EP2226514B1 - Device for measuring the axial position of a piston rod relatively to a cylinder housing - Google Patents

Device for measuring the axial position of a piston rod relatively to a cylinder housing Download PDF

Info

Publication number
EP2226514B1
EP2226514B1 EP09003286A EP09003286A EP2226514B1 EP 2226514 B1 EP2226514 B1 EP 2226514B1 EP 09003286 A EP09003286 A EP 09003286A EP 09003286 A EP09003286 A EP 09003286A EP 2226514 B1 EP2226514 B1 EP 2226514B1
Authority
EP
European Patent Office
Prior art keywords
piston rod
cylinder
sensors
structures
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09003286A
Other languages
German (de)
French (fr)
Other versions
EP2226514A1 (en
Inventor
Josef Siraky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick Stegmann GmbH
Original Assignee
Sick Stegmann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick Stegmann GmbH filed Critical Sick Stegmann GmbH
Priority to AT09003286T priority Critical patent/ATE538317T1/en
Priority to EP09003286A priority patent/EP2226514B1/en
Priority to US12/659,011 priority patent/US8151636B2/en
Publication of EP2226514A1 publication Critical patent/EP2226514A1/en
Application granted granted Critical
Publication of EP2226514B1 publication Critical patent/EP2226514B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • F15B15/2884Position sensing, i.e. means for continuous measurement of position, e.g. LVDT using sound, e.g. ultrasound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • F15B15/2861Position sensing, i.e. means for continuous measurement of position, e.g. LVDT using magnetic means

Definitions

  • the invention relates to a device for measuring the axial position of a piston rod with respect to a cylinder housing of a fluid pressure actuated cylinder-piston unit according to the preamble of patent claim 1.
  • the piston rod For measuring the position of the pliers, it is known to form the piston rod with an axially extending material measure, which is scanned by a arranged on the cylinder housing sensor device. From the DE 100 20 764 A1 and the DE 196 48 335 C2 For this purpose, it is known to use a permanent magnetic material measure in the jacket of the piston rod or in the interior of the tubular piston rod. The onset of such a permanent magnetic material measure is expensive. Since the material measure is designed as a strip extending in the axial direction, the piston rod must be guided secured against rotation.
  • a device for measuring the axial position of a piston rod with respect to a cylinder housing of a fluid pressure actuated cylinder-piston unit is known.
  • an axially extending strip-shaped material measure is incorporated, the consists of radially over the lateral surface protruding elevations or in this lateral surface dipping depressions.
  • Two magnetic sensors spaced apart in the axial direction scan this material measure.
  • the material measure is coated with a chrome coating. The incorporation of the material measure in the piston rod is expensive.
  • a further increased manufacturing expense results from the fact that the material measure must be provided with a chrome facing, whereupon the lateral surface of the piston rod must be turned off again for a sealed guide in the cylinder housing.
  • the strip-shaped dimensional standard also makes a torsion-proof guidance of the piston rod necessary here. The material measure is scanned incrementally, so that at the beginning of the movement of the piston rod in each case first a reference position must be approached.
  • the invention is based on the object to provide a device for measuring the axial position of a piston rod with respect to a cylinder housing, which has a robust and simple to manufacture construction and allows versatile use.
  • the piston rod is formed with a material measure, which is formed from the piston rods horizontally enclosing ring structures, eg from surveys or depressions. Since these ring structures surround the piston rod concentrically, the piston rod can be produced with these ring structures in a simple manner, in particular for example by turning or grinding. Due to the rotationally symmetrical design of the ring structures, the material measure can be scanned in any rotational position of the piston rod, so that a non-rotatable guidance of the piston rod is not necessary and the unit can be used more versatile. Thus, the piston rod can be performed axially displaceable sealed, a tube is pushed onto the piston rod coaxially as a cover of the material measure.
  • the tube is made of a wear-resistant material to minimize friction wear during axial movement.
  • the tube is supported radially on the outer circumference of the ring structures. The tube therefore does not have to absorb any radial forces and can therefore be thin-walled.
  • the production of the tube is simple and the sliding of the tube on the piston rod is a simple assembly process.
  • the ring structures form an absolutely coded dimensional measure of the position, so that the position of the piston rod is immediately available even when starting after a business interruption.
  • the material measure of the piston rod is divided by equidistant dimensional ring structures into periodically successive sections. Each of these subsections is scanned absolutely by the sensor device, so that the piston position within the respective subsection can be determined absolutely.
  • an assignment ring structure is further arranged. The axial position of this allocation ring structure within the respective subsection is different for each subsection. The axial position of the assignment ring structure within the respective subsection is thus an unambiguous characteristic of the respective subsection and can unambiguously define its position within the entire axial material measure. From this unique assignment of the subsection and from the absolute position measurement within the subsection, an absolute position measurement over the entire stroke of the piston rod can thus be obtained.
  • the accuracy of the position determination depends only on the accuracy of the absolute measurement within the sections, while the total length of the measurable stroke of this can be independently selected by the number of sections.
  • the sensor device has a plurality of sensors which are arranged in a line running parallel to the axis of the piston rod.
  • the sensor means has an axial length (i.e., the axial distance of the outermost sensors) at least equal to the axial length of the sections.
  • the sensor device can respectively detect the dimensional ring structures forming the current partial section in order to interpolate the position of the piston rod within this partial section. Likewise, this ensures that the position of the assignment ring structure can be detected within the measurement ring structures.
  • the sensors can be designed in a manner known per se.
  • magnetoresistive sensors, inductive sensors or eddy-current sensors can be used.
  • the magnetic field of these sensors is influenced by the ring structures of the piston rod and their axial position relative to the respective sensors. Accordingly, the individual sensors of the sensor device provide different signals whose Amplitude of the respective different axial position of the ring structure with respect to this sensor depends. From the ratio of the signal amplitudes of the various sensors of the sensor device, the position of the ring structures with respect to the sensor device can be determined in a subsequent evaluation.
  • the piston rod with the ring structures of a soft magnetic material eg. B. from a suitable iron alloy.
  • this tube consists of a "magnetically transparent" material, ie of a diamagnetic or paramagnetic material.
  • This can be for example a plastic.
  • a metallic material is preferred, this may in particular a non-magnetic steel, for. B. be an austenitic steel.
  • a hydraulic or pneumatic cylinder-piston unit has a cylinder housing 10.
  • a piston 12 is mounted axially displaceable and sealed by a sealing ring 14 against the cylinder wall. Via connections 16, the cylinder chambers can be acted on both sides of the piston 12 with fluid pressure.
  • the piston 12 is connected to a coaxially arranged piston rod 18, which emerges axially guided out of the cylinder housing 10, wherein a sealing ring 20 seals the piston rod 18 on its outer periphery.
  • the cylinder space, the piston 12 and the piston rod 18 have a coaxial circular cross section, so that the piston rod 12 is rotatable about its axis.
  • the piston rod 18 has on its outer circumference ring structures which surround the piston rod 18 concentrically and in the illustrated embodiment are formed by grooves inserted into the lateral surface turned grooves 22 and 24. Axially on the piston rod 18, a tube 26 is pushed, which rests radially close to the outer periphery of the piston rod 18. The tube 26 thus forms the outer peripheral surface of the piston rod 18, on which the sealing ring 20 rests and with which the piston rod 18 is guided axially displaceably in the cylinder housing 10.
  • a sensor device 28 disposed adjacent to the outer circumference of the tube 26 at a small distance and the piston rod 18 scans with the ring structures.
  • the sensor device 28 consists of a plurality of sensors, which are arranged in a row parallel to the axis of the piston rod 18 in succession.
  • the sensors of the sensor device 28 may be formed in different ways known per se.
  • the sensors of the sensor device may be magnetoresistive sensors.
  • the magnetic field of these sensors which is axially parallel to the piston rod 18, depends on the magnetic flux in the surface of the piston rod 18, so that a high magnetic flux and thus a large signal amplitude of the sensors results when an area between the recessed grooves 22 and 24 is in an axial position located at the respective sensor.
  • the piston rod In order to guide the magnetic field in the surface of the piston rod 18, the piston rod 18, at least in its outer peripheral region of a soft magnetic material.
  • the pushed-on tube 26 is preferably made of a non-magnetic stainless steel z. B. from an austenitic steel alloy.
  • the sensors of the sensor device 28 are inductive sensors that operate on the principle of a transformer.
  • the magnetic alternating field of these sensors is thereby magnetically short-circuited via the mantle regions of the piston rod 18 between the grooves 22 and 24, so that here too a large signal amplitude results when the piston rod 18 with an axial region between the grooves 22 and 24 in the position of the respective sensor, while the grooves 22 and 24 lead to a reduction of the sensor signal.
  • the piston rod 18 is made of a soft magnetic material and the tube 26 made of a magnetically transparent material.
  • the sensors of the sensor device 28 may be eddy current sensors in which an alternating magnetic field of the sensors in the outer jacket layer of the piston rod 18 generates eddy currents when the axial regions of the piston rod 18 between the grooves 22 and 24 in the axial position of the respective sensor are located.
  • the recessed grooves 22 and 24 interrupt the magnetic field and thus the formation of eddy currents.
  • the piston rod 18 must have good electrical conductivity at least in its outer jacket layer.
  • the deferred tube 26 must also consist in this embodiment of a magnetically transparent material that does not shield the alternating magnetic field of the sensors.
  • the sensors of the sensor device 28 may also be ultrasonic sensors.
  • the mantle surface of the piston rod 18 is scanned by the sensor device 28 with ultrasound in order to determine the ring structures in their axial position.
  • the material of the pushed tube 26 must have a good ultrasonic permeability, while the material of the piston rod 18 must reflect the ultrasound.
  • FIG. 2 shows in one embodiment, the coding of the piston rod 18 through the grooves 22 and 24 for the absolute determination of the position of the piston rod 18 with respect to the cylinder housing 10 arranged on the sensor device 28th
  • the piston rod 18 has annular structures formed on its outer circumference by concentric grooves that are screwed in.
  • grooves 22 are provided which are arranged equidistantly over the entire axial length of the stroke to be measured of the piston rod 18 and limitutz-ring structures each having a constant length a.
  • the titan-ring structures formed by the grooves 22 define in each case in the axial direction periodically adjoining sections a 1 , a 2 whil a n .
  • each of these sections a 1 , a 2 ... A n there is an assignment ring structure formed by a groove 24.
  • the axial position of this assignment ring structure within the respective subsection a 1 , a 2 ... A n differs for each subsection a 1 , a 2 ... A n from all other subsections.
  • the respective axial position of the assignment ring structure within the associated subsection a 1 , a 2 ... A n thus represents a clear identification of the respective subsection.
  • the example shown shifts the axial position of the groove 24 of the allocation ring structure within the respective subsection in each case by an axial distance d from a subsection to the subsequent subsection.
  • this is shown for an axial section of the piston rod 18.
  • the groove 24 of the allocation ring structure is displaced axially by the distance 9d from the end of the subsection a 9 formed by the groove 22.
  • the groove 24 is displaced by the axial distance 10d against the end of this section a 10 determined by the groove 22, etc.
  • the sensor device 28 determines the axial position of the limited by the grooves 22 technically-ring structures, which can be determined by the arranged in a line sensors of the sensor device 28, the axial position of the piston rod 18 within the respective section a n absolutely. Furthermore, the axial position of the association ring structure formed by the groove 24 within the respective subsection a n is determined by the sensor device 28, so that the assignment of the absolute position value within the subsection a n can be unambiguously assigned to the respective subsection. In an evaluation connected downstream of the sensor device, the identification of the subsection a n obtained by means of the association ring structure is combined with the position determined absolutely within this subsection a n to form an absolute position determination over the entire length of the piston rod 18.
  • the constant distance of the grooves 22 and thus the axial length of the sections is selected according to the required resolution of the axial position measurement and the formation of the sensor device 28.
  • This axial length a of the sections can be, for example, of the order of 50 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Actuator (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

