is introduced between the fibre layer (10) and the jib hollow profile (2) or the profile section (4, 5) thereof.
  13. A method as claimed in one of Claims 9 to 12, characterised in that the reinforcing layer (7) is secured by adhesive to the jib hollow profile (2) or the profile section (4, 5) thereof.
  14. A method as claimed in Claim 13, characterised in that the reinforcing layer (7) is pressed during the securing by adhesive to the jib hollow profile (2) or the profile section (4, 5) thereof.
  15. A method as claimed in Claim 14, characterised in that two reinforcing layers (17) are secured simultaneously by adhesive in the jib hollow profile (2), wherein arranged between the two reinforcing layers (7) there is a pressure body (32).
  16. A method as claimed in Claim 15, characterised in that the pressure body (32) is filled with a fluid, particularly with water or oil, during the pressing of the reinforcing layers (7).
EP09720189.1A 2008-03-08 2009-02-06 Jib comprising a metal hollow profile with a reinforcement layer consisting of a fibre-plastic composite and sensor element Not-in-force EP2252540B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008013203A DE102008013203A1 (en) 2008-03-08 2008-03-08 Boom for end-loading of loads, boom assembly with at least two such cantilevers and method of making such a boom
PCT/DE2009/000167 WO2009112004A1 (en) 2008-03-08 2009-02-06 Jib comprising a metal hollow profile with a reinforcement layer consisting of a fibre-plastic composite and sensor element

Publications (2)

Publication Number Publication Date
EP2252540A1 EP2252540A1 (en) 2010-11-24
EP2252540B1 true EP2252540B1 (en) 2016-05-25

Family

ID=40719931

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09720189.1A Not-in-force EP2252540B1 (en) 2008-03-08 2009-02-06 Jib comprising a metal hollow profile with a reinforcement layer consisting of a fibre-plastic composite and sensor element

Country Status (4)

Country Link
US (1) US8708171B2 (en)
EP (1) EP2252540B1 (en)
DE (1) DE102008013203A1 (en)
WO (1) WO2009112004A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011585A1 (en) 2009-03-06 2010-09-09 Frank, Egon, Dr. Component and method for its production
DE202009015516U1 (en) * 2009-11-19 2010-02-11 Ge Sensing & Inspection Technologies Gmbh Device for testing and / or welding a pipe along a weld
DE202010006624U1 (en) 2010-05-10 2010-08-05 Manitowoc Crane Group France Sas Crane jib, in particular mobile crane jib, with prestressed tension elements
JP2012206848A (en) * 2011-03-30 2012-10-25 Tadano Ltd Boom and method of welding the same
CN102249170B (en) * 2011-07-15 2013-06-12 徐州徐工特种工程机械有限公司 Main jib structure for fork installing machine
US8991029B2 (en) * 2011-09-26 2015-03-31 Caterpillar Inc. Beam structure
EP2757066B1 (en) * 2013-01-22 2018-10-31 Trumpf Sachsen GmbH Method for producing a supporting structure
CN103287994B (en) * 2013-05-21 2016-04-06 三一汽车起重机械有限公司 Arm cylinder and construction machinery and equipment
EP2913138B1 (en) * 2014-02-28 2017-03-29 TRUMPF Werkzeugmaschinen GmbH + Co. KG Method of producing and method of manufacturing a support for guiding a motion unit of a machine tool
FR3024489B1 (en) * 2014-07-29 2018-08-10 Gimaex International TELESCOPIC SCALE COMPRISING SCALE TRONCONS OF DIFFERENT DENSITY
DE102016202782A1 (en) * 2016-02-23 2017-08-24 Rud Ketten Rieger & Dietz Gmbh U. Co. Kg Load-bearing component of the stop, lashing and / or lifting technology with a plastic-metal composite system
DE202016003525U1 (en) * 2016-06-03 2016-06-23 Liebherr-Werk Ehingen Gmbh Telescopic profile with variable impact
DE102017208031A1 (en) * 2017-05-12 2018-11-15 Putzmeister Engineering Gmbh Cranked boom with variable cross-section for mobile concrete pumps
US10806105B2 (en) * 2017-10-04 2020-10-20 Deere & Company System of integrated passageways in a carbon fiber boom and method thereof
US10662609B2 (en) 2018-04-11 2020-05-26 Deere & Company Hybrid loader boom arm assembly
US10697148B2 (en) 2018-04-11 2020-06-30 Deere & Company Hybrid loader boom arm assembly
US10822768B2 (en) 2018-04-11 2020-11-03 Deere & Company Hybrid loader boom arm assembly
JP7272028B2 (en) * 2019-03-19 2023-05-12 株式会社タダノ boom structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1958256C3 (en) * 1969-11-20 1974-08-01 Ludwig Pietzsch Overload protection for telescopic cranes
US3815116A (en) * 1972-04-17 1974-06-04 Tedd Shipyards Corp Apparatus and means for monitoring moments in material handling equipment
DE2230546C3 (en) * 1972-06-22 1982-01-21 Magirus-Deutz Ag, 7900 Ulm Device for determining or displaying the load on an attractable turntable ladder
IT206727Z2 (en) * 1985-09-17 1987-10-01 Marelli Autronica THICK FILM EXTENSIMETRIC SENSOR FOR DETECTION OF STRESSES AND DEFORMATIONS IN ORGANS OR MECHANICAL STRUCTURES
DE4408444C1 (en) * 1994-03-12 1995-04-06 Dornier Gmbh Pipe or hollow profile with special strength properties along with a low weight, and process for the production thereof
US5694734A (en) * 1994-08-01 1997-12-09 Xxsys Technologies, Inc. Curing of filament wound columns using a radiant heater
DE19829829A1 (en) 1998-07-03 2000-01-13 Grove Us Llc Shady Grove Composite telescopic part and boom
US6786233B1 (en) * 2001-02-23 2004-09-07 Schwing America, Inc. Boom utilizing composite material construction
US6755212B1 (en) * 2001-02-23 2004-06-29 Schwing America, Inc. Boom stiffening system
GB2387374B (en) * 2002-04-12 2005-03-02 Bamford Excavators Ltd Detecting damage to a structural member
DE10224790B4 (en) * 2002-06-04 2004-10-21 Infineon Technologies Ag Acceleration sensor and method for manufacturing an acceleration sensor
ITUD20070056A1 (en) * 2007-03-16 2008-09-17 Cifa Spa CONCRETE DISTRIBUTION ARM FOR WORKING VEHICLES AND ITS MANUFACTURING PROCEDURE

