EP2207364A1 - Component with a micromechanical microphone structure - Google Patents
Component with a micromechanical microphone structure Download PDFInfo
- Publication number
- EP2207364A1 EP2207364A1 EP09177681A EP09177681A EP2207364A1 EP 2207364 A1 EP2207364 A1 EP 2207364A1 EP 09177681 A EP09177681 A EP 09177681A EP 09177681 A EP09177681 A EP 09177681A EP 2207364 A1 EP2207364 A1 EP 2207364A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- membrane
- counter
- component
- membranes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 239000012528 membrane Substances 0.000 claims description 88
- 239000000758 substrate Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 19
- 229920005591 polysilicon Polymers 0.000 description 19
- 230000008859 change Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/32—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
- H04R1/34—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
- H04R1/38—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means in which sound waves act upon both sides of a diaphragm and incorporating acoustic phase-shifting means, e.g. pressure-gradient microphone
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R19/00—Electrostatic transducers
- H04R19/01—Electrostatic transducers characterised by the use of electrets
- H04R19/016—Electrostatic transducers characterised by the use of electrets for microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R31/00—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
Definitions
- the invention relates to a component having a micromechanical microphone structure, comprising at least a deflectable by the sound pressure first membrane, which acts as a deflectable electrode, a fixed acoustically permeable counter element, which acts as a counter electrode, and a further capacitance for evaluating the capacitance changes between the first deflectable electrode and the counter electrode.
- the invention further relates to a method for producing such a component.
- MEMS micro-electro-mechanical system
- the sound pressure is usually detected in the form of a capacitance change between an acoustically active membrane and a substantially rigid counter electrode.
- An evaluation concept for this type of microphones in which the capacitance change can be determined with a relatively low voltage between the membrane and the counterelectrode, is based on a comparison of the capacitance change with a fixed reference capacitance.
- this reference capacitance is located on the same component as the measuring capacitance.
- the present invention proposes a very space-saving micromechanical microphone structure with a measuring capacity and a reference capacitance, which has a high sensitivity in relation to their small size.
- the fixed counter element between the deflectable first membrane and a second membrane is arranged.
- the fixed counter element not only functions as a counterelectrode for the deflectable first diaphragm but also forms an electrode of the further capacitance, while the second diaphragm forms the second electrode of this further capacitance.
- the measuring capacity and the further capacity are therefore one above the other, realized with a common center electrode.
- This electrode arrangement is not only very space-saving, but also allows different Ausensejane, depending on whether it is to act in the other capacity to a constant reference capacity or a sound pressure-dependent capacity.
- the fixed counter element and the second diaphragm are mechanically coupled but electrically insulated from each other so that they form a constant reference capacitance.
- the reference capacitance thus consumes no additional component surface but is arranged within the active microphone surface.
- the known from the prior art evaluation concept can be easily applied.
- the further capacity also changes under the effect of the sound pressure, i. although the second membrane is deflected under the action of sound pressure.
- the counter element according to the invention is arranged between the two membranes and forms a fixed electrode for both the measuring capacity and for the further capacity, the measuring capacity and the further capacity change in the same direction deflection of the two membranes in opposite directions.
- the measurement signal can be amplified simply by combining the two capacitances to increase the microphone sensitivity.
- the two membranes of the component according to the invention mechanically couple and electrically isolate against each other. In this case, it is sufficient if essentially only one of the two membranes is acoustically active, since the sound pressure is transmitted via the mechanical coupling directly to the other membrane.
- a mechanical coupling is not required if both membranes of the device are acoustically active. In this case, it is advantageous if the two membranes are acoustically active and acoustically permeable in mutually offset subregions, in order to avoid interactions.
- the membrane surfaces facing the counter element and / or the surfaces of the counter element are provided with a dielectric coating in order to avoid a short circuit of the measuring capacitance and / or the reference capacitance in overload situations.
- the microphone structure may comprise an overload protection in the form of stops, which are formed in the surface of a deflectable membrane facing the counter element and / or in the surface of the counter element facing a deflectable membrane.
- Component 10 shown comprises a micromechanical microphone structure, which is formed in a layer structure over a substrate 1.
- This microphone structure consists essentially of two superposed membranes 11 and 12, between which a fixed counter-element 13 is arranged.
- the membrane 11 is electrically insulated via insulating layers 2 and 4 on the one hand against the substrate 1 and on the other hand against the counter-element 13.
- a further insulation layer 6 of the layer structure serves for the electrical insulation between the counter element 13 and the membrane 12.
- the two membranes 11 and 12 and the counter element 13 consist at least in regions of an electrically conductive material, such as a correspondingly doped polysilicon. In this way, the membrane 11 together with the counter-element 13 forms a first capacitance, while the membrane 12 together with the counter-element 13 forms a second capacitance.
- the counter element 13 is significantly thicker than the two membranes 11 and 12 and thus substantially rigid.
- 13 through holes 131, 132 are formed in the counter element, so that the counter element 13 is acoustically transparent.
