EP2199768A2 - Method for producing a temperature sensor - Google Patents

Method for producing a temperature sensor Download PDF

Info

Publication number
EP2199768A2
EP2199768A2 EP20090179313 EP09179313A EP2199768A2 EP 2199768 A2 EP2199768 A2 EP 2199768A2 EP 20090179313 EP20090179313 EP 20090179313 EP 09179313 A EP09179313 A EP 09179313A EP 2199768 A2 EP2199768 A2 EP 2199768A2
Authority
EP
European Patent Office
Prior art keywords
mineral powder
temperature sensor
protective cap
pressing
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20090179313
Other languages
German (de)
French (fr)
Inventor
Antonin Kovar
Andrej Krsjak
Rostislav Slavik
Maymoon Yahia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2199768A2 publication Critical patent/EP2199768A2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element

Definitions

  • the invention relates to methods for producing a temperature sensor
  • temperature sensors there are a large number of technical applications, for example in the automotive industry, power plant technology, heating technology or building technology.
  • the temperature sensors must detect temperatures well below freezing as well as high temperatures of over 1000 ° C.
  • sensor elements usually electronic sensor elements, such as NTC's or PTC's are used. These electronic sensor elements are relatively sensitive to external influences, such as chemically reactive gases or mechanical impulses. Therefore, the temperature sensor elements are usually encapsulated and thus protected from external influences. However, the encapsulation causes a delayed transition of the temperature to be measured on the sensor element. Therefore, it is customary to fill the space between the electronic sensor element and, for example, a protective cap arranged above it with a material that is highly thermally conductive. For this purpose, ceramic powders are often used, which are filled into the protective cap and form a powdery thermally highly conductive intermediate layer. The introduction of such powders in the protective cap of a temperature sensor proves to be a relatively difficult process, in which it can lead to gaseous inclusions, which counteract a good thermal conductivity.
  • the object of the present invention is therefore to provide a method for producing a temperature sensor, in which a good thermal connection between the sensor element and the medium to be measured is produced inexpensively and with little effort.
  • the shaped body is sintered from the mineral powder, after the shaping of the mineral powder by pressing the mineral powder with a stamp. This has the advantage that the sintered body from the mineral powder is completely inherently stable and can be easily coated with the protective cap.
  • the sintered body of the mineral powder it is also conceivable on the sintered body of the mineral powder to produce a protective cap by spraying or evaporating a corresponding material.
  • a temperature-resistant paint or plastic can be sprayed onto the sintered body of the mineral powder or a metal can be vapor-deposited on this body.
  • the sprayed or vaporized material should advantageously cover the sintered body of the mineral powder and partially the base element.
  • the pressing of the protective cap to the mineral powder is carried out at a higher pressure than the pressing of the mineral powder with the stamp. In this way, even when pressing the cap to the mineral powder, any existing gas inclusions can be eliminated and the mineral powder can be completely adapted to the shape of the cap, with any material tolerances are automatically compensated
  • FIG. 1 shows a temperature sensor element 1, which is arranged on a base member 7.
  • the temperature sensor element 1 is connected to connection wires 2, which establish an electrical connection to the following electronic components through the base element 7.
  • FIG. 1 the temperature measuring element 1 is shown arranged on the base element 7 in a shaping tool 5.
  • mineral powder 3 is filled until the temperature measuring element 1 is completely covered by the mineral powder 3.
