EP2198249A1 - Backup instrument for aircraft - Google Patents

Backup instrument for aircraft

Info

Publication number
EP2198249A1
EP2198249A1 EP08804753A EP08804753A EP2198249A1 EP 2198249 A1 EP2198249 A1 EP 2198249A1 EP 08804753 A EP08804753 A EP 08804753A EP 08804753 A EP08804753 A EP 08804753A EP 2198249 A1 EP2198249 A1 EP 2198249A1
Authority
EP
European Patent Office
Prior art keywords
emergency
aircraft
flight information
information
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08804753A
Other languages
German (de)
French (fr)
Inventor
Pierre Idrac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2198249A1 publication Critical patent/EP2198249A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D9/00Recording measured values
    • G01D9/005Solid-state data loggers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • G01C23/005Flight directors
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers

Definitions

  • the invention relates to a backup instrument integrated on the dashboard of an aircraft for displaying essential flight information in the event that primary systems fail.
  • an aircraft is equipped with primary systems for determining and displaying information necessary for its management.
  • the primary systems include inertial sensors and pressure sensors connected to total and static pressure taps located on the skin of the aircraft.
  • the primary signals delivered by the inertial sensors and the pressure sensors are processed by an onboard computer which sends the processed data to primary display systems.
  • the primary display systems include primary display screens integrated on a dashboard of the aircraft.
  • the primary visualization screens are doubled, one group of primary visualization screens being intended for the pilot and the other group for the co-pilot.
  • Each group generally comprises a screen presenting flight information such as the speed, altitude and attitude of the aircraft and a screen presenting navigation information such as the route to be followed and instructions for automatic flight control. aircraft.
  • flight recorders In addition, to be able to determine and explain the circumstances and causes of an accident or incident on an aircraft, it may be equipped with flight recorders, sometimes called “black boxes”. The installation of these flight recorders is mandatory in airliners. There are currently two types of flight recorders, the first being a voice recorder called CVR, the acronym for the English phrase “Cockpit Voice Recorder”, the second being a flight parameter recorder called FDR, acronym for Anglo-Saxon expression “Flight Data Recorder”.
  • the voice recorder is used for recording radio communications, voice and room noise from the cockpit, such as noise from motors or alarms. This data is recorded for example in a loop, over thirty to one hundred and twenty minutes.
  • four magnetic stripe tracks can be used to the recording of these data, the tracks being for example distributed as follows:
  • the FDR is used to record, on the one hand, the parameters of the aircraft, such as the operation of engines, an autopilot, the position of control surfaces and flight controls, and secondly, flight information displayed by the primary display screens, such as the speed, altitude and attitude of the aircraft. Depending on the age and type of the aircraft, more than a thousand different flight settings and information may be recorded. In some cases, it is possible to perform a computer simulation of the flight from the parameters and flight information recorded in the FDR. This data is for example recorded in a 25-hour loop, which is the minimum regulatory time.
  • the FDR is connected to the various computers and sensors of the aircraft through an acquisition box, known as the "FDAU", acronym for the English expression "Flight Data Acquisition Unit".
  • the FDAU is in particular responsible for selecting the parameters and the flight information to be recorded in the FDR and for ordering them to send them to the FDR in a continuous frame.
  • This frame is formed of 12-bit words, sent at a rate of 64 to 1024 words per second, depending on the type of the aircraft.
  • the FDR then records this frame directly into its memory.
  • the content of the frame must meet requirements defined by national and / or international regulations. In particular, the list of parameters and flight information to be recorded, as well as their recording rate and the required accuracy are specified.
  • Flight recorders are designed to ensure that the memories containing the recorded data, including, but not limited to, radiocommunications, communications with the cabin crew, cockpit noise, aircraft parameters and flight information are protected during an incident or an accident on the aircraft.
  • flight recorders must withstand an acceleration of 3400 g for 6.5 milliseconds, at a temperature of 1100 degrees Celsius for one hour and at a depth of at least 5000 meters.
  • flight recorders are sometimes very damaged. All data to determine the circumstances and causes of the incident or accident of the aircraft are therefore not always available for an investigation of the incident or accident.
  • the information recorded on the ground by the air traffic control may be used for the investigation. Data recovery is also conditioned by their registration.
  • a failure of the primary systems prevents the recording in the FDR of flight information and aircraft parameters. This is particularly the case when a pressure point, a sensor or the on-board computer fails. More generally, existing solutions have the disadvantage of having only one source of information and store this information in a single storage location.
  • an object of the invention is in particular to overcome all or part of the aforementioned drawbacks.
  • the subject of the invention is an emergency instrument capable of equipping an instrument panel of an aircraft, the emergency instrument comprising means for calculating and displaying emergency flight information from emergency signals provided. by emergency equipment of the aircraft, characterized in that it comprises a memory and means for recording in normal operation the emergency flight information and / or spare signals in the memory of the standby instrument.
  • Emergency instruments are used, but not exclusively, in the event of failure of the primary systems.
  • an emergency instrument presents essential information for the piloting of the aircraft, in particular the speed, the altitude and the attitude of the aircraft.
  • This essential information called emergency flight information, alone can control the aircraft.
  • a rescue instrument must also be autonomous and decorrelated from the other instruments on board.
  • it integrates equipment, for example sensors, to generate the information it provides.
  • equipment for example sensors
  • it comprises pressure sensors connected to total and static pressure taps located on the skin of the aircraft.
  • the pressure sensors make it possible in particular to define the altitude and the speed of the aircraft.
  • It can also include an inertial unit, several temperature sensors and other types of sensors.
  • the display screen of the standby instrument can be in liquid crystal technology.
  • the latter can receive information from other systems on the aircraft.
  • This information passes for example on a serial bus of the aircraft, known under the term "ARINC”, with reference to a digital data transmission standard known as the ARINC standard (Aeronautical Radio Incorporation).
  • ARINC a serial bus of the aircraft
  • This data can for example indicate the course of the aircraft and are therefore displayed on the screen of the standby instrument.
  • the standby instrument can also send information to the outside, in particular to an autopilot of the aircraft. Indeed, since it itself generates some of the information it displays, it can provide this information to other systems integrated into the aircraft.
  • the autopilot needs reliable information.
  • the primary systems of an aircraft comprise at least two inertia sensors. However, these sensors may fail or deliver false information.
  • the standby instrument can compensate for the faulty sensor and / or indicate which of the two sensors provides the correct information.
  • different instruments can be interconnected but there is always a segregation between the primary systems and the backup instruments.
  • the main advantage of the invention is that it makes it possible to have the flight information determined by the emergency instrument independently of the primary systems and the flight recorders. In particular, it makes it possible to have the flight information determined by the emergency instrument even in the event of failure of one of the elements of the primary systems or the FDR.
  • the invention also facilitates the determination of the circumstances and causes of the incident or accident of an aircraft by recording the flight information in a different location of the FDR, in this case in a memory of the aircraft. rescue instrument. Flight information can remain available even if the FDR is destroyed.
  • FIG. 2 an example of information displayed by the standby instrument
  • - Figure 3 by a block diagram, an exemplary embodiment of a standby instrument
  • FIG. 1 schematically shows a dashboard 1 of an aircraft, for example an airliner.
  • Dashboard 1 comprises means for calculating and displaying primary flight information from primary signals provided by primary equipment of the aircraft.
  • it includes two groups of display screens 2, 3.
  • Each group includes a screen including primary flight information such as altitude, speed and attitude of the aircraft and a screen with navigation information.
  • the two groups 2, 3 are identical, one being reserved for a pilot and the other for a co-pilot. These two groups form primary visualization screens.
  • the primary display screens are connected to an on-board computer including primary signals delivered by primary equipment to calculate the primary flight information and navigation information.
  • the primary equipment includes inertial sensors and pressure sensors connected to total and static pressure taps located on the skin of the aircraft.