The device has circular structures of bulges and recesses formed in a mantle surface of a piston rod (18), and a sensor device (28) for contactlessly scanning the structures using sensors e.g. magneto-resistive sensors, inductive sensors, eddy current sensors and ultrasound sensors, for determining an axial position of the rod. A wear-resistant cover guides the structures into a cylinder housing (10), where the structures concentrically surround the rod. The cover is formed as a pipe (26) that is coaxially pushed into the rod, and the structures form an absolutely coded solid unit. The piston rod is made of soft magnetic material or ultrasound reflecting material, and the pipe is made of magnetically transparent material or non-magnetic stainless steel e.g. austenitic steel, or ultrasound permeable material.

Description

Die Erfindung betrifft eine Vorrichtung zur Messung der axialen Position einer Kolbenstange bezüglich eines Zylindergehäuses eines fluiddruckbetätigten Zylinder-Kolben-Aggregats gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a device for measuring the axial position of a piston rod with respect to a cylinder housing of a fluid pressure actuated cylinder-piston unit according to the preamble of patent claim 1.

Für viele Anwendungen von fluiddruckbetätigten Zylinder-Kolben-Aggregaten, d. h. von pneumatischen oder hydraulischen Aggregaten, ist es erforderlich, die Position der Kolbenstange bezüglich des in der Regel fest montierten Zylindergehäuses zu messen. Die Ermittlung der Position der Kolbenstange und gegebenenfalls von dieser Position abgeleiteter Größen, wie Geschwindigkeit und Beschleunigung, sind beispielsweise erforderlich, wenn solche Aggregate als Servo- oder Stellantrieb in der Automatisierung eingesetzt werden.For many applications of fluid pressure actuated cylinder-piston assemblies, i. H. of pneumatic or hydraulic units, it is necessary to measure the position of the piston rod with respect to the usually firmly mounted cylinder housing. The determination of the position of the piston rod and, where appropriate, variables derived from this position, such as speed and acceleration, are required, for example, if such units are used as a servo or actuator in automation.