  • the shaping of the mineral powder 3 by pressing the mineral powder 3 is carried out with a punch 4, wherein the mineral powder 3 is solidified.
  • the stamp 4 With the stamp 4, the mineral powder 3 all desired shapes can be pressed.
  • An average particle size of the particles in the mineral powder is, for example, between 10 and 500 nanometers, whereby there is a sliding movement between the individual particles of the mineral powder during the pressing, through which the particles of the mineral powder densify enormously as a result of changes of place, whereby a compact arises, which retains its shape even after the removal of the punch 4 and the forming tool 5.
  • FIG. 3 the temperature sensor is shown after removal from the forming tool 5.
  • a protective cap 8 is pulled over the body of solidified mineral powder 3 .
  • This protective cap 8 may be made of metal, for example.
  • the connection of the protective cap 8 with the base element 7 takes place, for example, by welding, gluing, caulking or screwing.
  • the protective cap 8 again exerts pressure on the already solidified body of mineral powder 3, whereby again the displacement of the individual particles of the mineral powder 3 occurs, and thus the shaped body fits perfectly to the shape of the protective cap 8 is adjusted. Air pockets between the temperature sensor element 1 and the protective cap 8 are thus completely excluded, whereby an excellent thermal connection between the temperature sensor element 1 and the medium to be measured is produced.
  • the base member 7 When pressing the solidified mineral powder 3 to the protective cap 8, the base member 7 is held by a holding tool 6. After the protective cap 8 has been pressed onto the solidified mineral powder 3, the temperature sensor 9 is removed from the holding tool 6 and the protective cap 8 is connected to the base element by welding, gluing, caulking or screwing, which is indicated by the arrows in FIG FIG. 4 is shown.
  • FIG. 4 shows the temperature sensor 9 produced by the method according to the invention in addition to the pressing of the mineral powder 3 by the punch 4 and subsequently by the protective cap 8, it is also possible to sinter the shaped body of mineral powder 3, whereby a further solidification of the shaped body 10 is achieved .
  • the mineral powder mass is first preformed so that at least a minimum cohesion of the powder particles is given.
  • the pre-pressed green compact is then compacted by heat treatment below the melting temperature of the mineral powder and cured.
  • the porosity and the volume of the green compact decreases significantly, making it necessary to sinter the molded body 10 before the protective cap 8 is placed on the molded body 10.
  • the finished molded body is pressed into the protective cap 8 under high pressure after sintering. This ensures that even after the sintering of the molded body 10, an air-entrapment-free region of mineral powder is formed between the temperature sensor element 1 and the protective cap 8.
  • the sintered shaped body 10 made of the mineral powder may have a protective cap 8 by spraying or evaporating a corresponding material to produce.
  • a temperature-resistant paint or plastic can be sprayed onto the sintered shaped body 10 of the mineral powder or a metal can be vapor-deposited on this body.
  • the sprayed or vaporized material should thereby advantageously cover the sintered shaped body 10 made of the mineral powder and at least partially the base element 7.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The method involves profiling a mineral powder (3) by deep injection of the mineral powder with a plunger, where the mineral powder is reinforced. A temperature sensor element (1) with the reinforced mineral powder is removed from a molding tool. A protection cap (8) is set on the reinforced mineral powder, and the reinforced mineral powder is profiled again by pressing the protection cap on the mineral powder. A base element (7) is connected with the protection cap by welding, gluing, caulking and screwing.

