EP2242592A2 - Process and equipment for the oxidation of organic matter - Google Patents

Process and equipment for the oxidation of organic matter

Info

Publication number
EP2242592A2
EP2242592A2 EP09709850A EP09709850A EP2242592A2 EP 2242592 A2 EP2242592 A2 EP 2242592A2 EP 09709850 A EP09709850 A EP 09709850A EP 09709850 A EP09709850 A EP 09709850A EP 2242592 A2 EP2242592 A2 EP 2242592A2
Authority
EP
European Patent Office
Prior art keywords
parts
biofilm
microorganisms
treated
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09709850A
Other languages
German (de)
French (fr)
Inventor
Alain Bergel
Luc Etcheverry
Benjamin Erable
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut National Polytechnique de Toulouse INPT
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut National Polytechnique de Toulouse INPT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut National Polytechnique de Toulouse INPT filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2242592A2 publication Critical patent/EP2242592A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • B09C1/085Reclamation of contaminated soil chemically electrochemically, e.g. by electrokinetics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes

Definitions

  • Waste production in France exceeds 600 million tonnes per year. More than two-thirds are organic waste. They have the following origins: - agricultural waste (animal waste, crop waste and forest waste): 84% of the total quantity of organic waste;
  • biofilms consisting of said microorganisms, a matrix of exopolymeric substances (polysaccharides, proteins, macromolecules ...) they excrete, substances produced by microbial metabolism and accumulated compounds from the medium or from the degradation of the support surface. It has recently been discovered that biofilms grown on conductive surfaces are able to utilize these surfaces to evacuate electrons from their metabolism (DR Bond et al., Science 295 (2002) 483, and LM Tender et al., Nature Biotechnology 20
  • microorganisms produce small redox compounds that act as electrochemical mediators between microbial cells and the surface: these compounds are reduced by the microorganism and oxidize back to the surface.
  • biofilms are able to oxidize organic materials by directly transferring electrons to a conductive surface.
  • Other biofilms have been demonstrated capable of catalyzing the reduction of oxygen on materials such as stainless steels (A. Bergel et al., Electrochemistry Communications, 2005, 7, 900-904, FR 02 10009) which under their initial state devoid of biofilm, are not known to ensure high speeds of reduction of oxygen.
  • These biofilms can be used on the surface intended to evacuate the electrons of the system to a dissolved compound, oxygen for example.
  • electrochemically active biofilms EA biofilms
  • the waste installations are confronted with their high consumption of electricity necessary to feed the aerators. It is therefore desirable to design systems that reduce or even eliminate the need for aeration of waste or effluents to be treated. Indeed, it is known that the aeration of the media to be treated is necessary to allow the microorganisms to develop and thus consume the organic materials. Breathing consists of the removal of electrons from the microbial process of oxidation of organic matter to an external acceptor of electrons, most often dissolved oxygen in the medium, which is thus reduced to water. Some microorganisms are able to breathe by reducing other electron acceptors such as nitrates, nitrites or sulfates for example. The lack of electron acceptor in the medium, oxygen in this case, significantly reduces the ability of microorganisms to oxidize organic matter, or even annihilates it completely.
  • the present invention proposes to develop the microorganisms on conductive surfaces that are capable of collecting the electrons from the metabolic processes of oxidation of organic materials. These conductive surfaces on which the microorganisms develop, thus ensure the extraction of electrons.
  • the surface that supports the microorganisms that oxidize the organic matter must be connected with a surface that evacuates them towards the final acceptor, the oxygen for example.
  • the two surfaces the one that collects the electrons from the microorganisms that oxidize the organic matter, and the one that evacuates the electrons to the final acceptor of electrons, oxygen for example, allow the microorganisms to "breathe".
  • the same principle can be used with nitrates, nitrites, sulphates, thiosulphates or any other dissolved or gaseous compound that can be reduced.
  • the present invention relates to a process for the oxidation of organic materials comprising the application to said organic materials to be treated of a system comprising: a first portion (1) of conductive material;
  • Organic materials are any material that can be oxidized. These include agricultural waste (livestock waste, crop and forestry waste), agro-food waste, community waste (sewage sludge, septic tank sludge, green spaces, markets, street cleaning), household waste (garbage cans), etc.
  • the system according to the invention can thus be formed by a single electrically conductive element, such as an electrically conductive bar whose one end provides the first part and the other end the second part.
  • the system according to the invention can also be formed of two distinct elements brought into electrical contact by a resistance conductor the lowest possible, in particular substantially zero, and in any case less than 10 ohms.
  • the two elements may be formed of the same conductive material or two different conductive materials; they can be integral or interconnected by a single conductive element.
  • said system may comprise a first portion of graphite, immersed in the anaerobic layers of the reactor, part connected by a conductor to a second part made of stainless steel or any type of material capable of catalyzing the reduction of oxygen in the upper and aerated part of the reactor.
  • a cathode known in the state of the art, such as air cathodes for example in order to evacuate the electrons to oxygen gas.
  • the second part may comprise a deposited catalyst such as platinum and / or an EA biofilm, formed for example according to the procedure described in the patent application FR 0210009, in order to catalyze the reduction reaction.
  • the system according to the invention can use conductive parts of the reactor, simply by making a short circuit between them.
  • the walls or lining would constitute the oxidizing part of the system according to the invention, the ventilation module consisting of a conductive material, for example steel, constituting the reducing part.
  • the first and second parts are at the same electrochemical potential.
  • said first and second portions are immersed in a single reactor containing said organic materials to be treated, said microorganisms capable of forming an EA film, the electron acceptor, said reactor not comprising a separating element, such as a membrane, between said first and second parts.
  • the electron acceptor may be selected from any substance capable of being reduced. It can be favorably selected from oxygen, nitrates, nitrites, sulfates, thiosulfate, more preferably oxygen.
  • the reduction of the electron acceptor especially when it comes to oxygen, can occur spontaneously on certain materials such as graphite or steels, for example.
  • a reduction catalyst of said electron acceptor either a known compound deposited on its surface, or a microbial biofilm, or a combination of both.
  • Said catalyst is chosen from any substance capable of catalyzing the reduction reaction. It may especially be metal such as platinum or a compound based on platinum, nickel or silver, for example.
  • These compounds are deposited on the surface of the second part by any method known to those skilled in the art, such as electrochemical deposition, CVD deposition (Chemical Vapor Deposition), sol-gel type deposits, trapping. in polymer films, paints, inks, etc.
  • the catalysis can also be carried out by a biofilm consisting of microorganisms capable of forming an efficient EA biofilm for said electron acceptor.
  • the microbial biofilm may form spontaneously on the surface of the second part, or a pretreatment may cause, initiate or accelerate its formation, for example as described in the patent (FR0210009).
  • the said microorganism (s) forming an EA biofilm (4, 5 ') on the surface of the first part and optionally the second part of the system according to the invention exist (s) generally spontaneously in the reaction mixture. treat. Alternatively or cumulatively, it is possible to seed the reaction mixture to be treated with suitable microorganisms in all possible forms (inocula, culture broths, lyophilizates, etc.).
  • suitable microorganisms in all possible forms (inocula, culture broths, lyophilizates, etc.).
  • samples of media known to contain microorganisms readily EA biofilms, such as aqueous effluent sludge (eg sewage treatment plants) sediments or marine biofilms, composts and any other medium known to those skilled in the art to give EA biofilms.
  • EA biofilms are good inocula for reforming EA biofilms.
  • the first subcultures often provide a significant increase in catalytic activity.
  • pure cultures of microorganisms known for their ability to form EA biofilms such as Geobacter, Desulfuromonas, Shewanella, Geopsychrobacter, Rhodoferrax, Geothrix, etc. and any EA strain known in the state of the art.
  • the seeding can be done at the beginning of the start-up of the device, it can also possibly be renewed during operation to reactivate the device, for example to mitigate a decrease in its effectiveness or after an operating incident.
  • the conducting materials of the first and second parts (1), (2) may be chosen from any conductive material, such as in particular graphites, carbons, metallic materials such as stainless steels or the materials usually used for the electrodes. such as, for example, tantalum iridium oxides deposited on titanium. In particular, graphite and stainless steel are preferred.
  • the person skilled in the art will choose the material according to the type of medium to be treated and the type of microorganisms which will appear to him the most appropriate for treating these environments. It is known that graphites, carbons, metallic materials, such as stainless steels or materials specifically designed to serve as electrodes, such as tantalum iridium oxides deposited on titanium (electrode technology called DSA), allow adequate development of EA biofilms.
  • DSA electrode technology
  • the known materials suitable for EA biofilms being extremely diverse, any type of conductive material may be suitable, depending on the composition of the medium to be treated and the type of microorganisms present.
  • the materials of the first and second parts (1), (2) can be pretreated in bulk or on the surface, so as to optimize both their ability to adhere the EA biofilm, their electronic conductivity and their ability to promote the development of strongly EA biofilms. It is known that increased roughness promotes the development of effective EA biofilms. Any modification of the morphology surface: grooving, sanding, micro- and nanostructuring, etc. which will have the effect of increasing the area available for microbial adhesion and promoting this membership, will also be favorable to the system.
  • the system according to the invention may advantageously be implemented with a single element, for example a bar of conductive material, thus realizing the short-circuit in the two parts of its surface, namely on the one hand, that ensuring the oxidation of organic matter catalyzed by a biofilm EA and, on the other hand, that ensuring the reduction of a dissolved or gaseous electron acceptor species.
  • a single element for example a bar of conductive material
