Analyse optischer Spektren mit großer Messdynamik
Die Erfindung betrifft ein Verfahren zur Bestimmung des Frequenzspektrums einer sich in einem Wellenleiter in Vorwärtsrichtung ausbreitenden Probenstrahlung, wobei in entgegengesetzter Richtung eine erste Pumpstrahlung in den Wellenleiter eingekoppelt wird, die stimulierte Brillouin Streuung (SBS) an der Probenstrahlung verursacht, wobei die Frequenz der Pumpstrahlung derart verändert wird, dass der schmalbandige und um die Brilloin-Verschiebung verschobene Gewinn-Peak durch das Frequenzspektrum der Probenstrahlung wandert und die jeweiligen spektralen Anteile selektiv verstärkt. Die Intensität der Probenstrahlung wird vermittels eines Detektors gemessen, wobei das Ausgangssignal des Detektors in Abhängigkeit der veränderten Frequenz der Pumpstrahlung registriert wird und wobei aus der Veränderung des Ausgangssignals das Frequenzspektrum der Probenstrahlung bestimmt wird. Die Erfindung betrifft zudem ein System zur Umsetzung des Verfahrens.
Insbesondere in der optischen Nachrichtentechnik aber auch in anderen Bereichen von Wissenschaft und Technik ist die Ausmessung der Spektren optischer Signale von Bedeutung. Dabei sind verschiedene Methoden bekannt, mit denen sich ein Spektrum vermessen lässt. Beispielsweise können dazu Interferometer, Gitterspektrometer oder optische Spektrumanalysatoren (OSA) benutzt werden. Es hat sich jedoch als besonders vorteilhaft erwiesen, sich zur Messung der Amplitudenverteilung in einem Spektrum des oben genannten Verfahrens zu bedienen, das auf der Grundlage der SBS basiert. Dieses Verfahren wird beispielsweise in der DE 10 2005 040 968 A1 beschrieben.
Bei der Umsetzung des Verfahrens erzeugt ein Pumplaser in einer Faser einen schmalbandigen Gewinn über den nichtlinearen Effekt der stimulierten Brillouin Streuung. Dieser Gewinn wird über das zu messende Spektrum „geschoben", wobei die innerhalb des Gewinns verstärkten Anteile in Abhängigkeit von der Verschiebung der zu messenden Amplitudenverteilung gleichen. Dieses Verfahren hat gegenüber den anderen genannten zum einen den Vorteil, dass es Messungen mit einer hohen Auflösung im Femtometer-Bereich ermöglicht. Zum anderen ist das Verfahren einfach und kostengünstig umzusetzen, da weder schnelle Photodioden noch elektrische Spektrumanalysatoren benötigt werden. Außerdem wird das Signal direkt im optischen Bereich gemessen, so dass keine das Ergebnis verfälschenden Intermodulationsprodukte auftreten.
Allerdings wird die sich in Vorwärtsrichtung in der Faser ausbreitende Strahlung vermittels eines optischen Photodetektors gemessen, der die gesamte ankommende Intensität und nicht nur wellenlängenselektiv den interessierenden Bereich aufnimmt. Somit geht bei dieser Art der optischen Spektrumanalyse nicht nur der durch SBS verstärkte Ausschnitt des zu vermessenden Spektrums in das Ergebnis ein. Stattdessen wird das Ergebnis sowohl durch die in der Glasfaser gedämpfte Intensität des kompletten zu vermessenden Spektrums verfälscht, die auf den Detektor trifft. Zudem gelangen auch Teile der Pumpwelle durch Übersprechens des Zirkulators direkt in den Detektor. Diese „unerwünschten" Anteile stellen das Grundrauschen des Messverfahrens dar, wobei der Quotient aus dem Signal und dem Grundrauschen die Messdynamik des Verfahrens bestimmt.
Die Aufgabe der Erfindung ist es nunmehr, ein Verfahren zur Bestimmung der spektralen Anteile eines Spektrums mittels SBS zu schaffen, das wegen des abgesenkten Anteils des Grundrauschens eine erhöhte Messdynamik aufweist und dabei robust und zuverlässig ist. Zudem ist es Aufgabe der Erfindung, ein System zur Umsetzung des Verfahrens zu schaffen.
Diese Aufgaben werden durch das Verfahren nach Anspruch 1 und das System nach Anspruch 6 gelöst. Vorteilhafte Ausgestaltungen sind in den jeweiligen Unteransprüchen genannt.