Description

Die Erfindung betrifft Verfahren zur Herstellung eines TemperatursensorsThe invention relates to methods for producing a temperature sensor

Für Temperatursensoren gibt es eine Vielzahl technischer Anwendungen, zum Beispiel im Automobilbau, der Kraftwerkstechnik, der Heiztechnik oder der Gebäudetechnik. Dabei müssen die Temperatursensoren Temperaturen weit unter dem Gefrierpunkt genauso erfassen, wie hohe Temperaturen von über 1000 °C.For temperature sensors, there are a large number of technical applications, for example in the automotive industry, power plant technology, heating technology or building technology. The temperature sensors must detect temperatures well below freezing as well as high temperatures of over 1000 ° C.

Als Sensorelemente werden in der Regel elektronische Sensorelemente, wie zum Beispiel NTC's oder PTC's eingesetzt. Diese elektronischen Sensorelemente sind relativ empfindlich gegenüber äußeren Einflüssen, wie zum Beispiel chemisch-reaktive Gase oder mechanische Anstöße. Daher werden die Temperatursensorelemente in der Regel verkapselt und somit vor den äußeren Einflüssen geschützt. Die Verkapselung bewirkt jedoch einen verzögerten Übergang der zu messenden Temperatur auf das Sensorelement. Daher ist es üblich, den Raum zwischen dem elektronischen Sensorelement und beispielsweise einer darüber angeordneten Schutzkappe mit einem thermisch gut leitenden Material auszufüllen. Hierzu werden häufig keramische Pulver verwendet, die in die Schutzkappe eingefüllt werden und eine pulverförmige thermisch gut leitende Zwischenschicht bilden. Das Einfüllen solcher Pulver in die Schutzkappe eines Temperatursensors erweist sich regelmäßig als relativ schwieriger Prozess, bei dem es zu gasförmigen Einschlüssen kommen kann, die einer guten thermischen Leitung entgegenwirken.As sensor elements usually electronic sensor elements, such as NTC's or PTC's are used. These electronic sensor elements are relatively sensitive to external influences, such as chemically reactive gases or mechanical impulses. Therefore, the temperature sensor elements are usually encapsulated and thus protected from external influences. However, the encapsulation causes a delayed transition of the temperature to be measured on the sensor element. Therefore, it is customary to fill the space between the electronic sensor element and, for example, a protective cap arranged above it with a material that is highly thermally conductive. For this purpose, ceramic powders are often used, which are filled into the protective cap and form a powdery thermally highly conductive intermediate layer. The introduction of such powders in the protective cap of a temperature sensor proves to be a relatively difficult process, in which it can lead to gaseous inclusions, which counteract a good thermal conductivity.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Herstellung eines Temperatursensors anzugeben, bei dem kostengünstig und aufwandsarm eine gute thermische Verbindung zwischen dem Sensorelement und dem zu messenden Medium hergestellt wird.The object of the present invention is therefore to provide a method for producing a temperature sensor, in which a good thermal connection between the sensor element and the medium to be measured is produced inexpensively and with little effort.

Die Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a method having the features of claim 1.

Durch das Verfahren zur Herstellung eines Temperatursensors mit folgenden Verfahrensschritten:

  • Einlegen eines auf einem Basiselement montierten Temperatursensorelementes in ein Formgebungswerkzeug,
  • Einfüllen eines mineralischen Pulvers in das Formgebungswerkzeug,
  • Formgebung des mineralischen Pulvers durch Verpressen des mineralischen Pulvers mit einem Stempel, wobei das mineralische Pulver verfestigt wird,
  • Entfernen des Temperatursensorelementes mit dem verfestigten mineralischen Pulver aus dem Formgebungswerkzeug,
  • Aufsetzen einer Schutzkappe auf das verfestigten mineralische Pulver,
  • erneute Formgebung des mineralischen Pulvers durch Anpressen der Schutzkappe an das mineralische Pulver,
  • Verbinden des Basiselementes mit der Schutzkappe
wird auf einfache und kostengünstige Weise ein Temperatursensor geschaffen, der schnell und zuverlässig auf die Änderungen der zu messenden Temperatur anspricht und der dennoch einen hervorragenden Schutz des elektronischen Temperatursensorelementes bietet. Das Verfestigen des mineralischen Pulvers mit dem Formgebungswerkzeug ermöglicht zum einen den Ausschluss von Gaseinschlüssen im mineralischen Pulver und erleichtert zum anderen das Aufsetzen der Schutzkappen. Durch das erneute Anpressen der Schutzkappe gegen das mineralische Pulver werden auch eventuell noch vorhandene Freiräume zwischen dem mineralischen Pulver und der Schutzkappe entfernt. Das Verbinden des Basiselementes mit der Schutzkappe verhindert effektiv das Eindringen von chemisch aktiven Substanzen, wie Wasser oder Abgas, in den Temperatursensor. Dazu kann das Verbinden des Basiselements mit der Schutzkappe vorteilhaft durch verschweißen, verkleben, verstemmen oder verschrauben erfolgen.By the method for producing a temperature sensor with the following method steps:
  • Inserting a temperature sensor element mounted on a base element into a forming tool,
  • Filling a mineral powder into the forming tool,
  • Shaping the mineral powder by compressing the mineral powder with a stamp, whereby the mineral powder is solidified,
  • Removing the temperature sensor element with the solidified mineral powder from the forming tool,
  • Placing a protective cap on the solidified mineral powder,
  • remodeling the mineral powder by pressing the protective cap against the mineral powder,
  • Connecting the base element with the protective cap
is a simple and inexpensive way a temperature sensor created that responds quickly and reliably to the changes in the temperature to be measured and yet offers excellent protection of the electronic temperature sensor element. The solidification of the mineral powder with the forming tool allows on the one hand the exclusion of gas inclusions in the mineral powder and on the other facilitates the placement of the protective caps. By re-pressing the cap against the mineral powder also any remaining free space between the mineral powder and the cap are removed. The connection of the base member with the protective cap effectively prevents the penetration of chemically active substances, such as water or exhaust gas, into the temperature sensor. For this purpose, the connection of the base member with the protective cap can be advantageously carried out by welding, gluing, caulking or screwing.

