EP2216542A1 - Ventilanordnung für ein Einspritzventil und Einspritzventil - Google Patents
Ventilanordnung für ein Einspritzventil und Einspritzventil Download PDFInfo
- Publication number
- EP2216542A1 EP2216542A1 EP09001675A EP09001675A EP2216542A1 EP 2216542 A1 EP2216542 A1 EP 2216542A1 EP 09001675 A EP09001675 A EP 09001675A EP 09001675 A EP09001675 A EP 09001675A EP 2216542 A1 EP2216542 A1 EP 2216542A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- needle
- valve needle
- ring element
- outlet portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/04—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
- F02M61/10—Other injectors with elongated valve bodies, i.e. of needle-valve type
- F02M61/12—Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
Definitions
- the invention relates to a valve assembly for an injection valve and an injection valve.
- Injection valves are in wide spread use, in particular for internal combustion engines where they may be arranged in order to dose the fluid into an intake manifold of the internal combustion engine or directly into the combustion chamber of a cylinder of the internal combustion engine.
- injection valves are manufactured in various forms in order to satisfy the various needs for the various combustion engines. Therefore, for example, their length, their diameter and also various elements of the injection valve being responsible for the way the fluid is dosed may vary in a wide range.
- injection valves may accommodate an actuator for actuating a needle of the injection valve, which may, for example, be an electromagnetic actuator or piezo electric actuator.
- the respective injection valve may be suited to dose fluids under very high pressures.
- the pressures may be in case of a gasoline engine, for example, in the range of up to 200 bar and in the case of diesel engines in the range of up to 2000 bar.
- the object of the invention is to create a valve assembly and an injection valve which are simply to be manufactured and which facilitate a reliable and precise function.
- the invention is distinguished by a valve assembly for an injection valve, comprising a valve body including a central longitudinal axis, the valve body comprising a cavity with a fluid inlet portion and a fluid outlet portion, and a valve needle axially moveable in the cavity, the valve needle preventing a fluid flow through the outlet portion in a closing position and releasing the fluid flow through the fluid outlet portion in further positions.
- the valve needle has a guide portion being designed to guide the valve needle in the valve body.
- a ring element is arranged coaxially between the valve body and the valve needle upstream an axial end of the needle guide portion facing away from the fluid outlet portion and is fixedly coupled to the valve needle. The ring element is designed to cause a given pressure drop for a fluid flow through the fluid outlet portion.
- the characteristic of the fluid flow releasing through the fluid outlet portion can be strongly influenced by the configuration of the valve assembly, in particular of the valve needle and/or its adjacent parts.
- the ring element has the advantage that the pressure drop during the fluid flow through the fluid outlet portion can be adjusted. This makes it possible that the fluid flow releasing through the fluid outlet portion which can be a spray can have a desired spray angle and spray atomization.
- the distribution of the fluid droplets can be adjusted and an axial-symmetric distribution of the spray can be obtained.
- an influence on the friction forces between the valve needle and the valve body can be obtained. Consequently, the performance of the movement of the valve needle in particular during the closing process of the injection valve can be influenced. In particular, this means that the closing movement of the valve needle can be dampened.
- an axial distance between the ring element and the needle guide portion is between about 0.2 mm and about 10 mm. This has the advantage that the fluid flow downstream the ring element can be adapted according to the desired configuration of the guide portion.
- the ring element has a basically circular cylindrical shape. This is a simple shape, which can be produced with low costs.
- valve needle and the ring element are forming a one-piece element. This allows a very precise positioning of the ring element relative to the valve needle. Furthermore, this allows a construction of the ring element on the valve needle which can be mechanically very solid.
- An injection valve 10 ( Figure 1 ) that is preferably used as a fuel injection valve for an internal combustion engine, comprises a housing 12, a valve assembly 14 and an actuator unit 16.
- the housing 12 has a tubular shape.
- the actuator unit 16 is inserted into the housing 12 and comprises a piezo actuator, which changes its axial length depending on a control signal applied to it.
- the actuator unit 16 may, however, also comprise another type of actuator, which is known to a person skilled in the art for that purpose.
- Such an actuator may be, for example, a solenoid.
