EP2244233A1 - Système et procédé pour la vérification indépendante de billets de banque en circulation - Google Patents
Système et procédé pour la vérification indépendante de billets de banque en circulation Download PDFInfo
- Publication number
- EP2244233A1 EP2244233A1 EP09158659A EP09158659A EP2244233A1 EP 2244233 A1 EP2244233 A1 EP 2244233A1 EP 09158659 A EP09158659 A EP 09158659A EP 09158659 A EP09158659 A EP 09158659A EP 2244233 A1 EP2244233 A1 EP 2244233A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- detector
- bank note
- data
- independent
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
Definitions
- the present invention relates generally to the field of currency processing, and, more specifically, to a modification to a currency processing device with methods of use for automatically and independently verifying the integrity of currency processing policies and procedures as practiced by banks.
- a central banking system typically handles billions of dollars in bank notes on a given business day. Each of these individual notes must be evaluated for fitness prior to its redistribution to a depository institution and, ultimately, to the public. To process such a staggering number of notes, the central bank outsources the fitness sorting duties to other banks and depository institutions. Sometimes these banks and depository institutions must even outsource their fitness sorting duty to other third party processors.
- bank notes are used by the public, they are subject to abuse and wear that may render them unfit for further circulation. A note may become torn or soiled to the point that it is difficult to determine its denomination. Further, the central bank periodically pulls certain series of notes from circulation in order to introduce a new series or design. For example, a new series of notes may be required to honor a certain dignitary or luminary.
- the fitness sorting criteria for bank notes is fairly standard. When evaluating a bank note for fitness, the processor usually must determine if the note is (a) the correct denomination; (b) genuine, and not a counterfeit; (c) a series approved for recirculation; (d) free from excessive holes, tears, tape, or otherwise folded or partially missing; (e) has uniform brightness and is free from excessive soiling; and (f) is free from excessive wear, particularly in the portrait area. To perform this fitness sorting on such a large volume of notes, automated currency sorting and counting machines are often utilized.
- FIG. 1 A typical sorting machine as used by a bank note processor is shown in FIG. 1 .
- a random stack of bank notes is place in the input receptacle.
- a feeder device feeds one note at a time through the machine along a transport path toward output receptacles. As the notes traverse the path, sensors detect and evaluate the individual notes.
- a flip-type counting machine is shown in FIG. 2 . This type of machine follows a similar process in that a stack of bank notes is placed in the input hopper.
- a flipping device moves one note at a time to the output receptacle, counting and evaluating for fitness each individual note. For each machine, fitness data is captured for use by the central bank.
- the central bank is ultimately responsible for the quality and quantity of circulating bank notes. As such, it relies heavily on bank note fitness data and statistics reported to it by bank note processors. Each processor must therefore ensure that its sorting machine sensors are consistent across all sites/processes/equipment, are properly calibrated, and are returning accurate data. However, processors often fail to maintain and properly calibrate these sensors for various reasons.
- Certain bank processors may not want their machines reporting accurately because of potential penalties that may be imposed by the central bank. For example, the bank note processor may be fined if the machine throughput is too low, or if too many counterfeit bills are detected. Discovery of a counterfeit note yields substantial inconvenience to a bank note processor; bureaucratic investigative services must be engaged in order to track the counterfeit note's origin.
- bank note processor might be penalized for rejecting too many notes by not having enough remaining notes with which to conduct business or by incurring excess cross-shipping fees when ordering new notes.
- substantial disincentives exist for bank note processors to maintain proper calibration and to report accurate note fitness statistics.
- this modification should allow independent detection of manual manipulation by a processor of the sensors on a bank note processing machine. Further, this modification should be installable on existing bank note processing machines to preclude purchase of additional systems. Further still, this modification should operate automatically and independently, yet in unison with the machine's onboard sensors such that it does not impede the speed and efficiency of the overall fitness sorting or counting process. Further still, this modification should automatically report this independent verification data to the central bank or commercial organization for ease of processing. The present invention is intended to satisfy these need and others.