Bei einer Weiterbildung wird der Formkörper aus dem mineralischen Pulver, nach der Formgebung des mineralischen Pulvers durch Verpressen des mineralischen Pulvers mit einem Stempel, gesintert. Dies hat den Vorteil, dass der gesinterte Körper aus dem mineralischen Pulver völlig eigenstabil ist und problemlos mit der Schutzkappe überzogen werden kann.In a further development, the shaped body is sintered from the mineral powder, after the shaping of the mineral powder by pressing the mineral powder with a stamp. This has the advantage that the sintered body from the mineral powder is completely inherently stable and can be easily coated with the protective cap.

Es ist auch denkbar auf den gesinterten Körper aus dem mineralischen Pulver eine Schutzkappe durch versprühen oder verdampfen eines entsprechenden Materials zu erzeugen. Dabei kann zum Beispiel ein temperaturbeständiger Lack oder Kunststoff auf den gesinterten Körper aus dem mineralischen Pulver aufgesprüht werden oder ein Metall kann auf diesen Körper aufgedampft werden. Das versprühte oder verdampfte Material sollte dabei vorteilhafter Weise den gesinterten Körper aus dem mineralischen Pulver und teilweise das Basiselement überdecken.It is also conceivable on the sintered body of the mineral powder to produce a protective cap by spraying or evaporating a corresponding material. In this case, for example, a temperature-resistant paint or plastic can be sprayed onto the sintered body of the mineral powder or a metal can be vapor-deposited on this body. The sprayed or vaporized material should advantageously cover the sintered body of the mineral powder and partially the base element.

Bei einer Weiterbildung erfolgt das Anpressen der Schutzkappe an das mineralische Pulver mit einem höheren Druck als das Verpressen des mineralischen Pulvers mit dem Stempel. Hierdurch können auch beim Anpressen der Schutzkappe an das mineralische Pulver noch eventuell vorhandene Gaseinschlüsse beseitigt werden und das mineralische Pulver kann vollständig der Form der Schutzkappe angepasst werden, wobei jegliche Materialtolleranzen automatisch ausgeglichen werdenIn a further development, the pressing of the protective cap to the mineral powder is carried out at a higher pressure than the pressing of the mineral powder with the stamp. In this way, even when pressing the cap to the mineral powder, any existing gas inclusions can be eliminated and the mineral powder can be completely adapted to the shape of the cap, with any material tolerances are automatically compensated

Weitere Merkmale, Vorteile und Weiterbildungen ergeben sich aus dem nachfolgend in Verbindung mit den Figuren erläuterten Beispiel. Es zeigen:

Figur 1
das Temperaturmesselement auf dem Basiselement,
Figur 2
die Formgebung des mineralischen Pulvers durch Verpressen des mineralischen Pulvers mit einem Stempel,
Figur 3
den Temperatursensor nach der Entfernung aus dem Formgebungswerkzeug,
Figur 4
den nach dem erfindungsgemäßen Verfahren hergestellten Temperatursensor.
Further features, advantages and developments emerge from the example explained below in conjunction with the figures. Show it:
FIG. 1
the temperature measuring element on the base element,
FIG. 2
the shaping of the mineral powder by pressing the mineral powder with a stamp,
FIG. 3
the temperature sensor after removal from the forming tool,
FIG. 4
the temperature sensor produced by the method according to the invention.

Figur 1 zeigt ein Temperatursensorelement 1, das auf einem Basiselement 7 angeordnet ist. Das Temperatursensorelement 1 ist mit Anschlussdrähten 2 verbunden, die durch das Basiselement 7 eine elektrische Verbindung zu nachfolgenden elektronischen Komponenten herstellen. FIG. 1 shows a temperature sensor element 1, which is arranged on a base member 7. The temperature sensor element 1 is connected to connection wires 2, which establish an electrical connection to the following electronic components through the base element 7.

