EP2198672B1 - Method for determining operational parameters for a gas discharge lamp to be operated with electronic ballast and corresponding ballast - Google Patents

Method for determining operational parameters for a gas discharge lamp to be operated with electronic ballast and corresponding ballast Download PDF

Info

Publication number
EP2198672B1
EP2198672B1 EP08802680A EP08802680A EP2198672B1 EP 2198672 B1 EP2198672 B1 EP 2198672B1 EP 08802680 A EP08802680 A EP 08802680A EP 08802680 A EP08802680 A EP 08802680A EP 2198672 B1 EP2198672 B1 EP 2198672B1
Authority
EP
European Patent Office
Prior art keywords
filament
heating
resistance
current
ballast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08802680A
Other languages
German (de)
French (fr)
Other versions
EP2198672A1 (en
Inventor
Dirk Dworatzek
Andreas HÖGL
Andre Mitterbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102007047142A external-priority patent/DE102007047142A1/en
Priority claimed from DE102008012454A external-priority patent/DE102008012454A1/en
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP2198672A1 publication Critical patent/EP2198672A1/en
Application granted granted Critical
Publication of EP2198672B1 publication Critical patent/EP2198672B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling

Definitions

  • the invention relates to a method for determining operating parameters of a gas discharge lamp to be operated with an electronic ballast.
  • Such a method is according to EP 1519638 A1 known.
  • the voltage drop across a resistor located on the primary side of the heating transformer is measured at two different times during the preheating phase.
  • the two voltage values thus determined are compared with reference voltage values stored in a memory to determine the lamp type.
  • the invention has for its object to find a solution to the above problem.
  • the invention has for its object to provide a simple method for detecting the lamp type, which improves the detection reliability compared to the previously known methods.
  • the solution according to the invention adopts the principle of resistance measurement, preferably at heating power held constant during the preheating time or at constant heating current, and uses the difference value (distance) from hot and cold resistance instead of the hot resistances to determine the lamp type.
  • a certain heating power or a certain heating current is set. This can be done via the specification of a corresponding operating frequency and a corresponding switch-on time or a corresponding duty cycle. If the heating circuit is designed with a power source or current source characteristic, it can be ensured that during the preheating phase, the heating power or the Heating current sets in a certain window, which remains within a certain range of values.
  • the prior art has always used heating topologies or control methods with a voltage source characteristic or voltage regulation, which are far less suitable for the method operated here.
  • the invention is based on the following finding:
  • the measurement of the helical resistance via the helical current and the helical voltage presupposes that the helix is supplied with electrical power. This leads to the heating of the coil. Since the coils are usually made of metal, their resistance increases with temperature. The spiral temperature depends on the heating power supplied to the coil. In qualitative terms, this means that the higher the supplied heating power, the higher the coil resistance. It is now assumed that a second lamp type differs from a first lamp type in that the filament resistance of the second lamp type is twice as large as that of the first lamp type.
  • the filament of the second type of lamp is heated less than that of the first type of lamp.
  • the thermal resistance increase of the filament of the second lamp type is thus smaller than that of the filament of the first type of lamp. The thermal resistance increase thus counteracts the increase in the coil base resistance, with the result is that the detection reliability of the lamp type is reduced.
  • the thermal resistance increase of the Spiral of the second lamp type is higher than the thermal resistance increase of the filament of the first lamp type.
  • the thermal resistance enhancement enhances the effect of increasing the coil base resistance, with the result that the detection reliability of the lamp type becomes remarkable.
  • a further step can be added to the above-mentioned method steps, namely: Setting at least one operating parameter for the determined lamp type.
  • the formation of the differential resistance has the advantage that the influence of the starting temperature for measuring the cold resistance is eliminated.
  • the invention further relates to a ballast for at least one gas discharge lamp, with which the inventive method can be performed.
  • This ballast is characterized by the features of claims 10 and 14. Further developments are the subject of claims dependent on the claims 10 and 11 claims.
  • the current setting means may comprise a control part for the filament current.
  • a refinement of the ballast may consist in providing means for setting at least one operating parameter for the determined lamp type.
  • the measuring means may comprise a voltage divider connected in parallel with the filament, from which a signal corresponding to the filament voltage is derived.
  • To the control part may include a connected in series with the heating coil measuring resistor, from which a measurement signal is derived, which corresponds to the helical current.
  • ballast V is used to operate a gas discharge lamp L with two heating coils W1 and W2.
  • a rectifier 1 To generate the operating voltage for the lamp L is rectified by a rectifier 1, the mains voltage and smoothed in a smoothing circuit.
  • An inverter 3 generates an alternating voltage which is fed to a series resonant circuit 4. The voltage drop across the capacitor of the series resonant circuit 4 is supplied to the lamp L as the operating voltage.
  • a programmer 14 connected to a bus determines the start of a preheat phase for the lamp L. He gives to the block 8 a start signal.
  • the block 8 generates the heating power or the filament current for the filaments W1 and W2 of the lamp L.
  • the heating power or the filament current are kept constant during the preheating phase.
  • the heating power or the filament current are led to the lamp L via a block 6, which contains means for limiting the filament voltage.
  • a limitation of the filament voltage is required, for example, a transverse discharge between the individual sections of the heating coils to avoid.
  • the filament current flowing through the "cold" filament W2 generates a voltage drop across the resistor R3, which is conducted to the filament current measuring means 7.
  • a voltage is further removed, which is a measure of the filament voltage at the "cold” coil W2. This is fed to the helical voltage measuring means 9.
  • the measurement values continuously measured by the filament current measuring means 7 and the filament voltage measuring means 9 are fed to a memory 15.
  • the memory 15 is controlled by the programmer 14 such that the measured values for the filament current and the filament voltage are stored at two successive times during the preheating phase.
  • the stored measured values for the filament current and the filament voltage are fed from the memory 15 from a quotient former 10, which calculates therefrom the cold resistance and the hot resistance of the filament. These values are forwarded by the quotient generator 10 to the difference value generator 11, which calculates the differential resistance therefrom.
  • the difference value generator 11 supplies the differential resistance to a decision logic 13, which in turn corresponds to a memory 12 by storing a table for reference differential resistances.
  • the decision logic 13 compares the differential resistance calculated in the block 11 with the reference values in the table stored in the memory 12 and determines the type of the lamp L operated by the ballast V.
  • the determined lamp type is reported by the decision logic 13 to the operating parameter setting means 5, the next other operating parameters, among other things, the heating current or adjust the heating power, if the lamp L is of a different type than the previously operated with the ballast V lamp.
  • Fig. 2 concerns the case that two ballasts are operated in parallel with one ballast. Of course, it also includes the possibility of working with only one lamp.
  • the cold resistances Rcold1 and Rcold2 are measured by the two lamps. From the two measured values, the absolute value of the difference
  • Mains reset or emergency lighting operation is a brief interruption of the mains supply or a brief drop in the mains voltage, which results in a shutdown and a subsequent restart of the electronic ballast. Such a case can be caused by switching the network (by the utility) or by disturbances in the network.
  • An emergency lighting operation may e.g. in the event of mains voltage failure, switching on a (buffered) DC and AC supply voltage or switching to battery operation.
  • the differential resistance Rdiff is smaller than a predefined substitution resistance value Rsub. This comparison is to check whether the lamp is replaced for test purposes by a so-called substitution resistance, which shows no temperature-dependent resistance due to the thermal conditions. If this is the case, the cold resistance and the hot resistance do not differ. Therefore, if the decision is "Yes", the differential resistance Rdiff is set equal to the hot resistance Rhot.
  • the decision is whether the differential resistance Rdiff is smaller than a first stored resistance value "Level 1". If difference resistance Rdiff is less than this level 1, then the decision is made that this is the lamp type 1.
  • Fig. 3 shows the course of the filament resistance in three different lamp types during the preheat phase, which takes 500 ms.
  • the cold resistance Rcold1 x 2 WW In the first coil, the cold resistance Rcold1 x 2 WW, and the hot resistance Rhot1 y 2 WW; where WW stands for a resistance value unit.
  • the cold resistance Rcold2 x 3 WW In the helix of the second lamp type, the cold resistance Rcold2 x 3 WW. During the pre-heating phase it rises to the hot resistance Rhot2 with x 5 WW.
  • the filament of the third lamp type starts with the cold resistance Rcold3 at x 4 WW. This resistance increases during the preheat phase to the hot resistor Rhot3 with x 11 WW.
  • the spreading of the hot resistors Rhot1, Rhot2 and Rhot3 makes it possible to define for the differential resistors Rdiff1, Rdiff2 and Rdiff3 variation ranges which are spaced from each other.
  • the variation ranges are marked with hatching lines.
  • a secure identification is in any case given if the determined difference resistance of the heating coil of a lamp falls into one of the three hatched areas.
  • the first level “level 1" is identical to the cold resistance Rcold1 of the first lamp type.
  • the second level “level 2” is identical to the hot resistance Rhot2 of the second type of lamp.
  • the third level “level 3” lies with a considerable distance above the hot resistance Rhot3 of the lamp type.
  • dashed lines show that the ranges of determination for the relevant lamp type extend beyond the lower undefined range to the next level.
  • the identification zones that go beyond the hatched areas are not compulsory, but have been chosen on a case-by-case basis. It is essential that the hatched areas, ie the variation ranges for the differential resistances, allow identification of the lamp type with great certainty.
  • Fig. 4a shows the dependence of the coil resistance R w as a function of the filament voltage U w .
  • Two coils are considered, one having a helix resistance R 1 and the other having a helix resistance R 2 .
  • the coils are usually made of metal.
  • the electrical resistance of metal increases with temperature. Without taking into account the thermal resistance increase, the two helices form a parallel line to the abscissa, which is indicated by dashed lines. Taking into account the thermal resistance increase, the resistances of the two coils increase with increasing the filament voltage.
  • the supplied heating power with impressed helix tension P 1 U 2 w / R.
  • the supplied heating power with impressed filament voltage P 2 U 2 w / 2R.
  • the helix with the base resistance R 2 supplied heating power P 2 is thus only half as large as the heating power P 1 , which is supplied to the coil with the base resistor R 1 .
  • the two curves approach each other with increasing helix voltage U w . As a result, it becomes more difficult to distinguish between two lamp types having the different coil resistances R 1 and R 2 by the thermal resistance increase.
  • Fig. 4b now shows the idea underlying the invention, namely not to use an impressed filament voltage U w , but an impressed helical current I w .
  • a voltage originating from a low-voltage source predetermined coil voltage is applied to the coil, and that then the resulting helical current is measured.
  • the helical resistance R w then results from the product of filament voltage and filament current.
  • Fig. 5 shows a gas discharge lamp L, which is connected to an electronic ballast V formed according to the invention.
  • the ballast V includes a connected to the AC mains bridge rectifier 1, which rectifies the mains voltage, and a DC voltage intermediate circuit 2 supplies.
  • the intermediate circuit 2 is followed by a half-bridge inverter 3, the contains two alternately clocked switches.
  • the inverter 3 is followed by a pure resonant circuit, which consists of a choke and a capacitor.
  • the lamp is connected in parallel with the capacitor.
  • the circuit parts 1 to 4 are common and known in ballasts.
  • the ballast should now be designed so that with him fluorescent lamps L of different types can be operated.
  • the individual types differ not only by external dimensions, but also by different operating parameters, such as lamp current, lamp voltage, filament voltage, filament current, preheating, etc.
  • the ballast automatically detects the lamp type, by measuring the resistance at least one of the two filaments of the fluorescent lamp L.
  • the filament resistors of certain types are very close to each other, so that a distinction is difficult, and - as above in connection with Fig. 4a was explained by the thermal heating is still difficult.
  • the principle of the regulated helical current is used, which in connection with Fig. 4b has been described.
  • the coils of the lamp L Before the lamp type has been determined, the coils of the lamp L firstly a predetermined known Wendelstram must be supplied.
  • This helical current is either stored in the block 5 representing operating parameter setting means or in a starting program (or programmer) 14 which transmits the relevant current value to the block 5 when it receives a corresponding command from a center via the bus Usus.
  • the thus transmitted current value is supplied from the operating parameter setting means 5 a Wendelstromregier 8, which in turn causes Wendelschreibs-generating means 6, the two coils W1 and W2 of the fluorescent lamp L to supply a corresponding filament voltage.
  • the voltage applied to the lower coil W2 coil voltage is tapped with a consisting of the resistors R1 and R2 voltage divider and supplied to Wendelwoodsmessstoffn 9, which in turn pass the measured filament voltage value to a quotient-10.
  • the filament current flowing through the filament W2 is measured as a voltage drop across a resistor R3 and fed Wendelstrom measuring means 7, which in turn report the measured Wendelstromwert on the one hand to the quotient imager 10 and on the other hand as an actual value to the helical flow controller 8.
  • the quotient generator 10 calculates the filament resistance from the measured filament voltage value and the measured filament current value.
  • the helix resistance is supplied to comparison means (decision logic) 13 which compares it with the values stored in a table stored in memory means 12.
  • the table contains an associated coil resistance for each type of lamp to be operated with the ballast. This is compared with the measured coil resistance.
  • the comparison means (decision logic) 13 then report the determined lamp type to the operating parameter setting means 5.
  • Last then take the relevant settings on the ballast V before. vicarious this is in the Fig. 5 taken into account by the connection between the operating parameter setting means 5 and the inverter 3.
  • the clock frequency and / or the cycle times of the two switches of the inverter can be influenced in this way to set certain operating parameters.
  • the quotient generator 10 is dispensable per se. Instead of storing in the storage means 12 a table which contains the correspondence between coil resistance and lamp type, it is also possible to set down a table containing the associated filament voltage for each lamp type - with known preset coil current. In this case, the filament voltage measuring means 9 would have to report the measured filament voltage instead of the heating resistor to the comparator means (decision logic) 13. The message of the filament current measured by the filament current measuring means 7, which in Fig. 5 takes place at the quotient builder 10, then deleted.
  • a concrete realization of the helical voltage generating means 6 is shown. These include a flyback converter, consisting of an electronic switch S, a resistor R4 and an inductance, wherein the inductance of the primary winding of a heating transformer T H is formed.
  • the bus voltage U Bus lying on the bus is used as the DC voltage source. Instead of the bus voltage U bus , the output voltage of the intermediate circuit 2 can also be used.
  • the heating transformer T H has two secondary windings, each of which is intended for a filament of the fluorescent lamp L.
  • the AC voltage transmitted by the heating transformer T H is rectified by the diode 01 and 02 and by the Smoothed capacitors C1 and C2.
  • the capacitors C1 and C2 still have the task to contribute to the radio interference suppression.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

