EP2220752A1 - Voltage step-up circuit - Google Patents

Voltage step-up circuit

Info

Publication number
EP2220752A1
EP2220752A1 EP08872316A EP08872316A EP2220752A1 EP 2220752 A1 EP2220752 A1 EP 2220752A1 EP 08872316 A EP08872316 A EP 08872316A EP 08872316 A EP08872316 A EP 08872316A EP 2220752 A1 EP2220752 A1 EP 2220752A1
Authority
EP
European Patent Office
Prior art keywords
terminal
capacitor
voltage
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08872316A
Other languages
German (de)
French (fr)
Inventor
Luis De Sousa
Jean-Baptiste Roux
Larbi Bendani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes de Controle Moteur SAS
Original Assignee
Valeo Systemes de Controle Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes de Controle Moteur SAS filed Critical Valeo Systemes de Controle Moteur SAS
Publication of EP2220752A1 publication Critical patent/EP2220752A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters

Definitions

  • the present invention relates to a voltage booster circuit.
  • a particularly interesting application of the invention lies in the field of DCDC 12V / 42V DC / DC power converters fed by the on-board network of a motor vehicle (battery voltage of 12V) and supplying power to the bridges. of power for the control of the current of electrical machines with variable inductance.
  • DCDC converters 12V / 42V are thus often used as voltage source for H-bridges, also called single-phase or multiphase "four-quadrant" bridges. These bridges are used in particular to control the electromagnetic valve actuator current ("camless" system in English).
  • Such a DCDC converter is made using a voltage booster circuit.
  • An example of a voltage booster circuit 1, also referred to as a "Boost" type circuit, is illustrated in FIG.
  • Circuit 1 comprises
  • a voltage source 2 such that the voltage of the battery of a motor vehicle having a first and a second terminal (here a + and ground terminal), an inductor 3 whose first terminal is connected to the + terminal of the voltage source 2,
  • a current switch 6 such as a MOSFET field effect transistor connected between the second terminal of the inductor 3 and the ground
  • a second current switch 7 (which may be a MOSFET transistor or an electromechanical component of the relay type) connected between the + terminal of the voltage source 2 and the first terminal of the inductor 3 (it will be noted that this second switch can also be connected between the second terminal of the capacitor 5 and the ground).
  • the operation of the "Boost" circuit 1 can be divided into two distinct phases according to the state of the switch 6: a phase of accumulation of energy: when the switch 6 is closed (on state), this causes the increase of the current in the inductance 3 and thus the storage of a quantity of energy in the form of magnetic energy.
  • the diode 4 is then blocked and the capacitor 5 is disconnected from the power supply.
  • the switch 6 is open, the inductor 3 is then in series with the generator and its f.e.m. (electromotive force) is added to that of the generator (booster effect).
  • the current flowing through the inductor then passes through the diode 4 and the capacitor 5. This results in a transfer of the energy accumulated in the inductor 3 to the capacitor 5.
  • the chemical capacitors have the disadvantage of generating large leakage currents which can be troublesome in an application. particularly powered by the battery of a motor vehicle. Leakage currents can cause a deep discharge of the battery, if the device stays off for a long time. This is the case for example of a converter connected to the 12V battery of a vehicle in "parking" mode. It may then be necessary to disconnect the capacitors to reduce the leakage currents.
  • an electromagnetic valve system requires a converter to generate not only a power supply network adapted to the valve actuators, in this case it is a 42V network, from the onboard network, but also and especially for decoupling the 12V edge network from the 42V auxiliary network.
  • control of the actuators generates a very low frequency of harmonic frequency.
  • a capacitive bank of high value is therefore necessary, which has leakage currents incompatible with the specifications in "parking" mode.
  • a known solution to solve this problem related to leakage currents is to use a switch 7 for disconnecting these capacitors.
  • opening the switch in "parking" mode avoids any current leakage and therefore any risk of battery discharge.
  • Circuit 1 can not control the current when the output voltage is lower than the input voltage. This case is encountered at each power-up (closing of the switch 7) when the output voltage Vs is zero because the capacitor tank 5 is discharged. The charge of the capacitor 5 generates a current that is not controllable by the circuit 1. The current draw is limited only by the line resistors. The charging time is defined by the size of the capacitors and these line resistors. Upon power-up, the output capacitor 5 is suddenly charged until the output voltage reaches an equilibrium value close to the input voltage.
  • the inrush current can reach values that exceed the specifications of the components traversed by this current, in particular those of the switch 7 which allows the powering up.
  • the current draw causes the destruction or wear of the contacts under the effect of the electric arc.
  • the arc can cause the melting of the metals in contact and emit projections.
  • the current draw can cause its destruction or premature aging by violent local heating, especially when the component has a low heat capacity.
  • the inrush current can further cause other inconveniences such as the collapse of the voltage source if the internal resistance thereof is too great. Note that, even if there is no power switch 7, can be transposed the same disadvantages on any other switch on the loop through the inrush current.
  • FIG. 2 A first example of a limiting circuit 10 is illustrated in FIG. 2.
  • the circuit 10 is identical to the circuit 1 of FIG. 1 (the common components have the same reference numerals) with the difference that it comprises a transistor 8 mounted in series between the second terminal of the capacitor 5 and the ground.
  • This transistor 8 may be a bipolar transistor or a field effect transistor of the MOSFET or JFET type.
  • the solution is to control the charging current of the capacitor 5 by an operation in linear mode of the transistor 8.
  • This transistor can also have the function of switch (saturated mode) to isolate or connect the capacitor 5 to ground after the limitation has been activated. For high capacitance values, the number of transistors can be large, especially if the delay given to the pre-charge is short.
  • the circuit 20 is identical to the circuit 1 of FIG. 1 (the common components have the same reference numbers) except that it comprises a switch 9 connected in series between the second terminal of the capacitor 5 and the ground as well as a resistor 11 connected in parallel with the switch 9. The inrush current is then limited by the resistor 11.
  • the switch 9 is used to isolate or connect the capacitor to ground.
  • the delay to start ie the time between the moment when the driver turns the ignition key and the moment when the system must be ready
  • a relatively short delay of the order of 300 ms in total.
  • many other actions other than the precharging of the capacitor must be performed (diagnosis, reset, powering up, etc.): therefore, there is little time reserved for preloading The capacitor 5.
  • One or other of the solutions of Figures 2 or 3 have the disadvantage of limiting the current by heat dissipation.
  • the present invention aims to provide a voltage booster circuit economically to achieve a rapid pre-charge of the capacitive element while reducing the space occupied by the components forming said circuit.
  • the invention proposes a voltage booster circuit comprising:
  • a voltage source comprising a first and a second terminal, at least one inductor whose first terminal is connected to said first terminal of said voltage source,
  • At least one capacitor whose first terminal is connected to the cathode of said diode
  • At least one current switch connected between said second terminal of said inductor and said second terminal of said voltage source
  • Capacitor means any type of capacitive load: it may be a single capacitor but also a capacitive bank having a plurality of capacitors connected in series or in parallel.
  • inductance covers a single inductance but also a plurality of inductors connected in series or in parallel.
  • the proposed configuration has the advantage of not limiting the current by heat dissipation by using a structure that allows the current control.
  • the addition of means to allow the current to flow from the second terminal of the capacitor (its negative pole in the case of a chemical capacitor) to the first terminal of the voltage source (the positive terminal of the battery in the case of 'a battery power supply of the vehicle) allows control of the load current of the capacitive bank.
  • These means are for example formed by a diode.
  • this solution does not dissipate additional heat unlike a limiting resistor or transistor current control in linear mode.
  • the circuit according to the invention eliminates the use of power components inducing significant additional cost.
  • this configuration does not change the operation of the voltage booster and allows the load current to be controlled by a conventional PWM regardless of the state of charge of the capacitive bank.
  • the second switch disconnects (and reconnects) the capacitive element from the ground.
  • the system according to the invention may also have one or more of the features below, considered individually or in any technically possible combination.
  • said means for allowing the current to flow from said second terminal of said capacitor to said first terminal of said voltage source are formed by a se- a diode condode whose anode is connected to said second terminal of said capacitor and the cathode is connected to said first terminal of said voltage source.
  • the invention finds a particularly advantageous application in the case where said at least one capacitor is a chemical capacitor.
  • the circuit according to the invention comprises a second capacitor connected between the anode of said at least one diode and said second terminal of said voltage source.
  • the circuit according to the invention comprises:
  • n inductances Lbi with i varying from 1 to n and n being a natural integer greater than or equal to 2, each of the inductors Lbi having its first terminal connected to said first terminal of said voltage source, - N diodes Dbi, with i varying from 1 to n, each of the diodes Dbi having its anode connected to the second terminal of said inductor Lbi,
  • n current switches Mbi with i varying from 1 to n, each of the switches Mbi being connected between said second terminal of said inductor Lbi and said second terminal of said voltage source and each of the switches Mbi being controlled so that it is conducting while the other switches are open, said at least one capacitor having its first terminal connected to the cathode of each of said diodes Dbi.
  • said voltage source is formed by the battery of a motor vehicle.
  • the circuit according to the invention ensures the conversion of a DC voltage of 12V into a DC voltage of 42V.
  • the subject of the present invention is also the use of the circuit according to the invention for supplying an H-bridge for the control of the current in an electrical control device, the voltage at the terminals of the at least one capacitor forming the voltage of the 'food.
  • the electrical member is included in an actuator provided with an actuated part, said electrical member controlling said actuated part in displacement.
  • said actuator is an actuator for electromagnetic valves.
  • FIG. 1 is a schematic representation of the electronic structure of a voltage booster circuit illustrating the state of the art
  • FIG. 2 and 3 each illustrate a voltage booster circuit incorporating a current limiting circuit according to the state of the art
  • FIG. 4 represents a voltage booster circuit according to the invention
  • FIGS. 5 and 6 illustrate the current limiter operation of the voltage booster circuit according to the invention as represented in FIG. 4;
  • FIG. 7 represents the evolution of the potential Vs as a function of time during the pre-charge phase of the capacitor;
  • FIG. 8 represents a voltage booster circuit according to a second embodiment of the invention.
  • FIG. 9 represents a voltage booster circuit according to a third embodiment of the invention.
  • Figure 4 shows a circuit voltage elevator 100 -according to the invention
  • the circuit 100 comprises.:
  • a source of voltage S such that the voltage of the battery of a motor vehicle having a first and a second terminal (here a terminal + BAT and ground) delivering an input voltage Ve, an inductance Lb whose first terminal is connected to the terminal + BAT of the voltage source S,
  • a diode Db whose anode is connected to the second terminal of the inductor 3; a capacitor Cb of the chemical capacitor type, whose first terminal (positive pole) is connected to the cathode of the diode Db (note that this capacitor Cb is generally not only and is often formed by a capacitive bank),
  • a current switch Mb such as a MOSFET field effect transistor connected between the second terminal of the inductance Lb and the ground
  • a second current switch M (which may be a MOSFET transistor or an electromechanical component of the relay type) connected between the second terminal (negative pole) of the capacitor Cb and the ground,
  • the switch Mb is controlled by a PWM type control having a duty cycle ⁇ with a switching period T.
  • the switch M When pre-charging the capacitor Cb with inrush current limiting, the switch M is open so that the second terminal (negative pole) of the capacitor Cb is not connected to ground but to the battery .
  • this solution does not dissipate additional heat unlike a limiting resistor or transistor current control in linear mode.
  • the switch M is open to obtain a pre-charge without inrush current (i.e. with controlled current) of the capacitor Cb.
  • Vc across the capacitor Cb is equal to Ve (or slightly higher to avoid any inrush current)
  • the potential Vs (potential of the point S corresponding to the positive pole of the capacitor Cb with respect to the ground) is not continuous during the pre-charge phase of the capacitor Cb.
  • FIG. 7 illustrates this phenomenon by representing the voltage Vs as a function of time.
  • the potential Vs is cut (chopped) at the frequency of the MLI (of the order of 70 kHz in the case of the application relating to the electromagnetic valves).
  • the switch Mb leads, diodes Db and D are blocked which sets the potential Vs at a voltage that varies between 0 and Vc.
  • the diodes Db and D conduct which sets the potential Vs to Ve + Vfd + Vc where Vfd represents the voltage drop across the diode D.
  • FIG. 8 thus represents a voltage booster circuit 200 according to a second embodiment of the invention making it possible to overcome the problem of discontinuity of Vs.
  • the circuit 200 is identical to the circuit 100 of FIG. 4 with the difference that it comprises an additional capacitor C connected between the anode of the diode Db and the ground. The value of the voltage across this capacitor is therefore equal to the value of the potential Vs.
  • This capacitor C is a capacitor with a low leakage current and a low value (capacitors of the "film” or ceramic type of small capacity can be used).
  • the capacitor C is connected between the ground and the output S to maintain the potential Vs when the switch Mb leads. This capacitor C is permanently connected so it is initially charged to the battery voltage (at near voltage drops).
  • the switch Mb leads, the potential Vs is maintained at the load voltage of the capacitor C.
  • the capacitor C supplies the current of a possible load connected to the output.
  • the switch Mb is open, the diodes Db and D conduct and the current charges not only this capacitor C but also the capacitive bank Cb.
  • the voltage across C follows the voltage imposed by the capacitive bank Cb. Their sizing obviously depends on the load connected at the output during startup.
  • FIG. 9 represents a voltage booster circuit 300 according to a third embodiment of the invention also making it possible to overcome the Vs discontinuity problem.
  • the circuit 300 is a multicell circuit; in other words, this circuit 300 comprises n cells each constituted by a triplet (Lbi, Dbi, Mbi) of inductance-diode-switch (with i varying from 1 to n, n being a natural integer greater than 1) .
  • n is equal to 2.
  • Each of the inductors Lbi has its first terminal connected to the terminal
  • Each of the diodes Dbi has its anode connected to the second terminal of the inductor Lbi.
  • Each of the switches Mbi is connected between the second terminal of the inductor Lbi and the ground.
  • the capacitor Cb to be pre-charged has its first terminal (positive pole) connected to the cathode of each of the diodes Dbi.
  • the circuit 300 comprises:
  • the advantage of a multicellular configuration with respect to a single cell is that it makes it possible to reduce the current ripple considerably (to obtain an identical ripple with a single-cell system, it would be necessary to have an inductance having a very large value) and to distribute the power.
  • the phase shift between the cells makes it possible to guarantee that at least one of the diodes Dbi is conducting at each instant. Therefore, the potential Vs is maintained at the value at Ve + Vfd + Vc where Vfd represents the potential drop across the diode D.
  • the switch Mb1 is closed (therefore the switch Mb2 is open) and the diode Db2 is conductive.
  • the respectively hatched and bold arrows indicate the two possible paths of the current depending on whether one is in the magnetization phase of the inductance Lb 1 or pre-charge of the capacitor Cb.
  • the invention has been more particularly described in the case of using a diode for connecting the foot of the capacitor to the + BAT terminal but other means allowing the current to flow from the second terminal of the capacitor to the + BAT terminal can also be used; it is thus possible to use a switch in series between the negative pole of the capacitor and the + BAT terminal, this switch closing when the switch Mb is opened.
  • the embodiments described implement MOSFET transistors used as switches, but other types of transistors (IGBT for example) can also be used without departing from the scope of the invention.