  • the shape and structure of the system according to the invention can be designed to create the largest possible exchange surfaces for each of the functional areas.
  • These include porous structures, such as foams or felts, and any type of structure with a large specific surface area or a high degree of vacuum known in the state of the art.
  • the shapes of the propeller type, brushes, dendrites, grids, etc. which increase the area of each element for a given volume may be favorable to its effectiveness.
  • the shape can also be designed in correlation with the hydrodynamics of the medium for circulating or agitated liquid environments.
  • the process according to the invention can generally be carried out for the time necessary for the oxidation. Thus, if the oxidation has to be carried out continuously, the process can also operate continuously. If, on the other hand, the oxidation has to be stopped, the process can be interrupted, for example by activating a switch located between the first and second parts or by removing the system according to the invention from the organic materials to be treated.
  • the system according to the invention is advantageously placed in the waste or effluent treatment reactor so as to ensure a different reaction on each of its two parts.
  • the first part is advantageously placed in the treatment reactor so as to ensure on its surface the oxidation process of the organic material catalyzed by a biofilm EA.
  • the second part must ensure the reduction reaction (s) of a species contained in a portion of the reactor, dissolved or gaseous oxygen for example.
  • the system according to the invention can simply be immersed vertically in an anoxic reactor so that that the oxidation of the organic matter takes place on its surface on the part immersed deeper in the reactor, rich in organic matter, whereas the reduction of the oxygen takes place on the surface of the second part, placed in the zone minus submerged reactor, richer in oxygen, such as the surface area.
  • the reactor can be configured to promote the establishment of an area richer in organic matter to be treated and a richer zone of electron acceptor (oxygen, nitrates, etc.).
  • the system according to the invention being composed of two parts, possibly identical or integral, providing different functions, it may be advantageous to optimize these two parts independently to make them as efficient as possible.
  • the system according to the invention may have a first portion optimized to ensure the adhesion of EA biofilms that oxidize the organic material and a second optimized portion to ensure the evacuation of electrons to a dissolved acceptor compound, oxygen for example this reaction being catalyzed by an EA biofilm or a catalyst such as platinum.
  • the optimization includes the definition of the shape, the location with respect to the reactor, the material and / or the surface coating, the surface morphology, the presence of a catalyst and any other parameter known in the state of the art. the art can improve the two targeted reactions.
  • the system according to the invention can be added to an existing reactor, or can use the parts of a reactor to form a system according to the invention, or modify the existing parts (shape, material, coating, etc.) for to make the effect of the system according to the invention more efficient.
  • the method according to the invention may also comprise the prior application of a potential or a current to the system, in order to promote the initial development of the system according to the invention.
  • This preliminary step can be performed for the time necessary for the system to operate independently, for example from a few hours to a few days. This step may be carried out in the same treatment reactor or independently in a reactor and a medium specially designed for this purpose.
  • seeding can also be designed in an open environment as a start-up technique of the process according to the invention.
  • the process according to the invention does not require any modification of the reactors used in traditional waste and effluent treatment technologies. It suffices to add the system according to the invention within the existing equipment. However, it is not excluded to also modify the existing equipment to implement the principle of the invention on their very surface.
  • the system according to the invention is very flexible since it uses as reaction catalysts EA biofilms which form spontaneously from the media to be treated. These EA biofilms are able to adapt to variations in the quality and composition of the media to be treated.
  • the system according to the invention comprises a priori no moving part, no electrical equipment; it is robust and requires virtually no special maintenance.
  • the system according to the invention can adapt to all types of waste and effluents; liquid effluents, but also solid waste, such as composting. It is sufficient, for it to be effective, to ensure sufficient contact between the medium to be treated and the surfaces of the system.
  • the system proposed in the present invention does not divert any energy to produce electricity, thereby ensuring maximum efficiency for the treatment of wastewater. waste or effluent.
  • the system according to the invention does not include a source of electrical energy, such as a source of voltage or current.
  • the system according to the invention is also distinguished from batteries in that it does not provide electricity.
  • the device according to the invention does not include any electric charge and does not require the use of electrochemical reactors having a membrane or any other type of separator to delimit an anode compartment and a cathode compartment.
  • the device described by the invention works best when all its parts have the same electrochemical potential.
  • the present invention also relates to a kit for implementing the method according to the invention, said kit comprising: - a first portion (1) of conductive material;
  • the kit according to the invention does not include a membrane, a source of electrical energy, such as a voltage or current source, or electric charge.
  • the kit according to the invention consists of said elements above.
  • the first and second parts as well as the microorganism (s) and short circuiting means are defined as above.
  • the kit is suitable for immersion in a single reactor containing said organic materials to be treated, said microorganisms capable of forming an EA film, the electron acceptor; it does not include a separating element, such as a membrane.
  • the means of short-circuiting can in particular be chosen from any conductive element, of the lowest resistance possible, in particular substantially zero, and in any case less than 10 ohms.
  • the kit according to the invention may also comprise any element, instrument or compound usually used, making it possible to improve the implementation of the method, useful in particular for the pretreatment of the device, a possible seeding, monitoring of the system, its maintenance and its piloting.
  • the pretreatment may comprise a polarization phase carried out in potentiostatic or intentiostatic mode either with the aid of a traditional electrochemical apparatus, or by galvanic coupling with a submerged electrode known to ensure a constant potential, such as zinc or alloy electrodes magnesium for example.
  • These instruments are part of the kit.
  • the seeding may be carried out by pure strains, or more effectively by consortia of microorganisms taken from EA biofilms, for example specifically cultivated for this purpose.
  • the maintenance may consist of reproducing the preprocessing phases at predefined time intervals or when a decrease in the efficiency of the device is detected.
  • the monitoring may be carried out in particular by measuring the potential of the device relative to a reference electrode forming part of the kit.
  • the control can consist in supplying a voltage or a current intensity as described above, with the instruments (potentiostat, current generator, galvanic coupling ...) forming part of the kit.
  • FIG. 1 represents a particular embodiment in which the system is formed of a single element, a bar for example, one end of which represents the first part (1) and the other end of which represents the second part (2). , the interface between the two parts constituting the short circuit (3).
  • On the surface of the first part is formed an EA biofilm (4), while on the surface of the second part (2) is deposited a catalyst (5) and / or an EA biofilm (5 ') is formed.
  • the system is immersed in the effluents to be treated (6) contained in a reactor (7).
  • FIG. 2 shows a variant according to which the system consists of two elements, two bars for example, the lower bar representing the first part (1) and the upper bar representing the second part (2), connected to each other by a driver ( 3).
  • a driver 3
  • On the surface of the first part is formed an EA biofilm (4), while on the surface of the second part (2) is deposited a catalyst (5) and / or an EA biofilm (5 ') is formed.
  • the system is immersed in the effluents to be treated (6) contained in a reactor (7).
  • the following example is given by way of non-limiting illustration of the present invention.
  • Three identical bioreactors consist of glass tubes 60 mm in diameter and contain 500 ml of seawater.
  • the three reactors are inoculated with the same microbial consortium collected by scraping a submerged surface at sea.
  • successive additions of known amounts of sodium acetate are carried out simultaneously in each of the three reactors.
  • the system according to the invention consists of a 50 cm 2 graphite felt surface connected by a 30 cm titanium rod to a 5 cm 2 platinum grid which constitutes the upper portion.
  • Graphite is known to promote the formation of EA biofilms in marine environments, platinum wire is chosen to maximize the electrochemical reduction rates of dissolved oxygen.
  • the system according to the invention is placed vertically in the reactor the platinum zone at the top, in the part that is assumed to be the most aerated of the reactors.
  • Bioreactor A is the control bioreactor. It allows to follow the natural consumption of the acetate by the flora introduced in the medium.
  • the system according to the invention is introduced into the bioreactor B.
  • - Bioreactor C is equipped with the same system according to the invention with electrochemical assistance.
  • the potentiostatic type of assistance is carried out using a potentiostat which imposes a fixed potential of -0.1V / ECS (saturated calomel reference electrode) to the oxidizing part of the system according to the invention. (anode).
  • This case simulates, for example, a pre-treatment phase of the device with electrochemical assistance.
  • Sodium acetate is added simultaneously to each bioreactor at a final concentration of 1 g / L. Several successive additions of acetate were made after complete disappearance of the initial charge.
  • the consumption of acetate is monitored in each reactor by taking 1 ml of sample and measured by an enzymatic assay (Boehringer-Mannheim kit, R-
  • the acetate measurements made before the new additions on days 5, 10 and 15 indicate a 100% abatement (total acetate consumption) in the three bioreactors.
  • the average acetate abatement rate is around 0.2 g / L / day (ie 5 days to consume the 1 g / L added).
  • control reactor only manages to consume approximately 50% of the added acetate after 3 days; during the same period, the system according to the invention provides 61% abatement after the 4th addition and 71% after the 5th addition.
  • the system according to the invention assisted by electrochemistry retains a reduction rate identical to that of the start (0.2 g / L / day).
  • the electrochemical assistance forces a faster formation of the EA biofilm, which may constitute a pretreatment procedure of the device. This makes it possible to evaluate the progress capability of the system according to the invention.