- the valve assembly 14 comprises a valve body 20 with a central longitudinal axis A and a cavity 24 which is axially led through the valve body 20.
- a valve needle 22 is arranged in the cavity 24 and is axially movable in the cavity 24.
- valve needle 22 Outside of the closing position of the valve needle 22 there is a gap between the valve body 20 and the valve needle 22 at an axial end of the injection valve 10 facing away from of the actuator unit 16.
- the gap forms a valve nozzle 29.
- the injection valve 10 further has a fluid inlet portion 26 which is arranged in the housing 12 and which is hydraulically coupled to the cavity 24 and a not shown fuel connector.
- the fuel connector is designed to be connected to a high pressure fuel chamber of an internal combustion engine.
- the fuel is stored under high pressure, for example, under the pressure of about 200 bar.
- the valve body 20 has a valve body spring rest 32 and the valve needle 22 comprises a valve needle spring rest 34, both spring rests 32, 34 supporting a spring 30 arranged between the valve body 20 and the valve needle 22.
- the injection valve 10 is of an outward opening type. In an alternative embodiment the injection valve 10 may be of an inward opening type.
- a bellow 36 is arranged which is sealingly coupling the valve body 20 with the valve needle 22.
- a fluid flow between the cavity 24 and a chamber 38 between the actuator unit 16 and the valve body 20 is prevented.
- the bellow 36 is formed and arranged in a way that the valve needle 22 is actuable by the actuator unit 16.
- the valve needle 22 has a guide portion 46 which can reliably guide the valve needle 22 in the valve body 20.
- a ring element 50 is arranged in the cavity 24 coaxially between the valve body 20 and the valve needle 22 and protrudes in radial direction away from the valve needle 22 (shown in detailed views in Figures 2 and 3 ) .
- the typical distance between the ring element 50 and the valve body 20 is preferably 0.1 to 0.2 mm. Due to the little distance between the ring element 50 and the valve body 20 the ring element 50 can create a given pressure drop in the case that a fluid flow through the valve nozzle 29 is enabled.
- the pressure drop is preferably in the range between 5 and 40 bar.
- the pressure drop during the fluid flow through the valve nozzle 29 can be adjusted easily. Consequently, a fluid spray outside the fluid outlet portion 28 can obtain a desired spray angle and a desired spray atomization.
- the size distribution of the fluid droplets can be regulated easily and an axial-symmetric distribution of the spray can be obtained.
- the ring element 50 has an axial distance D from the needle guide portion 46.
- the axial distance D between the ring element 50 and the needle guide portion 46 is from about 0.2 mm to about 10 mm.
- the ring element 50 has a basically circular cylindrical shape. This shape can be manufactured easily and allows a low cost solution.
- valve needle 22 and the ring element 50 are forming preferably a one-piece element. This has the advantage that the position of the ring element 50 relative to the valve needle 22 can be defined very exactly. Furthermore, the stability of the connection between the valve needle 22 and the ring element 50 is very high.
- the ring element 50 is welded to the valve needle 22, for example by spot-laser welding. This makes it possible to achieve a stable connection between the ring element 50 and the valve needle 22. Furthermore, this connection is a low cost solution.
- the ring element 50 is press-fitted to the valve needle 22. This allows an exact positioning of the ring element 50 relative to the valve needle 22. Furthermore, this embodiment is a low cost solution.
- the valve needle 22 prevents a fluid flow through the fluid outlet portion 28 in the valve body 20 in a closing position of the valve needle 22. Outside of the closing position of the valve needle 22, the valve needle 22 enables the fluid flow through the fluid outlet portion 28.
- the piezoelectric actuator may change its axial length if it gets energized in an expansion duration of some micro-seconds. By changing its length the actuator unit 16 may effect a force on the valve needle 22.
- the valve needle 22 is able to move in axial direction out of the closing position. Outside of the closing position of the valve needle 22 the gap between the valve body 20 and the valve needle 22 at the axial end of the injection valve 10 facing away from of the actuator unit 16 forms the valve nozzle 29.