Abstract

The present invention relates to a voltage step-up circuit (100). One particularly advantageous application of the invention is in the field of 12 V/42 V DC/DC power convertors supplied by the power system onboard a motor vehicle (12 V battery voltage). The circuit (100) according to the invention comprises a voltage source (S) having a first terminal (+BAT) and a second terminal, at least one inductor (Lb), the first terminal of which is connected to the first terminal (+BAT) of the voltage source (S), at least one diode (Db), the anode of which is connected to the second terminal of the inductor (Lb), at least one capacitor (Cb), the first terminal of which is connected to the cathode of the diode (Db), at least one current switch (Mb) connected between the second terminal of the inductor (Lb) and the second terminal of the voltage source (S), and a second current switch (M) connected between the second terminal of the capacitor (Cb) and the second terminal of the voltage source (S). The circuit (100) according to the invention further includes means (D) for allowing the current to flow from the second terminal of the capacitor (Cb) to the first terminal (+BAT) of the voltage source (S).

Description

Circuit élévateur de tension Voltage boost circuit
La présente invention concerne un circuit élévateur de tension. Une application particulièrement intéressante de l'invention se situe dans le domaine des convertisseurs de puissance continu-continu DCDC 12V/42V ali- mentes par le réseau de bord d'un véhicule automobile (tension batterie de 12V) et assurant l'alimentation des ponts de puissance pour le contrôle du courant des machines électriques à inductance variable.The present invention relates to a voltage booster circuit. A particularly interesting application of the invention lies in the field of DCDC 12V / 42V DC / DC power converters fed by the on-board network of a motor vehicle (battery voltage of 12V) and supplying power to the bridges. of power for the control of the current of electrical machines with variable inductance.
On utilise ainsi souvent des convertisseurs DCDC 12V/42V comme source de tension de ponts de puissance en H dits aussi ponts « quatre quadrants » monophasés ou polyphasés. Ces ponts servent notamment à commander le courant d'actionneur de soupapes électromagnétiques (système « camless » en anglais).DCDC converters 12V / 42V are thus often used as voltage source for H-bridges, also called single-phase or multiphase "four-quadrant" bridges. These bridges are used in particular to control the electromagnetic valve actuator current ("camless" system in English).
Un tel convertisseur DCDC est réalisé à l'aide d'un circuit élévateur de tension. Un exemple d'un circuit 1 élévateur de tension, dit aussi circuit de type « Boost», est illustré en figure 1.Such a DCDC converter is made using a voltage booster circuit. An example of a voltage booster circuit 1, also referred to as a "Boost" type circuit, is illustrated in FIG.
Le circuit 1 comporteCircuit 1 comprises
- une source de tension 2 telle que la tension de la batterie d'un véhicule automobile comportant une première et une seconde bornes (ici une borne + et la masse), - une inductance 3 dont la première borne est reliée à la borne + de la source de tension 2,a voltage source 2 such that the voltage of the battery of a motor vehicle having a first and a second terminal (here a + and ground terminal), an inductor 3 whose first terminal is connected to the + terminal of the voltage source 2,
- une diode 4 dont l'anode est reliée à la seconde borne de l'inductance 3,a diode 4 whose anode is connected to the second terminal of the inductor 3,
- un condensateur 5 dont la première borne est reliée à la cathode de la diode 4,a capacitor 5 whose first terminal is connected to the cathode of the diode 4,
- un interrupteur 6 de courant tel qu'un transistor à effet de champ MOSFET relié entre la seconde borne de l'inductance 3 et la masse,a current switch 6 such as a MOSFET field effect transistor connected between the second terminal of the inductor 3 and the ground,
- un deuxième interrupteur 7 de courant (qui peut être un transistor MOSFET ou un composant électromécanique du type relai) relié en- tre la borne + de la source de tension 2 et la première borne de l'inductance 3 (on notera que ce deuxième interrupteur peut égale- ment être relié entre la seconde borne du condensateur 5 et la masse).a second current switch 7 (which may be a MOSFET transistor or an electromechanical component of the relay type) connected between the + terminal of the voltage source 2 and the first terminal of the inductor 3 (it will be noted that this second switch can also be connected between the second terminal of the capacitor 5 and the ground).
Le fonctionnement du circuit « Boost » 1 peut être divisé en deux phases distinctes selon l'état de l'interrupteur 6 : - une phase d'accumulation d'énergie : lorsque l'interrupteur 6 est fermé (état passant), cela entraîne l'augmentation du courant dans l'inductance 3 et donc le stockage d'une quantité d'énergie sous forme d'énergie magnétique. La diode 4 est alors bloquée et le condensateur 5 est déconnecté de l'alimentation. - Lorsque l'interrupteur 6 est ouvert, l'inductance 3 se trouve alors en série avec le générateur et sa f.e.m. (force électromotrice) s'additionne à celle du générateur (effet survolteur). Le courant traversant l'inductance traverse ensuite la diode 4 et le condensateur 5. Il en résulte un transfert de l'énergie accumulée dans l'inductance 3 vers le condensateur 5.The operation of the "Boost" circuit 1 can be divided into two distinct phases according to the state of the switch 6: a phase of accumulation of energy: when the switch 6 is closed (on state), this causes the increase of the current in the inductance 3 and thus the storage of a quantity of energy in the form of magnetic energy. The diode 4 is then blocked and the capacitor 5 is disconnected from the power supply. When the switch 6 is open, the inductor 3 is then in series with the generator and its f.e.m. (electromotive force) is added to that of the generator (booster effect). The current flowing through the inductor then passes through the diode 4 and the capacitor 5. This results in a transfer of the energy accumulated in the inductor 3 to the capacitor 5.
Cette décharge n'est possible que si la tension Vs aux bornes du condensateur 5 est supérieure à la tension Ve (tension batterie). La tension de sortie Vs est alors quasiment continue et sa valeur dépend de Ve et du rapport cyclique oc = τ/T du signal en créneau de commande de l'interrupteur 6 où τ est le temps à l'état haut du signal de commande dans une période et T est la période du signal de commande. Il s'agit d'un contrôle du courant de charge par MLI (Modulation de Largeur d'Impulsion). Dans ce cas on a : Vs = Ve/(1-α) et on a bien une tension de sortie toujours supérieure à celle d'entrée (le rapport cyclique variant entre 0 et 1) et qui augmente avec α. Le condensateur 5 est très souvent formé par un condensateur chimique ayant son pôle positif relié à la cathode de la diode 4. L'usage de ~-)ndensateurs chimiques est souvent incontournable dans les applications nécessitants une grande réserve d'énergie. En effet, ceux-ci ont la meilleure densité énergétique. Cependant, l'utilisation de ces condensateurs chimiques pose un certain nombre de problèmes.This discharge is only possible if the voltage Vs across the capacitor 5 is greater than the voltage Ve (battery voltage). The output voltage Vs is then almost continuous and its value depends on Ve and the duty cycle oc = τ / T of the signal in control slot of the switch 6 where τ is the time in the high state of the control signal in a period and T is the period of the control signal. This is a charge current control by PWM (Pulse Width Modulation). In this case we have: Vs = Ve / (1-α) and we have an output voltage always higher than the input (the duty cycle varies between 0 and 1) and increases with α. The capacitor 5 is very often formed by a chemical capacitor having its positive pole connected to the cathode of the diode 4. The use of ~ -> ndensateurs chemical is often unavoidable in applications requiring a large reserve of energy. Indeed, these have the best energy density. However, the use of these chemical capacitors poses a number of problems.
Ainsi, les condensateurs chimiques ont pour inconvénient de générer de grands courants de fuite qui peuvent s'avérer gênants dans une applica- tion notamment alimentée par la batterie d'un véhicule automobile. Les courants de fuite peuvent provoquer une décharge profonde de la batterie, si l'appareil reste suffisamment longtemps hors-tension. C'est le cas par exemple d'un convertisseur connecté à la batterie 12V d'un véhicule en mode « parking ». Il peut alors être nécessaire de déconnecter les condensateurs pour diminuer les courants de fuite. Tout particulièrement, un système de soupape électromagnétique nécessite un convertisseur pour générer non seulement un réseau d'alimentation adapté aux actionneurs de soupapes, dans le cas présent il s'agit d'un réseau 42V, à partir du réseau de bord, mais aussi et surtout pour découpler le réseau de bord 12V du réseau auxiliaire 42V. En effet, la commande des actionneurs génère un taux d'harmonique basse fréquence très élevé. Afin de limiter les ondulations de courant sur le réseau de bord et préserver ainsi la batterie, il est nécessaire d'augmenter la capacitance du réseau 42V. Un banc capacitif de forte valeur est donc nécessaire, lequel possède des courants de fuite incompatibles avec les spécifications en mode « parking ».Thus, the chemical capacitors have the disadvantage of generating large leakage currents which can be troublesome in an application. particularly powered by the battery of a motor vehicle. Leakage currents can cause a deep discharge of the battery, if the device stays off for a long time. This is the case for example of a converter connected to the 12V battery of a vehicle in "parking" mode. It may then be necessary to disconnect the capacitors to reduce the leakage currents. In particular, an electromagnetic valve system requires a converter to generate not only a power supply network adapted to the valve actuators, in this case it is a 42V network, from the onboard network, but also and especially for decoupling the 12V edge network from the 42V auxiliary network. Indeed, the control of the actuators generates a very low frequency of harmonic frequency. In order to limit current ripple on the on-board network and thus preserve the battery, it is necessary to increase the capacitance of the 42V network. A capacitive bank of high value is therefore necessary, which has leakage currents incompatible with the specifications in "parking" mode.