- the present invention provides a system for modifying a bank note processing machine and a method to automatically and independently verify the fitness sorting or counting process of the machine to which it is attached.
- the invention works automatically and independently, yet in unison with the fitness evaluating detection systems found onboard existing bank note processing equipment. This equipment to which it applies includes all bank note counters and sorters that perform some type of bank note fitness detection.
- Independent detectors and/or sensors are provided that evaluate, for fitness, each bank note being processed.
- the independent evaluation circuitry may mirror the exact detection and sensing capabilities of the respective bank note processing machine, or may provide a subset of the overall detection capabilities.
- This circuitry is also tamper resistant to prevent misuse and tampering by the bank note processor entity or equipment operator and to ensure accurate data reporting.
- the independent evaluation circuitry evaluates each individual bank note and logs the raw evaluation data in a memory storage device.
- the system makes an actual fitness determination based on this raw data for comparison with the processing machine's fitness determination.
- the memory storage device forwards this data to the central bank or a designated commercial organization (such as, but not limited to: other banks, CIT's, commercial processors, bank note producers, substrate manufacturers, auditing third parties, etc.) by some secure means (such as, but not limited to: a secure Internet connection, a VPN, a private network, or even by courier).
- This independent data allows the central bank to efficiently and effectively audit the bank note processor's equipment and processes.
- One embodiment provides independent evaluation circuitry along the bank note transport path within the machine. This allows the evaluation circuitry to check bank note fitness prior to the machine acting on its fitness determination and routing the bank note to the designated output receptacle.
- the evaluation circuitry is also placed at the output receptacles immediately following the machine's logic section. This allows for independent verification of the logic that controls which output receptacle is to receive the bank note.
- the system provides dual sets of independent evaluation circuitry. This configuration allows dual evaluations to occur, sometimes even simultaneously, in order to provide increased quality control. With two sets of evaluation circuitry, the answers may be compared to achieve a higher probability of accuracy.
- note and "bank note” are intended to refer to any and all types of bank notes or currency notes subject to processing utilizing the sorting and counting equipment described. Further, the term “detector” is intended to refer to any sensor or detector used for evaluating the characteristics of a bank note.
- FIG. 3 depicts the operation of the typical bank note sorting machine.
- a stack of bank notes is first placed in an input receptacle, or hopper (302).
- a mechanism within the machine strips the notes from the stack and feeds them along the transport path (304) one note at a time. It is critical that the notes are processed individually, in order to properly evaluate the fitness condition of the given note.
- the note passes various detectors (306-310).
- detectors (306-310) serve to evaluate the fitness of the note to influence its disposition.
- the Federal Reserve defines "fit currency” as: "a note that is suitable for continued circulation and is sufficiently clean to allow its genuineness and denomination to be readily ascertained;” and defines unfit currency as: "a note that is not suitable for further circulation because of its physical condition, such as torn, dirty, limp, worn or defaced.”
- Other central banks follow similar criteria.
- each note is evaluated for mechanical defects (i.e., wear, tears, holes, missing portions, etc.); authentication (i.e., whether or not it is counterfeit); denomination; and soil.
- Each detector (306-310) evaluates a different portion of the fitness determination equation.
- each may be configured to sense or detect one or more predetermined characteristics on a note. These characteristics include, but are not limited to, size; thickness; color; magnetism; reflectivity; absorbability; transmissivity; conductivity; and the like.
- Such sensors may also be configured to conduct optical character recognition ("OCR") on a note. This capability allows for accurate determinations of denomination and other visible distinguishing characteristics for authentication.
- OCR optical character recognition
- Each sensor or detector (306-310) may even employ a variety of sensing or detecting means including, but not limited to: a size detection device; density detection device; an upper optical scan head, a lower optical scan head, a magnetic sensor, a thread sensor, an infrared sensor, an ultraviolet/fluorescent light scan head, or even an image scanner.
- the raw characteristic data obtained is gathered and logged in a local computing server (312).
- the computer (312) then processes the note characteristics and applies logic to make the fitness determination. This processing to determine fitness takes a period of time, introducing latency into the system. During this latency period, the note continues to travel along the transport path (304) at a constant speed. This latency period is shown on the figure as the "Decision Interval" (314).