In Figur 1 wird das Temperaturmesselement 1 auf dem Basiselement 7 in einem Formgebungswerkzeug 5 angeordnet dargestellt. In das Formgebungswerkzeug 5 wird mineralisches Pulver 3 eingefüllt, solange, bis das Temperaturmesselement 1 vollständig vom mineralischen Pulver 3 bedeckt ist.In FIG. 1 the temperature measuring element 1 is shown arranged on the base element 7 in a shaping tool 5. In the forming tool 5 mineral powder 3 is filled until the temperature measuring element 1 is completely covered by the mineral powder 3.

In einem nächsten in Figur 2 dargestellten Verfahrensschritt erfolgt die Formgebung des mineralischen Pulvers 3 durch Verpressen des mineralischen Pulvers 3 mit einem Stempel 4, wobei das mineralische Pulver 3 verfestigt wird. Mit dem Stempel 4 können dem mineralischen Pulver 3 alle gewünschten Formen aufgepresst werden. Eine mittlere Teilchengröße der Partikel im mineralischen Pulver beträgt beispielsweise zwischen 10 und 500 Nanometern, wodurch zwischen den einzelnen Partikeln des mineralischen Pulvers eine Gleitbewegung während des Verpressens besteht, durch die sich die Partikel des mineralischen Pulvers durch Platzwechsel untereinander enorm verdichten, wobei ein Presskörper entsteht, der seine Form auch nach der Entfernung des Stempels 4 und des Formgebungswerkzeuges 5 beibehält.In a next in FIG. 2 The process step shown, the shaping of the mineral powder 3 by pressing the mineral powder 3 is carried out with a punch 4, wherein the mineral powder 3 is solidified. With the stamp 4, the mineral powder 3 all desired shapes can be pressed. An average particle size of the particles in the mineral powder is, for example, between 10 and 500 nanometers, whereby there is a sliding movement between the individual particles of the mineral powder during the pressing, through which the particles of the mineral powder densify enormously as a result of changes of place, whereby a compact arises, which retains its shape even after the removal of the punch 4 and the forming tool 5.

In Figur 3 ist der Temperatursensor nach der Entfernung aus dem Formgebungswerkzeug 5 dargestellt. Über den Körper aus verfestigtem mineralischem Pulver 3 ist nun eine Schutzkappe 8 gezogen. Diese Schutzkappe 8 kann zum Beispiel aus Metall bestehen. Die Verbindung der Schutzkappe 8 mit dem Basiselement 7 erfolgt zum Beispiel durch Verschweißen, Verkleben, Verstemmen oder Verschrauben. Dabei wird von der Schutzkappe 8 erneut Druck auf den schon verfestigten Körper aus mineralischem Pulver 3 ausgeübt, wobei es erneut zur Verschiebung der einzelnen Partikel des mineralischen Pulvers 3 kommt und somit der Formkörper perfekt an die Form der Schutzkappe 8 angepasst wird. Lufteinschlüsse zwischen dem Temperatursensorelement 1 und der Schutzkappe 8 sind damit vollständig ausgeschlossen, wodurch eine hervorragende thermische Verbindung zwischen dem Temperatursensorelement 1 und dem zu messenden Medium hergestellt wird. Beim Anpressen des verfestigten mineralischen Pulvers 3 an die Schutzkappe 8 wird das Basiselement 7 durch ein Haltewerkzeug 6 gehalten. Nachdem die Schutzkappe 8 auf das verfestigte mineralische Pulver 3 aufgepresst wurde, wird der Temperatursensor 9 aus dem Haltewerkzeug 6 entfernt und die Schutzkappe 8 wird mit dem Basiselement durch Verschweißen, Verkleben, Verstemmen oder Verschrauben verbunden, was durch die Pfeile in Figur 4 dargestellt ist.In FIG. 3 the temperature sensor is shown after removal from the forming tool 5. Over the body of solidified mineral powder 3 is now a protective cap 8 is pulled. This protective cap 8 may be made of metal, for example. The connection of the protective cap 8 with the base element 7 takes place, for example, by welding, gluing, caulking or screwing. In this case, the protective cap 8 again exerts pressure on the already solidified body of mineral powder 3, whereby again the displacement of the individual particles of the mineral powder 3 occurs, and thus the shaped body fits perfectly to the shape of the protective cap 8 is adjusted. Air pockets between the temperature sensor element 1 and the protective cap 8 are thus completely excluded, whereby an excellent thermal connection between the temperature sensor element 1 and the medium to be measured is produced. When pressing the solidified mineral powder 3 to the protective cap 8, the base member 7 is held by a holding tool 6. After the protective cap 8 has been pressed onto the solidified mineral powder 3, the temperature sensor 9 is removed from the holding tool 6 and the protective cap 8 is connected to the base element by welding, gluing, caulking or screwing, which is indicated by the arrows in FIG FIG. 4 is shown.