Une solution connue pour résoudre ce problème lié aux courants de fuite consiste à utiliser un interrupteur 7 de déconnexion de ces condensateurs. Ainsi, l'ouverture de l'interrupteur en mode « parking » permet d'éviter toute fuite de courant et donc tout risque de décharge de la batterie.A known solution to solve this problem related to leakage currents is to use a switch 7 for disconnecting these capacitors. Thus, opening the switch in "parking" mode avoids any current leakage and therefore any risk of battery discharge.
Cependant la mise en œuvre de cette solution pose certaines difficultés.However, the implementation of this solution poses certain difficulties.
Ainsi, comme mentionné plus haut, le contrôle du courant dans le circuit 1 n'est possible que si la tension Vs aux bornes du condensateur 5 est supérieure à la tension Ve. Le circuit 1 ne peut pas contrôler le courant lorsque la tension de sortie est plus basse que la tension d'entrée. Ce cas de figure est rencontré à chaque mise sous tension (fermeture de l'interrupteur 7) lorsque la tension de sortie Vs est nulle car le condensateur réservoir 5 est déchargé. La charge du condensateur 5 génère un courant qui n'est pas contrôlable par le circuit 1. L'appel du courant n'est limité que par les résistances de ligne. Le temps de charge est défini par la taille des condensateurs et ces résistances de ligne. Lors de la mise sous tension, le condensateur 5 de sortie est chargé brutalement jusqu'à ce que la tension de sortie atteigne une valeur d 'équilibre proche de la tension d'entrée. Dans le cas d'une charge de condensateur au travers d'une résistance, on considère que pour une quantité d'énergie transférée autant est dissipée. Cette énergie est dissipée sur une courte durée. Les puissances mises en jeux peu- vent être destructrices. En effet, le courant d'appel peut atteindre des valeurs qui dépassent les spécifications des composants traversés par ce courant notamment celles de l'interrupteur 7 qui permet la mise sous-tension. Dans le cas d'un interrupteur mécanique ou électromécanique, l'appel de courant provoque la destruction ou l'usure des contacts sous l'effet de l'arc électrique. Dans le cas d'un contact direct entre le câble d'alimentation et une source de tension à faible résistance interne comme une batterie par exemple, l'arc peut provoquer la fusion des métaux en contact et émettre des projections. Dans le cas d'un interrupteur statique du type transistor MOSFET, l'appel de courant peut provoquer sa destruction ou son vieillis- sèment prématuré par un échauffement local violent notamment lorsque le composant possède une faible capacité calorifique.Thus, as mentioned above, the control of the current in the circuit 1 is only possible if the voltage Vs across the capacitor 5 is greater than the voltage Ve. Circuit 1 can not control the current when the output voltage is lower than the input voltage. This case is encountered at each power-up (closing of the switch 7) when the output voltage Vs is zero because the capacitor tank 5 is discharged. The charge of the capacitor 5 generates a current that is not controllable by the circuit 1. The current draw is limited only by the line resistors. The charging time is defined by the size of the capacitors and these line resistors. Upon power-up, the output capacitor 5 is suddenly charged until the output voltage reaches an equilibrium value close to the input voltage. In the case of a capacitor charge through a resistor, it is considered that for a quantity of energy transferred as much is dissipated. This energy is dissipated for a short time. The powers put in play can be destructive. Indeed, the inrush current can reach values that exceed the specifications of the components traversed by this current, in particular those of the switch 7 which allows the powering up. In the case of a mechanical or electromechanical switch, the current draw causes the destruction or wear of the contacts under the effect of the electric arc. In the case of a direct contact between the power cable and a voltage source with low internal resistance such as a battery, the arc can cause the melting of the metals in contact and emit projections. In the case of a static switch of the MOSFET transistor type, the current draw can cause its destruction or premature aging by violent local heating, especially when the component has a low heat capacity.
Le courant d'appel peut en outre engendrer d'autres désagréments tels que l'écroulement de la source de tension si la résistance interne de celle-ci est trop importante. On notera que, même s'il n 'a pas d'interrupteur 7 de mise sous tension, on peut transposer les mêmes inconvénients sur tout autre interrupteur qui se trouve sur la boucle parcourue par le courant d'appel.The inrush current can further cause other inconveniences such as the collapse of the voltage source if the internal resistance thereof is too great. Note that, even if there is no power switch 7, can be transposed the same disadvantages on any other switch on the loop through the inrush current.
On connaît des solutions permettant de limiter ce courant d'appel : ces circuits de limitation ont pour principe de limiter l'appel de courant par dissipation thermique. Un circuit de limitation est d'autant plus utile que la capacité de sortie est élevée.Solutions for limiting this inrush current are known: these limiting circuits have the principle of limiting the current draw by heat dissipation. A limiting circuit is all the more useful as the output capacitance is high.
Un premier exemple de circuit 10 de limitation est illustré en figure 2. Le circuit 10 est identique au circuit 1 de la figure 1 (les composants communs portent les mêmes numéros de référence) à la différence qu'il com- porte un transistor 8 monté en série entre la deuxième borne du condensateur 5 et la masse. Ce transistor 8 peut être un transistor bipolaire ou un transistor à effet de champ du type MOSFET ou JFET. La solution consiste à contrôler Ie courant de charge du condensateur 5 par un fonctionnement en mode linéaire du transistor 8. Ce transistor peut aussi avoir la fonction d'interrupteur (mode saturé) pour isoler ou connecter le condensateur 5 à la masse après que la limitation ait été activée. Pour de forte valeur de capaci- tance, le nombre de transistors peut être important, notamment si le délai accordé à la pré-charge est court. Un nombre élevé de transistors entraîne un surcoût important. De plus la mise en parallèle de transistors en mode linéaire complexifie le circuit car l'équilibrage des courants n'est pas naturel. Une autre solution consiste à limiter le courant d'appel par une résistance en série. Cette solution est illustrée par le circuit 20 représenté en fi- gure 3.A first example of a limiting circuit 10 is illustrated in FIG. 2. The circuit 10 is identical to the circuit 1 of FIG. 1 (the common components have the same reference numerals) with the difference that it comprises a transistor 8 mounted in series between the second terminal of the capacitor 5 and the ground. This transistor 8 may be a bipolar transistor or a field effect transistor of the MOSFET or JFET type. The solution is to control the charging current of the capacitor 5 by an operation in linear mode of the transistor 8. This transistor can also have the function of switch (saturated mode) to isolate or connect the capacitor 5 to ground after the limitation has been activated. For high capacitance values, the number of transistors can be large, especially if the delay given to the pre-charge is short. A large number of transistors entails a significant additional cost. Moreover paralleling transistors in linear mode complicates the circuit because balancing currents is not natural. Another solution is to limit the inrush current by a series resistor. This solution is illustrated by the circuit 20 shown in FIG.
Le circuit 20 est identique au circuit 1 de la figure 1 (les composants communs portent les mêmes numéros de référence) à la différence qu'il comporte un interrupteur 9 monté en série entre la deuxième borne du condensateur 5 et la masse ainsi qu'une résistance 11 montée en parallèle avec l'interrupteur 9. Le courant d'appel est alors limité par la résistance 11. L'interrupteur 9 permet d'isoler ou de relier le condensateur à la masse.The circuit 20 is identical to the circuit 1 of FIG. 1 (the common components have the same reference numbers) except that it comprises a switch 9 connected in series between the second terminal of the capacitor 5 and the ground as well as a resistor 11 connected in parallel with the switch 9. The inrush current is then limited by the resistor 11. The switch 9 is used to isolate or connect the capacitor to ground.
Toutefois, les solutions illustrées en figure 2 et 3 posent également certaines difficultés.However, the solutions illustrated in Figure 2 and Figure 3 also pose some difficulties.
Ainsi, notamment dans le cas de la commande de soupapes électro- magnétiques, le délai pour démarrer (i.e. le délai entre le moment ou le conducteur tourne la clef de contact et le moment où le système doit être prêt) est un délai relativement court, de l'ordre de 300 ms au total. Par ailleurs, durant ce délai, de nombreuses autres actions autres que la précharge du condensateur doivent être effectuées (diagnostic, reset, mise en route d'alimentations,...) : dès lors, il y a peu de temps réservé à la précharge du condensateur 5. L'une ou l'autre des solutions des figures 2 ou 3 ont l'inconvénient de limiter le courant par dissipation de chaleur. Dans le cas où il est nécessaire de faire une pré-charge rapide, la puissance à dissiper est importante et conduit à des circuits relativement volumineux et coû- teux par rapport aux temps d'utilisation de la fonction sur le cycle de vie du produit. Pour donner un ordre de grandeur, si on souhaite réaliser une précharge en 4,7 ms (valeur de RC), on peut prendre une résistance 10 R=O, 1Ω et un condensateur 5 ayant une capacité C=47mF. En prenant une valeur de tension d'entrée Ve de 10V (la tension batterie est souvent légèrement inférieure à 12V) et en estimant la valeur maximale du courant d'appel à Ve/R, on obtient un courant d'appel de l'ordre de 100 A, soit une puissance dissipée de l'ordre de 1000W. Dès lors, on a une puissance dis- sipée très importante. Même si Ia résistance présente une faible valeur, une telle configuration nécessite une résistance de puissance de très grande taille. Seules des résistances à piquer peuvent être utilisées et il n'est pas envisageable d'utiliser des composants CMS (Composant Monté en Surface) ; il peut même être nécessaire d'utiliser deux résistances en parallèle. On conçoit donc aisément que ces solutions entraînent non seulement une perte de place mais également un surcoût important.Thus, particularly in the case of the control of electromagnetic valves, the delay to start (ie the time between the moment when the driver turns the ignition key and the moment when the system must be ready) is a relatively short delay, of the order of 300 ms in total. Moreover, during this period, many other actions other than the precharging of the capacitor must be performed (diagnosis, reset, powering up, etc.): therefore, there is little time reserved for preloading The capacitor 5. One or other of the solutions of Figures 2 or 3 have the disadvantage of limiting the current by heat dissipation. In the case where it is necessary to perform a fast pre-charge, the power to be dissipated is large and leads to relatively bulky and expensive circuits compared to the time of use of the function over the life cycle of the product. To give an order of magnitude, if it is desired to perform a precharge in 4.7 ms (RC value), it is possible to take a resistor R = 0, 1Ω and a capacitor 5 having a capacitance C = 47mF. By taking a input voltage value Ve of 10V (the battery voltage is often slightly less than 12V) and by estimating the maximum value of the inrush current at Ve / R, a inrush current of about 100 A is obtained , a dissipated power of the order of 1000W. Therefore, we have a very large scattered power. Even if the resistance has a low value, such a configuration requires a very large power resistance. Only stitch resistors can be used and it is not possible to use CMS (Surface Mounted Component) components; it may even be necessary to use two resistors in parallel. It is therefore easy to see that these solutions entail not only a loss of space but also a significant additional cost.