- the machine acts upon the fitness determination. For example, if the note is characterized as a counterfeit (316), it is directed into a particular output receptacle for further processing. (The Federal Reserve requires that the U.S. Secret Service be notified if counterfeit bills are detected.) Likewise, if the note is characterized as being suspect (318), it is directed to another particular output receptacle to allow for hand inspection.
- the note is unfit for circulation (320), it is directed to an entirely different output receptacle.
- the serial number or date of the note may require that it be withdrawn from circulation.
- the note is excessively soiled or mechanically damaged it will be withdrawn from circulation.
- the note is characterized as fit for circulation (322), it is further separated into appropriate output receptacles ordered by denomination.
- a typical bank note flip counter with fitness detection capabilities is essentially the same as a currency sorter.
- a stack of notes is loaded into an input hopper where the notes are picked off one by one and transported to an output bin.
- Certain counters employ fitness detection circuitry similar to the aforementioned sorter. For example, the counter may watch for counterfeits or improper denominations and halt the process to allow the operator to remove the offending note.
- Others may also include sensors or detectors to evaluate a note's mechanical damage and level of soil. All counters maintain a count of the number of bills processed. This data is also reportable to the central bank for auditing and statistical purposes.
- FIG. 4 depicts a first embodiment of the present invention.
- one or more independent sensors or detectors (404-408, together, the "independent detectors" are provided.
- the independent detectors (404-408) can be any standard detector used for bank note evaluation, or may be specialized detectors used to isolate particular note characteristics.
- the independent detectors (404-408) sense or detect all or a subset of the bank note characteristics that the machine's primary sensors or detectors (306-312) sense or detect, including counterfeit detection.
- each may be configured to evaluate one or more predetermined characteristics on a note such as: type of substrate; size; thickness; color; magnetism; reflectivity; absorbability; transmissivity; conductivity; and the like.
- Such sensors may also be configured to conduct optical character recognition ("OCR") on a note. This capability allows for accurate determinations of denomination and other visible distinguishing characteristics for authentication.
- OCR optical character recognition
- Each independent detector (404-408) may even employ a variety of sensing or detecting means including, but not limited to: a size detection device; density detection device; an upper optical scan head, a lower optical scan head, a magnetic sensor, a thread sensor, an infrared sensor, an ultraviolet/fluorescent light scan head, or even an image scanner.
- the independent detectors are positioned along the sorter transport path (304) such that they utilize the decision interval (314) to examine the note. This position allows the independent detectors (404-408) to function without affecting the operation of the primary detectors (306-310).
- the independent detectors (404-408) do not make sorting decisions, additional latency is not a factor. As such, one skilled in the art will appreciate that the exact location along the transport path is not limiting to the current invention. This is true, so long as the independent detectors are located at some point prior to the end of the decision interval (304) and the independent detectors do not affect or otherwise influence the primary detector (306-310) operation.
- the independent data is securely stored in a memory storage device, such as an independent computing database (402).
- the data is subsequently transmitted by some secure means to the central bank for auditing and statistical purposes.
- detectors 404-408 Although three independent detectors (404-408) are shown, any number of detectors may be utilized depending upon the requirements of the particular sorting device. The number of detectors is not determinative; all combinations of detectors are within the scope of the present invention.
- Data from the memory storage device (402) may be forwarded to the central bank or a designated commercial organization - such as, but not limited to: other banks, cash-in-transit companies (or "CIT", such as Brinks or Wells Fargo), commercial processors, bank note producers, substrate manufacturers, auditing third parties, etc. - in raw format or may be compiled into a specified report format.
- a report may include, but is not limited to, specific machine data (such as throughput, errors, environmental factors, etc.); note denomination data; note soil level and mechanical wear data; productivity metrics; and timestamp data for the batch or for specific notes.
- the data may be directly tied to a particular bank note or may be aggregated to refer to a particular batch. The actual contents of a report are not determinative, and all combinations of data are within the scope of the present invention.