- both membranes 11 and 12 are acoustically active in the embodiment described here. They are deflected independently of one another by the sound pressure, which acts on the membrane 12 starting from the component top side and acts on the membrane 11 via a sound opening 14 in the component rear side.
- Through openings 111 are formed in the middle region of the membrane 11 so that the membrane 11 is acoustically active substantially only in the closed edge area.
- this edge region of the membrane 12 is provided with passage openings 121, so that the membrane 12 substantially only in the closed central region is acoustically active.
- This staggered arrangement of the through openings 111 and 121 or the acoustically active areas of the membranes 11 and 12 serves to avoid interactions between the two membranes 11 and 12. Due to the through holes 111, 121 and 131, 132 in the membranes 11 and 12 and in the Counter-element 13 causes the sound pressure in the same direction deflection of the two membranes 11 and 12. Since the counter-element 13 sandwich-like disposed between the two membranes 11 and 12, the first and second capacitance change in opposite directions. The evaluation takes place here by difference formation between the first and second capacity
- the manufacturing method starts from a substrate 1, such as a silicon wafer.
- a first sacrificial layer 2 is first deposited and patterned.
- Fig. 2a shows the layer structure after the structuring of the first sacrificial layer 2, in which openings 21 were generated, which communicate with the through-openings 111 to be generated in the first membrane 11.
- the first sacrificial layer 2 also acts as the first insulating layer 2. Typically, this is a thermal oxide or a TEOS oxide.
- a first membrane layer 3 in the form of a polysilicon layer is deposited and doped.
- Fig. 2b shows the layer structure, after the structuring of the membrane layer 3, in which not only the through holes 111 were generated but also a spring suspension 31 was formed for the membrane 11 to promote membrane deflections.
- a second sacrificial layer 4 is deposited and patterned.
- openings 41 were generated which communicate with the passage openings 111 in the first membrane layer 3.
- an opening 42 was created, which is required for the realization of the electrical contacts of the individual capacitor electrodes of the device 10. This situation is in Fig. 2c shown. Since the second sacrificial layer 4 in the context of the device 10 acts as an insulating layer can these - like the first sacrificial layer 2 - are formed by a thermal oxide or a TEOS oxide.
- an at least partially electrically conductive layer 5 is applied, from which the fixed counter-element 13 is formed.
- a thicker epi-polysilicon layer 5 was produced and doped on the second sacrificial layer 4.
- This epi-polysilicon layer 5 has not been patterned at least in the membrane region, so that the polysilicon of this layer 5 fills out the structuring of the underlying layers 4, 3 and 2, which is due to Fig. 2d is illustrated.
- a polysilicon starter layer is typically deposited first before an epi-polysilicon layer is then deposited thereon. This epi-polysilicon is doped and can be planarized for better processing.
- the fixed counter element can also be realized in a thinner polysilicon layer, which is stiffer than the two membranes in the layer structure suspended.
- Another possibility is to realize the counter element in the form of a layer stack of polysilicon and oxide or nitride, which is under tensile stress. In this way it can also be achieved that the counter element reacts significantly less to sound waves than the membranes.
- a third sacrificial layer 6 was deposited, which also acts as an insulating layer in the context of the device 10. During the structuring of this sacrificial layer 6, openings 61 were generated which communicate with the openings 121 to be produced in the second membrane 12 of the component 10. In addition, an opening 62 was created, which is required for the realization of electrical contacts.
- Fig. 2e shows the layer structure with the structured third sacrificial layer 6.
- a second membrane layer 7 in the form of a further polysilicon layer was deposited, doped and patterned on the third sacrificial layer 6, a spring-like diaphragm suspension 71 being produced here as well next to the passage openings 121.
- the resulting layer structure is in Fig. 2f shown.
- the layer structure of the component 10 also comprises one or more structured metal layers 8.
- the metal layer 8 was applied to the second membrane layer 7 and structured, which is described in US Pat Fig. 2g is shown before the counter element or the epi-polysilicon layer 5 has been patterned and etching accesses were made to the sacrificial layers 2, 4 and 6 to expose the microphone structure.
- the metal layer 8 for the realization of electrical contacts can also be generated at a later time.
- the through-openings 121 in the second membrane layer 7, which continue in the openings 61 in the third sacrificial layer 6, have now been transferred into the epi-polysilicon layer 5, around the through-openings 131 in the edge region of the counter element 13 to produce.
- the second sacrificial layer 4 serves as ⁇ tzstoppgrenze.
- the result of this first step of trenching is in the form of trench trenches 91 in FIG Fig. 2h shown.
- the sound opening 14 is first generated, which forms the rear side volume of the microphone structure.
- This trench process stops at the first sacrificial layer 2 and continues to be deeper only in the region in which the epi-polysilicon layer 5 directly adjoins the substrate surface, ie in the region of the through-openings 111 in the first membrane layer 3. In this region, the trench process stopped only when reaching the third sacrificial layer 6, so that in the central region of the counter element 13 passage openings 132 arise.
- the corresponding trench trenches 92 are in Fig. 2i to recognize.
- the trench trenches 91 and 92 in conjunction with the sound aperture 14 are used as ⁇ tzzu réelle to expose the two membranes 11 and 12, which takes place for example by means of HF or in a gas phase etching.