Zur Messung der Position der Kolbenzange ist es bekannt, die Kolbenstange mit einer axial verlaufenden Maßverkörperung auszubilden, die durch eine an dem Zylindergehäuse angeordnete Sensoreinrichtung abgetastet wird. Aus der DE 100 20 764 A1 und der DE 196 48 335 C2 ist es hierzu bekannt, eine permanentmagnetische Maßverkörperung in den Mantel der Kolbenstange oder in das Innere der rohrförmigen Kolbenstange einzusetzen. Das Einsetzen einer solchen permanentmagnetischen Maßverkörperung ist aufwendig. Da die Maßverkörperung als in Axialrichtung verlaufender Streifen ausgebildet ist, muss die Kolbenstange gegen Rotation gesichert geführt werden.For measuring the position of the pliers, it is known to form the piston rod with an axially extending material measure, which is scanned by a arranged on the cylinder housing sensor device. From the DE 100 20 764 A1 and the DE 196 48 335 C2 For this purpose, it is known to use a permanent magnetic material measure in the jacket of the piston rod or in the interior of the tubular piston rod. The onset of such a permanent magnetic material measure is expensive. Since the material measure is designed as a strip extending in the axial direction, the piston rod must be guided secured against rotation.

Aus der DE 198 01 091 A1 ist eine Vorrichtung zur Messung der axialen Position einer Kolbenstange bezüglich eines Zylindergehäuses eines fluiddruckbetätigten Zylinder-Kolben-Aggregats bekannt. In die Mantelfläche der Kolbenstange ist eine axial verlaufende streifenförmige Maßverkörperung eingearbeitet, die aus radial über die Mantelfläche überstehenden Erhebungen oder in diese Mantelfläche eintauchenden Vertiefungen besteht. Zwei in axialer Richtung beabstandete magnetische Sensoren tasten diese Maßverkörperung ab. Um die Kolbenstange in dem Zylindergehäuse verschiebbar und abgedichtet zu führen, wird die Maßverkörperung mit einer Chrombeschichtung überzogen. Das Einarbeiten der Maßverkörperung in die Kolbenstange ist aufwendig. Ein weiterer erhöhter Herstellungsaufwand ergibt sich daraus, dass die Maßverkörperung mit einer Chrombesichtung versehen werden muss, worauf die Mantelfläche der Kolbenstange nochmals für eine abgedichtete Führung in dem Zylindergehäuse abgedreht werden muss. Die streifenförmige Maßverkörperung macht auch hier eine verdrehsichere Führung der Kolbenstange notwendig. Die Maßverkörperung wird inkremental abgetastet, so dass bei Beginn der Bewegung der Kolbenstange jeweils zunächst eine Referenzposition angefahren werden muss.From the DE 198 01 091 A1 a device for measuring the axial position of a piston rod with respect to a cylinder housing of a fluid pressure actuated cylinder-piston unit is known. In the lateral surface of the piston rod an axially extending strip-shaped material measure is incorporated, the consists of radially over the lateral surface protruding elevations or in this lateral surface dipping depressions. Two magnetic sensors spaced apart in the axial direction scan this material measure. In order to guide the piston rod in the cylinder housing displaceable and sealed, the material measure is coated with a chrome coating. The incorporation of the material measure in the piston rod is expensive. A further increased manufacturing expense results from the fact that the material measure must be provided with a chrome facing, whereupon the lateral surface of the piston rod must be turned off again for a sealed guide in the cylinder housing. The strip-shaped dimensional standard also makes a torsion-proof guidance of the piston rod necessary here. The material measure is scanned incrementally, so that at the beginning of the movement of the piston rod in each case first a reference position must be approached.

Als weiterer Stand der Technik wird die EP 1 721 087 B1 genannt.As a further prior art, the EP 1 721 087 B1 called.

Der Erfindung liegt die Aufgabe zu Grunde, eine Vorrichtung zur Messung der axialen Position einer Kolbenstange bezüglich eines Zylindergehäuses zu schaffen, die einen robusten und in der Herstellung einfachen Aufbau aufweist und einen vielseitigen Einsatz ermöglicht.The invention is based on the object to provide a device for measuring the axial position of a piston rod with respect to a cylinder housing, which has a robust and simple to manufacture construction and allows versatile use.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1.This object is achieved by a device with the features of claim 1.

Vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous embodiments of the invention are specified in the subclaims.

Bei der erfindungsgemäßen Vorrichtung wird die Kolbenstange mit einer Maßverkörperung ausgebildet, die aus die Kolbenstangen horizontal umschließenden Ringstrukturen gebildet ist, z.B. aus Erhebungen oder Vertiefungen. Da diese Ringstrukturen die Kolbenstange konzentrisch umschließen, kann die Kolbenstange mit diesen Ringstrukturen in einfacher Weise hergestellt werden, insbesondere z.B. durch Drehen oder Schleifen. Auf Grund der rotationssymmetrischen Ausbildung der Ringstrukturen kann die Maßverkörperung in jeder Rotationsstellung der Kolbenstange abgetastet werden, so dass eine unverdrehbare Führung der Kolbenstange nicht notwendig ist und das Aggregat vielseitiger eingesetzt werden kann. Damit die Kolbenstange abgedichtet axial verschiebbar geführt werden kann, wird auf die Kolbenstange koaxial ein Rohr als Abdeckung der Maßverkörperung aufgeschoben. Das Rohr besteht aus einem verschleißfesten Material, um den Reibungsverschleiß bei der axialen Bewegung minimal zu halten. Das Rohr ist radial am Außenumfang der Ringstrukturen abgestützt. Das Rohr muss daher keine radialen Kräfte aufnehmen und kann somit dünnwandig ausgebildet sein. Die Herstellung des Rohres ist einfach und das Aufschieben des Rohres auf die Kolbenstange stellt einen einfachen Montagevorgang dar. Die Ringstrukturen bilden eine absolut codierte Maßverkörperung der Position, so dass die Position der Kolbenstange auch beim Start nach einer Betriebsunterbrechung sofort zur Verfügung steht.In the device according to the invention, the piston rod is formed with a material measure, which is formed from the piston rods horizontally enclosing ring structures, eg from surveys or depressions. Since these ring structures surround the piston rod concentrically, the piston rod can be produced with these ring structures in a simple manner, in particular for example by turning or grinding. Due to the rotationally symmetrical design of the ring structures, the material measure can be scanned in any rotational position of the piston rod, so that a non-rotatable guidance of the piston rod is not necessary and the unit can be used more versatile. Thus, the piston rod can be performed axially displaceable sealed, a tube is pushed onto the piston rod coaxially as a cover of the material measure. The tube is made of a wear-resistant material to minimize friction wear during axial movement. The tube is supported radially on the outer circumference of the ring structures. The tube therefore does not have to absorb any radial forces and can therefore be thin-walled. The production of the tube is simple and the sliding of the tube on the piston rod is a simple assembly process. The ring structures form an absolutely coded dimensional measure of the position, so that the position of the piston rod is immediately available even when starting after a business interruption.