Dans ce contexte, la présente invention vise à fournir un circuit élévateur de tension permettant de façon économique de réaliser une pré-charge rapide de l'élément capacitif tout en réduisant la place occupée par les com- posants formant ledit circuit.In this context, the present invention aims to provide a voltage booster circuit economically to achieve a rapid pre-charge of the capacitive element while reducing the space occupied by the components forming said circuit.
A cette fin, l'invention propose un circuit élévateur de tension comportant :To this end, the invention proposes a voltage booster circuit comprising:
- une source de tension comportant une première et une seconde bornes, - au moins une inductance dont la première borne est reliée à ladite première borne de ladite source de tension,a voltage source comprising a first and a second terminal, at least one inductor whose first terminal is connected to said first terminal of said voltage source,
- au moins une diode dont l'anode est reliée à la seconde borne de ladite inductance,at least one diode whose anode is connected to the second terminal of said inductor,
- au moins un condensateur dont la première borne est reliée à la ca- thode de ladite diode,at least one capacitor whose first terminal is connected to the cathode of said diode,
- au moins un interrupteur de courant relié entre ladite seconde borne de ladite inductance et ladite seconde borne de ladite source de tension,at least one current switch connected between said second terminal of said inductor and said second terminal of said voltage source,
- un deuxième interrupteur de courant relié entre la seconde borne du- dit condensateur et ladite seconde borne de ladite source de tension, ledit circuit étant caractérisé en ce qu'il comporte des moyens pour permettre au courant de circuler de ladite seconde borne dudit condensateur vers ladite première borne de ladite source de tension. On entend par condensateur, tout type de charge capacitive : il peut s'agir d'un condensateur unique mais également d'un banc capacitif comportant une pluralité de condensateurs montés en série ou en parallèle. De même, le terme inductance couvre une inductance unique mais également une pluralité d'inductances montées en série ou en parallèle.a second current switch connected between the second terminal of said capacitor and said second terminal of said voltage source, said circuit being characterized in that it comprises means for allowing current to flow from said second terminal of said capacitor to said first terminal of said voltage source. Capacitor means any type of capacitive load: it may be a single capacitor but also a capacitive bank having a plurality of capacitors connected in series or in parallel. Similarly, the term inductance covers a single inductance but also a plurality of inductors connected in series or in parallel.
Grâce à l'invention, la configuration proposée présente l'avantage de ne pas limiter le courant par dissipation de chaleur en utilisant une structure qui permet le contrôle de courant. L'ajout de moyens pour permettre au courant de circuler de la seconde borne du condensateur (son pôle négatif dans le cas d'un condensateur chimique) vers la première borne de la source de tension (la borne positive de la batterie dans le cas d'une alimentation par la batterie du véhicule) permet le contrôle du courant de charge du banc capacitif. Ces moyens sont par exemple formés par une diode. En reliant la cathode du condensateur sur la batterie plutôt qu'à la masse au travers de cette diode, on permet la circulation du courant de charge provenant de la démagnétisation de l'inductance.Thanks to the invention, the proposed configuration has the advantage of not limiting the current by heat dissipation by using a structure that allows the current control. The addition of means to allow the current to flow from the second terminal of the capacitor (its negative pole in the case of a chemical capacitor) to the first terminal of the voltage source (the positive terminal of the battery in the case of 'a battery power supply of the vehicle) allows control of the load current of the capacitive bank. These means are for example formed by a diode. By connecting the cathode of the capacitor to the battery rather than to ground through this diode, the flow of charge current from the demagnetization of the inductor is allowed.
Par ailleurs, à l'exception des pertes que l'on retrouve habituellement dans un circuit élévateur, cette solution ne dissipe pas de chaleur supplémentaire contrairement à une résistance de limitation ou à un contrôle de courant par transistor en mode linéaire. Le circuit selon l'invention permet de s'affranchir de l'utilisation de composants de puissance induisant un surcoût important.Moreover, with the exception of the losses that are usually found in a boost circuit, this solution does not dissipate additional heat unlike a limiting resistor or transistor current control in linear mode. The circuit according to the invention eliminates the use of power components inducing significant additional cost.
En outre, cette configuration ne change pas le fonctionnement de l'élévateur de tension et permet de contrôler le courant de charge par une MLI conventionnelle et cela quelque soit l'état de charge du banc capacitif.In addition, this configuration does not change the operation of the voltage booster and allows the load current to be controlled by a conventional PWM regardless of the state of charge of the capacitive bank.
Le deuxième interrupteur permet de déconnecter (et de reconnecter) l'élément capacitif de la masse.The second switch disconnects (and reconnects) the capacitive element from the ground.
Le système selon l'invention peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou se- Ion toutes les combinaisons techniquement possibles.The system according to the invention may also have one or more of the features below, considered individually or in any technically possible combination.
De façon particulièrement avantageuse, lesdits moyens pour permettre au courant de circuler de ladite seconde borne dudit condensateur vers ladite première borne de ladite source de tension sont formés par une se- conde diode dont l'anode est reliée à ladite seconde borne dudit condensateur et la cathode est reliée à ladite première borne de ladite source de tension.Particularly advantageously, said means for allowing the current to flow from said second terminal of said capacitor to said first terminal of said voltage source are formed by a se- a diode condode whose anode is connected to said second terminal of said capacitor and the cathode is connected to said first terminal of said voltage source.
L'invention trouve une application particulièrement intéressante dans le cas où ledit au moins un condensateur est un condensateur chimique.The invention finds a particularly advantageous application in the case where said at least one capacitor is a chemical capacitor.
Selon un mode de réalisation avantageux, le circuit selon l'invention comporte un second condensateur relié entre l'anode de ladite au moins une diode et ladite seconde borne de ladite source de tension.According to an advantageous embodiment, the circuit according to the invention comprises a second capacitor connected between the anode of said at least one diode and said second terminal of said voltage source.
Selon un autre mode de réalisation avantageux, le circuit selon l'invention comporte :According to another advantageous embodiment, the circuit according to the invention comprises:
- n inductances Lbi, avec i variant de 1 à n et n étant un entier naturel supérieur ou égal à 2, chacune des inductances Lbi ayant sa première borne reliée à ladite première borne de ladite source de tension, - n diodes Dbi, avec i variant de 1 à n, chacune des diodes Dbi ayant son anode reliée à la seconde borne de ladite inductance Lbi,n inductances Lbi, with i varying from 1 to n and n being a natural integer greater than or equal to 2, each of the inductors Lbi having its first terminal connected to said first terminal of said voltage source, - N diodes Dbi, with i varying from 1 to n, each of the diodes Dbi having its anode connected to the second terminal of said inductor Lbi,
- n interrupteurs de courant Mbi, avec i variant de 1 à n, chacun des interrupteurs Mbi étant relié entre ladite seconde borne de ladite inductance Lbi et ladite seconde borne de ladite source de tension et cha- cun des interrupteurs Mbi étant commandé de sorte qu'il est passant pendant que les autres interrupteurs sont ouverts, ledit au moins un condensateur ayant sa première borne reliée à la cathode de chacune desdites diodes Dbi.n current switches Mbi, with i varying from 1 to n, each of the switches Mbi being connected between said second terminal of said inductor Lbi and said second terminal of said voltage source and each of the switches Mbi being controlled so that it is conducting while the other switches are open, said at least one capacitor having its first terminal connected to the cathode of each of said diodes Dbi.
Avantageusement, ladite source de tension est formée par la batterie d'un véhicule automobile.Advantageously, said voltage source is formed by the battery of a motor vehicle.