Figur 4 zeigt den nach dem erfindungsgemäßen Verfahren hergestellten Temperatursensor 9. Neben dem Verpressen des mineralischen Pulvers 3 durch den Stempel 4 und darauffolgend durch die Schutzkappe 8 ist es auch möglich, den Formkörper aus mineralischem Pulver 3 zu sintern, wodurch eine weitere Verfestigung des Formkörpers 10 erreicht wird. Beim Sintern wird die mineralische Pulvermasse zunächst so vorgeformt, dass wenigstens ein minimaler Zusammenhalt der Pulverpartikel gegeben ist. Der so vorgepresste Grünling wird im Anschluss durch Wärmebehandlung unterhalb der Schmelztemperatur des mineralischen Pulvers verdichtet und ausgehärtet. Beim Sintervorgang verringert sich die Porosität und das Volumen des Grünlings deutlich, wodurch es notwendig ist, dass Sintern des Formkörpers 10 vorzunehmen, bevor die Schutzkappe 8 auf den Formkörper 10 aufgesetzt wird. Weil die exakte Berechnung des Volumenverlustes beim Sintern relativ schwierig ist, wird der fertige Formkörper nach dem Sintern unter hohem Druck in die Schutzkappe 8 gepresst. Damit ist sichergestellt, dass auch nach dem Sintern des Formkörpers 10 ein lufteinschlussfreier Bereich aus mineralischem Pulver zwischen dem Temperatursensorelement 1 und der Schutzkappe 8 entsteht. FIG. 4 shows the temperature sensor 9 produced by the method according to the invention in addition to the pressing of the mineral powder 3 by the punch 4 and subsequently by the protective cap 8, it is also possible to sinter the shaped body of mineral powder 3, whereby a further solidification of the shaped body 10 is achieved , During sintering, the mineral powder mass is first preformed so that at least a minimum cohesion of the powder particles is given. The pre-pressed green compact is then compacted by heat treatment below the melting temperature of the mineral powder and cured. During the sintering process, the porosity and the volume of the green compact decreases significantly, making it necessary to sinter the molded body 10 before the protective cap 8 is placed on the molded body 10. Because the exact calculation of the volume loss during sintering is relatively difficult, the finished molded body is pressed into the protective cap 8 under high pressure after sintering. This ensures that even after the sintering of the molded body 10, an air-entrapment-free region of mineral powder is formed between the temperature sensor element 1 and the protective cap 8.

Darüber hinaus ist es auch denkbar auf den gesinterten Formkörper 10 aus dem mineralischen Pulver eine Schutzkappe 8 durch versprühen oder verdampfen eines entsprechenden Materials zu erzeugen. Dabei kann zum Beispiel ein temperaturbeständiger Lack oder Kunststoff auf den gesinterten Formkörper 10 aus dem mineralischen Pulver aufgesprüht werden oder ein Metall kann auf diesen Körper aufgedampft werden. Das versprühte oder verdampfte Material sollte dabei vorteilhafter Weise den gesinterten Formkörper 10 aus dem mineralischen Pulver und zumindest teilweise das Basiselement 7 überdecken.In addition, it is also conceivable for the sintered shaped body 10 made of the mineral powder to have a protective cap 8 by spraying or evaporating a corresponding material to produce. In this case, for example, a temperature-resistant paint or plastic can be sprayed onto the sintered shaped body 10 of the mineral powder or a metal can be vapor-deposited on this body. The sprayed or vaporized material should thereby advantageously cover the sintered shaped body 10 made of the mineral powder and at least partially the base element 7.