Erfindungsgemäß wird die Maßverkörperung der Kolbenstange durch äquidistante Maß-Ringstrukturen in periodisch aufeinanderfolgende Teilabschnitte unterteilt. Jeder dieser Teilabschnitte wird durch die Sensoreinrichtung absolut abgetastet, so dass die Kolbenposition innerhalb des jeweiligen Teilabschnittes absolut ermittelt werden kann. Innerhalb jedes Teilabschnittes ist weiter eine Zuordnungs-Ringstruktur angeordnet. Die axiale Lage dieser Zuordnungs-Ringstruktur innerhalb des jeweiligen Teilabschnittes ist für jeden Teilabschnitt verschieden. Die axiale Lage der Zuordnungs-Ringstruktur innerhalb des jeweiligen Teilabschnittes ist somit ein eindeutiges Kennzeichen des jeweiligen Teilabschnittes und kann dessen Position innerhalb der gesamten axialen Maßverkörperung eindeutig definieren. Aus dieser eindeutigen Zuordnung des Teilabschnittes und aus der absoluten Positionsmessung innerhalb des Teilabschnittes kann somit eine absolute Positionsmessung über den gesamten Hubweg der Kolbenstange erhalten werden. Die Genauigkeit der Positionsbestimmung hängt dabei nur von der Genauigkeit der Absolutmessung innerhalb der Teilabschnitte ab, während die Gesamtlänge des messbaren Hubweges hiervon unabhängig durch die Anzahl der Teilabschnitte gewählt werden kann.According to the invention, the material measure of the piston rod is divided by equidistant dimensional ring structures into periodically successive sections. Each of these subsections is scanned absolutely by the sensor device, so that the piston position within the respective subsection can be determined absolutely. Within each subsection, an assignment ring structure is further arranged. The axial position of this allocation ring structure within the respective subsection is different for each subsection. The axial position of the assignment ring structure within the respective subsection is thus an unambiguous characteristic of the respective subsection and can unambiguously define its position within the entire axial material measure. From this unique assignment of the subsection and from the absolute position measurement within the subsection, an absolute position measurement over the entire stroke of the piston rod can thus be obtained. The accuracy of the position determination depends only on the accuracy of the absolute measurement within the sections, while the total length of the measurable stroke of this can be independently selected by the number of sections.

Die Sensoreinrichtung weist mehrere Sensoren auf, die in einer achsparallel zur Kolbenstange verlaufenden Linie angeordnet sind. Ist die Maßverkörperung in Teilabschnitte unterteilt, so hat die Sensoreinrichtung eine axiale Länge (d.h. axialer Abstand der äußersten Sensoren), die mindestens gleich der axialen Länge der Teilabschnitte ist. Dadurch kann die Sensoreinrichtung jeweils die den aktuellen Teilabschnitt bildenden Maß-Ringstrukturen erfassen, um die Position der Kolbenstange innerhalb dieses Teilabschnittes zu interpolieren. Ebenso ist dadurch gewährleistet, dass die Lage der Zuordnungs-Ringstruktur innerhalb der Maß-Ringstrukturen erfasst werden kann.The sensor device has a plurality of sensors which are arranged in a line running parallel to the axis of the piston rod. When the scale is divided into sections, the sensor means has an axial length (i.e., the axial distance of the outermost sensors) at least equal to the axial length of the sections. As a result, the sensor device can respectively detect the dimensional ring structures forming the current partial section in order to interpolate the position of the piston rod within this partial section. Likewise, this ensures that the position of the assignment ring structure can be detected within the measurement ring structures.

Die Sensoren können in an sich bekannter Weise ausgebildet sein. Es können insbesondere magnetoresistive Sensoren, induktive Sensoren oder Wirbelstromsensoren verwendet werden. Das Magnetfeld dieser Sensoren wird durch die Ringstrukturen der Kolbenstange und deren axiale Lage relativ zu den jeweiligen Sensoren beeinflusst. Dementsprechend liefern die einzelnen Sensoren der Sensoreinrichtung unterschiedliche Signale, deren Amplitude von der jeweils unterschiedlichen axialen Position der Ringstruktur bezüglich dieses Sensors abhängt. Aus dem Verhältnis der Signalamplituden der verschiedenen Sensoren der Sensoreinrichtung lässt sich die Position der Ringstrukturen bezüglich der Sensoreinrichtung in einer nachgeschalteten Auswertung ermitteln. Um das Magnetfeld für diese Sensoren durch die Ringstrukturen der Kolbenstange zu beeinflussen, besteht die Kolbenstange mit den Ringstrukturen aus einem weichmagnetischen Werkstoff, z. B. aus einer geeigneten Eisenlegierung. Damit das über die Kolbenstange geschobene Rohr das Magnetfeld nicht abschirmt, besteht dieses Rohr aus einem "magnetisch durchsichtigen" Werkstoff, d. h. aus einem diamagnetischen oder paramagnetischen Werkstoff. Dies kann beispielsweise ein Kunststoff sein. Um die nötige Verschleißfestigkeit zu gewährleisten, wird ein metallischer Werkstoff bevorzugt, dies kann insbesondere ein nichtmagnetischer Stahl, z. B. ein austenitischer Stahl sein.The sensors can be designed in a manner known per se. In particular, magnetoresistive sensors, inductive sensors or eddy-current sensors can be used. The magnetic field of these sensors is influenced by the ring structures of the piston rod and their axial position relative to the respective sensors. Accordingly, the individual sensors of the sensor device provide different signals whose Amplitude of the respective different axial position of the ring structure with respect to this sensor depends. From the ratio of the signal amplitudes of the various sensors of the sensor device, the position of the ring structures with respect to the sensor device can be determined in a subsequent evaluation. In order to influence the magnetic field for these sensors by the ring structures of the piston rod, the piston rod with the ring structures of a soft magnetic material, eg. B. from a suitable iron alloy. So that the tube pushed over the piston rod does not shield the magnetic field, this tube consists of a "magnetically transparent" material, ie of a diamagnetic or paramagnetic material. This can be for example a plastic. In order to ensure the necessary wear resistance, a metallic material is preferred, this may in particular a non-magnetic steel, for. B. be an austenitic steel.

Es ist auch möglich, die Maßverkörperung der Kolbenstange durch eine Sensoreinrichtung mit Ultraschall-Sensoren abzutasten. Um die durch das aufgeschobene Rohr abgedeckte Maßverkörperung ultraschallsichtbar zu machen, ist es hierbei erforderlich, dass die Werkstoffe der Kolbenstange und des aufgeschobenen Rohres einen unterschiedlichen Schallwellenwiderstand aufweisen, so dass eine Reflexion der Schallwellen an der Oberfläche der Kolbenstange mit den Ringstrukturen auftritt und durch das aufgeschobene Rohr messbar ist.It is also possible to scan the dimensional standard of the piston rod by a sensor device with ultrasonic sensors. In order to make the material measure covered by the deferred tube ultrasonically visible, it is necessary here for the materials of the piston rod and the pushed tube to have different sound wave resistance, so that a reflection of the sound waves occurs on the surface of the piston rod with the ring structures and through the deferred Tube is measurable.

Im Folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten schematischen Ausführungsbeispiels näher erläutert. Es zeigen

Fig. 1
im Axialschnitt schematisch ein Zylinder-Kolben- Aggregat mit einer Vorrichtung zur Messung der axia- len Position der Kolbenstange und
Fig. 2
die absolute Codierung der Kolbenstange.
In the following the invention will be explained in more detail with reference to a schematic embodiment shown in the drawing. Show it
Fig. 1
in axial section schematically a cylinder-piston unit with a device for measuring the axia- len position of the piston rod and
Fig. 2
the absolute coding of the piston rod.