In order to determine operational parameters of a gas discharge lamp (L) to be operated with an electronic ballast (V), the cold resistance (Tcold) and the hot resistance (Rhot) of a helix (W1) are determined at at least two different times during the preheating phase. During the preheating phase, the heating power or the heating current is kept constant or alternatively, a predetermined heating power or a predetermined heating current is set at the beginning of the preheating phase. Thus a split of the resistance values during the preheating phase is carried out. The differential resistance (Rdiff) is formed from the hot resistance (Rhot) and the cold resistance (Rcold) and is independent from the start temperature of the helix (W1). The differential resistance (Rdiff) is compared to stored reference values in order to set the operational parameters corresponding to the lamp type on the ballast (V).

Description

Die Erfindung betrifft ein Verfahren zum Bestimmen von Betriebsparametern einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe.The invention relates to a method for determining operating parameters of a gas discharge lamp to be operated with an electronic ballast.

Ein derartiges Verfahren ist nach der EP 1519638 A1 bekannt. Bei diesem bekannten Verfahren wird zu zwei verschiedenen Zeitpunkten der Vorheizphase der Spannungsabfall über einem auf der Primärseite des Heiztransformators befindlichen Widerstand gemessen. Die beiden dadurch ermittelten Spannungswerte werden mit in einem Speicher abgelegten Referenzspannungswerten verglichen, um den Lampentyp zu bestimmen.Such a method is according to EP 1519638 A1 known. In this known method, the voltage drop across a resistor located on the primary side of the heating transformer is measured at two different times during the preheating phase. The two voltage values thus determined are compared with reference voltage values stored in a memory to determine the lamp type.

Nach der EP 1125477 B1 ist es bekannt, den Wendelwiderstand der Lampe zu bestimmen, um durch Vergleich mit einem in einem Register abgelegten Referenzwiderstands-Wert den Lampentyp zu ermitteln.After EP 1125477 B1 It is known to determine the filament resistance of the lamp to determine the lamp type by comparison with a reference resistance value stored in a register.

Der Erfindung liegt die Aufgabe zugrunde, eine Lösung für das vorstehend angegebene Problem zu finden.The invention has for its object to find a solution to the above problem.

Ausgehend von dem Eingangs beschriebenen bekannten Verfahren ( EP 1519638 A1 ) besteht die Lösung in der Kombination der im Kennzeichen des Anspruches 1 angegebenen Merkmale.Starting from the known method described in the introduction ( EP 1519638 A1 ), the solution consists in the combination of the features specified in the characterizing part of claim 1.

Der Erfindung liegt die Aufgabe zugrunde, ein einfaches Verfahren zum Erkennen des Lampentyps anzugeben, das die Erkennungssicherheit gegenüber den bisher bekannten Verfahren verbessert.The invention has for its object to provide a simple method for detecting the lamp type, which improves the detection reliability compared to the previously known methods.

Die Aufgabe ist erfindungsgemäß gelöst, durch die Abfolge folgender Verfahrensschritte:

  1. a) Einstellen des durch mindestens eine Heizwendel fließenden Wendelstromes so, dass er eine vorbestimmt Stromstärke hat,
  2. b) direkte oder indirekte Messung der Wendelspannung,
  3. c) Bestimmung des Lampentyps - ggf. nach Berechnung des Wendelwiderstandes - aufgrund der gemessen Wendelspannung durch Vergleich der gemessenen Wendelspannung bzw. des berechneten Wendelwiderstandes mit entsprechenden Normwerten, die für jeden Lampentyp in einer Tabelle abgelegt sind.
The object is achieved according to the invention by the sequence of the following method steps:
  1. a) adjusting the helical current flowing through at least one heating coil so that it has a predetermined current intensity,
  2. b) direct or indirect measurement of the filament voltage,
  3. c) Determination of the lamp type - possibly after calculation of the filament resistance - based on the measured filament voltage by comparing the measured filament voltage or the calculated filament resistance with corresponding standard values, which are stored in a table for each lamp type.

Die erfindungsgemäße Lösung übernimmt das Prinzip der Widerstandsmessung vorzugsweise bei während der Vorheizzeit konstant gehaltener Heizleistung bzw. konstant gehaltenem Heizstrom und verwendet zur Bestimmung des Lampentyps statt der Heißwiderstände nunmehr den Differenzwert (Abstand) aus Heiß- und Kaltwiderstand.The solution according to the invention adopts the principle of resistance measurement, preferably at heating power held constant during the preheating time or at constant heating current, and uses the difference value (distance) from hot and cold resistance instead of the hot resistances to determine the lamp type.

Es reicht aber auch aus, dass zu Beginn der Vorheizphase eine bestimmte Heizleistung bzw. ein bestimmter Heizstrom eingestellt wird. Dies kann über die Vorgabe einer entsprechenden Arbeitsfrequenz und einer entsprechenden Einschaltzeit bzw. eines entsprechenden Tastverhältnisses erfolgen. Wenn die Heizschaltung mit einer Leistungsquellen- bzw. Stromquellencharakteristik ausgelegt ist, kann sichergestellt werden, dass sich während der Vorheizphase die Heizleistung bzw. der Heizstrom in einem gewissen Fenster einstellt, welches innerhalb eines bestimmten Wertebereichs bleibt.But it is also sufficient that at the beginning of the preheating a certain heating power or a certain heating current is set. This can be done via the specification of a corresponding operating frequency and a corresponding switch-on time or a corresponding duty cycle. If the heating circuit is designed with a power source or current source characteristic, it can be ensured that during the preheating phase, the heating power or the Heating current sets in a certain window, which remains within a certain range of values.

Beim Stand der Technik wurden stets Heiztopologien bzw. Regelverfahren mit einer Spannungsquellencharakteristik bzw. Spannungsregelung eingesetzt, die für das hier betriebene Verfahren weit weniger geeignet sind.The prior art has always used heating topologies or control methods with a voltage source characteristic or voltage regulation, which are far less suitable for the method operated here.