Abstract

The present invention relates to a process for the oxidation of organic matter and the kit for the implementation thereof, especially for the treatment of waste, effluents and biosolids.

Description

PROCEDE ET EQUIPEMENT POUR L'OXYDATION DE MATIERES ORGANIQUES PROCESS AND EQUIPMENT FOR OXIDATION OF ORGANIC MATERIALS
La production de déchets dépasse en France 600 millions de tonnes par an. Plus des deux tiers sont des déchets organiques. Ils ont les origines suivantes : - déchets agricoles (déjections animales, déchets de culture et de forêts) : 84 % de la quantité totale de déchets organiques ;Waste production in France exceeds 600 million tonnes per year. More than two-thirds are organic waste. They have the following origins: - agricultural waste (animal waste, crop waste and forest waste): 84% of the total quantity of organic waste;
- déchets des industries agroalimentaires : 10 % ;- waste from agro-food industries: 10%;
- déchets des collectivités (boues des stations d'épuration, boues des fosses septiques, espaces verts, marchés, nettoiement des rues) : 5 % ; - déchets des ménages (poubelles) : 1 %.- community waste (sewage sludge, septic tank sludge, green spaces, markets, street cleaning): 5%; - household waste (garbage): 1%.
En France, 95 % des agglomérations de plus de 10 000 équivalents-habitants disposent d'une station d'épuration. La production de boues d'épuration est en accroissement constant. Aujourd'hui, presque toutes les stations d'épuration comportent un traitement biologique, au cours duquel des microorganismes dégradent les matières organiques, azotées et phosphorées qui constituent la charge polluante des eaux usées. Le plus souvent, les effluents urbains sont acheminés vers un bassin où prolifèrent ces organismes sous forme de boues activées. Pour agir, les boues activées consomment de l'oxygène, il faut donc veiller à les aérer convenablement. L'aération représente 60 % à 80 % des dépenses énergétiques de ce type de station d'épuration, ce qui correspond à une consommation d'environ 50 kWh/an/équivalent habitant. Il est généralement admis qu'une optimisation de ce poste devrait permettre de faire des économies de l'ordre de 10 % à 20 % sur le coût total du fonctionnement de la station.In France, 95% of agglomerations with more than 10,000 population equivalents have a wastewater treatment plant. The production of sewage sludge is constantly increasing. Today, almost all wastewater treatment plants have biological treatment, in which microorganisms degrade the organic, nitrogen and phosphorus materials that constitute the polluting load of the wastewater. Most often, urban effluents are sent to a pool where these organisms proliferate in the form of activated sludge. To act, activated sludge consumes oxygen, so be sure to air properly. Aeration represents 60% to 80% of the energy expenditure of this type of treatment plant, which corresponds to a consumption of about 50 kWh / year / inhabitant equivalent. It is generally accepted that optimization of this station should result in savings of between 10% and 20% on the total cost of running the station.
En parallèle aux stations d'épuration des effluents urbains, la tendance actuelle est de disposer de mini-stations de traitement en sortie des installations qui produisent certains effluents spécifiques, tels que le traitement des charges en huiles en sortie des ateliers de fabrication mécanique, le traitement des lisiers ou des effluents laitiers en sortie des unités d'élevage ou des centres transformation agroalimentaire, la détoxification des effluents hospitaliers, etc. Des besoins nouveaux se développent aussi, comme par exemple les traitements biologiques des eaux de piscine ou le compostage domestique des déchets alimentaires.In parallel with urban wastewater treatment plants, the current trend is to have mini-treatment plants at the outlet of the facilities that produce certain specific effluents, such as the treatment of the oil charges at the output of the mechanical manufacturing workshops. treatment of slurry or dairy effluents leaving livestock units or agro-food processing centers, detoxification of hospital effluents, etc. New needs are also developing, such as biological treatments of swimming pool water or domestic composting of food waste.
Dans tous les cas, il est désirable d'améliorer l'oxydation des matières organiques par les microorganismes et l'oxygène.In any case, it is desirable to improve the oxidation of organic materials by microorganisms and oxygen.
Les microorganismes adhèrent spontanément sur tous types de surfaces et forment des films appelés biofilms constitués desdits microorganismes, d'une matrice de substances exopolymériques (polysaccharides, protéines, macromolécules...) qu'ils excrètent, de substances produites par les métabolismes microbiens et de composés accumulés provenant du milieu ou issus de la dégradation de la surface support. Il a été découvert récemment que les biofilms développés sur des surfaces conductrices sont capables d'utiliser ces surfaces pour évacuer les électrons issus de leur métabolisme (D. R. Bond et al., Science 295 (2002) 483, et L. M. Tender et al. Nature Biotechnology 20Microorganisms spontaneously adhere to all types of surfaces and form films called biofilms consisting of said microorganisms, a matrix of exopolymeric substances (polysaccharides, proteins, macromolecules ...) they excrete, substances produced by microbial metabolism and accumulated compounds from the medium or from the degradation of the support surface. It has recently been discovered that biofilms grown on conductive surfaces are able to utilize these surfaces to evacuate electrons from their metabolism (DR Bond et al., Science 295 (2002) 483, and LM Tender et al., Nature Biotechnology 20
(2002) 821 ; H. J. Kim et al., Enzyme and Microbial Technology 30 (2002) 145). Les mécanismes ne sont pas encore parfaitement déchiffrés, plusieurs chemins réactionnels sont évoqués, en fonction du type de microorganismes qui composent les biofilms (K. Rabaey et al., Trends in Biotechnology 23 (2005) 291 ; D. R. Lovley, Current Opinion in Biotechnology 17 (2006) 1 ). Dans certains cas, les microorganismes produisent de petits composés rédox qui jouent le rôle de médiateurs électrochimiques entre les cellules microbiennes et la surface : ces composés sont réduits par le microorganisme et s'oxydent en retour sur la surface. D'autres microorganismes ont été démontrés capables de transférer directement les électrons issus de l'oxydation de leur métabolismes vers une surface conductrice grâce à des composés rédox inclus dans leur membrane externe. Certains microorganismes forment des pili conducteurs pour se connecter électrochimiquement à des surfaces ou à d'autres microorganismes. Quels que soient les chemins réactionnels, les biofilms s'avèrent capables d'oxyder des matières organiques en transférant directement les électrons vers une surface conductrice. D'autres biofilms ont été démontrés capables de catalyser la réduction de l'oxygène sur des matériaux comme les aciers inoxydables (A. Bergel et al., Electrochemistry Communications, 2005, 7, 900-904 ; FR 02 10009) qui, sous leur état initial dépourvu de biofilm, ne sont pas connus pour assurer des vitesses élevées de réduction de l'oxygène. Ces biofilms peuvent être mis à profit sur la surface destinée à évacuer les électrons du système vers un composé dissous, l'oxygène par exemple.(2002) 821; H. J. Kim et al., Enzyme and Microbial Technology (2002) 145). The mechanisms are not yet fully deciphered, several reaction paths are evoked, depending on the type of microorganisms that make up the biofilms (K. Rabaey et al., Trends in Biotechnology 23 (2005) 291, DR Lovley, Current Opinion in Biotechnology 17 (2006) 1). In some cases, microorganisms produce small redox compounds that act as electrochemical mediators between microbial cells and the surface: these compounds are reduced by the microorganism and oxidize back to the surface. Other microorganisms have been shown to be able to directly transfer electrons from the oxidation of their metabolism to a conductive surface by means of redox compounds included in their outer membrane. Some microorganisms form conductive pili to electrochemically connect to surfaces or other microorganisms. Whatever the reaction paths, biofilms are able to oxidize organic materials by directly transferring electrons to a conductive surface. Other biofilms have been demonstrated capable of catalyzing the reduction of oxygen on materials such as stainless steels (A. Bergel et al., Electrochemistry Communications, 2005, 7, 900-904, FR 02 10009) which under their initial state devoid of biofilm, are not known to ensure high speeds of reduction of oxygen. These biofilms can be used on the surface intended to evacuate the electrons of the system to a dissolved compound, oxygen for example.
Qu'ils soient capables de catalyser des réactions électrochimiques d'oxydation ou de réduction, ces biofilms seront appelés dans la suite biofilms électrochimiquement actifs ou biofilms EA.Whether they are capable of catalyzing electrochemical oxidation or reduction reactions, these biofilms will be referred to herein as electrochemically active biofilms or EA biofilms.
Néanmoins, ces technologies ont essentiellement été prévues pour des piles, c'est- à-dire pour produire de l'électricité. Ceci nécessite donc l'installation d'un circuit électrique complexe, peu compatible avec des installations telles que les unités de traitement de déchets. Par ailleurs, ces piles ne produisent pas actuellement suffisamment d'électricité pour rendre attractive cette mise en œuvre sur des installations de déchets.Nevertheless, these technologies have mainly been provided for batteries, that is, to produce electricity. This therefore requires the installation of a complex electrical circuit, not very compatible with facilities such as waste treatment units. Moreover, these batteries do not currently produce enough electricity to make this implementation attractive on waste facilities.
En revanche, les installations de déchets sont confrontées à leur forte consommation d'électricité nécessaire pour alimenter les aérateurs. Il est donc souhaitable de concevoir des systèmes qui permettent de diminuer voire supprimer la nécessité d'aération des déchets ou des effluents à traiter. En effet, il est connu que l'aération des milieux à traiter est nécessaire pour permettre aux microorganismes de se développer et ainsi de consommer les matières organiques. La respiration consiste en l'évacuation des électrons issus du processus microbien d'oxydation des matières organiques vers un accepteur externe d'électrons, le plus souvent l'oxygène dissous dans le milieu qui est ainsi réduit en eau. Certains microorganismes sont capables de respirer en réduisant d'autres accepteurs d'électrons tels que les nitrates, les nitrites ou les sulfates par exemple. Le manque d'accepteur d'électrons dans le milieu, l'oxygène en l'occurrence, réduit considérablement la capacité des microorganismes à oxyder les matières organiques, voire l'annihile totalement.On the other hand, the waste installations are confronted with their high consumption of electricity necessary to feed the aerators. It is therefore desirable to design systems that reduce or even eliminate the need for aeration of waste or effluents to be treated. Indeed, it is known that the aeration of the media to be treated is necessary to allow the microorganisms to develop and thus consume the organic materials. Breathing consists of the removal of electrons from the microbial process of oxidation of organic matter to an external acceptor of electrons, most often dissolved oxygen in the medium, which is thus reduced to water. Some microorganisms are able to breathe by reducing other electron acceptors such as nitrates, nitrites or sulfates for example. The lack of electron acceptor in the medium, oxygen in this case, significantly reduces the ability of microorganisms to oxidize organic matter, or even annihilates it completely.
Ainsi, il est particulièrement désirable de mettre à disposition un procédé permettant de limiter voire diminuer l'utilisation des aérateurs.Thus, it is particularly desirable to provide a method for limiting or even reducing the use of aerators.