Ein hydraulisches oder pneumatisches Zylinder-Kolben-Aggregat weist ein Zylindergehäuse 10 auf. In dem Zylinderraum des Zylindergehäuses 10 ist ein Kolben 12 axial verschiebbar gelagert und mittels eines Dichtungsringes 14 gegen die Zylinderwand abgedichtet. Über Anschlüsse 16 können die Zylinderräume beiderseits des Kolbens 12 mit Fluiddruck beaufschlagt werden. Der Kolben 12 ist mit einer koaxial angeordneten Kolbenstange 18 verbunden, die axial geführt aus dem Zylindergehäuse 10 austritt, wobei ein Dichtungsring 20 die Kolbenstange 18 an ihrem Außenumfang abdichtet. Der Zylinderraum, der Kolben 12 und die Kolbenstange 18 weisen einen koaxialen kreisförmigen Querschnitt auf, so dass die Kolbenstange 12 um ihre Achse drehbar ist.A hydraulic or pneumatic cylinder-piston unit has a cylinder housing 10. In the cylinder chamber of the cylinder housing 10, a piston 12 is mounted axially displaceable and sealed by a sealing ring 14 against the cylinder wall. Via connections 16, the cylinder chambers can be acted on both sides of the piston 12 with fluid pressure. The piston 12 is connected to a coaxially arranged piston rod 18, which emerges axially guided out of the cylinder housing 10, wherein a sealing ring 20 seals the piston rod 18 on its outer periphery. The cylinder space, the piston 12 and the piston rod 18 have a coaxial circular cross section, so that the piston rod 12 is rotatable about its axis.

Die Kolbenstange 18 weist an ihrem Außenumfang Ringstrukturen auf, die die Kolbenstange 18 konzentrisch umschließen und im dargestellten Ausführungsbeispiel durch in die Mantelfläche eingestochen gedrehte Rillen 22 und 24 gebildet sind. Axial auf die Kolbenstange 18 ist ein Rohr 26 aufgeschoben, welches radial dicht am Außenumfang der Kolbenstange 18 anliegt. Das Rohr 26 bildet somit die Außenumfangsfläche der Kolbenstange 18, an welcher der Dichtungsring 20 anliegt und mit welcher die Kolbenstange 18 in dem Zylindergehäuse 10 axial verschiebbar geführt ist.The piston rod 18 has on its outer circumference ring structures which surround the piston rod 18 concentrically and in the illustrated embodiment are formed by grooves inserted into the lateral surface turned grooves 22 and 24. Axially on the piston rod 18, a tube 26 is pushed, which rests radially close to the outer periphery of the piston rod 18. The tube 26 thus forms the outer peripheral surface of the piston rod 18, on which the sealing ring 20 rests and with which the piston rod 18 is guided axially displaceably in the cylinder housing 10.

An dem Ende des Zylindergehäuses 10, an welchem die Kolbenstange 18 austritt, ist an dem Zylindergehäuse 10 eine Sensoreinrichtung 28 angeordnet, die an den Außenumfang des Rohres 26 mit geringem Abstand angrenzt und die Kolbenstange 18 mit den Ringstrukturen abtastet.At the end of the cylinder housing 10, on which the piston rod 18 emerges, on the cylinder housing 10 is a sensor device 28 disposed adjacent to the outer circumference of the tube 26 at a small distance and the piston rod 18 scans with the ring structures.

Die Sensoreinrichtung 28 besteht aus mehreren Sensoren, die in einer zur Achse der Kolbenstange 18 parallelen Linie aufeinander folgend in einer Reihe angeordnet sind. Die Sensoren der Sensoreinrichtung 28 können in unterschiedlicher, an sich bekannter Weise ausgebildet sein.The sensor device 28 consists of a plurality of sensors, which are arranged in a row parallel to the axis of the piston rod 18 in succession. The sensors of the sensor device 28 may be formed in different ways known per se.

Die Sensoren der Sensoreinrichtung können magnetoresistive Sensoren sein. Das zur Kolbenstange 18 achsparallele Magnetfeld dieser Sensoren hängt von dem Magnetfluss in der Oberfläche der Kolbenstange 18 ab, so dass sich ein hoher Magnetfluss und damit eine große Signalamplitude der Sensoren ergibt, wenn sich ein Bereich zwischen den vertieften Rillen 22 und 24 in einer axialen Position an dem jeweiligen Sensor befindet. Die vertieften Rillen 22 und 24 unterbrechen dagegen den magnetischen Fluss in der Oberfläche der Kolbenstange 18, so dass sich die Signalamplitude des jeweiligen Sensors verringert, wenn sich eine der Rillen 22 und 24 axial im Bereich des jeweiligen Sensors befindet. Um das Magnetfeld in der Oberfläche der Kolbenstange 18 zu leiten, besteht die Kolbenstange 18 zumindest in ihrem Außenumfangsbereich aus einem weichmagnetischen Werkstoff. Damit der Magnetfluss nicht durch das aufgeschobene Rohr 26 abgeschirmt wird, besteht dieses aus einem "magnetisch durchsichtigen" Werkstoff, d. h. aus einem diamagnetischen oder paramagnetischen Werkstoff. Im Hinblick auf die Abriebsfestigkeit und diese magnetischen Eigenschaften besteht das aufgeschobene Rohr 26 vorzugsweise aus einem unmagnetischen Edelstahl z. B. aus einer austenitischen Stahllegierung.The sensors of the sensor device may be magnetoresistive sensors. The magnetic field of these sensors, which is axially parallel to the piston rod 18, depends on the magnetic flux in the surface of the piston rod 18, so that a high magnetic flux and thus a large signal amplitude of the sensors results when an area between the recessed grooves 22 and 24 is in an axial position located at the respective sensor. The recessed grooves 22 and 24, however, interrupt the magnetic flux in the surface of the piston rod 18, so that the signal amplitude of the respective sensor decreases when one of the grooves 22 and 24 is located axially in the region of the respective sensor. In order to guide the magnetic field in the surface of the piston rod 18, the piston rod 18, at least in its outer peripheral region of a soft magnetic material. So that the magnetic flux is not shielded by the deferred tube 26, this consists of a "magnetically transparent" material, ie of a diamagnetic or paramagnetic material. In view of the abrasion resistance and these magnetic properties, the pushed-on tube 26 is preferably made of a non-magnetic stainless steel z. B. from an austenitic steel alloy.

In einer anderen Ausführung sind die Sensoren der Sensoreinrichtung 28 induktive Sensoren, die nach dem Prinzip eines Transformators arbeiten. Das magnetische Wechselfeld dieser Sensoren wird dabei über die Mantelbereiche der Kolbenstange 18 zwischen den Rillen 22 und 24 magnetisch kurzgeschlossen, so dass sich auch hier eine große Signalamplitude ergibt, wenn sich die Kolbenstange 18 mit einem axialen Bereich zwischen den Rillen 22 und 24 in der Position des jeweiligen Sensors befindet, während die Rillen 22 und 24 zu einer Verringerung des Sensorsignals führen. Auch in dieser Ausführung ist die Kolbenstange 18 aus einem weichmagnetischen Werkstoff und das Rohr 26 aus einem magnetisch durchsichtigen Werkstoff gefertigt.In another embodiment, the sensors of the sensor device 28 are inductive sensors that operate on the principle of a transformer. The magnetic alternating field of these sensors is thereby magnetically short-circuited via the mantle regions of the piston rod 18 between the grooves 22 and 24, so that here too a large signal amplitude results when the piston rod 18 with an axial region between the grooves 22 and 24 in the position of the respective sensor, while the grooves 22 and 24 lead to a reduction of the sensor signal. Also in this embodiment, the piston rod 18 is made of a soft magnetic material and the tube 26 made of a magnetically transparent material.