  • the set comprising the primary equipment, the on-board computer and the primary display screens is called primary systems.
  • An emergency instrument 4 is placed between these two groups 2, 3 of primary visualization.
  • the standby instrument 4 of FIG. 1 has at least altitude, speed and attitude information of the aircraft.
  • FIG. 2 presents a backup instrument 4, of the electronic type, equipping an aircraft.
  • the standby instrument 4 comprises a housing 10 and display means.
  • the display means comprise, for example, a liquid crystal screen 1 1 forming the front face of the standby instrument 4 and displaying emergency flight information, namely the attitude, the speed and the altitude of the aircraft.
  • a first zone 12 of the screen 1 1 presents the attitude of the aircraft symbolized by its wings 13 with respect to a skyline 14.
  • a second zone 15 displays the speed of the aircraft and a third zone 16 displays the altitude of the aircraft.
  • an area 17 is reserved for heading information. By pressing a specific button 18, another page may be displayed to present for example navigation information or other information.
  • FIG. 3 illustrates a backup instrument 4 by a block diagram.
  • the standby instrument 4 comprises emergency equipment, for example two pressure sensors 20, 21 connected to static and total pressure taps 22 located on the skin. of the aircraft and an inertial sensor 24. These different sensors 20, 21, 24 may be located outside or inside (as shown in Figure 3) of the emergency instrument 4. In all cases , the emergency equipment 20, 21, 22, 23, 24 are independent of the primary systems.
  • the pressure sensors 20, 21 make it possible to generate altitude and speed information of the aircraft, while the inertial sensor 24 makes it possible to generate attitude information of the aircraft.
  • the information provided by these sensors 20, 21, 24 arrives at processing means 25, which exploit the emergency signals from the sensors 20, 21, 24 and possibly initialization parameters, for example entered by the pilots, to generate the altitude, speed and attitude information of the aircraft.
  • the processing means 25 may also receive information provided by other systems via a bus 26, for example an ARINC bus.
  • the processing means 25 can receive flight information and navigation information from the primary systems 27.
  • the processing means 25 can also generate information for transmission to the outside, for example via the bus 26, to destination including the autopilot.
  • the emergency flight information calculated by the processing means 25 and, if appropriate, the information provided by the other systems are sent to the display means 28 so as to be displayed on the screen 11 of the flight instrument.
  • the backup instrument 4 may also include a memory 29 managed by memory management means 30.
  • the memory 29 is for example internal to the backup instrument 4. It allows in particular to store the initialization parameters and computer programs for processing emergency signals from the sensors 20, 21, 24 and calculating the emergency flight information.
  • the memory is accessible in reading and writing.
  • the backup instrument 4 may also include means for recording in normal operation the rescue flight information.
  • the memory 29 is also used to record in normal operation the emergency flight information generated by the emergency equipment 20, 21, 22, 23, 24 and the processing means 25.
  • another memory, physically distinct from the memory 29, can also be used to record the rescue flight information.
  • the emergency flight information is automatically recorded throughout the flight of the aircraft, without the intervention of the pilot, the flight of the aircraft being understood as the period during which the emergency instrument 4 or the primary systems 27 are powered.
  • the emergency flight information is for example recorded in such a way that it can be re-displayed later.
  • this flight information corresponds to the flight information used for the display on the screen 1 1 of the rescue instrument 4.
  • the re-display of the saved emergency flight information is done on the screen 1 1 of the standby instrument 4, for example by means of the memory management means 30, the processing means 25 and display means 28.
  • This embodiment has the advantage of being able to analyze the emergency flight information as it was actually presented to the pilot during the flight, the display that the pilot saw during the flight being in so regenerated. It is thus possible to detect a possible failure of the standby instrument 4, whether this failure is due to the processing means 25 or to the display means 28.
  • the memory 29 is an electrically erasable and programmable read-only memory, called EEPROM, an acronym for the "Electrically Erasable Programmable Read OnYy Memory".
  • EEPROM electrically erasable and programmable read-only memory
  • This type of memory allows an infinite number of readings of the contents of the memory and can be reprogrammed more than a million times. It has the particular advantage of not requiring power supply for the storage of data stored in memory.
  • This type of memory is therefore particularly suitable for storing initialization parameters and computer programs and in particular flight information. emergency, the power supply means of the aircraft being generally out of use in the event of an accident of the aircraft. The contents of this type of memory can also be recovered after dismantling the memory of its support.
  • the memory 29 is a programmable fast memory called FPROM, acronym for the English expression “Flash Programmable Read OnIy Memory”, also more simply called “flash memory”.
  • FPROM Flash Programmable Read OnIy Memory
  • flash memory allows the modification of several memory spaces in a single operation and is therefore characterized by very high read and write speeds. It is of reduced dimensions, which reduces the risk of damage in an accident of the aircraft.
  • the memory 29 is a flash memory with NOR logic, better known under the Anglo-Saxon expression "NOR".
  • NOR Anglo-Saxon expression
  • This type of memory has an addressing interface allowing random and fast access to any location in the memory. It is therefore particularly suitable for storing computer programs, which can be executed directly from the memory.
  • FIG. 4 illustrates the contents of a part of a memory 29 of the standby instrument 4 according to the invention.
  • the standby instrument 4 may include means for steadily recording the flight information and means for managing the recording of the spare flight information in the form of a turntable.
  • the contents of the memory 29 are divided into two zones, a first zone being dedicated in particular to the storage of the initialization parameters and computer programs, and a second emergency zone 40 being reserved for storing the emergency flight information. As indicated previously, the two zones can correspond to two distinct physical memories.
  • the content of the emergency zone 40 is structured as a turntable. In this turntable, a first line 41 contains all the emergency flight information taken at a time t 0 .
  • the following line 42 contains the same emergency flight information taken at a following instant (t o + ⁇ ), where ⁇ represents the time interval elapsed between the two recordings of the rescue flight information.
  • is a time constant.
  • the following record therefore occurs at a time (t 0 + 2. ⁇ ).
  • the emergency flight information is recorded at times (t o + i. ⁇ ), i being an integer between 0 and n, ("+ 1) being the maximum number of lines available for recording the information of rescue flight.
  • the emergency flight information is again recorded in the first line 41, and so on. This turntable principle allows sequential recording of the emergency flight information and keeping in memory the last flight hours emergency flight information.
  • the memory 29 may for example be sized so as to be able to keep the last or the last 25 hours of flight with an interval ⁇ of a few seconds or a few minutes.
  • the interval ⁇ may for example be one second.
  • each emergency flight information namely the altitude, the speed, the roll, the pitch and the yaw of the aircraft, is recorded in a column 43, 44, 45, 46, 47. , 48, 49.
  • each spare flight information at a given instant is stored in a specific memory location, the memory location may occupy one or more physical elements of the memory 29 depending on the size of the information.
  • the emergency zone 40 of the memory 29 can record, with the emergency flight information, the emergency signals from the sensors 20, 21, 24 or only these emergency signals.
  • the standby instrument 4 may be connected to the means for calculating and displaying the primary flight information and comprise means for recording in normal operation the primary flight information and / or the primary signals in the memory 29 of the standby instrument. 4.
  • the spare area 40 of the memory 29 may record the primary flight information and / or the primary signals from the primary systems 27, such as a temperature, an air speed, or an ascent rate.
  • the Mach number an important parameter in the determination of the lift, can also be stored in the memory 29.
  • all the recorded information is distributed in the emergency zone 40 of the memory 29 in the form of columns 43, 44, 45, 46, 47, 48, 49, each column containing a type of information.
  • the rescue instrument 4 makes it possible to have the emergency flight information even in the event of failure of the primary systems 27 or the flight recorders during the flight of the aircraft.
  • the rescue flight information also remains available in the event of complete destruction of the flight recorders in an accident.
  • the rescue instrument 4 according to the invention also makes it possible to record flight information and navigation information from the primary systems. In addition, it has the advantage of not requiring additional memory, but only a modification of the computer program of the standby instrument 4.
  • the standby instrument 4 according to the invention is therefore of economical design and facilitates determining the circumstances and causes of an aircraft accident.