- the sacrificial layer material of the layers 2, 4 and 6 is removed in the regions below the first membrane 11 and between the counter element 13 and the two membranes 11 and 12.
- the resulting device structure is in Fig. 2j shown. This figure essentially corresponds to Fig. 1 ,
- the backside trench process can also be run before the front side trench process.
- a further sacrificial layer is deposited and patterned before the individual sacrificial layer deposits in order to realize defined stops for the deflectable electrodes of the microphone structure.
- a device 30 is in Fig. 3 shown.
- the component 30 differs from that in FIG Fig. 1 shown component 10 only by stops 122 and 133 which are formed on the underside of the second diaphragm 12 and the counter-element 13.
- the stops 122 and 133 form the contact surfaces between the electrodes of the microphone structure. The smaller these contact surfaces, the lower the adhesive force between the electrodes and, accordingly, the force required to bring the membranes 11 and 12 back to their original position.
- the stops 122 and 133 also consist of a dielectric material or at least are coated with such, so that they prevent a short circuit of the first and / or second capacitance in overload situations.
- a dielectric layer can be deposited before or after the sacrificial layer deposition, which advantageously has a significantly lower etching rate than the sacrificial layer, such as SiN or silicon-rich nitride.
- the adhesive force between SiN and Si is so low that the membranes can easily be brought back to their original position after overload situations.
- the stops 122 are formed on the outer edge of the acoustically active region of the second membrane 12.
- the stops 133 extend in extension from the counter element 13 in the direction of the first diaphragm 11, along the inner edge of the acoustically active region of the first diaphragm 11. In this way wear the stops 122 and 133 also to reduce the acoustic short circuit between the offset acoustically active and transparent membranes 11 and 12 at.
- Fig. 4 shows a component 50 with a micromechanical microphone structure
- the invention comprises two superposed membranes 51 and 52, between which a fixed counter-element 53 is arranged.
- the two membranes 51 and 52 are suspended in each case via a spring suspension 31 and 71 in the layer structure of the component 50 in order to favor their deflection.
- the membrane 51 is electrically insulated via insulating layers 2 and 4 on the one hand against the substrate 1 and on the other hand against the counter element 53.
- a further insulation layer 6 of the layer structure serves for electrical insulation between the counter element 53 and the membrane 52.
- the two membranes 51 and 52 and the counter element 53 at least partially consist of an electrically conductive material, such as a correspondingly doped polysilicon. In this way, the membrane 51 together with the counter-element 53 forms a first capacitance, while the membrane 52 together with the counter-element 53 forms a second capacitance.
- the counter-element 53 here is significantly thicker than the two membranes 51 and 52 and has first passage openings 531, so that it is substantially rigid and acoustically transparent. In order to achieve that the counter element reacts much less on sound waves than the membranes, but the counter element can also be realized in a thinner polysilicon layer, which is stiffer than the two membranes suspended in the layer structure. Another possibility is to realize the counter element in the form of a layer stack of polysilicon and oxide or nitride, which is under tensile stress. In addition, 53 second through holes 532 are formed for connecting webs 55 in the counter element, over which the two membranes 51 and 52 are mechanically coupled.
- the first diaphragm 51 is largely closed and thus acoustically active, while the entire microphone surface of the second diaphragm 52 is provided with passage openings 521, so that the second diaphragm 52 is acoustically at most low active.
- the mechanical coupling between the two membranes 51 and 52 causes both membranes 51 and 52 are deflected in the same direction, when the first Membrane 51 is acted upon via the sound opening 54 in the back of the component with sound pressure. Accordingly, as in the case of the component 10, the first and second capacitances change in opposite directions. The evaluation is also done here by subtraction between the first and second capacity.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Manufacturing & Machinery (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Abstract
Description
Die Erfindung betrifft ein Bauelement mit einer mikromechanischen Mikrofonstruktur, mindestens umfassend eine durch den Schalldruck auslenkbare erste Membran, die als auslenkbare Elektrode fungiert, ein feststehendes akustisch durchlässiges Gegenelement, das als Gegenelektrode fungiert, und eine weitere Kapazität zur Auswertung der Kapazitätsänderungen zwischen der ersten auslenkbaren Elektrode und der Gegenelektrode.The invention relates to a component having a micromechanical microphone structure, comprising at least a deflectable by the sound pressure first membrane, which acts as a deflectable electrode, a fixed acoustically permeable counter element, which acts as a counter electrode, and a further capacitance for evaluating the capacitance changes between the first deflectable electrode and the counter electrode.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines solchen Bauelements.The invention further relates to a method for producing such a component.