Claims (5)

Verfahren zur Herstellung eines Temperatursensors (9) mit folgenden Verfahrensschritten: - Einlegen eines auf einem Basiselement (7) montierten Temperatursensorelementes (1) in ein Formgebungswerkzeug (5), - Einfüllen eines mineralischen Pulvers (3) in das Formgebungswerkzeug (5), - Formgebung des mineralischen Pulvers (3) durch Verpressen des mineralischen Pulvers (3) mit einem Stempel (4), wobei das mineralische Pulver (3) verfestigt wird, - Entfernen des Temperatursensorelementes (1) mit dem verfestigten mineralischen Pulver (3) aus dem Formgebungswerkzeug (5), - Aufsetzen einer Schutzkappe (8) auf das verfestigten mineralische Pulver (3), - erneute Formgebung des mineralischen Pulvers (3) durch Anpressen der Schutzkappe (8) an das mineralische Pulver (3), - Verbinden des Basiselementes (7) mit der Schutzkappe (8). Method for producing a temperature sensor (9) with the following method steps: Inserting a temperature sensor element (1) mounted on a base element (7) into a shaping tool (5), - filling a mineral powder (3) in the forming tool (5), - shaping the mineral powder (3) by pressing the mineral powder (3) with a punch (4), wherein the mineral powder (3) is solidified, Removing the temperature sensor element (1) with the solidified mineral powder (3) from the forming tool (5), - placing a protective cap (8) on the solidified mineral powder (3), - Re-shaping of the mineral powder (3) by pressing the protective cap (8) to the mineral powder (3), - Connecting the base element (7) with the protective cap (8). Verfahren zur Herstellung eines Temperatursensors (9) nach Anspruch 1, dadurch gekennzeichnet, dass das Verbinden des Basiselements (7) mit der Schutzkappe (8) durch verschweißen, verkleben, verstemmen oder verschrauben erfolgt.Method for producing a temperature sensor (9) according to claim 1, characterized in that the joining of the base element (7) with the protective cap (8) by welding, gluing, caulking or screwing takes place. Verfahren zur Herstellung eines Temperatursensors (9) nach Anspruch 1, dadurch gekennzeichnet, dass der Formkörper (10) aus dem mineralischen Pulver (3), nach der Formgebung des mineralischen Pulvers (3) durch Verpressen des mineralischen Pulvers (3) mit dem Stempel (4), gesintert wird.Method for producing a temperature sensor (9) according to claim 1, characterized in that the shaped body (10) of the mineral powder (3), after the shaping of the mineral powder (3) by pressing the mineral powder (3) with the stamp ( 4), sintered. Verfahren zur Herstellung eines Temperatursensors (9) nach Anspruch 3, dadurch gekennzeichnet, dass die Schutzkappe auf dem gesinterten Körper aus dem mineralischen Pulver durch versprühen oder verdampfen eines entsprechenden Materials zu erzeugt wird.Method for producing a temperature sensor (9) according to Claim 3, characterized that the protective cap on the sintered body is produced from the mineral powder by spraying or evaporating a corresponding material. Verfahren zur Herstellung eines Temperatursensors (9) nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das Anpressen der Schutzkappe (8) an das mineralische Pulver (3) mit einem höheren Druck erfolgt als das Verpressen des mineralischen Pulvers (3) mit dem Stempel (4).A method for producing a temperature sensor (9) according to claim 1, 2 or 3, characterized in that the pressing of the protective cap (8) to the mineral powder (3) at a higher pressure than the pressing of the mineral powder (3) with the Stamp (4).
EP20090179313 2008-12-16 2009-12-15 Method for producing a temperature sensor Withdrawn EP2199768A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810062551 DE102008062551B3 (en) 2008-12-16 2008-12-16 Method for producing a temperature sensor

Publications (1)

Publication Number Publication Date
EP2199768A2 true EP2199768A2 (en) 2010-06-23

Family

ID=42060917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090179313 Withdrawn EP2199768A2 (en) 2008-12-16 2009-12-15 Method for producing a temperature sensor

Country Status (2)