Abstract

The invention relates to a backup instrument (4) that can be fitted in the dashboard of an aircraft. The backup instrument (4) includes means (11, 25, 28) for calculating and displaying backup flight information from backup signals provided by the backup equipment (20, 21, 22, 23, 24) of the aircraft, a memory (29) and means (30) for storing during normal operation the backup flight information and/or the backup signals in the memory (29) of the backup instrument (4). The invention makes it easier to identify the circumstances and causes of an aircraft accident in that it provides flight information independent from the aircraft's primary systems.

Description

Instrument de secours pour aéronef Aircraft rescue instrument
L'invention concerne un instrument de secours intégré sur le tableau de bord d'un aéronef pour afficher des informations de vol essentielles dans le cas où des systèmes primaires tombent en panne.The invention relates to a backup instrument integrated on the dashboard of an aircraft for displaying essential flight information in the event that primary systems fail.
Classiquement, un aéronef est équipé de systèmes primaires permettant la détermination et l'affichage d'informations nécessaires à son pilotage. Les systèmes primaires intègrent notamment des capteurs inertiels et des capteurs de pression reliés à des prises de pression totale et statique situées sur la peau de l'aéronef. Les signaux primaires délivrés par les capteurs inertiels et les capteurs de pression sont traités par un ordinateur de bord qui envoie les données traitées à des systèmes d'affichage primaires. Les systèmes d'affichage primaires comportent notamment des écrans de visualisation primaires intégrés sur un tableau de bord de l'aéronef. Les écrans de visualisation primaires sont doublés, un groupe d'écrans de visualisation primaires étant destiné au pilote et l'autre groupe étant destiné au copilote. Chaque groupe comporte généralement un écran présentant des informations de vol telles que la vitesse, l'altitude et l'attitude de l'aéronef et un écran présentant des informations de navigation telles que la route à suivre et des consignes de pilotage automatique de l'aéronef.Conventionally, an aircraft is equipped with primary systems for determining and displaying information necessary for its management. The primary systems include inertial sensors and pressure sensors connected to total and static pressure taps located on the skin of the aircraft. The primary signals delivered by the inertial sensors and the pressure sensors are processed by an onboard computer which sends the processed data to primary display systems. The primary display systems include primary display screens integrated on a dashboard of the aircraft. The primary visualization screens are doubled, one group of primary visualization screens being intended for the pilot and the other group for the co-pilot. Each group generally comprises a screen presenting flight information such as the speed, altitude and attitude of the aircraft and a screen presenting navigation information such as the route to be followed and instructions for automatic flight control. aircraft.
Par ailleurs, pour pouvoir déterminer et expliquer les circonstances et les causes d'un accident ou d'un incident sur un aéronef, ce dernier peut être équipé d'enregistreurs de vol, parfois appelés « boîtes noires ». L'installation de ces enregistreurs de vol est obligatoire dans les avions de ligne. Il existe actuellement deux types d'enregistreurs de vol, le premier étant un enregistreur phonique appelé CVR, acronyme de l'expression anglo-saxonne « Cockpit Voice Recorder », le second étant un enregistreur de paramètres de vol appelé FDR, acronyme de l'expression anglo-saxonne « Flight Data Recorder ». L'enregistreur phonique sert à l'enregistrement des communications radios, des voix et du bruit d'ambiance du poste de pilotage, comme par exemple le bruit des moteurs ou des alarmes. Ces données sont par exemple enregistrées en boucle, sur trente à cent vingt minutes. Quatre pistes à bande magnétique peuvent notamment être utilisées pour l'enregistrement de ces données, les pistes étant par exemple réparties de la manière suivante :In addition, to be able to determine and explain the circumstances and causes of an accident or incident on an aircraft, it may be equipped with flight recorders, sometimes called "black boxes". The installation of these flight recorders is mandatory in airliners. There are currently two types of flight recorders, the first being a voice recorder called CVR, the acronym for the English phrase "Cockpit Voice Recorder", the second being a flight parameter recorder called FDR, acronym for Anglo-Saxon expression "Flight Data Recorder". The voice recorder is used for recording radio communications, voice and room noise from the cockpit, such as noise from motors or alarms. This data is recorded for example in a loop, over thirty to one hundred and twenty minutes. In particular, four magnetic stripe tracks can be used to the recording of these data, the tracks being for example distributed as follows:
- radio-communications sur les pistes 1 et 4,- radio communications on tracks 1 and 4,
- communications avec l'équipage de cabine sur la piste 1 , - communications avec le mécanicien sol sur les pistes 1 , 2 et 4,- communications with the cabin crew on track 1, - communications with the ground mechanic on tracks 1, 2 and 4,
- microphone d'ambiance sur la piste 3.- room microphone on track 3.
Le FDR sert à l'enregistrement, d'une part, de paramètres de l'aéronef, comme par exemple le fonctionnement de moteurs, d'un pilote automatique, la position de gouvernes et de commandes de vol, et d'autre part, d'informations de vol affichées par les écrans de visualisation primaires, comme par exemple la vitesse, l'altitude et l'attitude de l'aéronef. Selon l'âge et le type de l'aéronef, plus de mille paramètres et informations de vol différents peuvent être enregistrés. Dans certains cas, il est possible d'effectuer une simulation informatique du vol à partir des paramètres et des informations de vol enregistrés dans le FDR. Ces données sont par exemple enregistrées en boucle sur 25 heures, qui est la durée minimale réglementaire. Le FDR est relié aux différents calculateurs et capteurs de l'aéronef par l'intermédiaire d'un boîtier d'acquisition, connu sous le terme « FDAU », acronyme de l'expression anglo-saxonne « Flight Data Acquisition Unit ». Le FDAU est notamment chargé de sélectionner les paramètres et les informations de vol à enregistrer dans le FDR et de les ordonner pour les envoyer au FDR dans une trame continue. Cette trame est formée de mots de 12 bits, envoyés à une cadence de 64 à 1024 mots par seconde, selon le type de l'aéronef. Le FDR enregistre alors directement cette trame dans sa mémoire. Le contenu de la trame doit satisfaire des exigences définies par des réglementations nationales et/ou internationales. En particulier, la liste des paramètres et des informations de vol à enregistrer, ainsi que leur cadence d'enregistrement et la précision requise sont spécifiées.The FDR is used to record, on the one hand, the parameters of the aircraft, such as the operation of engines, an autopilot, the position of control surfaces and flight controls, and secondly, flight information displayed by the primary display screens, such as the speed, altitude and attitude of the aircraft. Depending on the age and type of the aircraft, more than a thousand different flight settings and information may be recorded. In some cases, it is possible to perform a computer simulation of the flight from the parameters and flight information recorded in the FDR. This data is for example recorded in a 25-hour loop, which is the minimum regulatory time. The FDR is connected to the various computers and sensors of the aircraft through an acquisition box, known as the "FDAU", acronym for the English expression "Flight Data Acquisition Unit". The FDAU is in particular responsible for selecting the parameters and the flight information to be recorded in the FDR and for ordering them to send them to the FDR in a continuous frame. This frame is formed of 12-bit words, sent at a rate of 64 to 1024 words per second, depending on the type of the aircraft. The FDR then records this frame directly into its memory. The content of the frame must meet requirements defined by national and / or international regulations. In particular, the list of parameters and flight information to be recorded, as well as their recording rate and the required accuracy are specified.