Bei den aus der Praxis bekannten MEMS(Micro-Electro-Mechanical-System)-Mikrofonen wird der Schalldruck meist in Form einer Kapazitätsänderung zwischen einer akustisch aktiven Membran und einer weitgehend starren Gegenelektrode erfasst. Ein Auswertekonzept für diese Art von Mikrofonen, bei dem die Kapazitätsänderung mit relativ geringer Spannung zwischen der Membran und der Gegenelektrode bestimmt werden kann, beruht auf einem Vergleich der Kapazitätsänderung mit einer festen Referenzkapazität. Vorteilhafterweise befindet sich diese Referenzkapazität auf demselben Bauteil wie die Messkapazität.In the known from practice MEMS (micro-electro-mechanical system) microphones, the sound pressure is usually detected in the form of a capacitance change between an acoustically active membrane and a substantially rigid counter electrode. An evaluation concept for this type of microphones, in which the capacitance change can be determined with a relatively low voltage between the membrane and the counterelectrode, is based on a comparison of the capacitance change with a fixed reference capacitance. Advantageously, this reference capacitance is located on the same component as the measuring capacitance.
Mit der vorliegenden Erfindung wird eine sehr platzsparende mikromechanische Mikrofonstruktur mit einer Messkapazität und einer Referenzkapazität vorgeschlagen, die im Verhältnis zu ihrer geringen Baugröße eine hohe Empfindlichkeit aufweist.The present invention proposes a very space-saving micromechanical microphone structure with a measuring capacity and a reference capacitance, which has a high sensitivity in relation to their small size.
Dazu ist das feststehende Gegenelement zwischen der auslenkbaren ersten Membran und einer zweiten Membran angeordnet. Das feststehende Gegenelement fungiert erfindungsgemäß nicht nur als Gegenelektrode für die auslenkbare erste Membran sondern bildet auch eine Elektrode der weiteren Kapazität, während die zweite Membran die zweite Elektrode dieser weiteren Kapazität bildet.For this purpose, the fixed counter element between the deflectable first membrane and a second membrane is arranged. According to the invention, the fixed counter element not only functions as a counterelectrode for the deflectable first diaphragm but also forms an electrode of the further capacitance, while the second diaphragm forms the second electrode of this further capacitance.
Erfindungsgemäß werden die Messkapazität und die weitere Kapazität demnach übereinander, mit einer gemeinsamen Mittelelektrode realisiert. Diese Elektrodenanordnung ist nicht nur sehr platzsparend, sondern ermöglicht auch unterschiedliche Auswertekonzepte, je nach dem, ob es sich bei der weiteren Kapazität um eine konstante Referenzkapazität oder eine vom Schalldruck abhängige Kapazität handeln soll.According to the invention, the measuring capacity and the further capacity are therefore one above the other, realized with a common center electrode. This electrode arrangement is not only very space-saving, but also allows different Auswertekonzepte, depending on whether it is to act in the other capacity to a constant reference capacity or a sound pressure-dependent capacity.
In einer ersten Ausführungsform des erfindungsgemäßen Bauelements sind das feststehende Gegenelement und die zweite Membran mechanisch gekoppelt aber gegeneinander elektrisch isoliert, so dass sie eine konstante Referenzkapazität bilden. Die Referenzkapazität verbraucht hier also keine zusätzliche Bauteiloberfläche sondern ist innerhalb der aktiven Mikrofonfläche angeordnet. Bei dieser Variante kann einfach das aus dem Stand der Technik bekannte Auswertekonzept angewendet werden.In a first embodiment of the device according to the invention, the fixed counter element and the second diaphragm are mechanically coupled but electrically insulated from each other so that they form a constant reference capacitance. The reference capacitance thus consumes no additional component surface but is arranged within the active microphone surface. In this variant, the known from the prior art evaluation concept can be easily applied.
Von besonderem Vorteil ist es, wenn sich auch die weitere Kapazität unter Einwirkung des Schalldrucks verändert, d.h. wenn auch die zweite Membran unter Einwirkung des Schalldrucks ausgelenkt wird. Da das Gegenelement erfindungsgemäß zwischen den beiden Membranen angeordnet ist und eine feststehende Elektrode sowohl für die Messkapazität als auch für die weitere Kapazität bildet, verändern sich die Messkapazität und die weitere Kapazität bei gleichsinniger Auslenkung der beiden Membranen gegenläufig. In diesem Fall kann das Messsignal einfach durch Verknüpfung der beiden Kapazitäten verstärkt werden, um die Mikrofonempfindlichkeit zu erhöhen.It is particularly advantageous if the further capacity also changes under the effect of the sound pressure, i. although the second membrane is deflected under the action of sound pressure. Since the counter element according to the invention is arranged between the two membranes and forms a fixed electrode for both the measuring capacity and for the further capacity, the measuring capacity and the further capacity change in the same direction deflection of the two membranes in opposite directions. In this case, the measurement signal can be amplified simply by combining the two capacitances to increase the microphone sensitivity.
Eine Möglichkeit zur Realisierung einer solchen schalldruckabhängigen weiteren Kapazität besteht darin, die beiden Membranen des erfindungsgemäßen Bauelements mechanisch zu koppeln und gegeneinander elektrisch zu isolieren. In diesem Fall ist es ausreichend, wenn im wesentlichen nur eine der beiden Membranen akustisch aktiv ist, da der Schalldruck über die mechanische Kopplung direkt auf die andere Membran übertragen wird.One possibility for realizing such a sound pressure-dependent further capacity is the two membranes of the component according to the invention mechanically couple and electrically isolate against each other. In this case, it is sufficient if essentially only one of the two membranes is acoustically active, since the sound pressure is transmitted via the mechanical coupling directly to the other membrane.