Der wesentliche Grundgedanke der Erfindung liegt darin, die Intensität der ungewünschten in den Detektor gelangenden Anteile, also das Grundrauschen, im wahrsten Sinne des Wortes abzusenken, indem diese Anteile über einen breiten Frequenzbereich mittels einer besonders breitbandigen durch SBS erzeugten Anti- Stokes-Welle (Brillouin-Verlust) geschwächt werden. Dabei wird die breitbandige Anti-Stokes-Welle durch zumindest eine zweite Pumpstrahlung erzeugt, die zusätzlich zur ersten, den schmalen Messpeak verursachenden Pumpstrahlung auch entgegen der sich in Vorwärtsrichtung ausbreitenden Probenstrahlung in den Lichtleiter eingekoppelt wird. Diese zweite Pumpstrahlung kann ein Teil der einer einzigen gemeinsamen Pumpquelle entnommenen Pumpstrahlung sein. Sie kann aber auch in einer vorteilhaften Ausführungsform durch zumindest eine zweite oder auch durch mehrere Pumpquellen erzeugt werden. Das erfindungsgemäßes Verfahren zeichnet sich somit gewissermaßen durch eine Überlagerung eines Anti- Stokes-Verlustes und Stokes-Gewinns aus. Dabei wird die frequenzselektive Dämpfung in Folge des Anti-Stokes-Verlusts für die Reduzierung der oben beschriebenen ungewollten Signalanteile am Eingang des Detektors genutzt.
Zur Erklärung der SBS sei hier noch einmal zusammengefasst, dass eine Pumpwelle mit der optischen Frequenz fp unterhalb des Schwellwerts in einer Glasfaser bei einer Frequenz von fp - fB einen Brillouin -Gewinn (Stokes) und bei fp + fB einen Brillouin-Verlust (Anti-Stokes) für gegenläufige Signalwellen erzeugt, wobei fB die Brillouin-Verschiebung ist. Bei einer Pumpwellenlänge von 1550 nm ist fB in Standard Singlemode Glasfasern (SSMF) etwa 11 GHz. Die Verstärkungs- und Verlustbandbreite der SBS ist besonders klein und beträgt in SSMF etwa 35 MHz für unmoduliertes Pumplicht einer Wellenlänge von 1550 nm.
Prinzipiell lässt sich die Verstärkungs- und Verlustbandbreite der SBS durch eine verbreiterte Pumpwelle erhöhen. Dabei kann beispielsweise der Pumplaser über eine direkte Modulation in seiner Bandbreite vergrößert werden. Ist die Bandbreite der Pumpwelle wesentlich größer als die natürliche Brillouin-Bandbreite, so haben sowohl der Gewinn als auch der Verlust die gleiche Bandbreite wie die Pumpwelle. Es ist bekannt, dass die Verstärkungsbandbreite der SBS mit einem Pumplaser auf das doppelte der Brillouin-Verschiebung erweitert werden kann. Mit mehreren
Pumplasern kann die Verstärkungsbandbreite entsprechend auf das Mehrfache der Brillouin-Verschiebung erweitert werden.
Erfindungsgemäß wird also die zweite Pumpstrahlung parallel zur ersten Pumpstrahlung in den Wellenleiter eingekoppelt, wobei die zweite Pumpstrahlung einen im Verhältnis zur ersten Pumpstrahlung um ein Vielfaches, also mindestens um das Doppelte, breiteren Brillouin-Verlust erzeugt. Die Frequenz der zweiten Pumpstrahlung ist so zu wählen, dass der Verlust-Peak der zweiten Pumpstrahlung im Bereich des Frequenzspektrums der Probenstrahlung liegt, so dass die sich frequenzmäßig überschneidenden Frequenzanteile der Probenstrahlung durch den Verlust-Peak kompensiert werden. Wie gehabt, wird der Brillouin-Gewinn der ersten Pumpstrahlung durch das Spektrum verschoben und verstärkt jeweils einen kleinen Ausschnitt des zu messenden Spektrums. Je nach dem kann es vorteilhaft sein, auch den breiten Verlust-Peak inbesondere unabhängig davon zu verschieben. In einer besonders einfachen Ausführungsform bleibt er jedoch in seiner Frequenzverteilung konstant.