La présente invention propose de faire développer les microorganismes sur des surfaces conductrices qui sont aptes à recueillir les électrons issus des processus métaboliques d'oxydation des matières organiques. Ces surfaces conductrices sur lesquelles se développent les microorganismes assurent ainsi l'extraction des électrons.The present invention proposes to develop the microorganisms on conductive surfaces that are capable of collecting the electrons from the metabolic processes of oxidation of organic materials. These conductive surfaces on which the microorganisms develop, thus ensure the extraction of electrons.
Pour évacuer les électrons, la surface qui supporte les microorganismes qui oxydent la matière organique doit être connectée avec une surface qui les évacue vers l'accepteur final, l'oxygène par exemple. Ainsi, les deux surfaces, celle qui recueille les électrons issus des microorganismes qui oxydent la matière organique, et celle qui évacue les électrons vers l'accepteur final d'électrons, l'oxygène par exemple, permettent aux microorganismes de « respirer ». Le même principe peut être utilisé avec des nitrates, nitrites, sulfates, thiosulfates ou tout autre composé dissous ou gazeux qui peut être réduit.To evacuate the electrons, the surface that supports the microorganisms that oxidize the organic matter must be connected with a surface that evacuates them towards the final acceptor, the oxygen for example. Thus, the two surfaces, the one that collects the electrons from the microorganisms that oxidize the organic matter, and the one that evacuates the electrons to the final acceptor of electrons, oxygen for example, allow the microorganisms to "breathe". The same principle can be used with nitrates, nitrites, sulphates, thiosulphates or any other dissolved or gaseous compound that can be reduced.
Ainsi, selon un premier objet, la présente invention concerne un procédé d'oxydation de matières organiques comprenant l'application auxdites matières organiques à traiter d'un système comprenant - une première partie (1 ) en matériau conducteur,Thus, according to a first object, the present invention relates to a process for the oxidation of organic materials comprising the application to said organic materials to be treated of a system comprising: a first portion (1) of conductive material;
- une seconde partie (2) en matériau conducteur, ledit procédé comprenant simultanément:a second portion (2) of conductive material, said method comprising simultaneously:
- la mise en contact de la première partie (1 ) avec lesdites matières organiques et un ou plusieurs microorganisme(s) capable de former un biofilm EA (4) sur la surface de ladite première partie, - la mise en contact de ladite seconde partie avec un accepteur d'électrons, en présence d'un catalyseur (5) et/ou d'un ou plusieurs microorganisme(s) capable de former un biofilm EA (5') sur la surface de ladite seconde partie, etcontacting the first part (1) with said organic materials and one or more microorganisms (s) capable of forming an EA biofilm (4) on the surface of said first part, contacting said second portion with an electron acceptor in the presence of a catalyst (5) and / or one or more microorganisms capable of forming an EA biofilm (5 ') on the surface of said second part, and
- la mise en contact électrique desdites première et seconde parties par un court circuit.- The electrical contact of said first and second parts by a short circuit.
On entend par matières organiques toute matière susceptible d'être oxydée. On peut notamment citer les déchets agricoles (déjections animales, déchets de culture et de forêts), déchets des industries agroalimentaires, déchets des collectivités (boues des stations d'épuration, boues des fosses septiques, espaces verts, marchés, nettoiement des rues), déchets des ménages (poubelles), etc.Organic materials are any material that can be oxidized. These include agricultural waste (livestock waste, crop and forestry waste), agro-food waste, community waste (sewage sludge, septic tank sludge, green spaces, markets, street cleaning), household waste (garbage cans), etc.
Selon un premier mode de réalisation, le système selon l'invention peut ainsi être formé par un seul élément conducteur électrique, tel qu'un barreau conducteur électrique dont une extrémité assure la première partie et l'autre extrémité la seconde partie.According to a first embodiment, the system according to the invention can thus be formed by a single electrically conductive element, such as an electrically conductive bar whose one end provides the first part and the other end the second part.
Selon un autre mode de réalisation, le système selon l'invention peut également être formé de deux éléments distincts mis en contact électrique par un conducteur de résistance la plus faible possible, notamment substantiellement nulle, et en tout état de cause inférieure à 10 ohms. Les deux éléments peuvent être formés du même matériau conducteur ou de deux matériaux conducteurs différents ; ils peuvent être solidaires ou reliés entre eux par un simple élément conducteur.According to another embodiment, the system according to the invention can also be formed of two distinct elements brought into electrical contact by a resistance conductor the lowest possible, in particular substantially zero, and in any case less than 10 ohms. The two elements may be formed of the same conductive material or two different conductive materials; they can be integral or interconnected by a single conductive element.
Ainsi, dans le cas du traitement d'effluent dans un réacteur anoxique, ledit système peut comprendre une première partie en graphite, immergée dans les couches anaérobies du réacteur, partie reliée par un conducteur à une seconde partie en acier inoxydable ou tout type de matériau susceptible de catalyser la réduction de l'oxygène dans la partie supérieure et aérée du réacteur. Pour réaliser la zone réductrice du système selon l'invention, on peut utiliser tout type de cathode connu dans l'état de l'art, comme les cathodes à air par exemple afin d'évacuer les électrons vers l'oxygène gazeux. La seconde partie peut comprendre un catalyseur déposé tel que le platine et/ou un biofilm EA, formé par exemple suivant la procédure décrite dans la demande de brevet FR 0210009, afin de catalyser la réaction de réduction.Thus, in the case of effluent treatment in an anoxic reactor, said system may comprise a first portion of graphite, immersed in the anaerobic layers of the reactor, part connected by a conductor to a second part made of stainless steel or any type of material capable of catalyzing the reduction of oxygen in the upper and aerated part of the reactor. To achieve the reducing zone of the system according to the invention, it is possible to use any type of cathode known in the state of the art, such as air cathodes for example in order to evacuate the electrons to oxygen gas. The second part may comprise a deposited catalyst such as platinum and / or an EA biofilm, formed for example according to the procedure described in the patent application FR 0210009, in order to catalyze the reduction reaction.
Selon un autre mode de réalisation, le système selon l'invention peut utiliser des parties conductrices du réacteur, simplement en réalisant un court circuit entre elles. On peut, par exemple, constituer un système selon l'invention en connectant par un conducteur électrique de résistance substantiellement nulle les parois ou le garnissage d'un réacteur de traitement de déchets ou d'effluents, avec un module interne d'aération. Les parois ou garnissage constitueraient dans ce cas la partie oxydante du système selon l'invention, le module d'aération, constitué d'un matériau conducteur, de l'acier par exemple, constituant la partie réductrice.According to another embodiment, the system according to the invention can use conductive parts of the reactor, simply by making a short circuit between them. One can, for example, constitute a system according to the invention by connecting by a electrical conductor of substantially zero resistance the walls or lining of a waste or effluent treatment reactor, with an internal aeration module. In this case, the walls or lining would constitute the oxidizing part of the system according to the invention, the ventilation module consisting of a conductive material, for example steel, constituting the reducing part.
Selon l'invention, les première et seconde parties sont au même potentiel électrochimique.According to the invention, the first and second parts are at the same electrochemical potential.
Avantageusement, les dites première et seconde parties plongent dans un réacteur unique contenant lesdites matières organiques à traiter, lesdits microorganismes capables de former un film EA, l'accepteur d'électrons, ledit réacteur ne comprenant pas d'élément séparateur, tel qu'une membrane, entre lesdites première et seconde parties.Advantageously, said first and second portions are immersed in a single reactor containing said organic materials to be treated, said microorganisms capable of forming an EA film, the electron acceptor, said reactor not comprising a separating element, such as a membrane, between said first and second parts.
L'accepteur d'électrons peut être choisi parmi toute substance capable d'être réduite. Il peut être favorablement choisi parmi l'oxygène, des nitrates, nitrites, sulfates, thiosulfate, plus préférentiellement l'oxygène. La réduction de l'accepteur d'électrons, surtout lorsqu'il s'agit de l'oxygène, peut s'effectuer spontanément sur certains matériaux comme le graphite ou les aciers par exemple. Toutefois on peut avoir intérêt à utiliser un catalyseur de la réduction dudit accepteur d'électrons, soit un composé connu déposé à sa surface, soit un biofilm microbien, soit la combinaison des deux. Ledit catalyseur est choisi parmi toute substance capable de catalyser la réaction de réduction. Il peut notamment s'agir de métal tel que le platine ou d'un composé à base de platine, de nickel ou d'argent par exemple. Ces composés sont déposés sur la surface de la seconde partie par tout procédé connu par l'homme de l'art, tel que les dépôts électrochimiques, les dépôts par CVD (Chemical Vapor Déposition), les dépôts de type sol-gel, le piégeage dans des films de polymères, les peintures, encres, etc. La catalyse peut également être réalisée par un biofilm constitué de micro-organismes capables de former un biofilm EA efficace pour ledit accepteur d'électrons. Dans ce cas le biofilm microbien peut se former spontanément à la surface de la seconde partie, ou un prétraitement peut provoquer, initier ou accélérer sa formation, par exemple comme décrit dans le brevet (FR0210009). Le(s)dit(s) microorganisme(s) formant un biofilm EA (4, 5') à la surface de la première partie et éventuellement la seconde partie du système selon l'invention existe(nt) généralement spontanément dans le mélange réactionnel à traiter. Alternativement ou cumulativement, il peut être envisagé d'ensemencer le mélange réactionnel à traiter avec des microorganisme(s) adapté(s) sous toutes formes possibles (inocula, bouillons de culture, lyophilisats, etc.). Pour cela on peut utiliser comme inoculum des échantillons de milieux connus pour contenir des micro-organismes formant facilement des biofilms EA, tels que des boues d'effluents aqueux (stations d'épuration par exemple) des sédiments ou des biofilms marins, des composts et tout autre milieu connu par l'homme de l'art pour donner des biofilms EA. On pourra tirer avantage à ensemencer avec des échantillons de biofilms EA précédemment collectés sur des anodes (pour la première partie) ou des cathodes (pour la seconde partie) de tout système mettant en œuvre des biofilms EA, tels que le présent dispositif ou des piles à combustible microbiennes par exemple. Il est en effet connu que les biofilms EA constituent de bons inocula pour reformer des biofims EA. Les premiers repiquages assurent souvent une augmentation significative de l'activité catalytique. On pourra aussi utiliser des cultures pures de micro-organismes connus pour leur capacité à former des biofilms EA, tels que Geobacter, Desulfuromonas, Shewanella, Geopsychrobacter, Rhodoferrax, Geothrix, etc. et toute souche EA connue dans l'état de l'art.The electron acceptor may be selected from any substance capable of being reduced. It can be favorably selected from oxygen, nitrates, nitrites, sulfates, thiosulfate, more preferably oxygen. The reduction of the electron acceptor, especially when it comes to oxygen, can occur spontaneously on certain materials such as graphite or steels, for