Avantageusement, le circuit selon l'invention assure la conversion d'une tension continue de 12V en une tension continue de 42V.Advantageously, the circuit according to the invention ensures the conversion of a DC voltage of 12V into a DC voltage of 42V.
Là présente invention a également pour objet l'utilisation du circuit selon l'invention pour l'alimentation d'un pont en H pour le contrôle du courant dans un organe électrique de commande, la tension aux bornes dudit au moins condensateur formant la tension d'alimentation. Avantageusement, l'organe électrique est compris dans un actionneur pourvu d'une pièce actionnée, ledit organe électrique commandant en déplacement ladite pièce actionnée.The subject of the present invention is also the use of the circuit according to the invention for supplying an H-bridge for the control of the current in an electrical control device, the voltage at the terminals of the at least one capacitor forming the voltage of the 'food. Advantageously, the electrical member is included in an actuator provided with an actuated part, said electrical member controlling said actuated part in displacement.
Préférentiellement, ledit actionneur est un actionneur pour soupapes électromagnétiques.Preferably, said actuator is an actuator for electromagnetic valves.
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles :Other features and advantages of the invention will emerge clearly from the description which is given below, as an indication and in no way limiting, with reference to the appended figures, among which:
- la figure 1 est une représentation schématique de la structure élec- tronique d'un circuit élévateur de tension illustrant l'état de la technique ;FIG. 1 is a schematic representation of the electronic structure of a voltage booster circuit illustrating the state of the art;
- les figures 2 et 3 illustrent chacun un circuit élévateur de tension incorporant un circuit limiteur de courant selon l'état de la technique ;- Figures 2 and 3 each illustrate a voltage booster circuit incorporating a current limiting circuit according to the state of the art;
- la figure 4 représente un circuit élévateur de tension selon l'invention ; - les figures 5 et 6 illustrent le fonctionnement en limiteur de courant du circuit élévateur de tension selon l'invention tel que représenté en figure 4;FIG. 4 represents a voltage booster circuit according to the invention; FIGS. 5 and 6 illustrate the current limiter operation of the voltage booster circuit according to the invention as represented in FIG. 4;
- la figure 7 représente l'évolution du potentiel Vs en fonction du temps pendant la phase de pré-charge du condensateur ; - la figure 8 représente un circuit élévateur de tension selon un seconde mode de réalisation de l'invention ;FIG. 7 represents the evolution of the potential Vs as a function of time during the pre-charge phase of the capacitor; FIG. 8 represents a voltage booster circuit according to a second embodiment of the invention;
- la figure 9 représente un circuit élévateur de tension selon un troisième mode de réalisation de l'invention ;FIG. 9 represents a voltage booster circuit according to a third embodiment of the invention;
Dans toutes les figures, les éléments communs portent les mêmes numéros de référence.In all the figures, the common elements bear the same reference numbers.
Les figures 1 à 3 ont déjà été décrites en référence à l'état de la technique.Figures 1 to 3 have already been described with reference to the state of the art.
"La figure 4 représente un circuit 100 élévateur de tension -selon l'invention. Le circuit 100 comporte : "Figure 4 shows a circuit voltage elevator 100 -according to the invention The circuit 100 comprises.:
- une source de tension S telle que la tension de la batterie d'un véhicule automobile comportant une première et une seconde bornes (ici une borne +BAT et la masse) délivrant une tension d'entrée Ve, - une inductance Lb dont Ia première borne est reliée à la borne +BAT de la source de tension S,a source of voltage S such that the voltage of the battery of a motor vehicle having a first and a second terminal (here a terminal + BAT and ground) delivering an input voltage Ve, an inductance Lb whose first terminal is connected to the terminal + BAT of the voltage source S,
- une diode Db dont l'anode est reliée à la seconde borne de l'inductance 3, - un condensateur Cb, du type condensateur chimique, dont la première borne (pôle positif) est reliée à la cathode de la diode Db (on notera que ce condensateur Cb n'est généralement pas uniquement et est souvent formé par un banc capacitif),a diode Db whose anode is connected to the second terminal of the inductor 3; a capacitor Cb of the chemical capacitor type, whose first terminal (positive pole) is connected to the cathode of the diode Db (note that this capacitor Cb is generally not only and is often formed by a capacitive bank),
- un interrupteur Mb de courant tel qu'un transistor à effet de champ MOSFET relié entre la seconde borne de l'inductance Lb et la masse,a current switch Mb such as a MOSFET field effect transistor connected between the second terminal of the inductance Lb and the ground,
- un deuxième interrupteur M de courant (qui peut être un transistor MOSFET ou un composant électromécanique du type relai) relié entre la seconde borne (pôle négatif) du condensateur Cb et la masse,a second current switch M (which may be a MOSFET transistor or an electromechanical component of the relay type) connected between the second terminal (negative pole) of the capacitor Cb and the ground,
- une deuxième diode D dont l'anode est reliée au pôle négatif du condensateur Cb et dont la cathode est reliée à la borne +BAT.a second diode D whose anode is connected to the negative pole of the capacitor Cb and whose cathode is connected to the + BAT terminal.
L'interrupteur Mb est commandé par une commande du type MLI ayant un rapport cyclique α avec une période de découpage T.The switch Mb is controlled by a PWM type control having a duty cycle α with a switching period T.
Lors de la pré-charge du condensateur Cb avec limitation du courant d'appel, l'interrupteur M est ouvert de sorte que la seconde borne (pôle né- gatif) du condensateur Cb n'est pas reliée à la masse mais à la batterie.When pre-charging the capacitor Cb with inrush current limiting, the switch M is open so that the second terminal (negative pole) of the capacitor Cb is not connected to ground but to the battery .
Le fonctionnement du circuit 100 en limiteur de courant d'appel est illustré en référence aux figures 5 et 6. Sur chacune de ces figures, les flèches en gras indiquent le sens du courant.The operation of the circuit 100 in inrush current limiter is illustrated with reference to Figures 5 and 6. In each of these figures, the arrows in bold indicate the direction of the current.
Comme illustré en figure 5, lorsque l'interrupteur Mb conduit (le signal de commande de Mb variant de 0 à αT), l'inductance Lb se magnétise et stocke donc de l'énergie qu'elle libère lorsque l'interrupteur Mb s'ouvre.As illustrated in FIG. 5, when the switch Mb conducts (the control signal of Mb varies from 0 to αT), the inductance Lb is magnetized and therefore stores energy that it releases when the switch Mb s' opens.
Après l'ouverture de l'interrupteur Mb (le signal de commande de Mb variant de αT à T)1 comme illustre ëή "figuré 6, les diodes Db et D conduisent à leur tour et l'énergie est ainsi transférée de Pinductance Lb au condensa- teur Cb.After opening the switch Mb (Mb of the control signal varying from αT to T) 1 as illustrated ëή "Figure 6, the diodes Db and D lead to turn and energy is thus transferred to the inductance Lb capacitor Cb.
Lorsque que l'interrupteur Mb conduit à nouveau les diodes sont bloquées et le condensateur ne peut pas libérer son énergie. Elle s'accumule ainsi à chaque période du découpage T. L'ajout de la seconde diode D et la déconnexion du pôle négatif du condensateur Cb de la masse permettent le contrôle du courant de charge du banc capacitif Cb. En reliant la cathode du condensateur Cb sur la batterie plutôt qu'à la masse au travers de cet interrupteur, on permet au courant de charge provenant de la démagnétisation de l'inductance Lb de circuler. Cette configuration ne modifie pas le fonctionnement du circuit 100 en élévateur de tension et permet de contrôler le courant de charge par une MLI conventionnelle et cela quelque soit l'état de charge du banc capacitif Cb.When the Mb switch again conducts the diodes are blocked and the capacitor can not release its energy. It thus accumulates at each time of the cutting of T. The addition of the second diode D and the disconnection of the negative pole of the capacitor Cb from the ground make it possible to control the charging current of the capacitive bank Cb. By connecting the cathode of the capacitor Cb to the battery rather than to the ground through this switch, the charging current from the demagnetization of the inductor Lb is allowed to flow. This configuration does not modify the operation of the circuit 100 in voltage booster and allows to control the charging current by a conventional PWM and whatever the state of charge of the capacitive bank Cb.
A l'exception des pertes que l'on retrouve habituellement dans un convertisseur, cette solution ne dissipe pas de chaleur supplémentaire contrairement à une résistance de limitation ou à un contrôle de courant par transistor en mode linéaire.With the exception of the losses that are usually found in a converter, this solution does not dissipate additional heat unlike a limiting resistor or transistor current control in linear mode.
On notera qu'au départ, l'interrupteur M est ouvert pour l'obtention d'une pré-charge sans courant d'appel (i.e. avec courant contrôlé) du condensateur Cb. Quand la tension Vc aux bornes du condensateur Cb est égale à Ve (voire légèrement supérieure pour éviter tout courant d'appel) on peut fermer M et fonctionner en circuit élévateur de tension.It will be noted that initially, the switch M is open to obtain a pre-charge without inrush current (i.e. with controlled current) of the capacitor Cb. When the voltage Vc across the capacitor Cb is equal to Ve (or slightly higher to avoid any inrush current), it is possible to close M and operate in a voltage booster circuit.