Die natürliche Verstärkungsbandbreite des Stokes-Gewinns von wenigen Megahertz wird somit für das Abtasten des Probespektrums verwendet. Damit werden alle spektralen Anteile verstärkt, die sich entgegen der Richtung der Pumpwelle ausbreiten und im Wellenlängenbereich des Gewinns liegen, während alle Anteile, die im Wellenlängenbereich des Verlusts-Peaks liegen, gedämpft werden. Der Anti-Stokes-Verlust kann somit unerwünschte Signalanteile frequenzselektiv stark absenken.
Um eine möglichst vollständige Kompensation des durch das Probespektrum im Detektor verursachte Rauschen zu gewährleisten, ist es besonders vorteilhaft, wenn der Verlust-Peak der zweiten Pumpstrahlung mindestens die Breite des Frequenzspektrums der Probenstrahlung aufweist. Zudem ist es zum Zwecke der kompletten Kompensation der durch das Probespektrum verursachten Detektorsignals vorteilhaft, die Höhe des Verlust-Peaks durch Einstellung der Pumpquelle so einzurichten, dass sie mit entgegengesetztem Vorzeichen zumindest nahezu der Höhe des Frequenzspektrums der Probenstrahlung entspricht.
Nachfolgend wird die Erfindung anhand der Figuren 1 bis 3 näher erläutert. Es zeigen:
Figur 1 : ein System zur Umsetzung des Verfahrens und
Figur 2: erfindungsgemäß überlagerte Spektren.
In Figur 1 ist ein System zur Umsetzung des Verfahrens schematisch dargestellt. Dabei wird das Emissionsspektrum eines Pumplasers 1 durch direkte Modulation mittels einer Rauschquelle 3 in der Bandbreite verbreitert. Auf diese Weise ist eine Erweiterung auf etwas das doppelte der Brillouin-Verschiebung möglich. Mit dem in Artikel „Potential ultra wide slow-light bandwidth enhancement", Optics Express 14 (2006), S. 11082-11087, beschriebenen Verfahren kann die Bandbreite sogar auf das Mehrfache der Brillouin-Verschiebung erweitert werden. Der Pumplaser 1 kann zudem in seiner Wellenlänge verschoben werden.
Der weitere Pumplaser 2 emittiert Licht mit einer geringen Bandbreite, das sich ebenfalls in der Wellenlänge verschieben lässt. Er erzeugt einen schmalen Brillouin-Gewinn der als „Messpeak" eingesetzt wird. Das Licht der beiden Pumplaser 1 und 2 wird mittels eines optischen Kopplers 4 zu einem Strahl zusammengeführt, der in das Tor a eines optischen Zirkulators 5 eingespeist wird. Der Zirkulator 5 gibt in Tor a eingespeistes Licht über Tor b und das in Tor b eingespeiste Licht über Tor c aus. Alle anderen Wege sind bis auf Effekte des Übersprechens gesperrt. Die beiden Spektren der Pumplaser 1 und 2 werden über den Zirkulator in das Tor B der Glasfaser 6 eingekoppelt. Die Glasfaser 6 ist das physikalische Medium in dem der nichtlineare Prozess der SBS am Emissionsspektrum stattfindet..
Das unbekannte Emissionsspektrum eines zu untersuchenden Lasers 7 wird in Tor A der Glasfaser 6 eingespeist und trifft dort auf die „entgegen kommende" Pumpstrahlung. In der Faser 6 geschieht die SBS, wobei der optische Zirkulator 5 das in Tor b einlaufende Licht über Tor c ausgibt, von wo es einem optischen Photodetektor 8 zugeführt wird. Alle an Tor c auslaufenden Signalanteile werden
mit dem Photodetektor 8 empfangen. Dieser wandelt die optische Leistung respektive die Intensität in eine äquivalente Gleichspannung um, die einer nicht dargestellten Auswerteeinheit übergeben wird. Ohne die erfindungsgemäße Kompensation gelangen folgende Signalanteile in den Photodetektor 8:
Die Pumplaser 1 und 2 erzeugen jeweils einen Stokes-Gewinn und einen Anti- Stokes-Verlust in der Glasfaser 6. Liegt der Stokes-Gewinn 10 der schmalbandigen Pumpstrahlung im Frequenzbereich des zu messenden Emissionsspektrum 9 der Probestrahlung (Figur 2), so werden die entsprechenden Frequenzanteile der Probestrahlung verstärkt. Diese verstärkten Anteile bilden das Messsignal, das den Hauptanteil der am Detektor anliegenden Intensität ausmacht. Zum Rauschanteil trägt zunächst das gesamte durch die Faser 6 gedämpfte und auf den Detektor 8 gelangende zu messende Spektrum bei. Auch die Leistungsanteile der Pumpwellen 1 und 2, die durch Übersprechen des Zirkulators 5 (Tor a zu Tor c) zum Detektor 8 gelangen, erhöhen den Rauschanteil. Letztendlich erzeugen die Pumpwellen 1 und 2 auch immer Rayleigh-Streuung in der Faser 6, wobei auch das durch diesen linearen Effekt rückgestreute Licht in den Detektor 8 gelangt. In Figur 2 ist die im Detektor gemessene Signalstärke S gegen die Wellenlänge λ aufgetragen.