Die Erfindung geht von folgender Erkenntnis aus:
Die Messung des Wendelwiderstandes über den Wendelstrom und die Wendelspannung setzt voraus, dass der Wendel eine elektrische Leistung zugeführt wird. Diese führt zur Aufheizung der Wendel. Da die Wendeln in der Regel aus Metall sind, erhöht sich ihr Widerstand mit der Temperatur. Die Wendeltemperatur hängt von der der Wendel zugeführten Heizleistung ab. Qualitativ ausgedrückt bedeutet das, dass der Wendelwiderstand umso höher ist, je höher die zugeführte Heizleistung ist.
Es sei nun angenommen, dass sich ein zweiter Lampentyp von einem ersten Lampentyp dadurch unterscheidet, dass der Wendelwiderstand des zweiten Lampentyps doppelt so groß ist, wie der des ersten Lampentyps. Wenn nun - wie bisher - zur Messung des Wendelwiderstandes eine vorbekannte (eingeprägte) Wendelspannung an die Wendel angelegt wird, so ist die der Wendel des zweiten Lampentyps zugeführte Heizleistung (P = U2/2R) - wegen des doppelten Wendelwiderstandes - nur halb so groß wie die der Wendel des erste Lampentyps zugeführten Heizleistung (P = U2 /R). Das hat zur Folge, dass die Wendel des zweiten Lampentyps weniger stark erwärmt wird als die des ersten Lampentyps. Die thermische Widerstandserhöhung der Wendel des zweiten Lampentyps ist also geringer als die der Wendel des ersten Lampentyps. Die thermische Widerstandserhöhung läuft damit der Erhöhung des Wendel-Basiswiderstandes entgegen, mit der Folge, dass die Erkennungssicherheit des Lampentyps verringert wird.
The invention is based on the following finding:
The measurement of the helical resistance via the helical current and the helical voltage presupposes that the helix is supplied with electrical power. This leads to the heating of the coil. Since the coils are usually made of metal, their resistance increases with temperature. The spiral temperature depends on the heating power supplied to the coil. In qualitative terms, this means that the higher the supplied heating power, the higher the coil resistance.
It is now assumed that a second lamp type differs from a first lamp type in that the filament resistance of the second lamp type is twice as large as that of the first lamp type. If now - as before - a previously known (impressed) filament voltage is applied to the filament to measure the filament resistance, the filament of the filament type supplied heating power (P = U 2 / 2R) - because of the double filament resistance - only half as large like the filament of the first type of lamp supplied heating power (P = U 2 / R). As a result, the filament of the second type of lamp is heated less than that of the first type of lamp. The thermal resistance increase of the filament of the second lamp type is thus smaller than that of the filament of the first type of lamp. The thermal resistance increase thus counteracts the increase in the coil base resistance, with the result is that the detection reliability of the lamp type is reduced.

Wenn nun erfindungsgemäß der Wendel ein vorbestimmter (eingeprägter) Strom zugeführt wird, und wenn dann der Wendelwiderstand durch Messung der Wendelspannung bestimmt wird, so ist die Tendenz genau umgekehrt. In diesem Fall ist die der Wendel des zweiten Lampentyps zugeführte Heizleistung (P = I2*2R) doppelt so hoch, wie die der Wendel des ersten Lampentyps zugeführte Heizleistung (P = I2R), mit der Folge, dass die thermische Widerstandserhöhung der Wendel des zweiten Lampentyps höher ist als die thermische Widerstandserhöhung der Wendel des ersten Lampentyps. Dadurch verstärkt die thermische Widerstandserhöhung die Wirkung der Erhöhung des Wendel-Basiswiderstandes, mit der Folge, dass wird die Erkennungssicherheit des Lampentyps beträchtlich wird.Now, if the coil according to the invention a predetermined (impressed) current is supplied, and then if the coil resistance is determined by measuring the filament voltage, the tendency is exactly the opposite. In this case, the heating power supplied to the coil of the second lamp type (P = I 2 * 2R) is twice as high as the heating power supplied to the coil of the first lamp type (P = I 2 R), with the result that the thermal resistance increase of the Spiral of the second lamp type is higher than the thermal resistance increase of the filament of the first lamp type. As a result, the thermal resistance enhancement enhances the effect of increasing the coil base resistance, with the result that the detection reliability of the lamp type becomes remarkable.

Mit anderen Worten bedeutet das, dass hochohmige Wendeln bei Benutzung einer Stromquelle und die dadurch bedingte stärkere Heizung gegenüber niederohmigen Wendeln noch hochohmiger werden. Das führt zu einer größeren Differenz der Widerstände und damit zu einer verbesserten Erkennbarkeit.In other words, this means that high-impedance coils are even higher impedance when using a power source and the resulting stronger heating over low-resistance coils. This leads to a larger difference of the resistances and thus to an improved recognizability.

Praktisch ist die Realisierung einer Stromquelle zur Wendelheizung schwierig. Das Einstellen des durch mindestens eine Heizwendel fließenden Wendelstromes, dass er eine vorbestimmte Stromstärke hat, wird deshalb am besten durch Einregeln des Wendelstromes realisiert.In practice, the realization of a power source for filament heating is difficult. Adjusting the helical current flowing through at least one heating coil to have a predetermined current intensity is therefore best realized by adjusting the helical current.

Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens kann an die oben erwähnten Verfahrensschritte ein weiterer Schritt angefügt werden, und zwar:
Einstellen mindestens eines Betriebsparameters für den ermittelten Lampentyp.
According to a development of the method according to the invention, a further step can be added to the above-mentioned method steps, namely:
Setting at least one operating parameter for the determined lamp type.

Die Bildung des Differenzwiderstandes hat den Vorteil, dass der Einfluss der Starttemperatur zur Messung des Kaltwiderstands eliminiert wird.The formation of the differential resistance has the advantage that the influence of the starting temperature for measuring the cold resistance is eliminated.

Weiterbildungen der erfindungsgemäßen Verfahren sind Gegenstand der vom Anspruch 1 abhängigen Ansprüche.Further developments of the method according to the invention are the subject of claims dependent on claim 1.

Die Erfindung betrifft ferner ein Vorschaltgerät für mindestens eine Gasentladungslampe, mit dem das erfindungsgemäße Verfahren ausgeführt werden kann. Dieses Vorschaltgerät ist durch die Merkmale der Ansprüche 10 und 14 gekennzeichnet. Weiterbildungen sind Gegenstand der von den Ansprüchen 10 und 11 abhängigen Ansprüche.The invention further relates to a ballast for at least one gas discharge lamp, with which the inventive method can be performed. This ballast is characterized by the features of claims 10 and 14. Further developments are the subject of claims dependent on the claims 10 and 11 claims.

Die Erfindung betrifft ferner ein Vorschaltgerät für eine Gasentladungslampe, das nach dem vorstehend beschriebenen Verfahren arbeitet. Dieses Vorschaltgerät weist folgende Merkmale auf:

  • Speichermittel für eine Tabelle, in der zu jedem Lampentyp für eines bestimmte Wendelstromstärke die korrespondierende Wendelspannung bzw. der entsprechende Wendelwiderstand niedergelegt ist,
  • Stromeinstellmittel, mittels welchen für mindestens eine Heizwendel ein vorbestimmter Wendelstrom einstellbar ist,
  • Messmittel zum direkten oder indirekten Messen des Spannungsabfalls über der mit dem vorbestimmten Wendelstrom beaufschlagten Heizwendel,
  • ggf. Mittel zum Errechnen des Wendelwiderstandes durch Quotientenbildung aus der gemessenen Wendel spannung und dem eingestellten Wendelstrom,
  • Vergleichsmittel zum Bestimmen des Lampentyps durch Vergleichen der gemessenen Wendelspannung bzw. des errechneten Wendelwiderstandes mit dem entsprechenden in der Tabelle niedergelegten Wert.
The invention further relates to a ballast for a gas discharge lamp, which operates according to the method described above. This ballast has the following features:
  • Storage means for a table, in which for each lamp type for a certain filament current intensity the corresponding filament voltage or the corresponding filament resistance is stored,
  • Stromeinstellmittel, by means of which for at least one heating coil, a predetermined coil current is adjustable,
  • Measuring means for directly or indirectly measuring the voltage drop across the heating coil charged with the predetermined filament current,
  • if necessary means for calculating the filament resistance by quotient formation from the measured filament voltage and the set filament current,
  • Comparative means for determining the lamp type by comparing the measured filament voltage or the calculated filament resistance with the corresponding value set down in the table.

Zur Einstellung des Wendelstromes können die Stromeinstellmittel einen Regelungsteil für den Wendelstrom umfassen.For adjusting the filament current, the current setting means may comprise a control part for the filament current.

Eine Weiterbildung des Vorschaltgerätes kann darin bestehen, dass Mittel zum Einstellen mindestens eines Betriebsparameters für den ermittelten Lampentyp vorgesehen sind.A refinement of the ballast may consist in providing means for setting at least one operating parameter for the determined lamp type.

Die Messmittel können einen parallel zu der Wendel geschalteten Spannungsteiler umfassen, von dem ein der Wendelspannung entsprechendes Signal abgeleitet wird.The measuring means may comprise a voltage divider connected in parallel with the filament, from which a signal corresponding to the filament voltage is derived.

Zu dem Regelungsteil kann ein in Serie mit der Heizwendel geschalteter Messwiderstand gehören, von dem ein Messsignal abgeleitet wird, das dem Wendelstrom entspricht.To the control part may include a connected in series with the heating coil measuring resistor, from which a measurement signal is derived, which corresponds to the helical current.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen beschrieben.Embodiments of the invention will be described below with reference to the drawings.