Weiter können die Sensoren der Sensoreinrichtung 28 Wirbelstrom-Sensoren sein, bei welchen ein magnetisches Wechselfeld der Sensoren in der äußeren Mantelschicht der Kolbenstange 18 Wirbelströme erzeugt, wenn sich die axialen Bereiche der Kolbenstange 18 zwischen den Rillen 22 und 24 in der axialen Position des jeweiligen Sensors befinden. Die vertieften Rillen 22 und 24 unterbrechen das Magnetfeld und damit die Entstehung von Wirbelströmen. In dieser Ausführung muss die Kolbenstange 18 zumindest in ihrer äußeren Mantelschicht eine gute elektrische Leitfähigkeit aufweisen. Das aufgeschobene Rohr 26 muss auch in dieser Ausführung aus einem magnetisch durchsichtigen Werkstoff bestehen, der das magnetische Wechselfeld der Sensoren nicht abschirmt.Furthermore, the sensors of the sensor device 28 may be eddy current sensors in which an alternating magnetic field of the sensors in the outer jacket layer of the piston rod 18 generates eddy currents when the axial regions of the piston rod 18 between the grooves 22 and 24 in the axial position of the respective sensor are located. The recessed grooves 22 and 24 interrupt the magnetic field and thus the formation of eddy currents. In this embodiment, the piston rod 18 must have good electrical conductivity at least in its outer jacket layer. The deferred tube 26 must also consist in this embodiment of a magnetically transparent material that does not shield the alternating magnetic field of the sensors.

Schließlich können die Sensoren der Sensoreinrichtung 28 auch Ultraschall-Sensoren sein. In dieser Ausführung wird die Manteloberfläche der Kolbenstange 18 durch die Sensoreinrichtung 28 mit Ultraschall abgetastet, um die Ringstrukturen in ihrer axialen Lage zu ermitteln. Um die durch das aufgeschobene Rohr 26 abgedeckte Mantelfläche der Kolbenstange 18 mittels der Ultraschall-Sensoren abtasten zu können, muss der Werkstoff des aufgeschobenen Rohres 26 eine gute Ultraschall-Durchlässigkeit aufweisen, während der Werkstoff der Kolbenstange 18 den Ultraschall reflektieren muss.Finally, the sensors of the sensor device 28 may also be ultrasonic sensors. In this embodiment, the mantle surface of the piston rod 18 is scanned by the sensor device 28 with ultrasound in order to determine the ring structures in their axial position. To the through the deferred pipe 26 covered surface of the piston rod 18 can be scanned by means of the ultrasonic sensors, the material of the pushed tube 26 must have a good ultrasonic permeability, while the material of the piston rod 18 must reflect the ultrasound.

Figur 2 zeigt in einem Ausführungsbeispiel die Codierung der Kolbenstange 18 durch die Rillen 22 und 24 zur absoluten Ermittlung der Position der Kolbenstange 18 in Bezug auf die am Zylindergehäuse 10 angeordnete Sensoreinrichtung 28. FIG. 2 shows in one embodiment, the coding of the piston rod 18 through the grooves 22 and 24 for the absolute determination of the position of the piston rod 18 with respect to the cylinder housing 10 arranged on the sensor device 28th

Die Kolbenstange 18 weist an ihrem Außenumfang durch konzentrische eingedrehte Rillen gebildete Ringstrukturen auf. Dabei sind Rillen 22 vorgesehen, die äquidistant auf der gesamten axialen Länge des zu messenden Hubweges der Kolbenstange 18 angeordnet sind und Maß-Ringstrukturen jeweils konstanter Länge a begrenzen. Damit definieren die durch die Rillen 22 gebildeten Maß-Ringstrukturen jeweils in axialer Richtung periodisch aneinander anschließende Teilabschnitte a1, a2......an.The piston rod 18 has annular structures formed on its outer circumference by concentric grooves that are screwed in. In this case, grooves 22 are provided which are arranged equidistantly over the entire axial length of the stroke to be measured of the piston rod 18 and limit Maß-ring structures each having a constant length a. In order for the Maß-ring structures formed by the grooves 22 define in each case in the axial direction periodically adjoining sections a 1 , a 2 ...... a n .

Innerhalb jedes dieser Teilabschnitte a1, a2 ... an befindet sich eine durch eine Rille 24 gebildete Zuordnungs-Ringstruktur. Die axiale Lage dieser Zuordnungs-Ringstruktur innerhalb des jeweiligen Teilabschnittes a1, a2...an unterscheidet sich für jeden Teilabschnitt a1, a2 ... an von allen anderen Teilabschnitten. Die jeweilige axiale Lage der Zuordnungs-Ringstruktur innerhalb des zugehörigen Teilabschnittes a1, a2 ... an stellt somit eine eindeutige Identifizierung des jeweiligen Teilabschnittes dar.Within each of these sections a 1 , a 2 ... A n there is an assignment ring structure formed by a groove 24. The axial position of this assignment ring structure within the respective subsection a 1 , a 2 ... A n differs for each subsection a 1 , a 2 ... A n from all other subsections. The respective axial position of the assignment ring structure within the associated subsection a 1 , a 2 ... A n thus represents a clear identification of the respective subsection.

In dem in Figur 2 gezeigten Beispiel verschiebt sich die axiale Lage der Rille 24 der Zuordnungs-Ringstruktur innerhalb des jeweiligen Teilabschnittes jeweils um eine axiale Distanz d von einem Teilabschnitt zu dem nachfolgenden Teilabschnitt. In Figur 2 ist dies für einen axialen Ausschnitt der Kolbenstange 18 gezeigt. In dem 9. Teilabschnitt a9 ist die Rille 24 der Zuordnungs-Ringstruktur um die Distanz 9d axial gegenüber dem durch die Rille 22 gebildeten Ende des Teilabschnittes a9 verschoben. In dem folgenden Teilabschnitt a10 ist die Rille 24 um die axiale Distanz 10d gegen das durch die Rille 22 bestimmte Ende dieses Teilabschnittes a10 verschoben usw.In the in FIG. 2 the example shown shifts the axial position of the groove 24 of the allocation ring structure within the respective subsection in each case by an axial distance d from a subsection to the subsequent subsection. In FIG. 2 this is shown for an axial section of the piston rod 18. In the 9th subsection a 9 , the groove 24 of the allocation ring structure is displaced axially by the distance 9d from the end of the subsection a 9 formed by the groove 22. In the following subsection a 10 , the groove 24 is displaced by the axial distance 10d against the end of this section a 10 determined by the groove 22, etc.