example. However, it may be advantageous to use a reduction catalyst of said electron acceptor, either a known compound deposited on its surface, or a microbial biofilm, or a combination of both. Said catalyst is chosen from any substance capable of catalyzing the reduction reaction. It may especially be metal such as platinum or a compound based on platinum, nickel or silver, for example. These compounds are deposited on the surface of the second part by any method known to those skilled in the art, such as electrochemical deposition, CVD deposition (Chemical Vapor Deposition), sol-gel type deposits, trapping. in polymer films, paints, inks, etc. The catalysis can also be carried out by a biofilm consisting of microorganisms capable of forming an efficient EA biofilm for said electron acceptor. In this case the microbial biofilm may form spontaneously on the surface of the second part, or a pretreatment may cause, initiate or accelerate its formation, for example as described in the patent (FR0210009). The said microorganism (s) forming an EA biofilm (4, 5 ') on the surface of the first part and optionally the second part of the system according to the invention exist (s) generally spontaneously in the reaction mixture. treat. Alternatively or cumulatively, it is possible to seed the reaction mixture to be treated with suitable microorganisms in all possible forms (inocula, culture broths, lyophilizates, etc.). For this purpose, samples of media known to contain microorganisms readily EA biofilms, such as aqueous effluent sludge (eg sewage treatment plants) sediments or marine biofilms, composts and any other medium known to those skilled in the art to give EA biofilms. It may be advantageous to seed with samples of EA biofilms previously collected on anodes (for the first part) or cathodes (for the second part) of any system using EA biofilms, such as the present device or batteries. microbial fuel for example. It is indeed known that EA biofilms are good inocula for reforming EA biofilms. The first subcultures often provide a significant increase in catalytic activity. It is also possible to use pure cultures of microorganisms known for their ability to form EA biofilms, such as Geobacter, Desulfuromonas, Shewanella, Geopsychrobacter, Rhodoferrax, Geothrix, etc. and any EA strain known in the state of the art.
L'ensemencement peut être effectué au début de la mise en fonction du dispositif, il peut aussi éventuellement être renouvelé en cours de fonctionnement pour réactiver le dispositif, par exemple pour pallier une diminution de son efficacité ou après un incident de fonctionnement.The seeding can be done at the beginning of the start-up of the device, it can also possibly be renewed during operation to reactivate the device, for example to mitigate a decrease in its effectiveness or after an operating incident.
Les matériaux conducteurs des première et seconde parties (1 ), (2), identiques ou différents, peuvent être choisis parmi tout matériau conducteur tels que notamment les graphites, carbones, matériaux métalliques tels que les aciers inoxydables ou les matériaux habituellement utilisés pour les électrodes, comme par exemple les oxydes d'iridium de tantale déposés sur du titane. On préfère notamment le graphite et l'acier inoxydable.The conducting materials of the first and second parts (1), (2), which may be identical or different, may be chosen from any conductive material, such as in particular graphites, carbons, metallic materials such as stainless steels or the materials usually used for the electrodes. such as, for example, tantalum iridium oxides deposited on titanium. In particular, graphite and stainless steel are preferred.
L'homme de l'art choisira le matériau en fonction du type de milieu à traiter et du type de micro-organismes qui lui paraîtra le plus approprié pour traiter ces milieux. On sait en effet que les graphites, carbones, matériaux métalliques, tels que les aciers inoxydables ou les matériaux spécifiquement conçus pour servir d'électrodes, tels les oxydes d'iridium de tantale déposés sur du titane (technologie d'électrodes appelée DSA), permettent un développement adéquat de biofilms EA. Les matériaux connus appropriés aux biofilms EA étant extrêmement divers, tout type de matériau conducteur peut convenir, en fonction de la composition du milieu à traiter et du type des microorganismes présents.The person skilled in the art will choose the material according to the type of medium to be treated and the type of microorganisms which will appear to him the most appropriate for treating these environments. It is known that graphites, carbons, metallic materials, such as stainless steels or materials specifically designed to serve as electrodes, such as tantalum iridium oxides deposited on titanium (electrode technology called DSA), allow adequate development of EA biofilms. The known materials suitable for EA biofilms being extremely diverse, any type of conductive material may be suitable, depending on the composition of the medium to be treated and the type of microorganisms present.
Avantageusement, les matériaux des premières et secondes parties (1 ), (2) peuvent être prétraités en masse ou en surface, de façon à optimiser à la fois leur capacité à faire adhérer le biofilm EA, leur conductivité électronique et leur capacité à favoriser le développement de biofilms fortement EA. Il est connu que l'augmentation de la rugosité favorise le développement de biofilms EA efficaces. Toute modification de la morphologie de surface : rainurage, sablage, micro- et nano-structuration, etc. qui aura pour effet d'augmenter la surface disponible pour l'adhésion microbienne et de favoriser cette adhésion, sera également favorable au système.Advantageously, the materials of the first and second parts (1), (2) can be pretreated in bulk or on the surface, so as to optimize both their ability to adhere the EA biofilm, their electronic conductivity and their ability to promote the development of strongly EA biofilms. It is known that increased roughness promotes the development of effective EA biofilms. Any modification of the morphology surface: grooving, sanding, micro- and nanostructuring, etc. which will have the effect of increasing the area available for microbial adhesion and promoting this membership, will also be favorable to the system.
Le système selon l'invention peut être avantageusement mis en œuvre avec un simple élément, par exemple un barreau de matériau conducteur, réalisant ainsi le court- circuit en les deux parties de sa surface, à savoir d'une part, celle assurant l'oxydation des matières organiques catalysée par un biofilm EA et, d'autre part, celle assurant la réduction d'une espèce accepteur d'électrons dissoute ou gazeuse. Toute autre forme qui sera adaptée à la configuration du milieu à traiter peut également être envisagée, dès lors que chacune des deux parties assurant respectivement l'oxydation et la réduction sont en court-circuit.The system according to the invention may advantageously be implemented with a single element, for example a bar of conductive material, thus realizing the short-circuit in the two parts of its surface, namely on the one hand, that ensuring the oxidation of organic matter catalyzed by a biofilm EA and, on the other hand, that ensuring the reduction of a dissolved or gaseous electron acceptor species. Any other form that will be adapted to the configuration of the medium to be treated may also be considered, since each of the two parts respectively providing the oxidation and reduction are short-circuited.
Avantageusement, la forme et la structure du système selon l'invention peuvent être conçues de façon à créer les surfaces d'échange les plus importantes possibles pour chacune des zones fonctionnelles. On peut notamment citer des structures poreuses, de type mousses ou feutres, et tout type de structure à grande surface spécifique ou haut degré de vide connu dans l'état de l'art. De même, les formes de type hélice, brosses, dendrites, grilles, etc. qui accroissent la surface de chaque élément pour un volume donné peuvent être favorables à son efficacité. La forme peut également être conçue en corrélation avec l'hydrodynamique du milieu pour les environnements liquides circulant ou agités.Advantageously, the shape and structure of the system according to the invention can be designed to create the largest possible exchange surfaces for each of the functional areas. These include porous structures, such as foams or felts, and any type of structure with a large specific surface area or a high degree of vacuum known in the state of the art. Similarly, the shapes of the propeller type, brushes, dendrites, grids, etc. which increase the area of each element for a given volume may be favorable to its effectiveness. The shape can also be designed in correlation with the hydrodynamics of the medium for circulating or agitated liquid environments.
Le procédé selon l'invention peut être généralement mis en œuvre pendant la durée nécessaire à l'oxydation. Ainsi, si l'oxydation doit être réalisée en continu, le procédé peut fonctionner également en continu. Si en revanche, l'oxydation doit être stoppée, le procédé peut être interrompu, par exemple en activant un interrupteur situé entre les première et seconde parties ou en retirant le système selon l'invention des matières organiques à traiter.The process according to the invention can generally be carried out for the time necessary for the oxidation. Thus, if the oxidation has to be carried out continuously, the process can also operate continuously. If, on the other hand, the oxidation has to be stopped, the process can be interrupted, for example by activating a switch located between the first and second parts or by removing the system according to the invention from the organic materials to be treated.
Le système selon l'invention est avantageusement placé dans le réacteur de traitement de déchets ou d'effluents de façon à assurer une réaction différente sur chacune de ses deux parties. Ainsi, la première partie est avantageusement placée dans le réacteur de traitement de façon à assurer sur sa surface le procédé d'oxydation de la matière organique catalysée par un biofilm EA. Simultanément, la seconde partie doit assurer la (les) réaction(s) de réduction d'une espèce contenue dans une partie du réacteur, l'oxygène dissous ou gazeux par exemple. Ainsi, le système selon l'invention peut être simplement immergé verticalement dans un réacteur anoxique de façon à ce que l'oxydation des matières organiques ait lieu à sa surface sur la partie immergée plus profondément dans le réacteur, riche en matières organiques, tandis que la réduction de l'oxygène a lieu sur la surface de la seconde partie, placée dans la zone moins immergée du réacteur, plus riche en oxygène, comme par exemple la zone de surface. Ainsi, le réacteur peut être configuré pour favoriser l'établissement d'une zone plus riche en matières organiques à traîter et une zone plus riche en accepteur d'électrons (oxygène, nitrates, etc.).The system according to the invention is advantageously placed in the waste or effluent treatment reactor so as to ensure a different reaction on each of its two parts. Thus, the first part is advantageously placed in the treatment reactor so as to ensure on its surface the oxidation process of the organic material catalyzed by a biofilm EA. Simultaneously, the second part must ensure the reduction reaction (s) of a species contained in a portion of the reactor, dissolved or gaseous oxygen for example. Thus, the system according to the invention can simply be immersed vertically in an anoxic reactor so that that the oxidation of the organic matter takes place on its surface on the part immersed deeper in the reactor, rich in organic matter, whereas the reduction of the oxygen takes place on the surface of the second part, placed in the zone minus submerged reactor, richer in oxygen, such as the surface area. Thus, the reactor can be configured to promote the establishment of an area richer in organic matter to be treated and a richer zone of electron acceptor (oxygen, nitrates, etc.).