Es zeigen:

Fig. 1
ein schematisiertes Blockschaltbild des erfindungsgemäßen Vorschaltgerätes;
Fig. 2
ein Flussdiagramm, welches zeigt, wie das erfindungsgemäße Verfahren praktisch umgesetzt wird;
Fig. 3
eine graphische Darstellung der Abhängigkeit des Wendelwiderstandes von der Vorheizzeit für drei verschiedene Lampentypen sowie sich daraus ergebenden drei Variationsbereiche für den Differenzwiderstand jedes dieser drei Lampentypen;
Fig. 4
a die Abhängigkeit des Wendelwiderstandes von der Wendelspannung bei eingeprägter Wendelspannung;
Fig. 4
b die Abhängigkeit des Wendelwiderstandes vom Wendelstrom bei eingeprägtem Wendelstrom;
Fig. 5
eine Gasentladungslampe mit zugehörigem Vorschaltgerät;
Fig. 6
der Block Wendelspannungserzeugung aus Fig. 5 in konkreter Ausgestaltung.
Show it:
Fig. 1
a schematic block diagram of the ballast according to the invention;
Fig. 2
a flow chart showing how the inventive method is practiced;
Fig. 3
a graphical representation of the dependence of the coil resistance of the preheating time for three different lamp types and resulting three ranges of variation for the differential resistance of each of these three lamp types;
Fig. 4
a the dependence of the helical resistance of the helical tension with impressed helical tension;
Fig. 4
b the dependence of the helical resistance of the filament current with impressed filament current;
Fig. 5
a gas discharge lamp with associated ballast;
Fig. 6
the block spiral voltage generation off Fig. 5 in concrete form.

Das in Fig. 1 gezeigte Vorschaltgerät V dient zum Betrieb einer Gasentladungslampe L mit zwei Heizwendeln W1 und W2.This in Fig. 1 shown ballast V is used to operate a gas discharge lamp L with two heating coils W1 and W2.

Zur Erzeugung der Betriebsspannung für die Lampe L wird von einem Gleichrichter 1 die Netzspannung gleichgerichtet und in einer Glättungsschaltung geglättet. Ein Wechselrichter 3 erzeugt daraus eine Wechselspannung, die einem Serienresonanzkreis 4 zugeführt wird. Die über dem Kondensator des Serienresonanzkreises 4 abfallende Spannung wird der Lampe L als Betriebsspannung zugeführt.To generate the operating voltage for the lamp L is rectified by a rectifier 1, the mains voltage and smoothed in a smoothing circuit. An inverter 3 generates an alternating voltage which is fed to a series resonant circuit 4. The voltage drop across the capacitor of the series resonant circuit 4 is supplied to the lamp L as the operating voltage.

Ein mit einem Bus verbundener Programmgeber 14 legt den Start einer Vorheizphase für die Lampe L fest. Er gibt dazu an den Block 8 ein Startsignal. Der Block 8 erzeugt die Heizleistung bzw. den Wendelstrom für die Wendeln W1 und W2 der Lampe L. Die Heizleistung bzw. der Wendelstrom werden während der Vorheizphase konstant gehalten. Die Heizleistung bzw. der Wendelstrom werden der Lampe L über einen Block 6 geführt, der Mittel zum Begrenzen der Wendelspannung enthält. Eine Begrenzung der Wendelspannung ist erforderlich, um bspw. eine Querentladung zwischen den einzelnen Abschnitten der Heizwendeln zu vermeiden. Der durch die "kalte" Wendel W2 fließende Wendelstrom erzeugt an dem Widerstand R3 einen Spannungsabfall, der Wendelstrom-Messmitteln 7 geführt wird. An einem Spannungsteiler R1, R2 wird ferner eine Spannung abgenommen, die ein Maß für die Wendelspannung an der "kalten" Wendel W2 ist. Diese wird den Wendelspannungs-Messmitteln 9 zugeführt.A programmer 14 connected to a bus determines the start of a preheat phase for the lamp L. He gives to the block 8 a start signal. The block 8 generates the heating power or the filament current for the filaments W1 and W2 of the lamp L. The heating power or the filament current are kept constant during the preheating phase. The heating power or the filament current are led to the lamp L via a block 6, which contains means for limiting the filament voltage. A limitation of the filament voltage is required, for example, a transverse discharge between the individual sections of the heating coils to avoid. The filament current flowing through the "cold" filament W2 generates a voltage drop across the resistor R3, which is conducted to the filament current measuring means 7. At a voltage divider R1, R2, a voltage is further removed, which is a measure of the filament voltage at the "cold" coil W2. This is fed to the helical voltage measuring means 9.

Die von den Wendelstrom-Messmitteln 7 und den Wendelspannungs-Messmitteln 9 laufend gemessenen Messwerte werden einem Speicher 15 zugeführt. Der Speicher 15 ist von dem Programmgeber 14 gesteuert, und zwar so, dass die Messwerte für den Wendelstrom und die Wendelspannung zu zwei aufeinanderfolgenden Zeitpunkten während der Vorheizphase gespeichert werden. Die gespeicherten Messwerte für den Wendelstrom und die Wendelspannung werden von dem Speicher 15 aus einem Quotientenbildner 10 zugeführt, der daraus den Kaltwiderstand und den Heißwiderstand der Wendel berechnet. Diese Werte werden von dem Quotientenbildner 10 an den Differenzwertbildner 11 weitergeleitet, der daraus den Differenzwiderstand errechnet.The measurement values continuously measured by the filament current measuring means 7 and the filament voltage measuring means 9 are fed to a memory 15. The memory 15 is controlled by the programmer 14 such that the measured values for the filament current and the filament voltage are stored at two successive times during the preheating phase. The stored measured values for the filament current and the filament voltage are fed from the memory 15 from a quotient former 10, which calculates therefrom the cold resistance and the hot resistance of the filament. These values are forwarded by the quotient generator 10 to the difference value generator 11, which calculates the differential resistance therefrom.

Der Differenzwertbildner 11 führt den Differenzwiderstand einer Entscheidungslogik 13 zu, die ihrerseits mit einem Speicher 12 korrespondiert, indem eine Tabelle für Referenz-Differenzwiderstände abgelegt ist. Die Entscheidungslogik 13 vergleicht den in dem Block 11 berechneten Differenzwiderstand mit den Referenzwerten in der im Speicher 12 gespeicherten Tabelle und bestimmt den Typ der von dem Vorschaltgerät V betriebenen Lampe L. Der ermittelte Lampentyp wird von der Entscheidungslogik 13 an die Betriebsparameter-Einstellmittel 5 gemeldet, die neben anderen Betriebsparametern unter anderem den Heizstrom bzw. die Heizleistung neu einstellen, falls die Lampe L von einem anderen Typ ist als die zuvor mit dem Vorschaltgerät V betriebene Lampe.The difference value generator 11 supplies the differential resistance to a decision logic 13, which in turn corresponds to a memory 12 by storing a table for reference differential resistances. The decision logic 13 compares the differential resistance calculated in the block 11 with the reference values in the table stored in the memory 12 and determines the type of the lamp L operated by the ballast V. The determined lamp type is reported by the decision logic 13 to the operating parameter setting means 5, the next other operating parameters, among other things, the heating current or adjust the heating power, if the lamp L is of a different type than the previously operated with the ballast V lamp.

Es sei in diesem Zusammenhang darauf hingewiesen, dass die einzelnen Blöcke in Fig. 1 nicht notwendigerweise durch Hardware realisiert sein müssen. Vielmehr ist es auch möglich, dass die Funktion einiger Blöcke durch eine entsprechende Software in einem Prozessor realisiert wird. Die Blockdarstellung in Fig. 1 soll lediglich dem besseren Verständnis dienen.It should be noted in this regard that the individual blocks in Fig. 1 not necessarily be realized by hardware. Rather, it is also possible that the function of some blocks is realized by a corresponding software in a processor. The block diagram in Fig. 1 should only serve the better understanding.

Die logische Abfolge der einzelnen Verfahrensschritte zur Ermittlung des Lampentyps, also die softwaremäßige Darstellung der Erfindung, ist in Fig. 2 gezeigt. Die wird nachfolgend erläutert.The logical sequence of the individual method steps for determining the lamp type, ie the software representation of the invention, is described in Fig. 2 shown. This will be explained below.

Die Darstellung in Fig. 2 betrifft den Fall, dass mit einem Vorschaltgerät parallel zwei Lampen betrieben werden. Sie umfasst aber selbstverständlich auch die Möglichkeit, dass nur mit einer Lampe gearbeitet wird.The representation in Fig. 2 concerns the case that two ballasts are operated in parallel with one ballast. Of course, it also includes the possibility of working with only one lamp.

Zu Beginn der Vorheizphase werden von den beiden Lampen die Kaltwiderstände Rcold1 und Rcold2 gemessen. Aus den beiden Messwerten wird der Absolutwert der Differenz |Rdiff| berechnet. Danach werden drei Fälle unterschieden. Wenn |Rdiff| kleiner als ein erster Referenzwert Ref1 ist, so bedeutet dass, dass die beiden Lampen vom gleichen Typ sind. Es geht dann weiter im "Fall 1".At the beginning of the preheating phase the cold resistances Rcold1 and Rcold2 are measured by the two lamps. From the two measured values, the absolute value of the difference | Rdiff | calculated. Then three cases are distinguished. If | Rdiff | is smaller than a first reference value Ref1, it means that the two lamps are of the same type. It then continues in "Case 1".

Wenn |Rdiff| größer als der erste Referenzwert Ref1 aber kleiner als ein zweiter Referenzwert Ref2 ist, so bedeutet dass, dass Lampen zwar betriebsbereit, jedoch nicht vom gleichen Typ sind. In diesem Fall wird der Pfad "Fall 2" beschritten.If | Rdiff | is greater than the first reference value Ref1 but smaller than a second reference value Ref2, that means that the lamps are ready, but not of the same type. In this case, the path "Case 2" is taken.

An dieser Stelle sei vermerkt, dass die Erkennung des Lampentyps durch Prüfen der Wendelwiderstände bei bestimmten Ereignissen übersprungen werden kann. So kann die Messung bei den folgenden besonderen Bedingungen ausgelassen werden und ein beschleunigter Lampenstart unter den im EVG bereits abgelegten Daten (die Betriebsparameter, welche nach dem vorhergegangenen Lampenstart eingestellt wurden) initiiert werden:It should be noted at this point that detection of the lamp type can be skipped by checking the coil resistances for certain events. Thus the measurement can be omitted under the following special conditions and an accelerated lamp start can be initiated under the data already stored in the TOE (the operating parameters set after the previous lamp start):

Netzreset oder Notlichtbetrieb. Ein Netzreset ist eine kurzzeitige Unterbrechung der Netzversorgung bzw. ein kurzzeitiges Abfallen der Netzspannung, was ein Abschalten und kurz darauf folgendes Neustarten des EVG zur Folge hat. Ein solcher Fall kann durch Umschalten des Netzes (durch den Netzversorger) oder auch durch Störungen am Netz hervorgerufen werden. Ein Notlichtbetrieb kann z.B. bei Ausfall der Netzspannung durch das Aufschalten einer (gepufferten) DC- und AC-Versorgungsspannung oder das Umschalten auf einen Batteriebetrieb erfolgen.Mains reset or emergency lighting operation. A mains reset is a brief interruption of the mains supply or a brief drop in the mains voltage, which results in a shutdown and a subsequent restart of the electronic ballast. Such a case can be caused by switching the network (by the utility) or by disturbances in the network. An emergency lighting operation may e.g. in the event of mains voltage failure, switching on a (buffered) DC and AC supply voltage or switching to battery operation.