Les enregistreurs de vol sont conçus pour que les mémoires contenant les données enregistrées, à savoir notamment les radiocommunications, les communications avec l'équipage de cabine, les bruits du poste de pilotage, les paramètres de l'aéronef et les informations de vol, soient protégées lors d'un incident ou d'un accident de l'aéronef. En particulier, les enregistreurs de vol doivent résister à une accélération de 3400 g pendant 6,5 millisecondes, à une température de 1 100 degrés Celsius pendant une heure et à une immersion d'au moins 5000 mètres de profondeur. Cependant, les enregistreurs de vol sont parfois très endommagés. Toutes les données permettant de déterminer les circonstances et les causes de l'incident ou de l'accident de l'aéronef ne sont donc pas toujours disponibles pour une enquête de l'incident ou de l'accident. En particulier, en cas de destruction complète des enregistreurs de vol, seules les informations enregistrées au sol par le contrôle aérien peuvent être utilisées pour l'enquête. La récupération des données est également conditionnée par leur enregistrement. Une défaillance des systèmes primaires empêche l'enregistrement dans le FDR des informations de vol et des paramètres de l'aéronef. C'est notamment le cas lorsqu'une prise de pression, un capteur ou l'ordinateur de bord est défaillant. Plus généralement, les solutions existantes présentent l'inconvénient de ne disposer que d'une seule source d'informations et de stocker ces informations dans un lieu de stockage unique.Flight recorders are designed to ensure that the memories containing the recorded data, including, but not limited to, radiocommunications, communications with the cabin crew, cockpit noise, aircraft parameters and flight information are protected during an incident or an accident on the aircraft. In particular, flight recorders must withstand an acceleration of 3400 g for 6.5 milliseconds, at a temperature of 1100 degrees Celsius for one hour and at a depth of at least 5000 meters. However, flight recorders are sometimes very damaged. All data to determine the circumstances and causes of the incident or accident of the aircraft are therefore not always available for an investigation of the incident or accident. In particular, in the event of complete destruction of the flight recorders, only the information recorded on the ground by the air traffic control may be used for the investigation. Data recovery is also conditioned by their registration. A failure of the primary systems prevents the recording in the FDR of flight information and aircraft parameters. This is particularly the case when a pressure point, a sensor or the on-board computer fails. More generally, existing solutions have the disadvantage of having only one source of information and store this information in a single storage location.
Un but de l'invention est notamment de pallier tout ou partie des inconvénients précités. A cet effet, l'invention a pour objet un instrument de secours pouvant équiper un tableau de bord d'un aéronef, l'instrument de secours comportant des moyens pour calculer et afficher des informations de vol de secours à partir de signaux de secours fournis par des équipements de secours de l'aéronef, caractérisé en ce qu'il comporte une mémoire et des moyens pour enregistrer en fonctionnement normal les informations de vol de secours et/ou les signaux de secours dans la mémoire de l'instrument de secours.An object of the invention is in particular to overcome all or part of the aforementioned drawbacks. For this purpose, the subject of the invention is an emergency instrument capable of equipping an instrument panel of an aircraft, the emergency instrument comprising means for calculating and displaying emergency flight information from emergency signals provided. by emergency equipment of the aircraft, characterized in that it comprises a memory and means for recording in normal operation the emergency flight information and / or spare signals in the memory of the standby instrument.
Les instruments de secours sont notamment utilisés, mais pas exclusivement, en cas de panne des systèmes primaires. A cet effet, un instrument de secours présente des informations essentielles pour le pilotage de l'aéronef, en particulier la vitesse, l'altitude et l'attitude de l'aéronef. Ces informations essentielles, appelées informations de vol de secours, permettent à elles seules de piloter l'aéronef.Emergency instruments are used, but not exclusively, in the event of failure of the primary systems. For this purpose, an emergency instrument presents essential information for the piloting of the aircraft, in particular the speed, the altitude and the attitude of the aircraft. This essential information, called emergency flight information, alone can control the aircraft.
Antérieurement, les informations présentées par les instruments de secours étaient obtenues et affichées par des instruments électromécaniques. Ces derniers ont été remplacés par des instruments électroniques, ce qui a notamment permis de réaliser des gains de poids, de taille et de fiabilité. Une plus grande souplesse d'utilisation est par ailleurs obtenue puisqu'il est possible d'ajouter d'autres informations. En particulier, certains instruments de secours combinent, outre, des informations d'altitude, de vitesse et d'attitude, des informations de navigation.Previously, the information presented by the standby instruments was obtained and displayed by electromechanical. These have been replaced by electronic instruments, which has resulted in weight gains, size and reliability. Greater flexibility of use is also obtained since it is possible to add other information. In particular, some backup instruments combine, in addition, altitude, speed and attitude information, navigation information.
Un instrument de secours doit aussi être autonome et décorrélé des autres instruments de bord. A cet effet, il intègre des équipements, par exemple des capteurs, permettant de générer les informations qu'il fournit. Ainsi, il comporte des capteurs de pression reliés à des prises de pression totale et statique situées sur la peau de l'aéronef. Les capteurs de pression permettent notamment de définir l'altitude et la vitesse de l'aéronef. Il peut aussi comporter une centrale inertielle, plusieurs capteurs de température et d'autres types de capteurs. L'écran de visualisation de l'instrument de secours peut être en technologie à cristaux liquides.A rescue instrument must also be autonomous and decorrelated from the other instruments on board. For this purpose, it integrates equipment, for example sensors, to generate the information it provides. Thus, it comprises pressure sensors connected to total and static pressure taps located on the skin of the aircraft. The pressure sensors make it possible in particular to define the altitude and the speed of the aircraft. It can also include an inertial unit, several temperature sensors and other types of sensors. The display screen of the standby instrument can be in liquid crystal technology.
En plus des informations générées directement dans l'instrument de secours, ce dernier peut recevoir des informations provenant d'autres systèmes équipant l'aéronef. Ces informations transitent par exemple sur un bus série de l'aéronef, connu sous le terme « ARINC », en référence à une norme de transmission de données numériques connue sous le nom de norme ARINC (Aeronautical Radio Incorporation). Ces données peuvent par exemple indiquer le cap de l'aéronef et sont donc affichées sur l'écran de l'instrument de secours.In addition to the information generated directly in the standby instrument, the latter can receive information from other systems on the aircraft. This information passes for example on a serial bus of the aircraft, known under the term "ARINC", with reference to a digital data transmission standard known as the ARINC standard (Aeronautical Radio Incorporation). This data can for example indicate the course of the aircraft and are therefore displayed on the screen of the standby instrument.
L'instrument de secours peut aussi envoyer des informations vers l'extérieur, notamment vers un pilote automatique de l'aéronef. En effet, puisqu'il génère lui-même certaines des informations qu'il affiche, il peut fournir ces informations à d'autres systèmes intégrés dans l'aéronef. En particulier, le pilote automatique a besoin d'informations fiables. A titre d'exemple, les systèmes primaires d'un aéronef comportent au moins deux capteurs d'inertie. Cependant, ces capteurs peuvent tomber en panne ou délivrer des informations fausses. Dans ce cas, l'instrument de secours peut pallier le capteur défaillant et/ou indiquer lequel des deux capteurs fournit l'information juste. Pour un pilote automatique, il est donc particulièrement important d'avoir au moins trois informations pour un même paramètre. Par construction, différents instruments peuvent être reliés entre eux mais il y a toujours une ségrégation entre les systèmes primaires et les instruments de secours.The standby instrument can also send information to the outside, in particular to an autopilot of the aircraft. Indeed, since it itself generates some of the information it displays, it can provide this information to other systems integrated into the aircraft. In particular, the autopilot needs reliable information. For example, the primary systems of an aircraft comprise at least two inertia sensors. However, these sensors may fail or deliver false information. In this case, the standby instrument can compensate for the faulty sensor and / or indicate which of the two sensors provides the correct information. For an autopilot, it is therefore particularly important to have at least three pieces of information for the same parameter. By construction, different instruments can be interconnected but there is always a segregation between the primary systems and the backup instruments.