Eine mechanische Kopplung ist dann nicht erforderlich, wenn beide Membranen des Bauelements akustisch aktiv sind. In diesem Fall ist es von Vorteil, wenn die beiden Membranen in zueinander versetzten Teilbereichen akustisch aktiv und akustisch durchlässig ausgebildet sind, um Wechselwirkungen zu vermeiden.A mechanical coupling is not required if both membranes of the device are acoustically active. In this case, it is advantageous if the two membranes are acoustically active and acoustically permeable in mutually offset subregions, in order to avoid interactions.
Vorteilhafterweise sind die dem Gegenelement zugewandten Membranoberflächen und/oder die Oberflächen des Gegenelements mit einer dielektrischen Beschichtung versehen, um einen Kurzschluss der Messkapazität und/oder der Referenzkapazität in Überlastsituationen zu vermeiden.Advantageously, the membrane surfaces facing the counter element and / or the surfaces of the counter element are provided with a dielectric coating in order to avoid a short circuit of the measuring capacitance and / or the reference capacitance in overload situations.
Des Weiteren kann die Mikrofonstruktur einen Überlastschutz in Form von Anschlägen umfassen, die in der dem Gegenelement zugewandten Oberfläche einer auslenkbaren Membran und/oder in der einer auslenkbaren Membran zugewandten Oberfläche des Gegenelements ausgebildet sind.Furthermore, the microphone structure may comprise an overload protection in the form of stops, which are formed in the surface of a deflectable membrane facing the counter element and / or in the surface of the counter element facing a deflectable membrane.
Wie bereits voranstehend erörtert, gibt es verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu wird einerseits auf die dem unabhängigen Patentanspruch 1 nachgeordneten Patentansprüche verwiesen und andererseits auf die nachfolgende Beschreibung mehrerer Ausführungsbeispiele der Erfindung. Anhand der Figuren wird auch das beanspruchte Herstellungsverfahren näher erläutert.
- Fig. 1
- zeigt eine schematische Schnittdarstellung eines erfindungsge-
mäßen Bauelements 10 mit zwei akustisch aktiven Membranen, - Fig. 2a bis 2j
- veranschaulichen die einzelnen Verfahrensschritte zur Herstel- lung des
Bauelements 10 anhand von schematischen Schnitt- darstellungen, - Fig. 3
- zeigt eine schematische Schnittdarstellung einer Variante des
Bauelements 10, und - Fig. 4
- zeigt eine schematische Schnittdarstellung einer zweiten Varian- te eines erfindungsgemäßen Bauelements 40.
- Fig. 1
- shows a schematic sectional view of a
device 10 according to the invention with two acoustically active membranes, - Fig. 2a to 2j
- illustrate the individual method steps for the production of the
component 10 on the basis of schematic sectional representations, - Fig. 3
- shows a schematic sectional view of a variant of the
device 10, and - Fig. 4
- shows a schematic sectional view of a second variant of a component 40 according to the invention.
Das in
Das Gegenelement 13 ist deutlich dicker als die beiden Membranen 11 und 12 und damit im Wesentlichen starr. Außerdem sind im Gegenelement 13 Durchgangsöffnungen 131, 132 ausgebildet, so dass das Gegenelement 13 akustisch durchlässig ist. Im Gegensatz dazu sind beide Membranen 11 und 12 im hier beschriebenen Ausführungsbeispiel akustisch aktiv. Sie werden unabhängig voneinander durch den Schalldruck ausgelenkt, der von der Bauteiloberseite ausgehend auf die Membran 12 einwirkt und über eine Schallöffnung 14 in der Bauteilrückseite auf die Membran 11 einwirkt. Im Mittelbereich der Membran 11 sind Durchgangsöffnungen 111 ausgebildet, so dass die Membran 11 im Wesentlichen nur im geschlossenen Randbereich akustisch aktiv ist. Im Unterschied dazu ist dieser Randbereich der Membran 12 mit Durchgangsöffnungen 121 versehen, so dass die Membran 12 im Wesentlichen nur im geschlossenen Mittelbereich akustisch aktiv ist. Diese versetzte Anordnung der Durchgangsöffnungen 111 und 121 bzw. der akustisch aktiven Bereiche der Membranen 11 und 12 dient der Vermeidung von Wechselwirkungen zwischen den beiden Membranen 11 und 12. Aufgrund der Durchgangsöffnungen 111, 121 und 131, 132 in den Membranen 11 und 12 sowie im Gegenelement 13 bewirkt der Schalldruck eine gleichsinnige Auslenkung der beiden Membranen 11 und 12. Da das Gegenelement 13 sandwichartigen zwischen den beiden Membranen 11 und 12 angeordnet ist, ändern sich die erste und zweite Kapazität gegensinnig. Die Auswertung erfolgt hier durch Differenzbildung zwischen der ersten und zweiten KapazitätThe
Die Herstellung des in
Wie bereits erwähnt, geht das Herstellungsverfahren von einem Substrat 1, wie z.B. einem Siliziumwafer, aus. Auf diesem Substrat wird zunächst eine erste Opferschicht 2 abgeschieden und strukturiert.