Nunmehr soll der Pfad "Fall 1" weiter verfolgt werden, bei dem also die weitere Auswertung mit derjenigen Lampe erfolgt, die den geringeren Kaltwiderstand Rcoldl bzw. Rcold2 aufweist.Now, the path "Case 1" should be continued, so that the further evaluation is carried out with the lamp having the lower cold resistance Rcoldl or Rcold2.

Es versteht sich, dass man zu diesem Punkt in dem Flussdiagramm auch kommt, wenn nur eine Lampe vorhanden ist. In diesem Fall entfällt die Aufspaltung der Kaltwiderstände in zwei Pfade. Der weitere Verlauf des Flussdiagramms ist ohnehin nur auf eine Wendel beschränkt, sei es die mit dem geringeren Kaltwiderstand oder die einzige vorhandene Lampe.It is understood that this point in the flowchart also comes when only one lamp is present. In this case, the splitting of the cold resistances in two paths is eliminated. The further course of the Flowchart is anyway limited to only one coil, be it with the lower cold resistance or the only existing lamp.

Des Weiteren wird nun geprüft, ob der Differenzwiderstand Rdiff kleiner als ein vordefinierter Substitutionswiderstandwert Rsub ist. Dieser Vergleich soll überprüfen, ob die Lampe zu Testzwecken durch einen sogenannten Substitutionswiderstand ersetzt ist, der auf Grund der thermischen Verhältnisse keinen temperaturabhängigen Widerstand zeigt. Wenn das der Fall ist, unterscheiden sich der Kaltwiderstand und der Heißwiderstand nicht. Deshalb wird - wenn die Entscheidung "Ja" lautet - der Differenzwiderstand Rdiff gleich dem Heißwiderstand Rhot gesetzt.Furthermore, it is now checked whether the differential resistance Rdiff is smaller than a predefined substitution resistance value Rsub. This comparison is to check whether the lamp is replaced for test purposes by a so-called substitution resistance, which shows no temperature-dependent resistance due to the thermal conditions. If this is the case, the cold resistance and the hot resistance do not differ. Therefore, if the decision is "Yes", the differential resistance Rdiff is set equal to the hot resistance Rhot.

Wenn der Differenzwiderstand Rdiff größer als der Substitutionswiderstandwert Rsub ist, d. h., wenn sich - weil eine Lampe eingesetzt ist - Rcold und Rhot ausreichend unterscheiden, so lautet das Ergebnis der Entscheidung "Nein".When the differential resistance Rdiff is greater than the substitution resistance value Rsub, d. h., if - because a lamp is inserted - Rcold and Rhot differ sufficiently, then the result of the decision is "no".

Als nächstes steht die Entscheidung an, ob der Differenzwiderstand Rdiff kleiner als ein erster gespeicherter Widerstandswert "Pegel 1" ist. Wenn Differenzwiderstand Rdiff kleiner als dieser Pegel 1 ist, so wird die Entscheidung getroffen, dass es sich hier um den Lampentyp 1 handelt.Next, the decision is whether the differential resistance Rdiff is smaller than a first stored resistance value "Level 1". If difference resistance Rdiff is less than this level 1, then the decision is made that this is the lamp type 1.

Wenn der Differenzwiderstand Rdiff zwischen den bereits genannten Pegel 1 und einem weiteren höher gelegenen Pegel 2 liegt, so wird die Entscheidung getroffen, dass ein Lampentyp 2 vorliegt.If the difference resistance Rdiff is between the already mentioned level 1 and a further higher level 2, the decision is made that a lamp type 2 is present.

Wenn der Differenzwiderstand Rdiff zwischen dem Pegel 2 und einem weiteren Pegel 3 liegt, so wird die Entscheidung getroffen, dass der Lampentyp 3 vorliegt.If the difference resistance Rdiff is between the level 2 and another level 3, the decision is made that the lamp type 3 is present.

Die Begriffe "Pegel 1", "Pegel 2" und "Pegel 3" werden nachfolgend noch in Verbindung mit Fig. 3 genauer erläutert.The terms "Level 1", "Level 2" and "Level 3" will be discussed below Fig. 3 explained in more detail.

Sofern der Differenzwiderstand Rdiff in die genannten Grenzen fällt und der Lampentyp dadurch bestimmt werden kann, so wird mit dem Setzen der Betriebsparameter entsprechend dem ermittelten Lampentyp fortgefahren.If the difference resistance Rdiff falls within the stated limits and the lamp type can be determined by this, the setting of the operating parameters is continued according to the determined lamp type.

Wenn dagegen kein Bereich gefunden worden ist, in den der Differenzwiderstand Rdiff eingeordnet werden kann, so wird mit dem zuletzt gespeicherten Wert weitergearbeitet.If, on the other hand, no range has been found in which the differential resistance Rdiff can be classified, then work continues with the last stored value.

Fig. 3 zeigt den Verlauf des Wendelwiderstandes bei drei verschiedenen Lampentypen während der Vorheizphase, die 500 ms dauert. Fig. 3 shows the course of the filament resistance in three different lamp types during the preheat phase, which takes 500 ms.

Bei der ersten Wendel ist der Kaltwiderstand Rcold1 x2 WW, und der Heißwiderstand Rhot1 y2 WW; wobei WW für eine Widerstandswert-Einheit steht.In the first coil, the cold resistance Rcold1 x 2 WW, and the hot resistance Rhot1 y 2 WW; where WW stands for a resistance value unit.

Bei der Wendel des zweiten Lampentyps ist der Kaltwiderstand Rcold2 x3 WW. Er steigt während der Vorheizphase auf den Heißwiderstand Rhot2 mit x5 WW an.In the helix of the second lamp type, the cold resistance Rcold2 x 3 WW. During the pre-heating phase it rises to the hot resistance Rhot2 with x 5 WW.

Die Wendel des dritten Lampentyps beginnt mit dem Kaltwiderstand Rcold3 bei x4 WW. Dieser Widerstand steigt während der Vorheizphase auf den Heißwiderstand Rhot3 mit x11 WW.The filament of the third lamp type starts with the cold resistance Rcold3 at x 4 WW. This resistance increases during the preheat phase to the hot resistor Rhot3 with x 11 WW.

Man erkennt, wie sich die Widerstandswerte mit der thermischen Erwärmung aufspreizen. Voraussetzung ist dabei, dass den Wendeln während der Vorheizphase immer die gleiche Heizleistung bzw. der gleiche Heizstrom zugeführt wird.It can be seen how the resistance values spread with thermal heating. The prerequisite is that the coils during the preheating always the same heating power or the same heating current is supplied.

Bildet man nun jeweils aus dem Heißwiderstand Rhot und dem Kaltwiderstand Rcold den Differenzwiderstand, so ergibt sich für den ersten Lampentyp ein Differenzwiderstand Rdiff1 von y1 WW. Der Differenzwiderstand Rdiff2 ist des zweiten Lampentyps beträgt x5 WW. Der Differenzwiderstand Rdiff3 für den dritten Lampentyp beträgt x10 WW.If we now form in each case from the hot and the cold resistance Rhot resistance Rcold the differential resistance, it is clear for the first lamp type, a resistance difference of Rdiff1 y 1 WW. The differential resistance Rdiff2 is the second lamp type is x 5 WW. The differential resistance Rdiff3 for the third lamp type is x 10 WW.

Die Aufspreizung der Heißwiderstände Rhot1, Rhot2 und Rhot3 erlaubt es, für die Differenzwiderstände Rdiff1, Rdiff2 und Rdiff3 Variationsbereiche zu definieren, die voneinander einen Abstand haben. Die Variationsbereiche sind mit Schraffurlinien gekennzeichnet.The spreading of the hot resistors Rhot1, Rhot2 and Rhot3 makes it possible to define for the differential resistors Rdiff1, Rdiff2 and Rdiff3 variation ranges which are spaced from each other. The variation ranges are marked with hatching lines.

Eine sichere Identifizierung ist jedenfalls dann gegeben, wenn der ermittelte Differenzwiderstand der Heizwendel einer Lampe in einen der drei schraffierten Bereiche fällt.A secure identification is in any case given if the determined difference resistance of the heating coil of a lamp falls into one of the three hatched areas.

Es hat sich jedoch herausgestellt, dass eine zufriedenstellende Bestimmung des Lampentyps auch dann möglich ist, wenn man mit den drei eingezeichneten Pegeln arbeitet. Der erste Pegel "Pegel 1" ist mit dem Kaltwiderstand Rcold1 des ersten Lampentyps identisch. Der zweite Pegel "Pegel 2" ist mit dem Heißwiderstand Rhot2 des zweiten Lampentyps identisch. Der dritte Pegel "Pegel 3" liegt mit beachtlichem Abstand über dem Heißwiderstand Rhot3 des Lampentyps.However, it has been found that a satisfactory determination of the lamp type is possible even when working with the three drawn levels. The first level "level 1" is identical to the cold resistance Rcold1 of the first lamp type. The second level "level 2" is identical to the hot resistance Rhot2 of the second type of lamp. The third level "level 3" lies with a considerable distance above the hot resistance Rhot3 of the lamp type.

Mit den rechts in der Darstellung eingezeichneten Distanzpfeilen ist durch gestrichelte Linien dargestellt, dass die Bestimmungsbereiche für den betreffenden Lampentyp über den unteren nicht definierten Bereich hinaus bis zu dem nächsten Pegel reichen.With the distance arrows drawn on the right in the illustration, dashed lines show that the ranges of determination for the relevant lamp type extend beyond the lower undefined range to the next level.