L'invention a pour principal avantage qu'elle permet de disposer des informations de vol déterminées par l'instrument de secours indépendamment des systèmes primaires et des enregistreurs de vol. En particulier, elle permet de disposer des informations de vol déterminées par l'instrument de secours même en cas de défaillance de l'un des éléments des systèmes primaires ou du FDR. L'invention permet également de faciliter la détermination des circonstances et des causes de l'incident ou de l'accident d'un aéronef en enregistrant les informations de vol dans un emplacement différent du FDR, en l'occurrence dans une mémoire de l'instrument de secours. Les informations de vol peuvent ainsi rester disponibles même en cas de destruction du FDR.The main advantage of the invention is that it makes it possible to have the flight information determined by the emergency instrument independently of the primary systems and the flight recorders. In particular, it makes it possible to have the flight information determined by the emergency instrument even in the event of failure of one of the elements of the primary systems or the FDR. The invention also facilitates the determination of the circumstances and causes of the incident or accident of an aircraft by recording the flight information in a different location of the FDR, in this case in a memory of the aircraft. rescue instrument. Flight information can remain available even if the FDR is destroyed.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description faite en regard de dessins annexés qui représentent :The invention will be better understood and other advantages will become apparent on reading the detailed description of an embodiment given by way of example, a description given with regard to the appended drawings which represent:
- la figure 1 , un tableau de bord d'un aéronef équipé d'un instrument de secours ;- Figure 1, a dashboard of an aircraft equipped with a backup instrument;
- la figure 2, un exemple d'informations affichées par l'instrument de secours ; - la figure 3, par un synoptique, un exemple de réalisation d'instrument de secours ;FIG. 2, an example of information displayed by the standby instrument; - Figure 3, by a block diagram, an exemplary embodiment of a standby instrument;
- la figure 4, une mémoire de l'instrument de secours selon l'invention.- Figure 4, a memory of the standby instrument according to the invention.
La figure 1 présente de façon schématique un tableau de bord 1 d'un aéronef, par exemple un avion de ligne. Le tableau de bord 1 comporte des moyens pour calculer et afficher des informations de vol primaires à partir de signaux primaires fournies par des équipements primaires de l'aéronef. Par exemple, il comporte deux groupes d'écrans de visualisation 2, 3. Chaque groupe comprend un écran présentant notamment des informations de vol primaires telles qu'une altitude, une vitesse et une attitude de l'aéronef et un écran présentant des informations de navigation. Les deux groupes 2, 3 sont identiques, l'un étant réservé à un pilote et l'autre à un copilote. Ces deux groupes forment des écrans de visualisation primaires. Les écrans de visualisation primaires sont reliés à un ordinateur de bord traitant notamment des signaux primaires délivrés par des équipements primaires pour calculer les informations de vol primaires et les informations de navigation. Les équipements primaires comportent notamment des capteurs inertiels et des capteurs de pression reliés à des prises de pression totale et statique situées sur la peau de l'aéronef. L'ensemble comprenant les équipements primaires, l'ordinateur de bord et les écrans de visualisation primaires est appelé systèmes primaires. Un instrument de secours 4 est placé entre ces deux groupes 2, 3 de visualisation primaires. Eventuellement, il est possible de prévoir plusieurs instruments de secours. L'instrument de secours 4 de la figure 1 présente au moins des informations d'altitude, de vitesse et d'attitude de l'aéronef.Figure 1 schematically shows a dashboard 1 of an aircraft, for example an airliner. Dashboard 1 comprises means for calculating and displaying primary flight information from primary signals provided by primary equipment of the aircraft. For example, it includes two groups of display screens 2, 3. Each group includes a screen including primary flight information such as altitude, speed and attitude of the aircraft and a screen with navigation information. The two groups 2, 3 are identical, one being reserved for a pilot and the other for a co-pilot. These two groups form primary visualization screens. The primary display screens are connected to an on-board computer including primary signals delivered by primary equipment to calculate the primary flight information and navigation information. The primary equipment includes inertial sensors and pressure sensors connected to total and static pressure taps located on the skin of the aircraft. The set comprising the primary equipment, the on-board computer and the primary display screens is called primary systems. An emergency instrument 4 is placed between these two groups 2, 3 of primary visualization. Optionally, it is possible to provide several backup instruments. The standby instrument 4 of FIG. 1 has at least altitude, speed and attitude information of the aircraft.
La figure 2 présente un instrument de secours 4, du type électronique, équipant un aéronef. L'instrument de secours 4 comporte un boîtier 10 et des moyens d'affichage. Les moyens d'affichage comprennent par exemple un écran 1 1 à cristaux liquides formant la face avant de l'instrument de secours 4 et affichant des informations de vol de secours, à savoir l'attitude, la vitesse et l'altitude de l'aéronef. Une première zone 12 de l'écran 1 1 présente l'attitude de l'aéronef symbolisé par ses ailes 13 par rapport à une ligne d'horizon 14. Une deuxième zone 15 affiche la vitesse de l'aéronef et une troisième zone 16 affiche l'altitude de l'aéronef. En plus de ces trois informations essentielles, d'autres informations peuvent être présentées sur une même page. Dans l'exemple de la figure 2, une zone 17 est réservée aux informations de cap. En appuyant sur un bouton spécifique 18, une autre page peut être affichée pour présenter par exemple des informations de navigation ou d'autres informations. En cas de défaut d'affichage des écrans de visualisation primaires 2, 3, l'écran 1 1 de l'instrument de secours 4 est alors utilisé par le pilote et le copilote pour afficher les informations de vol de secours. La figure 3 illustre par une représentation synoptique un instrument de secours 4. L'instrument de secours 4 comporte des équipements de secours, par exemple deux capteurs de pression 20, 21 reliés à des prises de pression statique 22 et totale 23 situées sur la peau de l'aéronef et un capteur inertiel 24. Ces différents capteurs 20, 21 , 24 peuvent être situés à l'extérieur ou à l'intérieur (comme représenté sur la figure 3) de l'instrument de secours 4. Dans tous les cas, les équipements de secours 20, 21 , 22, 23, 24 sont indépendants des systèmes primaires. Les capteurs de pression 20, 21 permettent de générer des informations d'altitude et de vitesse de l'aéronef, tandis que le capteur inertiel 24 permet de générer des informations d'attitude de l'aéronef. Les informations fournies par ces capteurs 20, 21 , 24 arrivent à des moyens de traitement 25, lesquels exploitent les signaux de secours issus des capteurs 20, 21 , 24 et éventuellement des paramètres d'initialisation, par exemple entrés par les pilotes, pour générer les informations d'altitude, de vitesse et d'attitude de l'aéronef. Les moyens de traitement 25 peuvent également recevoir des informations fournies par d'autres systèmes via un bus 26, par exemple un bus ARINC. En particulier, les moyens de traitement 25 peuvent recevoir des informations de vol et des informations de navigation provenant des systèmes primaires 27. Les moyens de traitement 25 peuvent également générer des informations pour transmission vers l'extérieur, par exemple via le bus 26, à destination notamment du pilote automatique. Les informations de vol de secours calculées par les moyens de traitement 25 et, le cas échéant, les informations fournies par les autres systèmes sont envoyées à des moyens d'affichage 28 afin d'être affichées sur l'écran 11 de l'instrument de secours 4. L'instrument de secours 4 peut également comporter une mémoire 29 gérée par des moyens de gestion mémoire 30. La mémoire 29 est par exemple interne à l'instrument de secours 4. Elle permet notamment de stocker les paramètres d'initialisation et les programmes d'ordinateur permettant le traitement des signaux de secours provenant des capteurs 20, 21 , 24 et le calcul des informations de vol de secours. La mémoire est accessible en lecture et en écriture.FIG. 2 presents a backup instrument 4, of the electronic type, equipping an aircraft. The standby instrument 4 comprises a housing 10 and display means. The display means comprise, for example, a liquid crystal screen 1 1 forming the front face of the standby instrument 4 and displaying emergency flight information, namely the attitude, the speed and the altitude of the