Auf der strukturierten ersten Opferschicht 2 wird nun eine erste Membranschicht 3 in Form einer Polysiliziumschicht abgeschieden und dotiert.
Darüber wird eine zweite Opferschicht 4 abgeschieden und strukturiert. Im hier beschriebenen Ausführungsbeispiel wurden dabei Öffnungen 41 erzeugt, die mit den Durchgangsöffnungen 111 in der ersten Membranschicht 3 kommunizieren. Des Weiteren wurde eine Öffnung 42 erzeugt, die für die Realisierung der elektrischen Kontakte der einzelnen Kondensatorelektroden des Bauelements 10 benötigt wird. Diese Situation ist in
Auf die zweite Opferschicht 4 wird eine zumindest bereichsweise elektrisch leitfähige Schicht 5 aufgebracht, aus der das feststehende Gegenelements 13 herausgebildet wird. Im hier beschriebenen Ausführungsbeispiel wurde dazu eine dickere Epi-Polysiliziumschicht 5 auf der zweiten Opferschicht 4 erzeugt und dotiert. Diese Epi-Polysiliziumschicht 5 wurde zumindest im Membranbereich nicht strukturiert, so dass das Polysilizium dieser Schicht 5 die Strukturierung der darunter liegenden Schichten 4, 3 und 2 ausfüllt, was durch
Über der Epi-Polysiliziumschicht 5 wurde eine dritte Opferschicht 6 abgeschieden, die im Rahmen des Bauelements 10 ebenfalls als Isolationsschicht fungiert. Bei der Strukturierung dieser Opferschicht 6 wurden Öffnungen 61 erzeugt, die mit den zu erzeugenden Öffnungen 121 in der zweiten Membran 12 des Bauelements 10 kommunizieren. Außerdem wurde eine Öffnung 62 erzeugt, die zur Realisierung von elektrischen Kontakten benötigt wird.
Dann wurde auf der dritten Opferschicht 6 eine zweite Membranschicht 7 in Form einer weiteren Polysiliziumschicht abgeschieden, dotiert und strukturiert, wobei auch hier neben den Durchgangsöffnungen 121 eine federartige Membranaufhängung 71 erzeugt wurde. Der resultierende Schichtaufbau ist in
Zur späteren Kontaktierung umfasst der Schichtaufbau des Bauelements 10 schließlich noch eine oder mehrere strukturierte Metallschichten 8. Im hier beschriebenen Ausführungsbeispiel wurde die Metallschicht 8 auf die zweite Membranschicht 7 aufgebracht und strukturiert, was in
In einem von der Vorderseite bzw. Oberseite des Schichtaufbaus ausgehenden Trenchschritt wurden nun die Durchgangsöffnungen 121 in der zweiten Membranschicht 7, die sich in den Öffnungen 61 in der dritten Opferschicht 6 fortsetzen, in die Epi-Polysiliziumschicht 5 übertragen, um die Durchgangsöffnungen 131 im Randbereich des Gegenelements 13 zu erzeugen. Dabei dient die zweite Opferschicht 4 als Ätzstoppgrenze. Das Ergebnis dieses ersten Trenchschritts ist in Form der Trenchgräben 91 in
In einem zweiten Trenchschritt, der von der Substratrückseite ausgeht, wird zunächst die Schallöffnung 14 erzeugt, die das Rückseitenvolumen der Mikrofonstruktur bildet. Dieser Trenchprozess stoppt an der ersten Opferschicht 2 und geht nur in dem Bereich weiter in die Tiefe, in dem die Epi-Polysiliziumschicht 5 direkt an die Substratoberfläche grenzt, d.h. im Bereich der Durchgangsöffnungen 111 in der ersten Membranschicht 3. In diesem Bereich wird der Trenchprozess erst bei Erreichen der dritten Opferschicht 6 gestoppt, so dass im Mittelbereich des Gegenelements 13 Durchgangsöffnungen 132 entstehen. Die entsprechenden Trenchgräben 92 sind in
Die Trenchgräben 91 und 92 in Verbindung mit der Schallöffnung 14 werden als Ätzzugänge zum Freilegen der beiden Membranen 11 und 12 genutzt, was beispielsweise mit Hilfe von HF oder in einem Gasphasenätzverfahren erfolgt. Dabei wird das Opferschichtmaterial der Schichten 2, 4 und 6 in den Bereichen unter der ersten Membran 11 und zwischen dem Gegenelement 13 und den beiden Membran 11 und 12 entfernt. Die resultierende Bauelementstruktur ist in
An dieser Stelle sei angemerkt, dass auch Abweichungen von der voranstehend beschriebenen Prozessfolge möglich sind. So kann der rückseitige Trenchprozess auch vor dem Vorderseiten-Trenchprozess gefahren werden. Außerdem kann es sich als günstig erweisen, bereits nach dem ersten Trenchschritt einen Teil des Opferschichtmaterials zu entfernen. Die beiden Membranen werden dann nach dem zweiten Trenchschritt in einem zweiten Ätzschritt vollständig freigestellt.It should be noted at this point that deviations from the process sequence described above are also possible. Thus, the backside trench process can also be run before the front side trench process. In addition, it may prove advantageous to remove part of the sacrificial layer material after the first trenching step. The two membranes are then completely released after the second trench step in a second etching step.