Die Sensoreinrichtung 28 ermittelt die axiale Position der durch die Rillen 22 begrenzten Maß-Ringstrukturen, wobei durch die in einer Linie angeordneten Sensoren der Sensoreinrichtung 28 die axiale Position der Kolbenstange 18 innerhalb des jeweiligen Teilabschnittes an absolut bestimmt werden kann. Weiter wird durch die Sensoreinrichtung 28 die axiale Lage der durch die Rille 24 gebildeten Zuordnungs-Ringstruktur innerhalb des jeweiligen Teilabschnittes an ermittelt, so dass die Zuordnung des absoluten Positionswertes innerhalb des Teilabschnittes an dem jeweiligen Teilabschnitt eindeutig zugeordnet werden kann. In einer der Sensoreinrichtung nachgeschalteten Auswertung werden die mittels der Zuordnungs-Ringstruktur erhaltene Identifizierung des Teilabschnittes an mit der innerhalb dieses Teilabschnittes an absolut ermittelten Position zu einer absoluten Positionsbestimmung über die gesamte Länge der Kolbenstange 18 zusammengefügt.The sensor device 28 determines the axial position of the limited by the grooves 22 Maß-ring structures, which can be determined by the arranged in a line sensors of the sensor device 28, the axial position of the piston rod 18 within the respective section a n absolutely. Furthermore, the axial position of the association ring structure formed by the groove 24 within the respective subsection a n is determined by the sensor device 28, so that the assignment of the absolute position value within the subsection a n can be unambiguously assigned to the respective subsection. In an evaluation connected downstream of the sensor device, the identification of the subsection a n obtained by means of the association ring structure is combined with the position determined absolutely within this subsection a n to form an absolute position determination over the entire length of the piston rod 18.

Der konstante Abstand der Rillen 22 und damit die axiale Länge der Teilabschnitte wird entsprechend der geforderten Auflösung der axialen Positionsmessung und der Ausbildung der Sensoreinrichtung 28 gewählt. Diese axiale Länge a der Teilabschnitte kann beispielsweise in der Größenordnung von 50 mm liegen.The constant distance of the grooves 22 and thus the axial length of the sections is selected according to the required resolution of the axial position measurement and the formation of the sensor device 28. This axial length a of the sections can be, for example, of the order of 50 mm.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Zylindergehäusecylinder housing
1212
Kolbenpiston
1414
Dichtungsringsealing ring
1616
Anschlüsseconnections
1818
Kolbenstangepiston rod
2020
Dichtungsringsealing ring
2222
Rillen der Maß-RingstrukturenCreasing the Dimensional Ring Structures
2424
Rillen der Zuordnungs-RingstrukturenGrooving the mapping ring structures
2626
Rohrpipe
2828
Sensoreinrichtungsensor device

Claims (10)

  1. Cylinder/piston unit actuated by fluid pressure, with a cylinder housing (10) and a piston rod (18), with structures constituting elevations or depressions which are formed in the outer surface of the piston rod (18) and form an axially extending material measure, with a sensor device (28) which is disposed on the cylinder housing (10) and scans the structure without contact using sensors spaced apart in the axial direction for determining the position, and with a wear-resistant cover for the structure for the purpose of guiding it in the cylinder housing (10), wherein the structures are annular structures which surround the piston rod (18) concentrically, wherein the cover is a tube (26) fitted coaxially onto the piston rod (19), and wherein the annular structures form an absolutely coded material measure, characterised in that annular measuring structures disposed equidistantly in the axial direction of the piston rod (18) divide the material measure into segments (an) which are absolutely scanned and follow one another periodically, and an annular assigning structure is disposed within each segment (an), wherein the axial position of the annular assigning structure within one segment (an) is different from the axial position of the annular assigning structure in any other segment and serves to unambiguously assign the given segment (an).
  2. Cylinder/piston unit as claimed in Claim 1, characterised in that in the axial direction the sensor device (28) has a length that is at least equal to the length of one segment (an).
  3. Cylinder/piston unit as claimed in Claim 2, characterised in that the sensor device (28) has a plurality of sensors which succeed one another in the axial direction and of which the signals are dependent upon their respective distance from the annular structures, that the signals are evaluated on the one hand for absolute determination of the position of the piston rod (18) within a segment (an) and on the other hand for ascertaining the position of the annular assigning structure within this segment (an), and that the absolute position of the piston rod (18) is formed from these two values.
  4. Cylinder/piston unit as claimed in any one of the preceding claims, characterised in that the annular structures are formed by grooves (22, 24) machined into the outer surface of the piston rod (18).
  5. Cylinder/piston unit as claimed in Claim 4, characterised in that the annular measuring structures are delimited by grooves (22) and the annular assigning structures are formed by grooves (24).
  6. Cylinder/piston unit as claimed in Claim 4, characterised in that the tube (26) rests against the circumference of the piston rod (18) so as to be sealed radially.
  7. Cylinder/piston unit as claimed in any one of Claims 1 to 6, characterised in that the piston rod (18) is made from a soft magnetic material and the tube (26) is made from a magnetically transparent material.
  8. Cylinder/piston unit as claimed in Claim 7, characterised in that the tube (26) is made from a non-magnetic high-grade steel, particularly an austenitic steel.
  9. Cylinder/piston unit as claimed in Claim 7 or Claim 8, characterised in that the sensor device (28) has magnetoresistive sensors, inductive sensors, or eddy current sensors.
  10. Cylinder/piston unit as claimed in any one of Claims 1 to 6, characterised in that the sensor device (28) has ultrasound sensors, and that the piston rod (18) is made from a material which reflects ultrasound, and the tube (26) is made from a material which is permeable to ultrasound.
EP09003286A 2009-03-06 2009-03-06 Device for measuring the axial position of a piston rod relatively to a cylinder housing Not-in-force EP2226514B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT09003286T ATE538317T1 (en) 2009-03-06 2009-03-06 DEVICE FOR MEASURING THE AXIAL POSITION OF A PISTON ROD RELATED TO A CYLINDER HOUSING
EP09003286A EP2226514B1 (en) 2009-03-06 2009-03-06 Device for measuring the axial position of a piston rod relatively to a cylinder housing
US12/659,011 US8151636B2 (en) 2009-03-06 2010-02-23 Device for measuring the axial position of a piston rod relative to a cylinder housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09003286A EP2226514B1 (en) 2009-03-06 2009-03-06 Device for measuring the axial position of a piston rod relatively to a cylinder housing

Publications (2)

Publication Number Publication Date
EP2226514A1 EP2226514A1 (en) 2010-09-08
EP2226514B1 true EP2226514B1 (en) 2011-12-21

Family

ID=40845847

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09003286A Not-in-force EP2226514B1 (en) 2009-03-06 2009-03-06 Device for measuring the axial position of a piston rod relatively to a cylinder housing

Country Status (3)