aircraft. A first zone 12 of the screen 1 1 presents the attitude of the aircraft symbolized by its wings 13 with respect to a skyline 14. A second zone 15 displays the speed of the aircraft and a third zone 16 displays the altitude of the aircraft. In addition to these three essential information, other information can be presented on the same page. In the example of FIG. 2, an area 17 is reserved for heading information. By pressing a specific button 18, another page may be displayed to present for example navigation information or other information. In case of failure to display the primary display screens 2, 3, the screen 1 1 of the standby instrument 4 is then used by the pilot and the co-pilot to display the emergency flight information. FIG. 3 illustrates a backup instrument 4 by a block diagram. The standby instrument 4 comprises emergency equipment, for example two pressure sensors 20, 21 connected to static and total pressure taps 22 located on the skin. of the aircraft and an inertial sensor 24. These different sensors 20, 21, 24 may be located outside or inside (as shown in Figure 3) of the emergency instrument 4. In all cases , the emergency equipment 20, 21, 22, 23, 24 are independent of the primary systems. The pressure sensors 20, 21 make it possible to generate altitude and speed information of the aircraft, while the inertial sensor 24 makes it possible to generate attitude information of the aircraft. The information provided by these sensors 20, 21, 24 arrives at processing means 25, which exploit the emergency signals from the sensors 20, 21, 24 and possibly initialization parameters, for example entered by the pilots, to generate the altitude, speed and attitude information of the aircraft. The processing means 25 may also receive information provided by other systems via a bus 26, for example an ARINC bus. In particular, the processing means 25 can receive flight information and navigation information from the primary systems 27. The processing means 25 can also generate information for transmission to the outside, for example via the bus 26, to destination including the autopilot. The emergency flight information calculated by the processing means 25 and, if appropriate, the information provided by the other systems are sent to the display means 28 so as to be displayed on the screen 11 of the flight instrument. 4. The backup instrument 4 may also include a memory 29 managed by memory management means 30. The memory 29 is for example internal to the backup instrument 4. It allows in particular to store the initialization parameters and computer programs for processing emergency signals from the sensors 20, 21, 24 and calculating the emergency flight information. The memory is accessible in reading and writing.
Selon l'invention, l'instrument de secours 4 peut également comporter des moyens pour enregistrer en fonctionnement normal les informations de vol de secours. En particulier, la mémoire 29 est également utilisée pour enregistrer en fonctionnement normal les informations de vol de secours générées par les équipements de secours 20, 21 , 22, 23, 24 et les moyens de traitement 25. Selon une autre forme de réalisation de l'invention, une autre mémoire, physiquement distincte de la mémoire 29, peut également être utilisée pour enregistrer les informations de vol de secours. Les informations de vol de secours sont enregistrées automatiquement tout au long du vol de l'aéronef, sans intervention du pilote, le vol de l'aéronef s'entendant comme la période pendant laquelle l'instrument de secours 4 ou les systèmes primaires 27 sont alimentés en énergie. Les informations de vol de secours sont par exemple enregistrées de telle manière qu'il est possible de les réafficher ultérieurement. Avantageusement, ces informations de vol correspondent aux informations de vol utilisées pour l'affichage sur l'écran 1 1 de l'instrument de secours 4. Il est ainsi possible, après un vol, de récupérer et d'analyser les informations de vol de secours fournies au pilote lors du vol. Dans un mode de réalisation, le réaffichage des informations de vol de secours enregistrées se fait sur l'écran 1 1 de l'instrument de secours 4, par exemple par l'intermédiaire des moyens de gestion mémoire 30, des moyens de traitement 25 et des moyens d'affichage 28. Ce mode de réalisation présente l'avantage de pouvoir analyser les informations de vol de secours telles qu'elles étaient véritablement présentées au pilote lors du vol, l'affichage que le pilote voyait lors du vol étant en quelque sorte régénéré. Il est ainsi possible de détecter une éventuelle défaillance de l'instrument de secours 4, que cette défaillance soit due aux moyens de traitement 25 ou aux moyens d'affichage 28.According to the invention, the backup instrument 4 may also include means for recording in normal operation the rescue flight information. In particular, the memory 29 is also used to record in normal operation the emergency flight information generated by the emergency equipment 20, 21, 22, 23, 24 and the processing means 25. According to another embodiment of the invention, another memory, physically distinct from the memory 29, can also be used to record the rescue flight information. The emergency flight information is automatically recorded throughout the flight of the aircraft, without the intervention of the pilot, the flight of the aircraft being understood as the period during which the emergency instrument 4 or the primary systems 27 are powered. The emergency flight information is for example recorded in such a way that it can be re-displayed later. Advantageously, this flight information corresponds to the flight information used for the display on the screen 1 1 of the rescue instrument 4. It is thus possible, after a flight, to retrieve and analyze the flight information of provided to the pilot during the flight. In one embodiment, the re-display of the saved emergency flight information is done on the screen 1 1 of the standby instrument 4, for example by means of the memory management means 30, the processing means 25 and display means 28. This embodiment has the advantage of being able to analyze the emergency flight information as it was actually presented to the pilot during the flight, the display that the pilot saw during the flight being in so regenerated. It is thus possible to detect a possible failure of the standby instrument 4, whether this failure is due to the processing means 25 or to the display means 28.
Dans un mode particulier de réalisation, la mémoire 29 est une mémoire morte effaçable et programmable électriquement, appelée EEPROM, acronyme de l'expression anglo-saxonne « Electrically Erasable Programmable Read OnIy Memory ». Ce type de mémoire permet un nombre infini de lectures du contenu de la mémoire et peut être reprogrammé plus d'un million de fois. Il présente notamment l'avantage de ne pas nécessiter d'alimentation électrique pour la conservation des données stockées en mémoire. Ce type de mémoire est par conséquent particulièrement adapté au stockage des paramètres d'initialisation et des programmes d'ordinateur et en particulier des informations de vol de secours, les moyens d'alimentation électrique de l'aéronef étant généralement hors d'usage en cas d'accident de l'aéronef. Le contenu de ce type de mémoire peut également être récupéré après démontage de la mémoire de son support. Avantageusement, la mémoire 29 est une mémoire rapide programmable appelée FPROM, acronyme de l'expression anglo-saxonne « Flash Programmable Read OnIy Memory », également plus simplement appelée « mémoire flash ». La mémoire flash permet la modification de plusieurs espaces mémoire en une seule opération et se caractérise donc par des vitesses de lecture et d'écriture très élevées. Elle est de dimensions réduites, ce qui permet de diminuer les risques d'endommagement lors d'un accident de l'aéronef.In a particular embodiment, the memory 29 is an electrically erasable and programmable read-only memory, called EEPROM, an acronym for the "Electrically Erasable Programmable Read OnYy Memory". This type of memory allows an infinite number of readings of the contents of the memory and can be reprogrammed more than a million times. It has the particular advantage of not requiring power supply for the storage of data stored in memory. This type of memory is therefore particularly suitable for storing initialization parameters and computer programs and in particular flight information. emergency, the power supply means of the aircraft being generally out of use in the event of an accident of the aircraft. The contents of this type of memory can also be recovered after dismantling the memory of its support. Advantageously, the memory 29 is a programmable fast memory called FPROM, acronym for the English expression "Flash Programmable Read OnIy Memory", also more simply called "flash memory". The flash memory allows the modification of several memory spaces in a single operation and is therefore characterized by very high read and write speeds. It is of reduced dimensions, which reduces the risk of damage in an accident of the aircraft.