On notera en outre que le potentiel Vs (potentiel du point S correspondant au pôle positif du condensateur Cb par rapport à la masse) n'est pas continu pendant Ia phase de pré-charge du condensateur Cb. La figure 7 illustre ce phénomène en représentant la tension Vs en fonction du temps. Le potentiel Vs est découpé (haché) à la fréquence da la MLI (de l'ordre de 70 kHz dans le cas de l'application relative aux soupapes électromagnétiques). En effet, lorsque l'interrupteur Mb conduit, les diodes Db et D sont bloquées ce qui fixe le potentiel Vs à une tension qui varie entre 0 et Vc. Lorsque l'interrupteur Mb est ouvert, les diodes Db et D conduisent ce qui fixe le potentiel Vs à Ve+Vfd+Vc où Vfd représente la chύtte de potentiel aux bornes de la diode D.It will further be noted that the potential Vs (potential of the point S corresponding to the positive pole of the capacitor Cb with respect to the ground) is not continuous during the pre-charge phase of the capacitor Cb. FIG. 7 illustrates this phenomenon by representing the voltage Vs as a function of time. The potential Vs is cut (chopped) at the frequency of the MLI (of the order of 70 kHz in the case of the application relating to the electromagnetic valves). Indeed, when the switch Mb leads, diodes Db and D are blocked which sets the potential Vs at a voltage that varies between 0 and Vc. When the switch Mb is open, the diodes Db and D conduct which sets the potential Vs to Ve + Vfd + Vc where Vfd represents the voltage drop across the diode D.
Dans des applications où la tension Vs doit présenter le moins de discontinuités possibles pendant la phase de pré-charge du condensateur, deux solutions sont illustrées sur les figures 8 et 9. La figure 8 représente ainsi un circuit 200 élévateur de tension selon un second mode de réalisation de l'invention permettant de s'affranchir du problème de discontinuité de Vs.In applications where the voltage Vs must have the least possible discontinuities during the pre-charge phase of the capacitor, two solutions are illustrated in FIGS. 8 and 9. FIG. 8 thus represents a voltage booster circuit 200 according to a second embodiment of the invention making it possible to overcome the problem of discontinuity of Vs.
Le circuit 200 est identique au circuit 100 de la figure 4 à la différence qu'il comporte un condensateur C additionnel relié entre l'anode de la diode Db et la masse. La valeur de la tension aux bornes de ce condensateur est donc égale à la valeur du potentiel Vs.The circuit 200 is identical to the circuit 100 of FIG. 4 with the difference that it comprises an additional capacitor C connected between the anode of the diode Db and the ground. The value of the voltage across this capacitor is therefore equal to the value of the potential Vs.
Ce condensateur C est un condensateur à faible courant de fuite et faible valeur (des condensateurs de type « film » ou céramique de faible capacité peuvent être utilisés). Le condensateur C est connecté entre la masse et la sortie S pour maintenir le potentiel Vs lorque l'interrupteur Mb conduit. Ce condensateur C est connecté en permanence donc il est initialement chargé à la tension de batterie (aux chutes de tension près).This capacitor C is a capacitor with a low leakage current and a low value (capacitors of the "film" or ceramic type of small capacity can be used). The capacitor C is connected between the ground and the output S to maintain the potential Vs when the switch Mb leads. This capacitor C is permanently connected so it is initially charged to the battery voltage (at near voltage drops).
Lorsque l'interrupteur Mb conduit, le potentiel Vs est maintenue à la tension de charge du condenateur C. Le condensateur C fournit le courant d'une éventuelle charge connectée en sortie. Lorque l'interrupteur Mb est ouvert, les diodes Db et D conduisent et le courant charge non seulement ce condensateur C mais aussi le banc capacitif Cb. La tension aux bornes de C suit la tension imposée par le banc capacitif Cb. Leurs dimensionnements dépendent évidemment de la charge connectée en sortie lors du démarrage.When the switch Mb leads, the potential Vs is maintained at the load voltage of the capacitor C. The capacitor C supplies the current of a possible load connected to the output. When the switch Mb is open, the diodes Db and D conduct and the current charges not only this capacitor C but also the capacitive bank Cb. The voltage across C follows the voltage imposed by the capacitive bank Cb. Their sizing obviously depends on the load connected at the output during startup.
La figure 9 représente un circuit 300 élévateur de tension selon un troisième mode de réalisation de l'invention permettant également de s'affranchir du problème de discontinuité de Vs.FIG. 9 represents a voltage booster circuit 300 according to a third embodiment of the invention also making it possible to overcome the Vs discontinuity problem.
Contrairement aux circuits 100 et 200 des figures 4 et 8 qui sont des circuits monocellulaires, le circuit 300 est un circuit multicellulaire ; en d'autres termes, ce circuit 300 comporte n cellules chacune constituée par un triplet (Lbi, Dbi, Mbi) d'inductance-diode-interrupteur (avec i variant de 1 à n, n étant un entier naturel supérieur strictement à 1). Dans l'exemple de la figure 9, n est égal à 2. Chacune des inductances Lbi a sa première borne reliée à la borneUnlike the circuits 100 and 200 of FIGS. 4 and 8 which are single-cell circuits, the circuit 300 is a multicell circuit; in other words, this circuit 300 comprises n cells each constituted by a triplet (Lbi, Dbi, Mbi) of inductance-diode-switch (with i varying from 1 to n, n being a natural integer greater than 1) . In the example of FIG. 9, n is equal to 2. Each of the inductors Lbi has its first terminal connected to the terminal
+BAT.+ BAT.
Chacune des diodes Dbi a son anode reliée à la seconde borne de l'inductance Lbi. Chacun des interrupteurs Mbi est relié entre la seconde borne de l'inductance Lbi et la masse.Each of the diodes Dbi has its anode connected to the second terminal of the inductor Lbi. Each of the switches Mbi is connected between the second terminal of the inductor Lbi and the ground.
Le condensateur Cb à pré-charger a sa première borne (pôle positif) reliée à la cathode de chacune des diodes Dbi. De façon identique aux circuits 100 et 200, le circuit 300 comporte :The capacitor Cb to be pre-charged has its first terminal (positive pole) connected to the cathode of each of the diodes Dbi. Like circuits 100 and 200, the circuit 300 comprises:
- un interrupteur M de courant relié entre le pôle négatif du condensateur Cb et la masse,a current switch M connected between the negative pole of the capacitor Cb and the ground,
- une diode D dont l'anode est reliée au pôle négatif du condensateur Cb et dont la cathode est reliée à la borne +BAT. On a donc ici plusieurs cellules en parallèle formant plusieurs circuits élévateurs. Ces cellules ne sont pas synchronisées de sorte que les différents interrupteurs Mbi ne ferment pas ensembles (ils ferment chacun leur tour). Ce type de configuration multicellulaire permet de réduire les ondulations du courant de charge du condensateur Cb (il faut bien entendu un nombre suffisant de cellules pour garantir la continuité de charge du condensateur Cb ; i.e. n est souvent supérieur à 2). L'avantage d'une configuration multicellulaire par rapport à une cellule unique est qu'il permet de réduire considérablement les ondulations de courant (pour obtenir une ondulation identique avec un système monocellulaire, il faudrait une inductance ayant une valeur très importante) et de répartir la puissance.a diode D whose anode is connected to the negative pole of the capacitor Cb and whose cathode is connected to the + BAT terminal. We have here several cells in parallel forming several elevator circuits. These cells are not synchronized so that the different switches Mbi do not close together (they close each turn). This type of multicellular configuration makes it possible to reduce the ripple of the charging current of the capacitor Cb (a sufficient number of cells must of course be provided to guarantee the continuity of charge of the capacitor Cb; i.e. n is often greater than 2). The advantage of a multicellular configuration with respect to a single cell is that it makes it possible to reduce the current ripple considerably (to obtain an identical ripple with a single-cell system, it would be necessary to have an inductance having a very large value) and to distribute the power.
Le déphasage entre les cellules permet de garantir qu'au moins une des diodes Dbi est conductrice à chaque instant. Dès lors, le potentiel Vs est maintenue à la valeur à Ve+Vfd+Vc où Vfd représente la chutte de potentiel aux bornes de la diode D. Sur l'exemple présenté en figure 9, l'interrupteur Mb1 est fermé (donc l'interrupteur Mb2 est ouvert) et la diode Db2 est conductrice. Les flèches respectivement hachurées et en gras indiquent les deux chemins possibles du courant selon que l'on est dans la phase de magnétisation de l'inductance Lb 1 ou de pré-charge du condensateur Cb.The phase shift between the cells makes it possible to guarantee that at least one of the diodes Dbi is conducting at each instant. Therefore, the potential Vs is maintained at the value at Ve + Vfd + Vc where Vfd represents the potential drop across the diode D. In the example shown in FIG. 9, the switch Mb1 is closed (therefore the switch Mb2 is open) and the diode Db2 is conductive. The respectively hatched and bold arrows indicate the two possible paths of the current depending on whether one is in the magnetization phase of the inductance Lb 1 or pre-charge of the capacitor Cb.
Bien entendu, l'invention n'est pas limitée au mode de réalisation qui vient d'être décrit.Of course, the invention is not limited to the embodiment just described.
Notamment, l'invention a été plus particulièrement décrite dans le cas d'une utilisation d'une diode permettant de relier le pied du condensateur à la borne +BAT mais d'autres moyens permettant au courant de circuler de la seconde borne du condensateur vers la borne +BAT peuvent également être utilisés ; on peut ainsi utiliser un interrupteur en série entre le pôle négatif du condensateur et la borne +BAT, cet interrupteur se fermant au moment de l'ouverture de l'interrupteur Mb. De même, les modes de réalisation décrits mettent en œuvre des transistors MOSFET utilisés en tant qu'interrupteurs mais d'autres types de transistors (IGBT par exemple) peuvent également être utilisés sans sortir du cadre de l'invention.In particular, the invention has been more particularly described in the case of using a diode for connecting the foot of the capacitor to the + BAT terminal but other means allowing the current to flow from the second terminal of the capacitor to the + BAT terminal can also be used; it is thus possible to use a switch in series between the negative pole of the capacitor and the + BAT terminal, this switch closing when the switch Mb is opened. Similarly, the embodiments described implement MOSFET transistors used as switches, but other types of transistors (IGBT for example) can also be used without departing from the scope of the invention.
Enfin, on pourra remplacer tout moyen par un moyen équivalent. Finally, any means can be replaced by equivalent means.