Die über die schraffierten Bereiche hinausgehenden Identifizierungszonen sind nicht zwingend, sondern fallspezifisch gewählt worden. Wesentlich ist, dass die schraffierten Bereiche, also die Variationsbereiche für die Differenzwiderstände eine Identifizierung des Lampentyps mit großer Sicherheit erlauben.The identification zones that go beyond the hatched areas are not compulsory, but have been chosen on a case-by-case basis. It is essential that the hatched areas, ie the variation ranges for the differential resistances, allow identification of the lamp type with great certainty.

Fig. 4a zeigt die Abhängigkeit des Wendelwiderstandes Rw in Abhängigkeit von der Wendelspannung Uw. Es werden zwei Wendeln betrachtet, von denen die eine einen Wendelwiderstand R1 und die andere einen Wendelwiderstand R2 hat. Der Wendelwiderstand R2 ist doppelt so groß wie der Wendelwiderstand R1. Wenn man den Wendelwiderstand R1 = R setzt, so ist R2 = 2R. Die Wendeln bestehen normalerweise aus Metall. Der elektrische Widerstand von Metall erhöht sich mit der Temperatur. Ohne Berücksichtigung der thermischen Widerstandserhöhung bilden die beiden Wendeln eine parallele Linie zur Abszisse, die durch gestrichelte Linien angedeutet ist. Bei Berücksichtigung der thermischen Widerstandserhöhung steigen die Widerstände der beiden Wendeln mit Erhöhung der Wendelspannung an. Je höher die einer Wendel zugeführte Heizleistung P ist, desto höher ist die entsprechende thermische Widerstandserhöhung. Für die Wendel mit dem Basiswiderstand R1 ist die zugeführte Heizleistung bei eingeprägter Wendelspannung P1 = U2 w/R. Für die Wendel mit dem Basiswiderstand R2 ist die zugeführte Heizleistung bei eingeprägter Wendelspannung P2 =U2 w/2R. Die der Wendel mit dem Basiswiderstand R2 zugeführte Heizleistung P2 ist also nur halb so groß wie die Heizleistung P1, die der Wendel mit dem Basiswiderstand R1 zugeführt wird. Das hat zur Folge, dass der Widerstand der Wendel mit dem Basiswiderstand R2 mit größer werdender Wendelspannung Uw weniger stark ansteigt als der Widerstand der Wendel mit dem Basiswiderstand R1. Die beiden Kurven nähern sich mit größer werdender Wendelspannung Uw einander an. Das hat zur Folge, dass die Unterscheidung von zwei Lampentypen mit den unterschiedlichen Wendelwiderständen R1 und R2 durch die thermische Widerstandserhöhung schwieriger wird. Fig. 4a shows the dependence of the coil resistance R w as a function of the filament voltage U w . Two coils are considered, one having a helix resistance R 1 and the other having a helix resistance R 2 . The coil resistance R 2 is twice as large as the coil resistance R 1 . If one sets the helix resistance R 1 = R, then R 2 = 2R. The coils are usually made of metal. The electrical resistance of metal increases with temperature. Without taking into account the thermal resistance increase, the two helices form a parallel line to the abscissa, which is indicated by dashed lines. Taking into account the thermal resistance increase, the resistances of the two coils increase with increasing the filament voltage. The higher the heating power P supplied to a coil, the higher the corresponding thermal resistance increase. For the helix with the base resistance R 1 , the supplied heating power with impressed helix tension P 1 = U 2 w / R. For the coil with the base resistance R 2 is the supplied heating power with impressed filament voltage P 2 = U 2 w / 2R. The helix with the base resistance R 2 supplied heating power P 2 is thus only half as large as the heating power P 1 , which is supplied to the coil with the base resistor R 1 . This has the consequence that the resistance of the coil with the base resistance R 2 increases with increasing coil voltage U w less than the resistance of the coil with the base resistance R 1 . The two curves approach each other with increasing helix voltage U w . As a result, it becomes more difficult to distinguish between two lamp types having the different coil resistances R 1 and R 2 by the thermal resistance increase.

Fig. 4b zeigt nun die der Erfindung zugrunde liegende Idee, nämlich nicht eine eingeprägte Wendelspannung Uw zu verwenden, sondern einen eingeprägten Wendelstrom Iw. In diesem Fall ist die der Wendel mit dem Basiswiderstand R2 zugeführte Heizleistung P2 = 2RI2 w doppelt so hoch wie die der Wendel mit dem Basiswiderstand R1 zugeführte Heizleistung, die P1 = RI2 w ist. Man erkennt, dass die beiden Kurven hier auseinanderlaufen, mit der Folge, dass durch die thermische Widerstandserhöhung die Unterscheidbarkeit von Lampentypen nach dem Wendelwiderstand verbessert wird. Fig. 4b now shows the idea underlying the invention, namely not to use an impressed filament voltage U w , but an impressed helical current I w . In this case, the heating power P 2 = 2RI 2 w supplied to the helix with the base resistance R 2 is twice as high as the heating power supplied to the helix with the base resistance R 1 , which is P 1 = RI 2 w . It can be seen that the two curves diverge here, with the result that the thermal resistance increase improves the distinctness of lamp types after the coil resistance.

Die in den Fig. 4a und 4b dargestellten Abhängigkeiten des Wendelwiderstandes Rw von der Wendelspannung Uw bzw. vom Wendelstrom Iw sind in idealisierter Weise als Geraden dargestellt. Der Einfluss anderer Parameter als der zugeführten Heizleistung ist zur Vereinfachung unberücksichtigt gelassen.The in the Fig. 4a and 4b shown dependencies of the helical resistance R w of the helical voltage U w and the helical current I w are shown in an idealized manner as a straight line. The influence of other parameters than the supplied heating power is disregarded for the sake of simplicity.

Wenn in Zusammenhang mit Fig. 4a von einer "eingeprägten Wendelspannung Uw" die Rede ist, so ist damit gemeint, dass an die Wendel eine von einer niederohmigen Spannungsquelle stammende vorbestimmte Wendelspannung angelegt wird, und dass dann der sich daraus ergebende Wendelstrom gemessen wird. Der Wendelwiderstand Rw ergibt sich dann aus dem Produkt von Wendelspannung und Wendelstrom.When related to Fig. 4a is of a "impressed helical voltage U w " is mentioned, it is meant that a voltage originating from a low-voltage source predetermined coil voltage is applied to the coil, and that then the resulting helical current is measured. The helical resistance R w then results from the product of filament voltage and filament current.

Wenn im Zusammenhang mit Fig. 4b von einem "eingeprägten Wendelstrom Iw" die Rede ist, so ist damit folgendes gemeint. Auch hier wird eine Wendelspannung an die Wendel angelegt. Diese Wendelspannung wird jedoch nicht vorgegeben, sondern dient nur zur Einstellung eines vorgegebenen bestimmten Wendelstromes. Der Wendelwiderstand Rw ergibt sich dann als Produkt aus dem vorgegeben und voreingestellten Wendelstrom und der Wendelspannung, die notwendig ist, damit dieser Wendelstrom durch die Wendel fließt, und dazu gemessen werden muss. Grundsätzlich kann ein "eingeprägter Wendelstrom Iw" natürlich auch durch eine hochohmige geliefert werden; die Realisierung dieser Möglichkeit ruft jedoch praktische Schwierigkeiten hervor. Wesentlich einfacher ist es, den Wendelstrom durch Regelung (unter Veränderung der Wendelspannung) so einzustellen, dass er den gewünschten vorgegeben Wert annimmt.When related to Fig. 4b from an "impressed helical current I w " the speech is meant as follows. Again, a helical tension is applied to the helix. However, this filament voltage is not specified, but only serves to set a predetermined specific filament current. The helical resistance R w then results as a product of the preset and preset helical current and the helical voltage, which is necessary for this helical current to flow through the helix, and to be measured. In principle, an "impressed helical current I w " can of course also be supplied by a high-impedance; however, the realization of this possibility creates practical difficulties. It is much easier to set the filament current by regulation (changing the filament voltage) so that it assumes the desired predetermined value.

Fig. 5 zeigt eine Gasentladungslampe L, die an ein nach der Erfindung ausgebildetes elektronisches Vorschaltgerät V angeschlossen ist. Das Vorschaltgerät V enthält einen an das Wechselstromnetz angeschlossen Brückengleichrichter 1, der die Netzspannung gleichrichtet, und einem Gleichspannungszwischenkreis 2 zuführt. Dem Zwischenkreis 2 ist ein Halbbrücken-Wechselrichter 3 nachgeschaltet, der zwei wechselweise getaktete Schalter enthält. An den Wechselrichter 3 schließt sich ein Reinresonanzkreis an, der aus einer Drossel und einem Kondensator besteht. Die Lampe ist parallel zu dem Kondensator geschaltet. Die Schaltungsteile 1 bis 4 sind in Vorschaltgeräten üblich und bekannt. Fig. 5 shows a gas discharge lamp L, which is connected to an electronic ballast V formed according to the invention. The ballast V includes a connected to the AC mains bridge rectifier 1, which rectifies the mains voltage, and a DC voltage intermediate circuit 2 supplies. The intermediate circuit 2 is followed by a half-bridge inverter 3, the contains two alternately clocked switches. The inverter 3 is followed by a pure resonant circuit, which consists of a choke and a capacitor. The lamp is connected in parallel with the capacitor. The circuit parts 1 to 4 are common and known in ballasts.