Country Link
US (1) US8151636B2 (en)
EP (1) EP2226514B1 (en)
AT (1) ATE538317T1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10415439B2 (en) 2008-07-22 2019-09-17 Eaton Intelligent Power Limited Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US9581058B2 (en) 2010-08-13 2017-02-28 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US20190309663A9 (en) 2008-07-22 2019-10-10 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US8985074B2 (en) 2010-03-19 2015-03-24 Eaton Corporation Sensing and control of a variable valve actuation system
US9708942B2 (en) 2010-03-19 2017-07-18 Eaton Corporation Rocker arm assembly and components therefor
US9938865B2 (en) 2008-07-22 2018-04-10 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US9284859B2 (en) 2010-03-19 2016-03-15 Eaton Corporation Systems, methods, and devices for valve stem position sensing
US9291075B2 (en) 2008-07-22 2016-03-22 Eaton Corporation System to diagnose variable valve actuation malfunctions by monitoring fluid pressure in a control gallery
US9038586B2 (en) 2010-03-19 2015-05-26 Eaton Corporation Rocker assembly having improved durability
US9016252B2 (en) 2008-07-22 2015-04-28 Eaton Corporation System to diagnose variable valve actuation malfunctions by monitoring fluid pressure in a hydraulic lash adjuster gallery
US9228454B2 (en) 2010-03-19 2016-01-05 Eaton Coporation Systems, methods and devices for rocker arm position sensing
US9194261B2 (en) 2011-03-18 2015-11-24 Eaton Corporation Custom VVA rocker arms for left hand and right hand orientations
US10087790B2 (en) 2009-07-22 2018-10-02 Eaton Corporation Cylinder head arrangement for variable valve actuation rocker arm assemblies
US11181013B2 (en) 2009-07-22 2021-11-23 Eaton Intelligent Power Limited Cylinder head arrangement for variable valve actuation rocker arm assemblies
US8307700B2 (en) * 2010-02-19 2012-11-13 Sunpower, Inc. Internal position and limit sensor for free piston machines
US8863569B2 (en) 2010-03-16 2014-10-21 Eaton Corporation Magnetically coded temperature and pressure detection apparatus
US8505365B2 (en) * 2010-03-16 2013-08-13 Eaton Corporation Magnetically coded pressure detection apparatus
US9874122B2 (en) 2010-03-19 2018-01-23 Eaton Corporation Rocker assembly having improved durability
US9885258B2 (en) 2010-03-19 2018-02-06 Eaton Corporation Latch interface for a valve actuating device
CA2812993C (en) 2010-10-26 2015-05-05 Jlg Industries, Inc. Cylinder length sensor mounting/retaining assembly
US10523199B2 (en) * 2011-12-20 2019-12-31 Robert Hooper Housings for inductive proximity sensors
CN103375454A (en) * 2012-04-20 2013-10-30 江苏武进液压启闭机有限公司 Hydraulic cylinder with built-in stroke detecting device
US8967035B2 (en) 2012-05-24 2015-03-03 Caterpillar Inc. Sensor coupler for piston-cylinder assembly
USD750670S1 (en) 2013-02-22 2016-03-01 Eaton Corporation Rocker arm
WO2015023835A1 (en) * 2013-08-16 2015-02-19 Eaton Corporation Detection apparatus for at least one of temperature and pressure in a cylinder of an internal combustion engine
DE112015000034T5 (en) 2014-03-03 2015-11-19 Eaton Corporation Valve operating device and method for its production
CN104343767B (en) * 2014-10-10 2017-05-31 长沙中联消防机械有限公司 Oil cylinder stroke measuring equipment, system, engineering machinery and method
CN112676254B (en) * 2020-12-09 2022-03-18 深圳市富吉真空技术有限公司 Ultrasonic cleaning device for milling cutter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3241525A1 (en) * 1982-11-10 1984-05-10 Wabco Westinghouse Steuerungstechnik GmbH & Co, 3000 Hannover DEVICE FOR DETECTING THE POSITION OR / AND SPEED OF THE PISTON OF A WORK CYLINDER
US4543649A (en) * 1983-10-17 1985-09-24 Teknar, Inc. System for ultrasonically detecting the relative position of a moveable device
US5450009A (en) * 1990-12-28 1995-09-12 Kabushiki Kaisha Komatsu Seisakusho Magnetic sensor and structure of its mounting
US5461311A (en) * 1992-12-24 1995-10-24 Kayaba Kogyo Kabushiki Kaisha Rod axial position detector including plural scales wherein nonmagnetized portions have differing spacing and differing depths and means for calculating the absolute position are provided
US6393963B1 (en) * 1996-11-06 2002-05-28 Microhydraulics Inc. Hydraulic cylinder with position encoder
DE19648335C2 (en) 1996-11-22 2000-05-25 Daimler Chrysler Ag Arrangement for position measurement
JPH10221115A (en) 1997-01-31 1998-08-21 Samsung Heavy Ind Co Ltd Stroke sensing cylinder load for reference-position detection
DE10020764A1 (en) 1999-07-21 2001-01-25 Mannesmann Sachs Ag Arrangement for contactless distance measurement between damper piston and cylinder has information medium extending over piston stroke with magnetised position detection code
DE10010042A1 (en) * 2000-01-13 2001-07-19 Continental Teves Ag & Co Ohg Linear displacement sensor and its use as an actuating device for motor vehicles
FR2867237B1 (en) 2004-03-03 2008-04-18 Johnson Contr Automotive Elect TELESCOPIC DEVICE WITH ELECTROMAGNETIC POSITION DETECTION
CN1985104B (en) * 2004-07-14 2010-05-05 田纳科自动化操作有限公司 Shock absorber with integrated displacement sensor and the displacement sensor

Also Published As

Publication number Publication date
US20100223982A1 (en) 2010-09-09
EP2226514A1 (en) 2010-09-08
ATE538317T1 (en) 2012-01-15
US8151636B2 (en) 2012-04-10

Similar Documents

Publication Publication Date Title
EP2226514B1 (en) Device for measuring the axial position of a piston rod relatively to a cylinder housing
EP1357365B1 (en) Position detecting apparatus
EP3563116B1 (en) Path sensor
DE10309142B4 (en) Position detector for a pig moving in a pipe
DE102005021300B4 (en) encoders
EP1832758A2 (en) Position measuring system for hydraulic cylinders
EP1222471B1 (en) Sensor system comprising an acceleration sensor and a position sensor
EP2188639B1 (en) Measurement arrangement for a mounted shaft
DE102008059775A1 (en) Absolutely measuring steering angle sensor arrangement
DE102005029494B4 (en) Piston-cylinder arrangement
DE10206543A1 (en) Gearbox and encoder equipped with this gearbox
WO2015165456A1 (en) Method for identifying the position of a rotor of an electric motor, target for determining the position of a rotor of the electric motor and electric motor
EP0354936B1 (en) Device for determining a path or an angular rotation
DE102014201790A1 (en) Method of manufacturing a sensor
DE102015217907A1 (en) Position sensing device
DE4211615C2 (en) Measuring device for determining an angle of rotation
EP1600737B1 (en) Apparatus for rotary angle measurement
EP0803047B1 (en) Travel sensor
DE3940894C2 (en)
DE19652785A1 (en) Return system for automotive friction hydraulic clutch
EP0082933B1 (en) Device for sensing the position of a piston in a cylinder
EP1723393A2 (en) Contactless displacement measuring system
DE3209834A1 (en) Device for determining the displacement of a piston of a die-casting machine
EP3128294B1 (en) Sensor for determining the angular position of a motor, and a motor having a sensor for determining the angular position
DE102009038087A1 (en) Ball screw drive for e.g. connecting chassis frame to body of motor vehicle, has sensor element reading markings indicating absolute position of threaded nut in coded manner, where markings are distributed at threaded shoulder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110222

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 538317

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002220

Country of ref document: DE

Effective date: 20120301

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120421

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120423

BERE Be: lapsed

Owner name: SICK STEGMANN G.M.B.H.

Effective date: 20120331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

26N No opposition filed

Effective date: 20120924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002220

Country of ref document: DE

Effective date: 20120924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130306

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090306

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 538317

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200324

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002220

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009002220

Country of ref document: DE

Owner name: SICK AG, DE

Free format text: FORMER OWNER: SICK STEGMANN GMBH, 78166 DONAUESCHINGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009002220

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001