Gemäß einer vorteilhaften Variante der Erfindung wird vor den einzelnen Opferschichtabscheidungen eine weitere Opferschicht abgeschieden und strukturiert, um definierte Anschläge für die auslenkbaren Elektroden der Mikrofonstruktur zu realisieren. Ein derartiges Bauelement 30 ist in
Von besonderem Vorteil ist es, wenn die Anschläge 122 und 133 zudem aus einem dielektrischen Material bestehen oder zumindest mit einem solchen beschichtet sind, so dass sie einen Kurzschluss der ersten und/oder zweiten Kapazität in Überlastsituationen verhindern. Dadurch wird die Elektronik geschützt und ein Festbrennen der Elektroden vermieden. Zur Realisierung derartiger Anschläge kann vor oder auch nach der Opferschichtabscheidung eine dielektrische Schicht abgeschieden werden, die vorteilhafterweise eine deutlich geringer Ätzrate als die Opferschicht hat, wie beispielsweise SiN oder siliziumreiches Nitrid. Zudem ist die Haftkraft zwischen SiN und Si so gering, dass sich die Membranen nach Überlastsituationen besonders einfach wieder in ihre Ausgangslage bringen lassen.
Bei dem in
It is particularly advantageous if the
At the in
Das Gegenelement 53 ist hier deutlich dicker als die beiden Membranen 51 und 52 und weist erste Durchgangsöffnungen 531 auf, so dass es im Wesentlichen starr und akustisch transparent ist. Um zu erreichen, dass das Gegenelement deutlich weniger auf Schallwellen reagiert als die Membranen, kann das Gegenelement aber auch in einer dünneren Polysiliziumschicht realisiert werden, die steifer als die beiden Membranen im Schichtaufbau aufgehängt ist. Eine weitere Möglichkeit besteht darin, das Gegenelement in Form eines Schichtstapels aus Polysilizium und Oxid bzw. Nitrid zu realisieren, der unter Zugstress steht. Außerdem sind im Gegenelement 53 zweite Durchgangsöffnungen 532 für Verbindungsstege 55 ausgebildet, über die die beiden Membranen 51 und 52 mechanisch gekoppelt sind. Bei der hier beschriebenen Variante ist die erste Membran 51 weitgehend geschlossen und damit akustisch aktiv, während die gesamte Mikrofonfläche der zweiten Membran 52 mit Durchgangsöffnungen 521 versehen ist, so dass die zweite Membran 52 akustisch allenfalls gering aktiv ist. Die mechanische Kopplung zwischen den beiden Membranen 51 und 52 bewirkt jedoch, dass beide Membranen 51 und 52 gleichsinnig ausgelenkt werden, wenn die erste Membran 51 über die Schallöffnung 54 in der Bauteilrückseite mit Schalldruck beaufschlagt wird. Dementsprechend ändern sich die erste und zweite Kapazität, wie im Falle des Bauteils 10, gegensinnig. Die Auswertung erfolgt auch hier durch Differenzbildung zwischen der ersten und zweiten Kapazität.The counter-element 53 here is significantly thicker than the two
Claims (8)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910000053 DE102009000053A1 (en) | 2009-01-07 | 2009-01-07 | Component with a micromechanical microphone structure |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2207364A1 true EP2207364A1 (en) | 2010-07-14 |
EP2207364B1 EP2207364B1 (en) | 2015-10-07 |
Family
ID=42103862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09177681.5A Active EP2207364B1 (en) | 2009-01-07 | 2009-12-02 | Component with a micromechanical microphone structure |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2207364B1 (en) |
DE (1) | DE102009000053A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109195075A (en) * | 2018-11-29 | 2019-01-11 | 华景科技无锡有限公司 | A kind of microphone diaphragm and microphone |
WO2020097524A1 (en) * | 2018-11-09 | 2020-05-14 | Knowles Electronics, Llc | Acoustic transducer with reduced damping |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009027873B4 (en) | 2009-07-21 | 2022-11-17 | Robert Bosch Gmbh | Micromechanical system and associated manufacturing process |
DE102019123077B4 (en) * | 2019-08-28 | 2021-05-27 | Tdk Corporation | Process for the production of a robust double diaphragm microphone |
DE102023203446A1 (en) | 2023-04-17 | 2024-10-17 | Robert Bosch Gesellschaft mit beschränkter Haftung | Microelectromechanical acoustic component |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2155026A1 (en) * | 1971-11-05 | 1973-05-17 | Sennheiser Electronic | LOW FREQUENCY CAPACITOR MICROPHONE HIGH LINEARITY |
EP1467593A2 (en) | 2003-04-09 | 2004-10-13 | Siemens Audiologische Technik GmbH | Directional microphone |
WO2007112743A1 (en) * | 2006-03-30 | 2007-10-11 | Sonion Mems A/S | Single die mems acoustic transducer and manufacturing method |
DE102006024668A1 (en) | 2006-05-26 | 2007-11-29 | Robert Bosch Gmbh | Micromechanical component e.g. sensor, for e.g. hearing aid`s microphone, has counter unit with passage hole in rear volume formed by hollow space below unit, where hollow space contacts upper side of membrane below counter unit via opening |
-
2009
- 2009-01-07 DE DE200910000053 patent/DE102009000053A1/en not_active Withdrawn
- 2009-12-02 EP EP09177681.5A patent/EP2207364B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2155026A1 (en) * | 1971-11-05 | 1973-05-17 | Sennheiser Electronic | LOW FREQUENCY CAPACITOR MICROPHONE HIGH LINEARITY |