Zur Erhöhung der Messdynamik wird das Spektrum der kombinierten Pumpwellen folgendermaßen eingestellt: Der den schmalen Gewinn und damit den „Messpeak"
10 verursachende Pumplaser 2 wird insbesondere durch externe Modulation in seiner Wellenlänge 11 verschoben, bis er um den Wert der Brillouin-Verschiebung unterhalb des Anfangs des unbekannten Emissionsspektrums 9 liegt. Dem
Messpeak steht auf der anderen Seite ein entsprechender Verlust 14 entgegen. Wegen der konstanten Brillouin-Verschiebung ändert sich durch die
Wellenlängenverschiebung von Pumplaser 2 auch die Lage des Messpeaks 10. Auf diese Weise wird der Messpeak 10 durch das zu messende Emissionsspektrum 9 geschoben. Das vom Photodetektor 8 ausgegebene Signal ergibt in Abhängigkeit der Wellenlänge des Messpeaks den spektralen Verlauf des Emissionsspektrums 9.
Zur Reduzierung des Rauschanteils wird der Pumplaser 1 in seiner Wellenlänge 13 und damit auch der Brillouin-Verlust 12 durch die Rauschquelle 3 aufgeweitet. Der verbreiterte Anti-Stokes-Verlust 12 wird durch Modulation des Pumplasers 1 „unter" das Emissionsspektrums 9 verschoben. Im Wellenlängenbereich des Anti-Stokes- Verlusts 12 werden alle auftretenden Signalanteile gedämpft. Somit wird das Grundrauschen um den vom Emissionsspektrum 9 hervorgerufenen Anteil reduziert. Dadurch steigt das Signal zu Rauschverhältnis und demzufolge die Messdynamik des Systems. Vorteilhafterweise wird die Bandbreite des Anti- Stokes-Verlusts 12 so eingestellt, dass sie mindestens der Bandbreite des Emissionsspektrums 9 entspricht. Jedoch ergibt sich auch schon bei geringeren Bandbreiten eine Erhöhung der Messdynamik.
Weiterhin ist es möglich, den Anti-Stokes-Verlust 12 des Pumplasers 1 durch das in dem oben erwähnten Artikel beschriebene Verfahren auf das mehrfache der doppelten Brillouin-Verschiebung zu verbreitern. Mit einem derart verbreiterten Anti-Stokes-Spektrum ist es möglich, sowohl den Bereich des Emissionsspektrums 9 als auch die Pumpwelle von Pumplaser 2 zu dämpfen. Diese Methode erhöht das Signal zu Rauschverhältnis und demzufolge die Messdynamik des Messaufbaus gegenüber der im vorherigen Absatz beschriebenen Methode, da sowohl das Übersprechen des Zirkulators als auch die durch Pumplaser 2 erzeugte Rayleigh-Streuung in der Faser stark gedämpft wird.
Figur 2 zeigt das prinzipielle optische Spektrum an Tor c des Zirkulators 5 für den Fall, dass der Pumplaser 2 auf eine Bandbreite, die der doppelten Brillouin Verschiebung entspricht, erweitert wurde. Wie aus Figur 2 ersichtlich, wird durch das von Pumplaser 1 erzeugte verbreiterte Anti-Stokes-Spektrum, das Emissionsspektrum 9, das Übersprechen der Pumpwelle 2 im Zirkulator 5 und die Rayleigh-Streuung von Pumplaser 2 gedämpft. Damit wird das Grundrauschen am Eingang des Photodetektors vermindert.