Claims

REVENDICATIONS
1. Circuit (100) élévateur de tension comportant :A voltage booster circuit (100) comprising:
- une source (S) de tension comportant une première (+BAT) et une seconde bornes,a source (S) of voltage comprising a first (+ BAT) and a second terminal,
- au moins une inductance (Lb) dont la première borne est reliée à ladite première borne (+BAT) de ladite source (S) de tension,at least one inductor (Lb) whose first terminal is connected to said first terminal (+ BAT) of said voltage source (S),
- au moins une diode (Db) dont l'anode est reliée à la seconde borne de ladite inductance (Lb), - au moins un condensateur (Cb) dont la première borne est reliée à la cathode de ladite diode (Db),at least one diode (Db) whose anode is connected to the second terminal of said inductor (Lb), at least one capacitor (Cb) whose first terminal is connected to the cathode of said diode (Db),
- au moins un interrupteur (Mb) de courant relié entre ladite seconde borne de ladite inductance (Lb) et ladite seconde borne de ladite source (S) de tension, - un deuxième interrupteur (M) de courant relié entre la seconde borne dudit condensateur (Cb) et ladite seconde borne de ladite source (S) de tension, ledit circuit (100) étant caractérisé en ce qu'il comporte des moyens (D) pour permettre au courant de circuler de ladite seconde borne dudit conden- sateur (Cb) vers ladite première borne (+BAT) de ladite source (S) de tension.at least one current switch (Mb) connected between said second terminal of said inductor (Lb) and said second terminal of said voltage source (S); a second current switch (M) connected between the second terminal of said capacitor (Cb) and said second terminal of said voltage source (S), said circuit (100) being characterized in that it comprises means (D) for enabling the current to flow from said second terminal of said capacitor (Cb ) to said first terminal (+ BAT) of said voltage source (S).
2. Circuit (100) selon la revendication 1 caractérisé en ce que lesdits moyens pour permettre au courant de circuler de ladite seconde borne dudit condensateur (Cb) vers ladite première borne (+BAT) de ladite source (S) de tension sont formés par une seconde diode (D) dont l'anode est reliée à ladite seconde borne dudit condensateur (Cb) et la cathode est reliée à ladite première borne (+BAT) de ladite source (S) de tension.2. Circuit (100) according to claim 1 characterized in that said means for enabling current to flow from said second terminal of said capacitor (Cb) to said first terminal (+ BAT) of said voltage source (S) are formed by a second diode (D) whose anode is connected to said second terminal of said capacitor (Cb) and the cathode is connected to said first terminal (+ BAT) of said voltage source (S).
3. Circuit (100) selon l'une des revendications précédentes caractérisé en ce que ledit au moins un condensateur (Cb) est un condensateur chimique.3. Circuit (100) according to one of the preceding claims characterized in that said at least one capacitor (Cb) is a chemical capacitor.
4. Circuit (200) selon l'une des revendications précédentes caractérisé en ce qu'il comporte un second condensateur (C) relié entre l'anode de ladite au moins une diode (Db) et ladite seconde borne de ladite source (S) de tension.4. Circuit (200) according to one of the preceding claims characterized in that it comprises a second capacitor (C) connected between the anode of said at least one diode (Db) and said second terminal of said source (S) of voltage.
5. Circuit (300) selon l'une des revendications 1 à 3 caractérisé en ce qu'il comporte : - n inductances Lbi, avec i variant de 1 à n et n étant un entier naturel supérieur ou égal à 2, chacune des inductances Lbi ayant sa première borne reliée à ladite première borne (+BAT) de ladite source (S) de tension,5. Circuit (300) according to one of claims 1 to 3 characterized in that it comprises: - n inductances Lbi, with i varying from 1 to n and n being a natural integer greater than or equal to 2, each of the inductances Lbi having its first terminal connected to said first terminal (+ BAT) of said voltage source (S),
- n diodes Dbi, avec i variant de 1 à n, chacune des diodes Dbi ayant son anode reliée à la seconde borne de ladite inductance Lbi,n diodes Dbi, with i varying from 1 to n, each of the diodes Dbi having its anode connected to the second terminal of said inductor Lbi,
- n interrupteurs de courant Mbi, avec i variant de 1 à n, chacun des interrupteurs Mbi étant relié entre ladite seconde borne de ladite inductance Lbi et ladite seconde borne de ladite source (S) de tension et chacun des interrupteurs Mbi étant commandé de sorte qu'il est pas- sant pendant que les autres interrupteurs sont ouverts, ledit au moins un condensateur (Cb) ayant sa première borne reliée à la cathode de chacune desdites diodes Dbi.n current switches Mbi, with i varying from 1 to n, each of the switches Mbi being connected between said second terminal of said inductor Lbi and said second terminal of said source (S) of voltage and each of the switches Mbi being controlled so it is pasant while the other switches are open, said at least one capacitor (Cb) having its first terminal connected to the cathode of each of said Dbi diodes.
6. Circuit selon l'une des revendications précédentes caractérisé en ce que ladite source de tension est formée par la batterie d'un véhicule au- tomobile.6. Circuit according to one of the preceding claims characterized in that said voltage source is formed by the battery of a vehicle au- tomobile.
7. Circuit élévateur de tension selon l'une des revendications précédentes assurant la conversion d'une tension continue de 12V en une tension continue de 42V.7. Voltage boosting circuit according to one of the preceding claims ensuring the conversion of a DC voltage of 12V into a DC voltage of 42V.
8. Utilisation du circuit selon l'une des revendications 1 à 6 pour l'alimentation d'un pont en H pour le contrôle du courant dans un organe électrique de commande, Ia tension aux bornes dudit au moins condensateur formant la tension d'alimentation.8. Use of the circuit according to one of claims 1 to 6 for the supply of an H bridge for controlling the current in an electrical control device, the voltage across said at least one capacitor forming the supply voltage .
9. Utilisation selon la revendication précédente caractérisée en ce que l'organe électrique est compris dans un actionneur pourvu d'une pièce actionnée, ledit organe électrique commandant en déplacement ladite pièce actionnée.9. Use according to the preceding claim characterized in that the electrical member is included in an actuator provided with an actuated part, said electrical member controlling displacement said actuated part.
10. Utilisation selon la revendication précédente caractérisé en ce que ledit actionneur est un actionneur pour soupapes électromagnétiques. 10. Use according to the preceding claim characterized in that said actuator is an actuator for electromagnetic valves.
EP08872316A 2007-11-20 2008-11-20 Voltage step-up circuit Withdrawn EP2220752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0708144A FR2923962B1 (en) 2007-11-20 2007-11-20 VOLTAGE ELEVATOR CIRCUIT
PCT/FR2008/001622 WO2009101269A1 (en) 2007-11-20 2008-11-20 Voltage step-up circuit