Das Vorschaltgerät soll nun so ausgebildet sein, dass mit ihm Leuchtstofflampen L unterschiedlicher Typen betrieben werden können. Die einzelnen Typen unterscheiden sich nicht nur durch äußere Abmessungen, sondern auch durch unterschiedliche Betriebsparameter, wie Lampenstrom, Lampenspannung, Wendelspannung, Wendelstrom, Vorheizzeit usw. Es ist üblich und bekannt, dass das Vorschaltgerät den Lampentyp automatisch erkennt, und zwar durch Messen des Widerstandes mindestens einer der beiden Wendeln der Leuchtstofflampe L. Allerdings liegen die Wendelwiderstände bestimmter Typen sehr dicht beieinander, so dass eine Unterscheidung schwierig ist, und - wie oben im Zusammenhang mit Fig. 4a erläutert wurde - durch die thermische Erwärmung noch erschwert wird. Aus diesem Grunde wird bei dem hier betrachteten Vorschaltgerät das Prinzip des geregelten Wendelstroms angewendet, das in Zusammenhang mit Fig. 4b beschrieben wurde.The ballast should now be designed so that with him fluorescent lamps L of different types can be operated. The individual types differ not only by external dimensions, but also by different operating parameters, such as lamp current, lamp voltage, filament voltage, filament current, preheating, etc. It is common and well known that the ballast automatically detects the lamp type, by measuring the resistance at least one of the two filaments of the fluorescent lamp L. However, the filament resistors of certain types are very close to each other, so that a distinction is difficult, and - as above in connection with Fig. 4a was explained by the thermal heating is still difficult. For this reason, in the ballast considered here, the principle of the regulated helical current is used, which in connection with Fig. 4b has been described.

Bevor der Lampentyp ermittelt worden ist, muss den Wendeln der Lampe L zunächst ein vorbestimmter bekannter Wendelstram zugeführt werden. Dieser Wendelstrom ist entweder in dem Block 5, der Betriebsparameter-Einstellmittel repräsentiert, niedergelegt oder in einem Startprogramm (oder Programmgeber) 14, das dem Block 5 den betreffenden Stromwert übermittel, wenn es einen entsprechenden Befehl von einer Zentrale über die Busleitung Usus erhält. Der so übermittelte Strom-SolIwert wird von den Betriebsparameter-Einstellmitteln 5 einem Wendelstromregier 8 zugeführt, der seinerseits Wendelspannungs-Erzeugungsmittel 6 veranlasst, den beiden Wendeln W1 und W2 der Leuchtstofflampe L eine entsprechende Wendelspannung zuzuführen. Die an der unteren Wendel W2 anliegende Wendelspannung wird mit einem aus den Widerständen R1 und R2 bestehenden Spannungsteiler abgegriffen und WendelspannungsMessmitteln 9 zugeführt, welche ihrerseits den gemessenen Wendelspannungswert an einen Quotienten-Bildner 10 weiterleiten. Der durch die Wendel W2 fließende Wendelstrom wird als Spannungsabfall über einen Widerstand R3 gemessen und Wendelstrom-Messmitteln 7 zugeführt, die ihrerseits den gemessenen Wendelstromwert einerseits an den Quotienten- Bildner 10 und andererseits als Istwert an den Wendelstrom-Regler 8 melden.Before the lamp type has been determined, the coils of the lamp L firstly a predetermined known Wendelstram must be supplied. This helical current is either stored in the block 5 representing operating parameter setting means or in a starting program (or programmer) 14 which transmits the relevant current value to the block 5 when it receives a corresponding command from a center via the bus Usus. The thus transmitted current value is supplied from the operating parameter setting means 5 a Wendelstromregier 8, which in turn causes Wendelspannungs-generating means 6, the two coils W1 and W2 of the fluorescent lamp L to supply a corresponding filament voltage. The voltage applied to the lower coil W2 coil voltage is tapped with a consisting of the resistors R1 and R2 voltage divider and supplied to Wendelspannungsmessmitteln 9, which in turn pass the measured filament voltage value to a quotient-10. The filament current flowing through the filament W2 is measured as a voltage drop across a resistor R3 and fed Wendelstrom measuring means 7, which in turn report the measured Wendelstromwert on the one hand to the quotient imager 10 and on the other hand as an actual value to the helical flow controller 8.

Dieser bildet einen Stellwert und übermittelt ihn an die Wendelspannungs-Erzeugungsmittel 6, wodurch die Wendelspannung so eingestellt wird, dass der Wendelstrom gleich dem dem Wendelstrom-Regler 5 zugeführten Sollwert ist. Der Quotienten-Bildner 10 errechnet aus dem gemessenen Wendelspannungswert und dem gemessenen Wendelstromwert den Wendelwiderstand. Der Wendelwiderstand wird Vergleichermitteln (Entscheidungslogik) 13 zugeführt, die ihn mit den Werten vergleichen, welche in einer Tabelle abgelegt sind, die in Speichermitteln 12 gespeichert ist. Die Tabelle enthält für jeden mit dem Vorschaltgerät zu betreibenden Lampentyp einen zugeordneten Wendelwiderstand. Dieser wird mit dem gemessenen Wendelwiderstand verglichen. Die Vergleichermittel (Entscheidungslogik) 13 melden den ermittelten Lampentyp dann an die Betriebsparameter-Einstellmittel 5. Letzte nehmen dann die relevanten Einstellungen an dem Vorschaltgerät V vor. Stellvertretend dafür ist dem ist in Fig. 5 durch die Verbindung zwischen den Betriebsparameter-Einstellmitteln 5 und dem Wechselrichter 3 Rechnung getragen. So kann auf diese Weise zur Einstellung bestimmter Betriebsparameter die Taktfrequenz und/ oder die Taktzeiten der beiden Schalter des Wechselrichters beeinflusst werden.This forms a control value and transmits it to the helical voltage generating means 6, whereby the helical voltage is adjusted so that the helical current is equal to the setpoint supplied to the helical-current regulator 5. The quotient generator 10 calculates the filament resistance from the measured filament voltage value and the measured filament current value. The helix resistance is supplied to comparison means (decision logic) 13 which compares it with the values stored in a table stored in memory means 12. The table contains an associated coil resistance for each type of lamp to be operated with the ballast. This is compared with the measured coil resistance. The comparison means (decision logic) 13 then report the determined lamp type to the operating parameter setting means 5. Last then take the relevant settings on the ballast V before. vicarious this is in the Fig. 5 taken into account by the connection between the operating parameter setting means 5 and the inverter 3. Thus, the clock frequency and / or the cycle times of the two switches of the inverter can be influenced in this way to set certain operating parameters.

Es sei an dieser Stelle darauf hingewiesen, dass der Quotienten-Bildner 10 an sich entbehrlich ist. Statt in den Speichermitteln 12 eine Tabelle abzulegen, die die Korrespondenz zwischen Wendelwiderstand und Lampentyp enthält, ist es auch möglich, eine Tabelle niederzulegen, die für jeden Lampentyp - bei bekanntem voreingestelltem Wendelstrom die zugehörige Wendelspannung enthält. Die Wendelspannungs-Messmittel 9 müssten in diesem Fall die gemessene Wendelspannung anstelle des Heizwiderstandes an die Vergleichermittel (Entscheidungslogik) 13 melden. Die Meldung des von den Wendelstrom-Messmitteln 7 gemessenen Wendelstromes, die in Fig. 5 an den Quotienten-Bildner 10 erfolgt, entfällt dann.It should be noted at this point that the quotient generator 10 is dispensable per se. Instead of storing in the storage means 12 a table which contains the correspondence between coil resistance and lamp type, it is also possible to set down a table containing the associated filament voltage for each lamp type - with known preset coil current. In this case, the filament voltage measuring means 9 would have to report the measured filament voltage instead of the heating resistor to the comparator means (decision logic) 13. The message of the filament current measured by the filament current measuring means 7, which in Fig. 5 takes place at the quotient builder 10, then deleted.

In Fig. 6 ist eine konkrete Realisierung der Wendelspannungs-Erzeugungsmittel 6 gezeigt. Diese enthalten einen Sperrwandler, bestehend aus einem elektronischen Schalter S, einem Widerstand R4 und einer Induktivität besteht, wobei die Induktivität von der Primärwicklung eines Heiztransformators TH gebildet ist. Als Gleichspannungsquelle wird die auf dem Bus liegende Busspannung UBus, verwendet. Anstelle der Busspannung UBus kann auch die Ausgangsspannung des Zwischenkreises 2 verwendet werden. Der Heiztransformator TH hat zwei Sekundärwicklungen, von denen jede für eine Wendel der Leuchtstofflampe L bestimmt ist. Die von dem Heiztransformator TH übertragene Wechselspannung wird durch die Diode 01 und 02 gleichgerichtet und durch die Kondensatoren C1 und C2 geglättet. Daneben haben die Kondensatoren C1 und C2 noch die Aufgabe, zur Funkentstörung beizutragen.In Fig. 6 a concrete realization of the helical voltage generating means 6 is shown. These include a flyback converter, consisting of an electronic switch S, a resistor R4 and an inductance, wherein the inductance of the primary winding of a heating transformer T H is formed. The bus voltage U Bus lying on the bus is used as the DC voltage source. Instead of the bus voltage U bus , the output voltage of the intermediate circuit 2 can also be used. The heating transformer T H has two secondary windings, each of which is intended for a filament of the fluorescent lamp L. The AC voltage transmitted by the heating transformer T H is rectified by the diode 01 and 02 and by the Smoothed capacitors C1 and C2. In addition, the capacitors C1 and C2 still have the task to contribute to the radio interference suppression.