- the spring 30 can force the valve needle 22 via the valve needle spring rest 34 towards the actuator unit 16. In the case when the actuator unit 16 is de-energized the actuator unit 16 shortens its length.
- the spring 30 can force the valve needle 22 to move in axial direction in its closing position. It is depending on the force balance between the force on the valve needle 22 caused by the actuator unit 16 and the force on the valve needle 22 caused by the spring 30 whether the valve needle 22 is in its closing position or not.
- the distance between the ring element 50 an the valve body 20 has an influence on the friction forces between the valve needle 22 and the valve body 20
- the performance of the movement of the valve needle 22 during the closing of the injection valve 10 can be influenced.
- due to the ring element 50 arranged between the valve needle 22 and the valve body 20 the closing movement of the valve needle 22 can be dampened reliably.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09001675A EP2216542A1 (de) | 2009-02-06 | 2009-02-06 | Ventilanordnung für ein Einspritzventil und Einspritzventil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09001675A EP2216542A1 (de) | 2009-02-06 | 2009-02-06 | Ventilanordnung für ein Einspritzventil und Einspritzventil |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2216542A1 true EP2216542A1 (de) | 2010-08-11 |
Family
ID=40801942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09001675A Withdrawn EP2216542A1 (de) | 2009-02-06 | 2009-02-06 | Ventilanordnung für ein Einspritzventil und Einspritzventil |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2216542A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011012355A1 (de) * | 2009-07-30 | 2011-02-03 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für brennkraftmaschinen |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002048536A1 (de) * | 2000-12-16 | 2002-06-20 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für brennkraftmaschinen |
DE10348928A1 (de) * | 2003-10-18 | 2005-05-12 | Bosch Gmbh Robert | Kraftstoffeinspritzvorrichtung |
DE102007032741A1 (de) * | 2007-07-13 | 2009-01-15 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für Brennkraftmaschinen |
WO2009017581A1 (en) * | 2007-07-31 | 2009-02-05 | Caterpillar Inc. | Fuel injector nozzle with flow restricting device |
-
2009
- 2009-02-06 EP EP09001675A patent/EP2216542A1/de not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002048536A1 (de) * | 2000-12-16 | 2002-06-20 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für brennkraftmaschinen |
DE10348928A1 (de) * | 2003-10-18 | 2005-05-12 | Bosch Gmbh Robert | Kraftstoffeinspritzvorrichtung |
DE102007032741A1 (de) * | 2007-07-13 | 2009-01-15 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für Brennkraftmaschinen |
WO2009017581A1 (en) * | 2007-07-31 | 2009-02-05 | Caterpillar Inc. | Fuel injector nozzle with flow restricting device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011012355A1 (de) * | 2009-07-30 | 2011-02-03 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für brennkraftmaschinen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2333297B1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP2436910B1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP2000662B1 (de) | Einstellungs- und Filteranordnung für ein Einspritzventil und Einspritzventil | |
EP2148082A1 (de) | Kupplungsanordnung für ein Einspritzventil und Einspritzventil | |
EP2246554B1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP2837813B1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP1995447B1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
US10001100B2 (en) | Valve assembly and fluid injector for a combustion engine | |
EP2354528B1 (de) | Ventilanordnung und Einspritzventil | |
EP2149699A1 (de) | Kraftstoffeinspritzdüse | |
EP1811166B1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP2216542A1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP2218900A1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP2698527A1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP2375051A1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP2436909A1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
US20080023578A1 (en) | Valve Assembly for an Injection Valve and Injection Valve | |
EP2003331A1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP1816344B1 (de) | Düsenanordnung für eine Einspritzdüse und Einspritzdüse | |
EP2282042B1 (de) | Ventilanordnung und Einspritzventil | |
EP2354531A1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP1865191A1 (de) | Anordnung zur Einstellung eines Einspritzventils, Einspritzventil und Verfahren zur Einstellung eines Einspritzventils | |
EP2426350A1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil | |
EP1887216A1 (de) | Anordnung zum thermischen Ausgleich in einem Einspritzventil | |
EP2067981A1 (de) | Ventilanordnung für ein Einspritzventil und Einspritzventil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
AKY | No designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 Effective date: 20110322 Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110212 |