Cela peut notamment être réalisé par : simple sédimentation dans un réacteur classique, les matières organiques sédimentant dans la partie basse du réacteur ; en aérant préférentiellement une partie seulement du réacteur, ou en alimentant une partie seulement du réacteur en accepteur d'électrons (nitrates, oxygène, etc.) ; en définissant une configuration de réacteur favorable à l'établissement de ces deux zones, par exemple en utilisant deux cuves couplées en série ; et/ou par toute combinaison de ces techniques et de toute autre technique connue par l'homme de l'art qui permette de définir des zones préférentielles.This can be achieved in particular by: simple sedimentation in a conventional reactor, the organic materials sedimenting in the lower part of the reactor; aerating preferentially only a portion of the reactor, or by supplying only a portion of the electron acceptor reactor (nitrates, oxygen, etc.); defining a reactor configuration favorable to the establishment of these two zones, for example using two tanks coupled in series; and / or by any combination of these techniques and any other technique known to those skilled in the art which makes it possible to define preferential zones.
Le système selon l'invention étant composé de deux parties, éventuellement identiques ou solidaires, assurant des fonctions différentes, il peut être avantageux d'optimiser ces deux parties de façon indépendante pour les rendre le plus efficace possible. Préférentiellement, le système selon l'invention pourra avoir une première partie optimisée pour assurer l'adhésion de biofilms EA qui oxydent la matière organique et une seconde partie optimisée pour assurer l'évacuation des électrons vers un composé accepteur dissous, l'oxygène par exemple, cette réaction étant catalysée par un biofilm EA ou par un catalyseur tel que le platine.The system according to the invention being composed of two parts, possibly identical or integral, providing different functions, it may be advantageous to optimize these two parts independently to make them as efficient as possible. Preferably, the system according to the invention may have a first portion optimized to ensure the adhesion of EA biofilms that oxidize the organic material and a second optimized portion to ensure the evacuation of electrons to a dissolved acceptor compound, oxygen for example this reaction being catalyzed by an EA biofilm or a catalyst such as platinum.
L'optimisation comprend notamment la définition de la forme, l'emplacement par rapport au réacteur, le matériau et/ou le revêtement de surface, la morphologie de surface, la présence d'un catalyseur et tout autre paramètre connu dans l'état de l'art pouvant améliorer les deux réactions visées.The optimization includes the definition of the shape, the location with respect to the reactor, the material and / or the surface coating, the surface morphology, the presence of a catalyst and any other parameter known in the state of the art. the art can improve the two targeted reactions.
Ainsi, le système selon l'invention peut être ajouté à un réacteur existant, ou peut utiliser les parties d'un réacteur pour constituer un système selon l'invention, ou modifier les parties existantes (forme, matériau, revêtement, etc.) pour rendre l'effet du système selon l'invention plus efficace. Le procédé selon l'invention peut également comprendre préalablement l'application d'un potentiel ou d'un courant au système, afin de favoriser le développement initial du système selon l'invention. Cette étape préliminaire peut être réalisée pendant la durée nécessaire au système pour fonctionner en autonomie, par exemple de quelques heures à quelques jours. Cette étape peut-être effectuée dans le réacteur même de traitement ou indépendamment dans un réacteur et un milieu spécialement conçus à cet effet.Thus, the system according to the invention can be added to an existing reactor, or can use the parts of a reactor to form a system according to the invention, or modify the existing parts (shape, material, coating, etc.) for to make the effect of the system according to the invention more efficient. The method according to the invention may also comprise the prior application of a potential or a current to the system, in order to promote the initial development of the system according to the invention. This preliminary step can be performed for the time necessary for the system to operate independently, for example from a few hours to a few days. This step may be carried out in the same treatment reactor or independently in a reactor and a medium specially designed for this purpose.
Dans le cas de traitement en batch, on pourra avoir intérêt à démarrer le procédé selon l'invention en ensemençant le milieu par des micro-organismes ou des inocula complexes connus dans l'état de l'art pour former les biofilms EA qui sont jugés adéquats en fonction du milieu à traiter. Un ensemencement peut aussi être conçu dans un milieu ouvert comme une technique de démarrage du procédé selon l'invention.In the case of batch treatment, it may be advantageous to start the process according to the invention by seeding the medium with microorganisms or complex inocula known in the state of the art to form the EA biofilms that are judged appropriate depending on the medium to be treated. Seeding can also be designed in an open environment as a start-up technique of the process according to the invention.
Dans ses formes de réalisation les plus simples, le procédé selon l'invention n'exige aucune modification des réacteurs utilisés dans les technologies traditionnelles de traitement des déchets et des effluents. Il suffit d'ajouter le système selon l'invention au sein des équipements existants. Il n'est toutefois pas exclu de modifier aussi les équipements existants pour mettre en œuvre le principe de l'invention sur leur surface même.In its simplest embodiments, the process according to the invention does not require any modification of the reactors used in traditional waste and effluent treatment technologies. It suffices to add the system according to the invention within the existing equipment. However, it is not excluded to also modify the existing equipment to implement the principle of the invention on their very surface.
Le système selon l'invention est très flexible puisqu'il utilise comme catalyseurs réactionnels des biofilms EA qui se forment spontanément à partir des milieux à traiter. Ces biofilms EA sont capables de s'adapter aux variations de qualité et de composition des milieux à traiter.The system according to the invention is very flexible since it uses as reaction catalysts EA biofilms which form spontaneously from the media to be treated. These EA biofilms are able to adapt to variations in the quality and composition of the media to be treated.
Dans ses formes de réalisation les plus simples, le système selon l'invention ne comporte a priori aucune pièce en mouvement, aucun équipement électrique ; il est robuste et ne demande pratiquement aucune maintenance particulière. Le système selon l'invention peut s'adapter à tous types de déchets et d'effluents ; effluents liquides, mais aussi déchets solides, comme les compostages. Il suffit, pour qu'il soit efficace, d'assurer un contact suffisant entre le milieu à traiter et les surfaces du système.In its simplest embodiments, the system according to the invention comprises a priori no moving part, no electrical equipment; it is robust and requires virtually no special maintenance. The system according to the invention can adapt to all types of waste and effluents; liquid effluents, but also solid waste, such as composting. It is sufficient, for it to be effective, to ensure sufficient contact between the medium to be treated and the surfaces of the system.
Contrairement aux piles à combustible microbiennes qui pourraient être mises en œuvre pour intensifier les procédés de traitement d'effluents, le système proposé dans la présente invention ne détourne aucune énergie pour produire de l'électricité, il assure ainsi une efficacité maximale pour le traitement des déchets ou effluents.Unlike microbial fuel cells that could be implemented to intensify effluent treatment processes, the system proposed in the present invention does not divert any energy to produce electricity, thereby ensuring maximum efficiency for the treatment of wastewater. waste or effluent.
Ainsi, plus particulièrement, le système selon l'invention ne comprend pas de source d'énergie électrique, telle qu'une source de tension ou de courant. Par ailleurs, le système selon l'invention se distingue également des piles en ce qu'il ne fournit pas de l'électricité. Ainsi, le dispositif selon l'invention ne comprend pas de charge électrique et n'exige pas de mettre en œuvre des réacteurs électrochimiques possédant une membrane ou tout autre type de séparateur pour délimiter un compartiment anodique et un compartiment cathodique. Au contraire d'une pile, le dispositif décrit par l'invention marche de façon optimale lorsque toutes ses parties possèdent le même potentiel électrochimique.Thus, more particularly, the system according to the invention does not include a source of electrical energy, such as a source of voltage or current. Moreover, the system according to the invention is also distinguished from batteries in that it does not provide electricity. Thus, the device according to the invention does not include any electric charge and does not require the use of electrochemical reactors having a membrane or any other type of separator to delimit an anode compartment and a cathode compartment. Unlike a battery, the device described by the invention works best when all its parts have the same electrochemical potential.
Selon un autre objet, la présente invention concerne également un kit pour la mise en œuvre du procédé selon l'invention, ledit kit comprenant : - une première partie (1 ) en matériau conducteur ;According to another object, the present invention also relates to a kit for implementing the method according to the invention, said kit comprising: - a first portion (1) of conductive material;
- une seconde partie (2) en matériau conducteur ;- a second portion (2) of conductive material;
- un ou plusieurs micro-organisme(s) (4), (5') formant un film EA sur la (les) surface(s) des première et éventuellement seconde parties; etone or more microorganisms (4), (5 ') forming a film EA on the surface (s) of the first and possibly second parts; and
- un moyen de mise en court-circuit (3) des premières et secondes parties. Selon un mode de réalisation particulier, le kit selon l'invention ne comprend pas de membrane, source d'énergie électrique, telle qu'une source de tension ou de courant, ou encore de charge électrique.- means for short-circuiting (3) the first and second parts. According to a particular embodiment, the kit according to the invention does not include a membrane, a source of electrical energy, such as a voltage or current source, or electric charge.
Préférentiellement, le kit selon l'invention consiste en lesdits éléments ci-dessus. Les première et seconde parties ainsi que le(s) micro-organisme(s) et moyen de mise en court circuit sont définis comme plus haut.Preferably, the kit according to the invention consists of said elements above. The first and second parts as well as the microorganism (s) and short circuiting means are defined as above.
Avantageusement, le kit convient à l'immersion dans un réacteur unique contenant lesdites matières organiques à traiter, lesdits microorganismes capables de former un film EA, l'accepteur d'électrons ; il ne comprend pas d'élément séparateur, tel qu'une membrane.Advantageously, the kit is suitable for immersion in a single reactor containing said organic materials to be treated, said microorganisms capable of forming an EA film, the electron acceptor; it does not include a separating element, such as a membrane.
Le moyen de mise en court-circuit peut notamment être choisi parmi tout élément conducteur, de résistance la plus faible possible, notamment substantiellement nulle, et en tout état de cause inférieure à 10 ohms.The means of short-circuiting can in particular be chosen from any conductive element, of the lowest resistance possible, in particular substantially zero, and in any case less than 10 ohms.