- collected data may be configured into any relevant specified format for a particular central bank or commercial organization.
- Transmission of the data or reports from the memory storage device (402) to the central bank is made, preferably, through a secure means.
- secure means includes, but is not limited to, a secure Internet connection; a virtual private network ("VPN"); a private network; and a courier (such as by document, tape, hard drive, flash drive, DVD, or CDROM).
- Data may also be transmitted through insecure means, such as an open Internet connection. However, such unsecure transmission may be intercepted or altered which would impact its value as audit data.
- the data may also be encrypted during storage or transfer to prevent tampering. Wired or wireless connections may also be utilized.
- the memory storage device may be mounted on the bank note processing device or may be external or even located offsite.
- the memory storage device may be relatively simple.
- the memory storage device is a simple network area storage drive.
- a controller means may extract data from the independent detectors (404-408) and write the raw data directly to the storage device.
- the memory storage device is a flash drive. This allows the independent data to be saved to the flash drive and the flash drive submitted to the central bank for processing. Use of a flash drive may be preferable with smaller bank note processing devices. Other embodiments may utilize a tape device to record the independent detector data. Further, the memory storage device may also be an offsite database that accepts data directly from the independent detector circuitry. The data may be transferred over any network means from the detectors to the offsite database - wired or wireless. The memory storage may also be volatile memory so long as the stored independent detector data is submitted to the central bank in some persistent format before the volatile memory is erased.
- FIG. 5 depicts another embodiment of the present invention.
- an additional set of independent detectors (502-508) is provided to allow independent verification of the sorter output logic.
- the central bank can monitor the machine's sorting logic for proper operation. For example, the primary detectors (306-310) may flag a note as unfit for circulation. If the note ends up in the "fit for circulation" bin (322), the corresponding output bin independent detector (508) would note this and a comparison of the data would indicate the error.
- a note processor has purposely altered the calibration of the primary detectors (306-310) such that unfit notes evaluate as "fit for circulation.” At least one transport path independent detector (404-408) should note this discrepancy, as should an output independent detector (502-508).
- Data from the additional set of independent detectors (502-508) is also saved in the memory storage device (402).
- an additional independent database may be added to either mirror the other database or to accept some portion of the detector outputs from any of the disclosed embodiments.
- One skilled in the art will appreciate that the number of memory devices utilized is not determinative and that all such combinations are within the scope of the present invention.
- FIG. 6 depicts yet another embodiment of the present invention.
- the independent detectors are provided on the output bins only (602-608). This embodiment may be necessary for machines wherein the pre-logic transport path (i.e., the path portion up to the point where the note evaluation logic is applied) is inaccessible or otherwise impractical for mounting independent detectors.
- the output bin detectors may provide bank note characteristic discrimination in unison with the primary detectors (306-308), or may be configured to provide a subset of the characteristic data.
- the independent detector sets may be duplicated. Having redundant independent detectors allows comparison of two sets of independent data with the primary data, and may help to establish which detectors (i.e., independent or primary) are accurate. It would be helpful for the central bank to have independent corroborating data on hand when punishing a bank note processor for poor or improper performance.
- the transport path independent detectors are mirrored (i.e., duplicated) with an additional set of transport path independent detectors.
- Each independent detector submits bank note data to the independent computing database.
- Mirrored detectors allow for direct detector data comparisons to be made to verify the independent detector's integrity.
- the transport path independent detectors are mirrored by the output bin independent detectors. This allows characterization of a note as it passes along the transport path and as it passes into one of the output bins. Comparison of the data from two detectors will also assist in verifying the system's overall integrity.
- bank note flip counters utilize the same primary sensors to detect note fitness. This may be limited to authenticity or may extend to mechanical damage or soil level. Independent counter processing data may be gathered and reported to the central bank for conducting an audit of the note processor's counting system and practices.
- the present invention may also be applied to other equipment used in bank note processing, such as ATMs, teller assist devices, bank note recyclers, deposit systems, and the like.