EP1467593A2 (en) | 2003-04-09 | 2004-10-13 | Siemens Audiologische Technik GmbH | Directional microphone |
WO2007112743A1 (en) * | 2006-03-30 | 2007-10-11 | Sonion Mems A/S | Single die mems acoustic transducer and manufacturing method |
DE102006024668A1 (en) | 2006-05-26 | 2007-11-29 | Robert Bosch Gmbh | Micromechanical component e.g. sensor, for e.g. hearing aid`s microphone, has counter unit with passage hole in rear volume formed by hollow space below unit, where hollow space contacts upper side of membrane below counter unit via opening |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020097524A1 (en) * | 2018-11-09 | 2020-05-14 | Knowles Electronics, Llc | Acoustic transducer with reduced damping |
US11310600B2 (en) | 2018-11-09 | 2022-04-19 | Knowles Electronics, Llc | Acoustic transducer with reduced damping |
CN109195075A (en) * | 2018-11-29 | 2019-01-11 | 华景科技无锡有限公司 | A kind of microphone diaphragm and microphone |
CN109195075B (en) * | 2018-11-29 | 2024-04-12 | 华景科技无锡有限公司 | Microphone vibrating diaphragm and microphone |
Also Published As
Publication number | Publication date |
---|---|
DE102009000053A1 (en) | 2010-07-08 |
EP2207364B1 (en) | 2015-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010008044B4 (en) | MEMS microphone and method of manufacture | |
DE102012210052B4 (en) | Hybrid integrated component and method for its production | |
EP2214421B1 (en) | Component with a micromechanical microphone structure and method for operating such a component | |
EP2460365B1 (en) | Electronic component having micromechanical microphone structur and method for production | |
DE102012208032B4 (en) | Hybrid integrated component with MEMS component and ASIC component | |
DE102013213717A1 (en) | MEMS device with a microphone structure and method for its manufacture | |
WO2007062975A1 (en) | Micromechanical structure for receiving and/or generating acoustic signals, method for producing a micromechanical structure, and use of a micromechanical structure | |
EP2029474B1 (en) | Micromechanic component having membrane and method for the production thereof | |
DE102016221251A1 (en) | System and method for differential comb drive MEMS | |
DE102012217979A1 (en) | Hybrid integrated pressure sensor component | |
DE102004061796A1 (en) | Micromechanical capacitive sensor element | |
DE102015206863B3 (en) | Method for producing a microphone structure and a pressure sensor structure in the layer structure of a MEMS device | |
WO2008052762A2 (en) | Semiconductor arrangement and method for fabricating a semiconductor arrangement | |
EP2207364B1 (en) | Component with a micromechanical microphone structure | |
WO2009127455A2 (en) | Method for producing a micromechanical membrane structure having fixed counter element | |
EP2211156B1 (en) | Method for manufacturing a micro-mechanical capacitative pressure sensor | |
WO2016030040A1 (en) | Mems component | |
EP2019812B1 (en) | Method for producing a micromechanical component having a membrane and micromechanical component | |
DE102020213030A1 (en) | Manufacturing process for a micromechanical component for a sensor or microphone device | |
DE102011002457A1 (en) | Micromechanical microphone device and method for producing a micromechanical microphone device | |
DE102020200331A1 (en) | Micromechanical component | |
DE102017206777B4 (en) | MEMS microphone and manufacturing process | |
DE102010062056A1 (en) | Micromechanical component | |
DE102011081014A1 (en) | Micromechanical component used in e.g. acceleration sensor, has a stator electrode finger or an actuator electrode finger which partially overlaps a separating trench formed partially surrounding the outer side of a movable mass | |
DE102006003718B4 (en) | Micro-electro-mechanical device and manufacturing process for integrated micro-electro-mechanical devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20110114 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150721 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 754342 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009011661 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151007 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160107 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160207 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160128 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160108 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160208 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009011661 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151202 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
26N | No opposition filed |
Effective date: 20160708 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151202 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 754342 Country of ref document: AT Kind code of ref document: T Effective date: 20151202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151202 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161202 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231219 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240227 Year of fee payment: 15 |