Le kit selon l'invention peut également comprendre tout élément, instrument ou composé habituellement utilisé, permettant d'améliorer la mise en œuvre du procédé, utiles notamment pour le prétraitement du dispositif, un éventuel ensemencement, le suivi du système, sa maintenance et son pilotage. Le prétraitement pourra comporter une phase de polarisation réalisée en mode potentiostatique ou intentiostatique soit avec l'aide d'un appareil électrochimique traditionnel, soit par couplage galvanique avec une électrode immergée connue pour assurer un potentiel constant, telle que les électrodes en zinc ou en alliage de magnésium par exemple. Ces instruments font partie du kit. L'ensemencement pourra être effectué par souches pures, ou plus efficacement par des consortia de micro-organismes prélevés à partir de biofilms EA, par exemple spécifiquement cultivés à cet effet. Ces inocula de biofilms EA font parti du kit. La maintenance peut consister à reproduire les phases de prétraitement à des intervalles de temps prédéfinis ou lorsqu'une diminution de l'efficacité du dispositif est détectée. Le suivi pourra être effectué en particulier en mesurant le potentiel du dispositif par rapport à une électrode de référence faisant partie du kit. Le pilotage peut consister à fournir une tension ou une intensité de courant comme décrit plus haut, avec les instruments (potentiostat, générateur de courant, couplage galvanique...) faisant partie du kit.The kit according to the invention may also comprise any element, instrument or compound usually used, making it possible to improve the implementation of the method, useful in particular for the pretreatment of the device, a possible seeding, monitoring of the system, its maintenance and its piloting. The pretreatment may comprise a polarization phase carried out in potentiostatic or intentiostatic mode either with the aid of a traditional electrochemical apparatus, or by galvanic coupling with a submerged electrode known to ensure a constant potential, such as zinc or alloy electrodes magnesium for example. These instruments are part of the kit. The seeding may be carried out by pure strains, or more effectively by consortia of microorganisms taken from EA biofilms, for example specifically cultivated for this purpose. These inocula of EA biofilms are part of the kit. The maintenance may consist of reproducing the preprocessing phases at predefined time intervals or when a decrease in the efficiency of the device is detected. The monitoring may be carried out in particular by measuring the potential of the device relative to a reference electrode forming part of the kit. The control can consist in supplying a voltage or a current intensity as described above, with the instruments (potentiostat, current generator, galvanic coupling ...) forming part of the kit.
Figuresfigures
La figure 1 représente un mode de réalisation particulier dans lequel le système est formé d'un seul élément, un barreau par exemple, dont l'une extrémité représente la première partie (1 ) et l'autre extrémité représente la seconde partie (2), l'interface entre les deux parties constituant la mise en court circuit (3). A la surface de la première partie se forme un biofilm EA (4), tandis qu'à la surface de la seconde partie (2) est déposé un catalyseur (5) et/ou se forme un biofilm EA (5'). Le système plonge dans les effluents à traiter (6), contenus dans un réacteur (7).FIG. 1 represents a particular embodiment in which the system is formed of a single element, a bar for example, one end of which represents the first part (1) and the other end of which represents the second part (2). , the interface between the two parts constituting the short circuit (3). On the surface of the first part is formed an EA biofilm (4), while on the surface of the second part (2) is deposited a catalyst (5) and / or an EA biofilm (5 ') is formed. The system is immersed in the effluents to be treated (6) contained in a reactor (7).
La figure 2 représente une variante selon laquelle le système est constitué de deux éléments, deux barreaux par exemple, le barreau inférieur représentant la première partie (1 ) et le barreau supérieur représentant la seconde partie (2), reliés entre eux par un conducteur (3). A la surface de la première partie se forme un biofilm EA (4), tandis qu'à la surface de la seconde partie (2) est déposé un catalyseur (5) et/ou se forme un biofilm EA (5'). Le système plonge dans les effluents à traiter (6), contenus dans un réacteur (7).FIG. 2 shows a variant according to which the system consists of two elements, two bars for example, the lower bar representing the first part (1) and the upper bar representing the second part (2), connected to each other by a driver ( 3). On the surface of the first part is formed an EA biofilm (4), while on the surface of the second part (2) is deposited a catalyst (5) and / or an EA biofilm (5 ') is formed. The system is immersed in the effluents to be treated (6) contained in a reactor (7).
L'exemple suivant est donné à titre illustratif et non limitatif de la présente invention. Trois bioréacteurs identiques sont constitués de tube en verre de 60 mm de diamètre et contiennent 500 mL d'eau de mer. Afin de favoriser un développement microbien rapide, les trois réacteurs sont inoculés avec le même consortium microbien prélevé en grattant une surface immergée en mer. Pour simuler la présence d'une charge organique importante, des ajouts successifs de quantités connues d'acétate de sodium sont réalisés simultanément dans chacun des trois réacteurs. Le système selon l'invention est constitué d'un feutre de graphite de 50 cm2 de surface relié par une tige de titane de 30 cm à une grille de platine de 5 cm2 qui constitue la partie supérieure. Le graphite est connu pour favoriser la formation de biofilms EA dans les environnements marins, le fil de platine est choisi pour maximiser les vitesses de réduction électrochimique de l'oxygène dissous. Le système selon l'invention est placé verticalement dans le réacteur la zone platine en haut, dans la partie que l'on suppose la plus aérée des réacteurs.The following example is given by way of non-limiting illustration of the present invention. Three identical bioreactors consist of glass tubes 60 mm in diameter and contain 500 ml of seawater. In order to promote rapid microbial growth, the three reactors are inoculated with the same microbial consortium collected by scraping a submerged surface at sea. In order to simulate the presence of a large organic load, successive additions of known amounts of sodium acetate are carried out simultaneously in each of the three reactors. The system according to the invention consists of a 50 cm 2 graphite felt surface connected by a 30 cm titanium rod to a 5 cm 2 platinum grid which constitutes the upper portion. Graphite is known to promote the formation of EA biofilms in marine environments, platinum wire is chosen to maximize the electrochemical reduction rates of dissolved oxygen. The system according to the invention is placed vertically in the reactor the platinum zone at the top, in the part that is assumed to be the most aerated of the reactors.
- Le bioréacteur A est le bioréacteur témoin. Il permet de suivre la consommation naturelle de l'acétate par la flore introduite dans le milieu.- Bioreactor A is the control bioreactor. It allows to follow the natural consumption of the acetate by the flora introduced in the medium.
- Le système selon l'invention est introduit dans le bioréacteur B.The system according to the invention is introduced into the bioreactor B.
- Le bioréacteur C est équipé du même système selon l'invention avec une assistance électrochimique. Dans ce cas, l'assistance de type potentiostatique est réalisée à l'aide d'un potentiostat qui impose un potentiel fixe de -0,1V/ECS (électrode de référence au calomel saturée) à la partie oxydante du système selon l'invention (anode).- Bioreactor C is equipped with the same system according to the invention with electrochemical assistance. In this case, the potentiostatic type of assistance is carried out using a potentiostat which imposes a fixed potential of -0.1V / ECS (saturated calomel reference electrode) to the oxidizing part of the system according to the invention. (anode).
Ce cas simule par exemple une phase de pré-traitement du dispositif avec une assistance électrochimique.This case simulates, for example, a pre-treatment phase of the device with electrochemical assistance.
De l'acétate de sodium est ajouté simultanément dans chaque bioréacteur à une concentration finale de 1 g/L. Plusieurs ajouts successifs d'acétate ont été réalisés après disparition totale de la charge initiale.Sodium acetate is added simultaneously to each bioreactor at a final concentration of 1 g / L. Several successive additions of acetate were made after complete disappearance of the initial charge.
La consommation en acétate est suivie dans chaque réacteur par une prise de 1 mL d'échantillon et mesuré par un dosage enzymatique (kit Boehringer-Mannheim, R-The consumption of acetate is monitored in each reactor by taking 1 ml of sample and measured by an enzymatic assay (Boehringer-Mannheim kit, R-
Bioharm). L'abattement est exprimé en % de la charge de chaque ajout successif (1 g/L) Des ajouts identiques d'acétate sont réalisés les jours 0 (début de l'expérience), 5,Bioharm). The abatement is expressed in% of the load of each successive addition (1 g / L). Identical additions of acetate are made on days 0 (beginning of the experiment), 5,
10, 15, 20, simultanément dans les trois bioréacteurs. Les mesures d'acétate effectuées avant les nouveaux ajouts les jours 5, 10 et 15 indiquent un abattement de 100 % (consommation totale de l'acétate) dans les trois bioréacteurs La vitesse moyenne d'abattement de l'acétate est de l'ordre de 0,2 g/L/jour (soit 5 jours pour consommer les 1 g/L ajoutés).10, 15, 20 simultaneously in the three bioreactors. The acetate measurements made before the new additions on days 5, 10 and 15 indicate a 100% abatement (total acetate consumption) in the three bioreactors. The average acetate abatement rate is around 0.2 g / L / day (ie 5 days to consume the 1 g / L added).
Des différences notables apparaissent à partir du 4e ajout d'acétate (jour 15). Le cinquième ajout est réalisé le jour 20, les mesures sont réalisées les jours 18 et 19 (soit 3 et 4 jours après le 4e ajout) et les jours 23 et 24 (soit 3 et 4 jours après le 5e ajout). Les taux d'abattement d'acétate reportés dans le tableau ci-dessous indiquent que :Significant differences appear from the 4th adding acetate (day 15). The fifth addition is carried out on day 20, the measurements are performed day 18 and 19 (or 3 and 4 days after the 4th addition) and days 23 and 24 (or 3 and 4 days after the 5th addition). The acetate abatement rates reported in the table below indicate that:
- le réacteur témoin ne parvient qu'à consommer environ 50 % de l'acétate ajouté après 3 jours ; durant la même période, le système selon l'invention assure 61 % d'abattement après le 4e ajout et 71 % après le 5e ajout. Ces deux résultats indiquent une mise en régime du système selon l'invention dont les performances s'améliorent au fil des ajouts d'acétate, certainement en raison de la formation progressive du biofilm EA sur la partie oxydante du système selon l'invention.the control reactor only manages to consume approximately 50% of the added acetate after 3 days; during the same period, the system according to the invention provides 61% abatement after the 4th addition and 71% after the 5th addition. These two results indicate that the system according to the invention is being put into operation, the performance of which improves over time. additions of acetate, certainly due to the progressive formation of EA biofilm on the oxidizing part of the system according to the invention.
- Le système selon l'invention assisté par électrochimie conserve une vitesse d'abattement identique à celle du départ (0,2 g/L/jour). Dans ce cas, l'assistance électrochimique force une formation plus rapide du biofilm EA, ce qui peut constituer une procédure de prétraitement du dispositif. Cela permet d'évaluer la capacité de progression du système selon l'invention.- The system according to the invention assisted by electrochemistry retains a reduction rate identical to that of the start (0.2 g / L / day). In this case, the electrochemical assistance forces a faster formation of the EA biofilm, which may constitute a pretreatment procedure of the device. This makes it possible to evaluate the progress capability of the system according to the invention.
C - TE assiste parC - TE attends by
A - témoin B - TE potentiel imposéA - control B - potential TE imposed
4e ajout (jour 15) 4th addition (day 15)
Jour 18 52% 61% 79%Day 18 52% 61% 79%
Jour 19 71% 93% 99%Day 19 71% 93% 99%
5e ajout (jour 20) 5th added (day 20)
Jour 23 51% 71% 80%Day 23 51% 71% 80%
Jour 24 65% 83% 89% Day 24 65% 83% 89%