- Any bank note processing system that utilizes bank note detectors to sense or detect any bank note characteristic is a candidate for the disclosed technology. Because the present invention operates as a stand-alone system - operating independently from the processing machine's detection equipment - it may be used to verify the operational integrity of any of these devices.
- FIG. 7 is a block diagram depicting an embodiment of the present invention as used with a typical ATM.
- the ATM is loaded with a stack of notes (702).
- the notes pass at least one primary detector (706) on the ATM.
- Primary note data is acquired by this detector (706) and logged by the onboard processor (708).
- the present invention places at least one independent bank note detector (710) on the output to detect notes that are dispensed.
- the independent data acquired by the embodiment is logged in the memory storage device (714) and submitted to the central bank or commercial organization where it may be used to verify or audit the ATM's own sensors (706) or operation.
- At least one additional independent bank note detector (712) is placed on the reject path to log data regarding notes rejected by the ATM. Likewise, this additional data may be compared against the other data to achieve a greater understanding of the ATM's overall operation. For redundancy and corroborating data, these sensors may be mirrored as well.
- FIG. 8 is a block diagram depicting an embodiment of the present invention as used with a typical teller assist or cash recycling device.
- the device features an input bin (802) that accepts a stack of bank notes for processing. As the notes are processed, they each pass (804) at least one onboard device detector (806) that logs primary note data with the device's system processor (808). The notes are either accepted for recirculation or rejected. Accepted notes pass to an output receptacle (810) for recirculation.
- the present embodiment places at least one independent detector at the input (812) to detect notes as they enter the machine. This detector (812) gathers note information on notes that are accepted for processing. At least one additional sensor is placed at the output (814) to detect the notes that are accepted for recirculation.
- This independent data is logged by the memory storage device (818) and submitted to the central bank or commercial organization where it may be used to verify or audit the device's primary sensors (806) or operation.
- an additional independent bank note detector (816) is placed on the reject path to log data regarding notes rejected by the device.
- this additional data may be compared against the other data to achieve a greater understanding of the device's overall operation. For redundancy and corroborating data, these sensors may be mirrored as well.
- FIG. 9 is a block diagram depicting an embodiment of the present invention as used with a typical self-service deposit device.
- Individuals place notes into the device (902).
- Each note passes (904) at least one device detector (906) that logs primary data with the device's system processor (908).
- Each note is then stored in an output receptacle (910).
- the present embodiment places at least one independent detector on the input (912) to detect notes as they are deposited.
- This independent data is logged by the memory storage device (914) and submitted to the central bank or commercial organization. From here, the independent data may be used to verify or audit the device's primary sensors (906) or operation. For redundancy and corroborating data, this sensor may be mirrored as well.
- the present invention is intended to provide independent verification of a bank note processor's sorting or counting equipment and practices, it is subject to the same threat of tampering and falsification as are the primary detectors. Accordingly, the sensors and associated circuitry may be placed in tamper-resistant enclosures and/or located in areas of the machine that are either inaccessible to the bank note processor or are even in plain view such that tampering is readily detectable. Moreover, the sensors and associated circuitry may not be modified, adjusted, or serviced by the bank note processor entity, operator, or a third party without the central bank's knowledge or authorization.
- the central bank may provide each bank note processor with a set of standardized bank notes having predetermined characteristics.
- the standardized note set may have one or more counterfeit notes, one or more torn/worn/soiled notes, one or more outdated notes, or some combination.
- the standardized notes Prior to any sorting operation, the standardized notes may be run to obtain the baseline. If there are no discrepancies between the independent data generated from the standardized notes and the expected data, it can be assumed that the detectors are properly calibrated.