Country Link
EP (1) EP2199768A2 (en)
DE (1) DE102008062551B3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977089A (en) * 2015-07-18 2015-10-14 陈鸽 Sensing device for improving dynamic performance of temperature sensor
CN105068577A (en) * 2015-07-18 2015-11-18 陈鸽 Temperature controller not influenced by heat generated by control circuit
DE102014114664A1 (en) * 2014-10-09 2016-04-14 Endress + Hauser Wetzer Gmbh + Co Kg Thermometer with a protective tube
EP3822596A1 (en) 2019-11-13 2021-05-19 HIDRIA d.o.o. Method for manufacturing a sensing tip for a temperature sensing device, temperature sensing device, combustion engine and vehicle comprising the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011086600B4 (en) * 2011-11-17 2018-01-18 Micro-Epsilon Messtechnik Gmbh & Co. Kg temperature sensor
DE102012219962B3 (en) * 2012-10-31 2014-04-03 Eberspächer Climate Control Systems GmbH & Co. KG Temperature sensor arrangement for heat exchanger of vehicle heater, has sensor unit that is provided with assembly stop portion in transition region between mounting portion and detecting portion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4103642A1 (en) * 1991-02-07 1992-08-13 Ego Elektro Blanc & Fischer TEMPERATURE PROBE
DE19953142A1 (en) * 1999-09-14 2001-03-15 Emitec Emissionstechnologie Sheathed conductor arrangement for corrosive environmental conditions and method for producing a sheathed conductor arrangement
DE102006034248B3 (en) * 2006-07-21 2007-10-18 Beru Ag Temperature sensor for resistance thermometer, has electrical measuring resistor containing protective pipe close to top, and electrically isolated filler filling space between pipe on one side and resistor and its supplies on another side

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014114664A1 (en) * 2014-10-09 2016-04-14 Endress + Hauser Wetzer Gmbh + Co Kg Thermometer with a protective tube
CN104977089A (en) * 2015-07-18 2015-10-14 陈鸽 Sensing device for improving dynamic performance of temperature sensor
CN105068577A (en) * 2015-07-18 2015-11-18 陈鸽 Temperature controller not influenced by heat generated by control circuit
EP3822596A1 (en) 2019-11-13 2021-05-19 HIDRIA d.o.o. Method for manufacturing a sensing tip for a temperature sensing device, temperature sensing device, combustion engine and vehicle comprising the same

Also Published As

Publication number Publication date
DE102008062551B3 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
EP2199768A2 (en) Method for producing a temperature sensor
EP1251985B8 (en) Method for producing lightweight structural components
DE69403957T2 (en) SMOKE GAS FILTER WITH A HEATING ELEMENT IN AN AXIAL SPACE OF TWO FILTER SEGMENTS
WO2014086462A1 (en) Latent heat store and method for the production thereof
EP1669418A4 (en) Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
DE19857958A1 (en) Method of making a pen heater
DE10209347A1 (en) Manufacturing method for turbine wheel runner, involves forming coupling part between shaft and turbine wheel by casting shaft edge with casting alloy composed of tin and aluminum intermetallic compound
EP1282166A3 (en) Metal casing for semiconductor device having high thermal conductivity and thermal expansion coefficient similar to that of semiconductor and method for manufacturing the same
EP1681906A1 (en) Sealed radiator
DE102019208967A1 (en) Heat generating element and process for its manufacture
CN104308151A (en) Method for preparing molybdenum-copper alloy blanks through continuous sintering
DE10046174C2 (en) Hollow ball and process for the production of lightweight components with hollow balls
EP2679323A1 (en) A method of producing a metallic body provided with a metallic cladding
DE102016208267A1 (en) Heating module and method for producing a heating module
CN105251998A (en) Sintering method for controlling carbon and oxygen content of powder metallurgy products
EP2388813A2 (en) Method for manufacturing power semiconductor substrates
WO2006032558A1 (en) Method for embedding a metallic wire in a ceramic element
DE102020205305B4 (en) PTC heater and method of making same
CN102941344A (en) Technology for forming component by virtue of super-plastic hot-pressing and diffusion-bonding for titanium alloy powder
DE3243780A1 (en) Heating body and process for its production
DE202009014959U1 (en) Sputtertargetanordnung
DE2804407C3 (en) Storage heating plate
DE102009003958A1 (en) Producing molded part provided with implementation of metallic conductor by metal injection molding, comprises providing the metallic conductor with electrically insulating material, and spraying the metallic conductor with metal powder
WO2012069374A1 (en) Method for the near net shape manufacture of high temperature resistant jet engine components
JP2012036472A (en) Material powder for powder metallurgy, and method of manufacturing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140701