Claims

REVENDICATIONS
1. - Procédé d'oxydation de matières organiques comprenant l'application auxdites matières organiques à traiter d'un système comprenant - une première partie (1 ) en matériau conducteur,1. - Process for the oxidation of organic materials comprising the application to said organic materials to be treated of a system comprising: a first portion (1) of conductive material;
- une seconde partie (2) en matériau conducteur, ledit procédé comprenant simultanément:a second portion (2) of conductive material, said method comprising simultaneously:
- la mise en contact de la première partie avec lesdites matières organiques et un ou plusieurs microorganisme(s) (4) formant un biofilm électrochimiquement actif (EA) sur la surface de ladite première partie,contacting the first part with said organic materials and one or more microorganisms (4) forming an electrochemically active biofilm (EA) on the surface of said first part,
- la mise en contact de ladite seconde partie avec un accepteur d'électrons, en présence d'un catalyseur (5) et/ou un ou plusieurs microorganisme(s) (5') formant un biofilm électrochimiquement actif (EA) sur la surface de ladite seconde partie, etcontacting said second portion with an electron acceptor in the presence of a catalyst (5) and / or one or more microorganisms (5 ') forming an electrochemically active biofilm (EA) on the surface of said second part, and
- la mise en contact électrique desdites première et seconde parties par un court circuit.- The electrical contact of said first and second parts by a short circuit.
2. - Procédé selon la revendication 1 tel que lesdites première et seconde parties forment un même élément électriquement conducteur.2. - Method according to claim 1 such that said first and second parts form a same electrically conductive element.
3. - Procédé selon la revendication 1 tel que lesdites première et seconde parties sont distinctes et mises en court-circuit par un conducteur électrique (3).3. - The method of claim 1 such that said first and second parts are distinct and short-circuited by an electrical conductor (3).
4.- Procédé selon l'une quelconque des revendications précédentes tel que ledit accepteur d'électrons choisi parmi l'oxygène, des nitrates, nitrites, sulfates, thiosulfate.4. A process according to any preceding claim such that said electron acceptor selected from oxygen, nitrates, nitrites, sulfates, thiosulfate.
5. - Procédé selon l'une quelconque des revendications précédentes tel que ledit catalyseur (5) est déposé sur la surface de ladite seconde partie.5. - Process according to any one of the preceding claims such that said catalyst (5) is deposited on the surface of said second part.
6. - Procédé selon l'une quelconque des revendications précédentes tel que les matériaux conducteurs des première et seconde parties, identiques ou différents, sont choisis les graphites, carbones, matériaux métalliques tels que les aciers inoxydables ou les matériaux habituellement utilisés pour les électrodes.6. - Process according to any one of the preceding claims, such that the conductive materials of the first and second parts, identical or different, are chosen from graphites, carbons, metallic materials such as stainless steels or materials usually used for electrodes.
7. - Procédé selon l'une quelconque des revendications précédentes tel que le(s)dit(s) un ou plusieurs microorganisme(s) (5') forme(nt) un biofilm électrochimiquement actif à la surface de la seconde partie (2). 7. - Process according to any one of the preceding claims such that said (s) one or more microorganism (s) (5 ') form (s) an electrochemically active biofilm on the surface of the second part (2) ).
8. - Procédé selon l'une quelconque des revendications précédentes tel que le(s)dit(s) microorganisme(s) (4) et éventuellement (5') existe(nt) spontanément dans le mélange réactionnel à traiter.8. - Process according to any one of the preceding claims such that said (s) microorganism (s) (4) and optionally (5 ') exist (s) spontaneously in the reaction mixture to be treated.
9.- Procédé selon l'une quelconque des revendications précédentes comprenant l'étape préliminaire d'ensemencement du mélange réactionnel à traiter (6) au moyen de colonies de microorganisme(s) appropriées.9. A process according to any one of the preceding claims comprising the preliminary step of seeding the reaction mixture to be treated (6) by means of colonies of microorganism (s) appropriate.
10. - Procédé selon l'une quelconque des revendications précédentes tel que lesdites première et seconde parties (1 ), (2) sont respectivement constituées par les parties conductrices du réacteur (7) dans lequel le procédé est mis en œuvre.10. - Method according to any one of the preceding claims such that said first and second parts (1), (2) are respectively constituted by the conductive parts of the reactor (7) in which the method is implemented.
11. - Procédé selon l'une quelconque des revendications précédentes tel que le système est appliqué de sorte que la première partie (1 ) est immergée dans une zone du mélange réactionnel (6) riche en microorganismes capable de former un biofilm EA.11. - Method according to any one of the preceding claims wherein the system is applied so that the first part (1) is immersed in a zone of the reaction mixture (6) rich in microorganisms capable of forming an EA biofilm.
12. - Procédé selon l'une quelconque des revendications précédentes, tel que la première partie (1 ) et/ou la seconde partie (2) est(sont) préalablement traitée(s) de façon à améliorer l'adhésion et/ou le développement du biofilm EA (4) et/ou (5').12. - Method according to any one of the preceding claims, such that the first part (1) and / or the second part (2) is (are) previously treated (s) so as to improve the adhesion and / or the development of the biofilm EA (4) and / or (5 ').
13. Procédé selon la revendication 12 tel que le pré-traitement comprend le rainurage, sablage, micro- ou nano-structuration.13. The method of claim 12 such that the pretreatment includes grooving, sanding, micro- or nanostructuring.
14. - Kit pour la mise en œuvre du procédé selon l'une quelconque des revendications précédentes, comprenant :14. Kit for carrying out the method according to any one of the preceding claims, comprising:
- une première partie (1 ) en matériau conducteur ;- a first portion (1) of conductive material;
- une seconde partie (2) en matériau conducteur ;- a second portion (2) of conductive material;
- un ou plusieurs microorganisme(s) capable de former un biofilm EA; etone or more microorganisms capable of forming an EA biofilm; and
- un moyen de mise en court-circuit (3) des premières et secondes parties.- means for short-circuiting (3) the first and second parts.
15. Kit selon la revendication 16 tel que lesdits première partie, seconde partie, matériau conducteur et/ou microorganisme sont tels que définis selon l'une quelconque des revendications 1 à 13. 15. Kit according to claim 16, wherein said first part, second part, conducting material and / or microorganism are as defined according to any one of claims 1 to 13.
EP09709850A 2008-02-11 2009-02-11 Process and equipment for the oxidation of organic matter Withdrawn EP2242592A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0850833A FR2927326B1 (en) 2008-02-11 2008-02-11 PROCESS AND EQUIPMENT FOR OXIDATION OF ORGANIC MATERIALS
PCT/FR2009/050216 WO2009101358A2 (en) 2008-02-11 2009-02-11 Process and equipment for the oxidation of organic matter

Publications (1)

Publication Number Publication Date
EP2242592A2 true EP2242592A2 (en) 2010-10-27

Family

ID=39876808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09709850A Withdrawn EP2242592A2 (en) 2008-02-11 2009-02-11 Process and equipment for the oxidation of organic matter

Country Status (4)

Country Link
US (1) US20110042235A1 (en)
EP (1) EP2242592A2 (en)
FR (1) FR2927326B1 (en)
WO (1) WO2009101358A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3045951B1 (en) * 2015-12-21 2017-12-22 Commissariat Energie Atomique MICROBIAL FUEL CELL WITH ELECTRODE COATED WITH CHROMIUM NITRIDE AND USES THEREOF
WO2018102070A2 (en) * 2016-11-03 2018-06-07 Musc Foundation For Research Development Bioelectrosynthesis of organic compounds
FR3133329B1 (en) 2022-03-10 2024-03-29 Inst Nat Polytechnique Toulouse PROCESS FOR OXIDIZING ORGANIC MATERIALS CONTAINED IN A LIQUID MEDIUM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481445B1 (en) * 2001-12-21 2005-04-07 주식회사 이바이오텍 Apparatus for treatment of waste water
WO2008109911A1 (en) * 2007-03-15 2008-09-18 The University Of Queensland Microbial fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009101358A3 *

Also Published As

Publication number Publication date
FR2927326B1 (en) 2011-05-13
WO2009101358A3 (en) 2009-10-15
US20110042235A1 (en) 2011-02-24
FR2927326A1 (en) 2009-08-14
WO2009101358A2 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
Yang et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell
Kokabian et al. Water deionization with renewable energy production in microalgae-microbial desalination process
Wang et al. Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water
Ghangrekar et al. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production
US8524402B2 (en) Electricity generation using microbial fuel cells
Liu et al. Continuous bioelectricity generation with simultaneous sulfide and organics removals in an anaerobic baffled stacking microbial fuel cell
Ghangrekar et al. Simultaneous sewage treatment and electricity generation in membrane-less microbial fuel cell
Bose et al. Sustainable power generation from wastewater sources using microbial fuel cell
Xu et al. Simultaneous bioelectricity generation and pollutants removal of sediment microbial fuel cell combined with submerged macrophyte
Guo et al. Enhancing the power performance of sediment microbial fuel cells by novel strategies: Overlying water flow and hydraulic-driven cathode rotating
CA2903145C (en) Method and system for the bioelectrochemical treatment of organic effluents
Wang et al. Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1
Yang et al. Anode modification of sediment microbial fuel cells (SMFC) towards bioremediating mariculture wastewater
Yang et al. Using watermelon rind and nitrite-containing wastewater for electricity production in a membraneless biocathode microbial fuel cell
EP2294648B1 (en) Production of a biofilm on an electrode for a biocell, electrode and obtained biocell
EP2242592A2 (en) Process and equipment for the oxidation of organic matter
Alzate-Gaviria Microbial fuel cells for wastewater treatment
EP2379780B1 (en) Novel electrochemical method for producing hydrogen, and device for implementing same
Bagheri et al. Phenol-acclimated activated sludge and Ralstonia eutropha in a microbial fuel Cell for removal of olive oil from mill wastewater
FR3045952A1 (en) MICROBIAL FUEL CELL WITH ELECTRODE COATED WITH TITANIUM NITRIDE AND USES THEREOF
WO2010031961A1 (en) Microbial fuel cell formed of selective electrodes and single electrolyte
CN110783613B (en) Rotary microalgae biomembrane cathode microbial fuel cell
WO2023169853A1 (en) Method for oxidising organic matter contained in a liquid medium
Shchurska et al. High exoelectrogenic biofilms formation in microbial fuel cells
WO2005097686A1 (en) Electrochemical device and method for the removal of ammonium and nitrate ions contained in liquid effluents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100805

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130611