Dans un mode particulier de réalisation, la mémoire 29 est une mémoire flash à logique NON-OU, mieux connue sous l'expression anglo- saxonne « NOR ». Ce type de mémoire possède une interface d'adressage permettant un accès aléatoire et rapide à n'importe quel emplacement de la mémoire. Il est par conséquent particulièrement adapté au stockage des programmes d'ordinateur, ceux-ci pouvant être exécutés directement à partir de la mémoire.In a particular embodiment, the memory 29 is a flash memory with NOR logic, better known under the Anglo-Saxon expression "NOR". This type of memory has an addressing interface allowing random and fast access to any location in the memory. It is therefore particularly suitable for storing computer programs, which can be executed directly from the memory.
La figure 4 illustre le contenu d'une partie d'une mémoire 29 de l'instrument de secours 4 selon l'invention. L'instrument de secours 4 peut comporter des moyens pour enregistrer à intervalles réguliers les informations de vol et des moyens pour gérer l'enregistrement des informations de vol de secours sous forme de table tournante. Le contenu de la mémoire 29 est divisé en deux zones, une première zone étant dédiée notamment au stockage des paramètres d'initialisation et des programmes d'ordinateur, et une deuxième zone de secours 40 étant réservée au stockage des informations de vol de secours. Comme indiqué précédemment, les deux zones peuvent correspondre à deux mémoires physiques distinctes. Le contenu de la zone de secours 40 est structuré sous forme de table tournante. Dans cette table tournante, une première ligne 41 contient toutes les informations de vol de secours prises à un instant t0. La ligne suivante 42 contient les mêmes informations de vol de secours prises à un instant suivant (to + τ), τ représentant l'intervalle de temps écoulé entre les deux enregistrements des informations de vol de secours. Dans une forme particulière de réalisation, τ est une constante de temps. L'enregistrement suivant se produit donc à un instant ( t0 + 2.τ). De manière générale, les informations de vol de secours sont enregistrées aux instants (to + i.τ), i étant un entier compris entre 0 et n , ( « + 1) étant le nombre maximal de lignes disponibles pour enregistrer les informations de vol de secours. A l'instant ( t0 + (n + i).τ), les informations de vol de secours sont à nouveau enregistrées à la première ligne 41 , et ainsi de suite. Ce principe de table tournante permet d'enregistrer séquentiellement les informations de vol de secours et de garder en mémoire les informations de vol de secours des dernières heures de vol. La mémoire 29 peut par exemple être dimensionnée de façon à pouvoir conserver la dernière ou les 25 dernières heures de vol avec un intervalle τ de quelques secondes ou de quelques minutes. L'intervalle τ peut par exemple être d'une seconde. Selon un mode particulier de réalisation, chaque information de vol de secours, à savoir l'altitude, la vitesse, le roulis, le tangage et le lacet de l'aéronef, est enregistrée dans une colonne 43, 44, 45, 46, 47, 48, 49. Ainsi, chaque information de vol de secours à un instant donné est enregistrée dans un emplacement mémoire spécifique, l'emplacement mémoire pouvant occuper un ou plusieurs éléments physiques de la mémoire 29 en fonction de la taille de l'information. Selon un autre mode de réalisation, la zone de secours 40 de la mémoire 29 peut enregistrer, avec les informations de vol de secours, les signaux de secours provenant des capteurs 20, 21 , 24 ou seulement ces signaux de secours. L'instrument de secours 4 peut être connecté aux moyens pour calculer et afficher les informations de vol primaires et comporter des moyens pour enregistrer en fonctionnement normal les informations de vol primaires et/ou les signaux primaires dans la mémoire 29 de l'instrument de secours 4. En particulier, la zone de secours 40 de la mémoire 29 peut enregistrer les informations de vol primaires et/ou les signaux primaires provenant des systèmes primaires 27, comme une température, une vitesse air ou une vitesse ascensionnelle. Le nombre de Mach, paramètre important dans la détermination de la portance, peut également être enregistré dans la mémoire 29. Avantageusement, toutes les informations enregistrées sont réparties dans la zone de secours 40 de la mémoire 29 sous forme de colonnes 43, 44, 45, 46, 47, 48, 49, chaque colonne contenant un type d'information.FIG. 4 illustrates the contents of a part of a memory 29 of the standby instrument 4 according to the invention. The standby instrument 4 may include means for steadily recording the flight information and means for managing the recording of the spare flight information in the form of a turntable. The contents of the memory 29 are divided into two zones, a first zone being dedicated in particular to the storage of the initialization parameters and computer programs, and a second emergency zone 40 being reserved for storing the emergency flight information. As indicated previously, the two zones can correspond to two distinct physical memories. The content of the emergency zone 40 is structured as a turntable. In this turntable, a first line 41 contains all the emergency flight information taken at a time t 0 . The following line 42 contains the same emergency flight information taken at a following instant (t o + τ), where τ represents the time interval elapsed between the two recordings of the rescue flight information. In a particular embodiment, τ is a time constant. The following record therefore occurs at a time (t 0 + 2.τ). In general, the emergency flight information is recorded at times (t o + i.τ), i being an integer between 0 and n, ("+ 1) being the maximum number of lines available for recording the information of rescue flight. At the instant (t 0 + (n + i) .τ), the emergency flight information is again recorded in the first line 41, and so on. This turntable principle allows sequential recording of the emergency flight information and keeping in memory the last flight hours emergency flight information. The memory 29 may for example be sized so as to be able to keep the last or the last 25 hours of flight with an interval τ of a few seconds or a few minutes. The interval τ may for example be one second. According to a particular embodiment, each emergency flight information, namely the altitude, the speed, the roll, the pitch and the yaw of the aircraft, is recorded in a column 43, 44, 45, 46, 47. , 48, 49. Thus, each spare flight information at a given instant is stored in a specific memory location, the memory location may occupy one or more physical elements of the memory 29 depending on the size of the information. According to another embodiment, the emergency zone 40 of the memory 29 can record, with the emergency flight information, the emergency signals from the sensors 20, 21, 24 or only these emergency signals. The standby instrument 4 may be connected to the means for calculating and displaying the primary flight information and comprise means for recording in normal operation the primary flight information and / or the primary signals in the memory 29 of the standby instrument. 4. In particular, the spare area 40 of the memory 29 may record the primary flight information and / or the primary signals from the primary systems 27, such as a temperature, an air speed, or an ascent rate. The Mach number, an important parameter in the determination of the lift, can also be stored in the memory 29. Advantageously, all the recorded information is distributed in the emergency zone 40 of the memory 29 in the form of columns 43, 44, 45, 46, 47, 48, 49, each column containing a type of information.
L'instrument de secours 4 selon l'invention permet de disposer des informations de vol de secours même en cas de défaillance des systèmes primaires 27 ou des enregistreurs de vol pendant le vol de l'aéronef. Les informations de vol de secours restent également disponibles en cas de destruction complète des enregistreurs de vol dans un accident.The rescue instrument 4 according to the invention makes it possible to have the emergency flight information even in the event of failure of the primary systems 27 or the flight recorders during the flight of the aircraft. The rescue flight information also remains available in the event of complete destruction of the flight recorders in an accident.
L'instrument de secours 4 selon l'invention permet également d'enregistrer les informations de vol et les informations de navigation provenant des systèmes primaires. En outre, il présente l'avantage de ne pas nécessiter de mémoire supplémentaire, mais uniquement une modification du programme d'ordinateur de l'instrument de secours 4. L'instrument de secours 4 selon l'invention est donc de conception économique et facilite la détermination des circonstances et des causes d'un accident d'aéronef. The rescue instrument 4 according to the invention also makes it possible to record flight information and navigation information from the primary systems. In addition, it has the advantage of not requiring additional memory, but only a modification of the computer program of the standby instrument 4. The standby instrument 4 according to the invention is therefore of economical design and facilitates determining the circumstances and causes of an aircraft accident.