- samples of the note may be provided to assist in calibrating and verify the calibration of a bank note processor's equipment.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09158659A EP2244233A1 (fr) | 2009-04-23 | 2009-04-23 | Système et procédé pour la vérification indépendante de billets de banque en circulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09158659A EP2244233A1 (fr) | 2009-04-23 | 2009-04-23 | Système et procédé pour la vérification indépendante de billets de banque en circulation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2244233A1 true EP2244233A1 (fr) | 2010-10-27 |
Family
ID=40935585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09158659A Withdrawn EP2244233A1 (fr) | 2009-04-23 | 2009-04-23 | Système et procédé pour la vérification indépendante de billets de banque en circulation |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2244233A1 (fr) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020066125A1 (en) * | 1999-08-04 | 2002-05-30 | Fujitsu Limited | Processing apparatus for discriminating various types of paper and control method of processing |
EP1324285A2 (fr) | 2001-12-26 | 2003-07-02 | Hitachi, Ltd. | Machine de traitement de billets de banque |
US20040062430A1 (en) * | 2002-09-05 | 2004-04-01 | Giesecke & Devrient Gmbh | System and method for monitoring bank notes for the presence of counterfeit bank notes |
US20040255354A1 (en) * | 1997-11-28 | 2004-12-16 | Diebold, Incorporated | Automated banking machine |
WO2008028581A1 (fr) * | 2006-09-08 | 2008-03-13 | Giesecke & Devrient Gmbh | Procédé de destruction des billets de banque |
US20090188974A1 (en) * | 2008-01-29 | 2009-07-30 | Richard Glen Haycock | System and method for independent verification of circulating bank notes |
-
2009
- 2009-04-23 EP EP09158659A patent/EP2244233A1/fr not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040255354A1 (en) * | 1997-11-28 | 2004-12-16 | Diebold, Incorporated | Automated banking machine |
US20020066125A1 (en) * | 1999-08-04 | 2002-05-30 | Fujitsu Limited | Processing apparatus for discriminating various types of paper and control method of processing |
EP1324285A2 (fr) | 2001-12-26 | 2003-07-02 | Hitachi, Ltd. | Machine de traitement de billets de banque |
US20040062430A1 (en) * | 2002-09-05 | 2004-04-01 | Giesecke & Devrient Gmbh | System and method for monitoring bank notes for the presence of counterfeit bank notes |
WO2008028581A1 (fr) * | 2006-09-08 | 2008-03-13 | Giesecke & Devrient Gmbh | Procédé de destruction des billets de banque |
US20100032351A1 (en) * | 2006-09-08 | 2010-02-11 | Alfred Schmidt | Method for destroying banknotes |
US20090188974A1 (en) * | 2008-01-29 | 2009-07-30 | Richard Glen Haycock | System and method for independent verification of circulating bank notes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8322604B2 (en) | System and method for independent verification of circulating bank notes | |
US8559694B2 (en) | Currency processing system with fitness detection | |
US9195889B2 (en) | System and method for processing banknote and check deposits | |
JP5631786B2 (ja) | 紙葉類処理装置、紙葉類仕分け装置及び紙葉類仕分けシステム | |
US8714336B2 (en) | Apparatus and system for imaging currency bills and financial documents and method for using the same | |
US8948490B1 (en) | Apparatus and system for imaging currency bills and financial documents and method for using the same | |
US8644583B1 (en) | Apparatus and system for imaging currency bills and financial documents and method for using the same | |
US7602956B2 (en) | Document processing system using full image scanning | |
US8433123B1 (en) | Apparatus and system for imaging currency bills and financial documents and method for using the same | |
US8245831B2 (en) | Device and method for checking banknotes | |
US8944234B1 (en) | Apparatus and system for imaging currency bills and financial documents and method for using the same | |
US8538123B1 (en) | Apparatus and system for imaging currency bills and financial documents and method for using the same | |
US20130193205A1 (en) | Currency dispenser | |
JP6089707B2 (ja) | 情報処理装置および現金処理端末 | |
US11276263B2 (en) | Paper sheet handling apparatus and paper sheet handling method | |
US9342964B2 (en) | Media item characterization | |
EP2244233A1 (fr) | Système et procédé pour la vérification indépendante de billets de banque en circulation | |
WO2019098061A1 (fr) | Système de traitement de devises, appareil de traitement de devises, appareil central et procédé de détection de fraude pour appareil de traitement de devises | |
JP2015135560A (ja) | 入出金装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20110426 |
|
17Q | First examination report despatched |
Effective date: 20110606 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180404 |