Publications (1)

Publication Number Publication Date
EP2220752A1 true EP2220752A1 (en) 2010-08-25

Family

ID=39092637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08872316A Withdrawn EP2220752A1 (en) 2007-11-20 2008-11-20 Voltage step-up circuit

Country Status (8)

Country Link
US (1) US20100315048A1 (en)
EP (1) EP2220752A1 (en)
JP (1) JP2011504088A (en)
KR (1) KR20100092948A (en)
CN (1) CN101953059A (en)
BR (1) BRPI0820580A2 (en)
FR (1) FR2923962B1 (en)
WO (1) WO2009101269A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012202868A1 (en) * 2012-02-24 2013-08-29 Robert Bosch Gmbh Direct voltage tapping arrangement for battery direct inverter for electrically operated vehicle, has step-up-chopper providing direct voltage to tapping terminals based on potential between half bridge circuit and reference terminal
CN102879678B (en) * 2012-09-24 2015-06-03 北京二七轨道交通装备有限责任公司 Tester for electromagnetic valve
EP2713494A1 (en) * 2012-09-28 2014-04-02 Siemens Aktiengesellschaft Energy feed device for feeding electrical energy generated from kinetic energy into an alternating current distributor network
EP2713499A1 (en) * 2012-09-28 2014-04-02 Siemens Aktiengesellschaft Energy feed device with symmetrical connection of a direct current source to a grounded star point of a three-phase current network
CA2818450C (en) 2013-06-17 2020-04-07 Mcmaster University Reconfigurable hybrid energy storage system for electrified vehicles
FR3007227B1 (en) 2013-06-18 2015-06-05 Renault Sa METHOD FOR MANAGING A CHARGE SUPPLIED BY A BATTERY-POWERED SINGLE CONVERTER, AND CORRESPONDING SYSTEM
CN104393755B (en) * 2014-11-20 2017-02-22 无锡中感微电子股份有限公司 High-efficiency booster circuit
CN115853711A (en) 2015-10-26 2023-03-28 通用电气公司 Pre-charging a capacitor bank
US10058706B2 (en) * 2016-09-09 2018-08-28 Qualcomm Incorporated Bi-directional switching regulator for electroceutical applications
US20210177989A1 (en) * 2018-08-30 2021-06-17 Rowan University Methods of Treating or Preventing Amyotrophic Lateral Sclerosis
CN110086333A (en) * 2019-05-31 2019-08-02 合肥巨一动力系统有限公司 A kind of pre-charge circuit of high power B OOST booster circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394076A (en) * 1993-08-25 1995-02-28 Alliedsignal Inc. Pulse width modulated power supply operative over an extended input power range without output power dropout
DE19833830A1 (en) * 1998-07-28 2000-02-03 Bosch Gmbh Robert System for energizing magnetic valves controlling fuel injection in IC engine, using increased starting voltage and engine operating characteristic(s)
JP2003111396A (en) * 2001-09-28 2003-04-11 Shindengen Electric Mfg Co Ltd Switching power source
ITTO20020263A1 (en) * 2002-03-25 2003-09-25 Sila Holding Ind Spa INTERFACE CIRCUIT BETWEEN A CONTINUOUS VOLTAGE SOURCE AND A LOAD PILOTING CIRCUIT, PARTICULARLY FOR ON BOARD USE
US6936994B1 (en) * 2002-09-03 2005-08-30 Gideon Gimlan Electrostatic energy generators and uses of same
KR20070043789A (en) * 2004-08-17 2007-04-25 로무 가부시키가이샤 Power supply apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009101269A1 *

Also Published As

Publication number Publication date
JP2011504088A (en) 2011-01-27
WO2009101269A1 (en) 2009-08-20
US20100315048A1 (en) 2010-12-16
BRPI0820580A2 (en) 2015-06-16
FR2923962B1 (en) 2009-11-20
KR20100092948A (en) 2010-08-23
CN101953059A (en) 2011-01-19
FR2923962A1 (en) 2009-05-22

Similar Documents

Publication Publication Date Title
EP2220752A1 (en) Voltage step-up circuit
EP3105845B1 (en) Dc voltage supply system configured to precharge a smoothing capacitor before supplying a load
EP2033302B1 (en) Method and device for charging an electrical energy storage element, in particular an ultracapacitor
EP2079148B1 (en) Electric circuit
EP2904690B1 (en) Electrical network for automotive vehicle
EP2941811B1 (en) System comprising a battery formed from battery modules, and corresponding method for connecting or disconnecting a battery module
FR3003705A1 (en) AUTOMOTIVE VEHICLE DRIVER NETWORK AND METHOD FOR MANAGING IT, AND MEANS FOR IMPLEMENTING THE METHOD
EP2731229A1 (en) System for pre-charging a capacitance by a battery
WO2002073783A2 (en) Auxiliary switching circuit for a chopping converter
WO2012101375A2 (en) Device and method for balancing the state of charge of a power source having electrochemical storage and consisting of a plurality of power-storage cells
FR3036222A1 (en) METHOD FOR CONTROLLING A CHANGE IN THE OPERATING STATE OF AN ELECTROMECHANICAL MEMBER, FOR EXAMPLE A RELAY, AND CORRESPONDING DEVICE
EP4222833A1 (en) Dynamic system for balancing charging voltage for battery modules
EP2206232A2 (en) System for powering an electric machine
WO2019110297A1 (en) Dc-dc converter with pre-charging of a first electrical grid from a second electrical grid
EP3118989B1 (en) Rotary electric machine with reversible multiphase dual voltage for a motor vehicle, and corresponding electrical network with two sub-networks
WO2008142332A2 (en) Electronic switch device for controlling a high power load supply in an automobile
FR2912850A1 (en) Public transportation vehicle e.g. tramcar, has step down transformer with sides connected to terminals of battery and direct current bus respectively, where transformer delivers electrical energy on bus
EP2260519B1 (en) Device for controlling an ultrasonic piezoelectric actuator
WO2011121238A2 (en) Motor vehicle electrical circuit provided with a self-contained rectifier
FR2910850A1 (en) Public transport vehicle e.g. bus, has step-down transformer transforming electric energy extracted from bus to capacitor under step down voltage, which is lower than maximum load voltage and higher than nominal continuous voltage
FR2535543A1 (en) Converter with control supplied by a circuit aiding switching.
EP1176692A1 (en) Device for smoothing voltage and current transients when connecting or disconnecting a battery

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: BOOSTER CIRCUIT WITH DC BUS PRECHARGE CIRCUIT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BENDANI, LARBI

Inventor name: ROUX, JEAN-BAPTISTE

Inventor name: DE SOUSA, LUIS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120308