Claims (17)

  1. Method for determining operational parameters of a gas discharge lamp (L) which is to be operated by an electronic ballast (V), having the following steps:
    a) preheating at least one heating filament (W1, W2),
    b) directly or indirectly measuring the filament voltage (Uw),
    c) determining the value to be selected for an operational parameter by comparing measured values with stored reference values,
    characterized in that
    d) the direct or indirect measurement of the filament voltage (UW) takes place at at least two different times,
    e1) during the measurement, the filament current or the heating power supplied to the filament is kept constant between the two times, or
    e2) at the beginning of the preheating phase, a predetermined heating power or a predetermined heating current is set,
    wherein
    f) in addition the heating current is measured,
    g) at the first time the cold resistance (Rcold) and at the second time the hot resistance (Rhot) are calculated from the measured values of the filament voltage and of the filament current,
    h) the differential resistance (Rdiff) is calculated from the hot resistance (Rhot) and the cold resistance (Rcold), and
    i) the differential resistance (Rdiff) established according to point h) is used as the measured value to be compared with the stored reference values in order to determine an operational parameter.
  2. Method according to Claim 1,
    characterized
    in that step (e1) is implemented by regulating the filament current or the heating power.
  3. Method according to either of Claims 1 and 2,
    characterized by the following step:
    i) adjusting at least one operational parameter for the established lamp type.
  4. Method according to one of Claims 1 to 3,
    characterized
    in that sets of reference values are stored which apply to various preheating values, such as filament current, filament voltage or heating power.
  5. Method according to one of Claims 1 to 3,
    characterized
    in that, if a plurality of lamps (L1, L2) are intended to be operated by the ballast (V), a test is performed to ascertain whether the types of the lamps are identical.
  6. Method according to Claim 5,
    characterized
    in that, in order to carry out the test for lamp type identity, the difference in the cold resistances (Rcold) of in each case two lamps (L1, L2) is formed and compared with a first reference value (Rref1),
    and in that non-identity is ascertained if the difference is greater than the first reference value.
  7. Method according to one of Claims 1 to 6,
    characterized
    in that, if a plurality of lamps (L1, L2) are intended to be operated by the ballast (V), a test is performed to ascertain whether, in one lamp, there is a breakage of a heating filament, whose voltage drop is measured for calculating the filament resistance (Rcold, Rhot).
  8. Method according to Claim 7,
    characterized
    in that, in order to carry out the test for filament breakage, the difference in the cold resistances (Rcold) of in each case two lamps (L1, L2) is formed and compared width a second reference value (reef2), and in that a filament breakage is ascertained if the difference is greater than the second reference value.
  9. Method according to Claim 8,
    characterized
    in that, if the measurement of the heating currents in the case of a plurality of lamps (L1, L2) operated by the ballast (V) takes place via a common resistor (R3), in the event of a diagnosed breakage of a heating filament (W1b, W2b) the values of the calculated filament resistances (Rcold, Rhot) are reduced corresponding to the proportion of the broken heating filament with respect to the total number of heating filaments whose heating current is passed through the measuring resistor (R3).
  10. Circuit in particular integrated circuit, such as an ASIC, for example, which is designed for implementing a method according to one of the preceding claims, wherein the circuit initiates the preheating of at least one heating filament (W1 W2).
  11. Ballast (V) for at least one gas discharge lamp (L) with two heating filaments (W1, W2), comprising a circuit according to Claim 10, having:
    - means (8) for generating a constant filament current or a constant heating power and for applying the constant heating current or the constant heating power to at least one of the two heating filaments (W1, W2),
    - measurement means (9) for directly or indirectly measuring the voltage drop across the filament (W1, W2),
    - program generator means (14), which fix two different times during the preheating phase at which the voltage drop across the filament (W1, W2) is measured,
    - means (7) for measuring the filament current,
    - storage means (15) for storing the measured values of the voltage drop across the filament (W1, W2) and the filament current flowing through the filament at the two times prescribed by the program generator means (14),
    - means (10) for calculating the filament resistances (Rcold, Rhot) at the two times prescribed by the program generator means (14) by virtue of forming the quotient of the stored values for the measured filament current and the measured voltage drop across the filament (W1, W2),
    - storage means (12) for a table, in which a reference differential resistance value is recorded for each lamp type for a determined filament current intensity or heating power, and
    - decision means (12) for determining the lamp type by comparing the calculated differential resistance (Rdiff) with the reference differential resistance values recorded in the storage means (12).
  12. Ballast according to Claim 11,
    further characterized by
    - means (5) for adjusting at least one operational parameter for the established lamp type.
  13. Ballast according to either of Claims 11 and 12,
    characterized
    in that the means (8) for generating a constant filament current or a constant heating power comprise a controller (8) for the filament current or the heating power.
  14. Ballast according to one of Claims 11 to 13,
    characterized
    in that the measurement means (9) for directly or indirectly measuring the voltage drop across the filament (W1, W2) to which the predetermined constant filament current or the predetermined constant heating power is applied comprise a voltage divider (R1, R2), which is connected in parallel with the heating filament.
  15. Ballast according to one of Claims 11 to 14,
    characterized
    in that, in order to measure the filament current (8), a measuring resistor (R3) is connected in series with the heating filament (W1, W2), and in that the voltage drop across this measuring resistor is used as the measured value for the filament current.
  16. Ballast according to one of Claims 11 to 15,
    characterized
    in that, if two or more lamps (L1, L2) are operated by the ballast, the filament current flowing through in each case one heating filament (W1b, W2b) of each of the lamps is passed through the measuring resistor (R3).
  17. Ballast according to one of Claims 11 to 16,
    characterized
    in that, in the event of a diagnosed breakage of a heating filament (W1b, W2b), the value of the filament resistance (Rcold, Rhot) calculated by the means (10) is reduced corresponding to the proportion of the broken heating filament with respect to the total number of heating filaments whose heating current is passed through the measuring resistor (R3)
EP08802680A 2007-10-02 2008-09-26 Method for determining operational parameters for a gas discharge lamp to be operated with electronic ballast and corresponding ballast Not-in-force EP2198672B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007047142A DE102007047142A1 (en) 2007-10-02 2007-10-02 Gas discharge lamp type detecting method, involves detecting spiral coil current, measuring spiral coil voltage directly or indirectly, and comparing measured coil voltage or calculated resistance of spiral coil with standard values
DE102008012454A DE102008012454A1 (en) 2008-03-04 2008-03-04 Method for determining operational parameters of gas discharge lamp operated with electronic ballast, involves determining cold resistance and hot resistance of helices at two different times during preheating phase
PCT/EP2008/008236 WO2009046891A1 (en) 2007-10-02 2008-09-26 Method for determining operational parameters for a gas discharge lamp to be operated with electronic ballast and corresponding ballast

Publications (2)

Publication Number Publication Date
EP2198672A1 EP2198672A1 (en) 2010-06-23
EP2198672B1 true EP2198672B1 (en) 2011-08-31

Family

ID=40193831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08802680A Not-in-force EP2198672B1 (en) 2007-10-02 2008-09-26 Method for determining operational parameters for a gas discharge lamp to be operated with electronic ballast and corresponding ballast

Country Status (5)

Country Link
EP (1) EP2198672B1 (en)
CN (1) CN101816219B (en)
AT (1) ATE523065T1 (en)
DE (1) DE112008002296A5 (en)
WO (1) WO2009046891A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022198A1 (en) * 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Type recognition of a gas discharge lamp to be operated with an electronic ballast
JP6110191B2 (en) * 2013-04-08 2017-04-05 日置電機株式会社 Inspection device and inspection processing device
EP3223588B1 (en) * 2016-03-21 2020-04-08 Valeo Iluminacion Management of bin information in an led module for automotive vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766864B2 (en) * 1989-07-28 1995-07-19 東芝ライテック株式会社 Discharge lamp lighting device
DE19530485A1 (en) * 1995-08-18 1997-02-20 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method and circuit arrangement for operating an electric lamp
EP0889675A1 (en) * 1997-07-02 1999-01-07 MAGNETEK S.p.A. Electronic ballast with lamp tyre recognition
DE19850441A1 (en) * 1998-10-27 2000-05-11 Trilux Lenze Gmbh & Co Kg Method and ballast for operating a lamp provided with a fluorescent lamp
DE10345610A1 (en) * 2003-09-29 2005-05-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating at least one low-pressure discharge lamp
US7589472B2 (en) * 2003-12-11 2009-09-15 Koninklijke Philips Electronics N.V. Electronic ballast with lamp type determination
DE202005013754U1 (en) * 2005-08-31 2005-11-17 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electronic control gear for operating discharge lamp, has measuring device to measure parameter that correlates to increased electrode temperature, and control device to react to temperature by adjustment of operating parameter of gear

Also Published As

Publication number Publication date
DE112008002296A5 (en) 2010-09-02
ATE523065T1 (en) 2011-09-15
CN101816219B (en) 2014-04-02
CN101816219A (en) 2010-08-25
WO2009046891A1 (en) 2009-04-16
EP2198672A1 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
EP1519638B1 (en) Method for operating a low pressure discharge lamp
EP0338109B1 (en) Converter for a discharge lamp
EP1920642B1 (en) Ballast for a discharge lamp with adaptive preheating
EP2198672B1 (en) Method for determining operational parameters for a gas discharge lamp to be operated with electronic ballast and corresponding ballast
DE102007047142A1 (en) Gas discharge lamp type detecting method, involves detecting spiral coil current, measuring spiral coil voltage directly or indirectly, and comparing measured coil voltage or calculated resistance of spiral coil with standard values
EP2248395B1 (en) Type recognition of a gas discharge lamp to be operated with an electronic ballast
AT517953B1 (en) LIGHTING SYSTEM AND METHOD FOR CHECKING WHETHER AT LEAST TWO GAS DISCHARGE LAMPS TO BE OPERATED WITH AN ECG ARE OF THE SAME TYPE
EP2298038A1 (en) Detecting the type of a gas discharge lamp connected to an operational device
DE102009019625B4 (en) A method of determining a type of gas discharge lamp and electronic ballast for operating at least two different types of gas discharge lamps
EP1492393B1 (en) Ballast for fluorescent lamp and method to detect eol
EP2274960B1 (en) Method and circuit arrangement for operating at least one discharge lamp
EP1920643B1 (en) Ballast for a discharge lamp with adaptive preheating
EP2248396A1 (en) Circuit for heating and monitoring the hot coils of at least one gas discharge lamp operated by an evg and lighting system
EP1189488B1 (en) Electronic self-calibrating ballast and method for calibrating a ballast
DE102008012454A1 (en) Method for determining operational parameters of gas discharge lamp operated with electronic ballast, involves determining cold resistance and hot resistance of helices at two different times during preheating phase
DE102010063933A1 (en) Operating device and method for operating gas discharge lamps
EP1189486B1 (en) Electronic Ballast
EP2335457B1 (en) Determination of lamp type or circuit topology for several lamps
WO2012109687A1 (en) Method for detecting a rectifier effect for a dimmable gas discharge lamp
EP2240002A2 (en) Electronic preswitching device for operating at least two types of discharge lamps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DWORATZEK, DIRK

Inventor name: DR.ANDRE MITTERBACHER

Inventor name: HOEGL, ANDREAS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOEGL, ANDREAS

Inventor name: MITTERBACHER, ANDRE

Inventor name: DWORATZEK, DIRK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRIDONIC GMBH & CO KG

17Q First examination report despatched

Effective date: 20101027

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004710

Country of ref document: DE

Effective date: 20111103

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110831

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111201

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: TRIDONIC GMBH & CO KG

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004710

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20140923

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150929

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150926

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160928

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 523065

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160926

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502008004710

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180928

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181130

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008004710

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190926