Also Published As

Publication number Publication date
US8708171B2 (en) 2014-04-29
WO2009112004A1 (en) 2009-09-17
US20110068076A1 (en) 2011-03-24
DE102008013203A1 (en) 2009-09-17
WO2009112004A8 (en) 2010-10-14
EP2252540A1 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
EP2252540B1 (en) Jib comprising a metal hollow profile with a reinforcement layer consisting of a fibre-plastic composite and sensor element
EP3419840B1 (en) Use of an element in chassis of vehicles and method for producing chassis of vehicles
DE4329744C1 (en) Wing having wing shells made of fibre composite materials, especially carbon fibre composite materials (CFCs), for aircraft
DE3635053C2 (en) Method for monitoring the deformations of components by means of optical fibers and optical fibers for carrying out the method and method for its production
EP2361823B1 (en) Longitudinal member for a chassis and method for producing same
EP1798428A1 (en) Braided composite part
EP3206937B1 (en) Axle support of a motor vehicle
US9085898B2 (en) System and method of reinforcing a column positioned proximate a blocking structure
DE3228110A1 (en) TORSION SHAFT
EP2352887B1 (en) Construction elements for buildings
DE102006007253A1 (en) Motor vehicle-hybrid component e.g. structure- or chassis component, has metal component and plastic component connected with each other by integration of form-closure layer that is adhesively joined with metal component
DE19508193A1 (en) Tubular component e.g. for hydraulic or high pressure pipe
DE10326422A1 (en) Fiber reinforced plastic profile with internal ribs manufacturing process involves wrapping cores in fiberous material, placing the cores together and wrapping again around the combined profile
AT409946B (en) MULTI-LAYER COMPOSITE COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
EP2386517B1 (en) Crane extension, in particular mobile crane extension, with pre-tensioned pulling elements
DE102005005729A1 (en) Post-manufacture reinforcement process for tubes involves filling channels from inside with carbon fiber plastic material
EP3445970B1 (en) Heavy-duty upgrading method for rotor blades of existing wind turbines
EP1997716B1 (en) Fibre composite material profile and motor vehicle window frame
DE2705483C2 (en)
CN212224717U (en) Bending-resistant reinforcing structure of shear wall
DE10304044A1 (en) Resin infusion process for production of fiber composite roll tubes involves use of flow tubes to increase resin distribution rate through fiber reinforcement
EP2929209B1 (en) Bearing
WO2005057069A1 (en) Hollow tube
DE102007036436A1 (en) hybrid wave
CN110107316A (en) A kind of ECC composite fibre establishment net ruggedized construction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT, PETER

Inventor name: SCHNITTKER, FRANK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121112

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TEREX CRANES GERMANY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 802138

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009012623

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALDO ROEMPLER PATENTANWALT, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009012623

Country of ref document: DE

Representative=s name: MOSER GOETZE & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009012623

Country of ref document: DE

Owner name: TEREX GLOBAL GMBH, CH

Free format text: FORMER OWNER: TEREX CRANES GERMANY GMBH, 66482 ZWEIBRUECKEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160926

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160826

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TEREX GLOBAL GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009012623

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: TEREX GLOBAL GMBH, CH

Free format text: FORMER OWNER: TEREX CRANES GERMANY GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: TEREX GLOBAL GMBH; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), AFFECTATION / CESSION; FORMER OWNER NAME: TEREX CRANES GERMANY GMBH

Effective date: 20171013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180222 AND 20180228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 802138

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: TEREX GLOBAL GMBH; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: TEREX CRANES GERMANY GMBH

Effective date: 20180426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190218

Year of fee payment: 11

Ref country code: GB

Payment date: 20190218

Year of fee payment: 11

Ref country code: DE

Payment date: 20190219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190220

Year of fee payment: 11

Ref country code: BE

Payment date: 20190218

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009012623

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200206

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200206

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229