Claims

REVENDICATIONS
1. Instrument de secours pouvant équiper un tableau de bord (1 ) d'un aéronef, l'instrument de secours (4) comportant des moyens (11 , 25, 28) pour calculer et afficher des informations de vol de secours à partir de signaux de secours fournis par des équipements de secours (20, 21 , 22, 23, 24) de l'aéronef, l'affichage des informations de vol de secours permettant le pilotage de l'aéronef, caractérisé en ce qu'il comporte une mémoire (29) et des moyens (30) pour enregistrer en fonctionnement normal les informations de vol de secours et/ou les signaux de secours dans la mémoire (29) de l'instrument de secours (4), les données enregistrées permettant le réaffichage des informations de vol affichées durant l'enregistrement.1. Emergency instrument capable of equipping a dashboard (1) of an aircraft, the emergency instrument (4) comprising means (11, 25, 28) for calculating and displaying emergency flight information from emergency signals provided by emergency equipment (20, 21, 22, 23, 24) of the aircraft, the display of the emergency flight information for the piloting of the aircraft, characterized in that it comprises a memory (29) and means (30) for recording in normal operation the emergency flight information and / or the spare signals in the memory (29) of the standby instrument (4), the recorded data allowing the re-display flight information displayed during the recording.
2. Instrument de secours selon la revendication 1 , caractérisé en ce que le réaffichage se fait sur les moyens (1 1 , 25, 28) pour calculer et afficher des informations de vol de secours.2. Emergency instrument according to claim 1, characterized in that the re-display is on the means (1 1, 25, 28) for calculating and displaying emergency flight information.
3. Instrument de secours selon l'une des revendications 1 ou 2, caractérisé en ce que le tableau de bord (1 ) comporte des moyens (2, 3) pour calculer et afficher des informations de vol primaires à partir de signaux primaires fournis par des équipements primaires de l'aéronef, en ce que l'instrument de secours (4) est connecté aux moyens (2, 3) pour calculer et afficher les informations de vol primaires et en ce qu'il comporte des moyens (29, 30) pour enregistrer en fonctionnement normal les informations de vol primaires et/ou les signaux primaires dans la mémoire (29) de l'instrument de secours (4).3. Emergency instrument according to one of claims 1 or 2, characterized in that the dashboard (1) comprises means (2, 3) for calculating and displaying primary flight information from primary signals provided by primary equipment of the aircraft, in that the standby instrument (4) is connected to the means (2, 3) for calculating and displaying the primary flight information and in that it comprises means (29, 30 ) to record in normal operation the primary flight information and / or the primary signals in the memory (29) of the standby instrument (4).
4. Instrument de secours selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens (29, 30) pour enregistrer à intervalles réguliers (τ ) les informations de vol et/ou les signaux.4. Emergency instrument according to one of the preceding claims, characterized in that it comprises means (29, 30) for recording at regular intervals (τ) the flight information and / or signals.
5. Instrument de secours selon la revendication 4, caractérisé en ce que l'intervalle ( τ ) est d'une seconde. 5. Emergency instrument according to claim 4, characterized in that the interval (τ) is one second.
6. Instrument de secours selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens (29, 30) pour gérer l'enregistrement des informations de vol et/ou des signaux sous forme de table tournante (40).6. Emergency instrument according to one of the preceding claims, characterized in that it comprises means (29, 30) for managing the recording of flight information and / or signals in the form of turntable (40).
7. Instrument de secours selon l'une des revendications précédentes, caractérisé en ce que la mémoire (29) de l'instrument de secours (4) est une mémoire de type FPROM.7. Emergency instrument according to one of the preceding claims, characterized in that the memory (29) of the standby instrument (4) is a FPROM type memory.
8. Instrument de secours selon l'une des revendications précédentes, caractérisé en ce que les informations de vol de secours comportent une altitude, une vitesse et une attitude de l'aéronef. 8. Emergency instrument according to one of the preceding claims, characterized in that the emergency flight information comprises an altitude, a speed and an attitude of the aircraft.
EP08804753A 2007-10-05 2008-09-25 Backup instrument for aircraft Withdrawn EP2198249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0707006A FR2922011B1 (en) 2007-10-05 2007-10-05 EMERGENCY INSTRUMENT FOR AIRCRAFT.
PCT/EP2008/062867 WO2009043806A1 (en) 2007-10-05 2008-09-25 Backup instrument for aircraft

Publications (1)

Publication Number Publication Date
EP2198249A1 true EP2198249A1 (en) 2010-06-23

Family

ID=39576016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08804753A Withdrawn EP2198249A1 (en) 2007-10-05 2008-09-25 Backup instrument for aircraft

Country Status (5)

Country Link
EP (1) EP2198249A1 (en)
CN (1) CN101849163A (en)
CA (1) CA2701629A1 (en)
FR (1) FR2922011B1 (en)
WO (1) WO2009043806A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050226A (en) * 2009-10-30 2011-05-11 航天科工惯性技术有限公司 Aviation emergency instrument, and system initial alignment method and combined navigation algorithm thereof
JP5391086B2 (en) * 2010-01-12 2014-01-15 ナブテスコ株式会社 Flight control system
CN103076013B (en) * 2012-12-27 2016-07-13 太原航空仪表有限公司 Atmosphere data and attitude heading reference system for flight navigation
US10444367B2 (en) * 2016-02-26 2019-10-15 Honeywell International Inc. Enhanced LiDAR air data using supplementary sensor outputs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259378B1 (en) * 1997-09-22 2001-07-10 Sandel Avionics Display system for airplane cockpit or other vehicle
US6266588B1 (en) * 1999-03-01 2001-07-24 Mcclellan Scott B. Vehicle motion detection and recording method and apparatus
GB2387912A (en) * 2002-04-26 2003-10-29 Messier Dowty Inc Monitoring parameters in structural components
FR2855303B1 (en) * 2003-05-19 2005-08-05 Airbus France DEVICE AND SYSTEM FOR DISPLAYING EMERGENCY RESPONSE OF AN AIRCRAFT.
EP1673593A2 (en) * 2003-07-16 2006-06-28 Prospective Concepts AG Modular data recording and display unit
US7031812B1 (en) * 2004-03-15 2006-04-18 Howell Instruments, Inc. System and method for monitoring aircraft engine health and determining engine power available, and applications thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009043806A1 *

Also Published As

Publication number Publication date
FR2922011B1 (en) 2011-05-06
FR2922011A1 (en) 2009-04-10
CA2701629A1 (en) 2009-04-09
WO2009043806A1 (en) 2009-04-09
CN101849163A (en) 2010-09-29

Similar Documents

Publication Publication Date Title
US20090082918A1 (en) Motions Dynamics Recorder
WO2016027022A1 (en) Computer for a vehicle, such as a power steering computer, provided with an integrated event recorder
EP2645066A1 (en) Display system for an aircraft and associated method
FR2604545A1 (en) FLIGHT RECORDING DEVICE WITH STATIC ELECTRONIC MEMORY
FR2935179A1 (en) On-board system controlling assisting method for aircraft, involves selecting elements to be displayed in set of predetermined elements based on state of aircraft, and displaying elements under text or graphical form on display device
EP2063227B1 (en) Virtual control panel for aeronautical attitude control units
FR2904461A1 (en) Flight plan i.e. transport plane displaying method for aircraft i.e. military aircraft, involves positioning identification zone on viewing screen to form part of flight phase that is designated by identification zone
FR3031407A1 (en) VEHICLE CONTROL SYSTEM, IN PARTICULAR AIR
EP2198249A1 (en) Backup instrument for aircraft
FR2926375A1 (en) METHOD FOR PERFORMING COMPUTER APPLICATION, KIT AND AIRCRAFT
EP3187826A1 (en) Display of meteorological data in an aircraft
EP2921863A1 (en) Method and device for automatically estimating parameters linked to the flight of an aircraft
FR2998959A1 (en) METHOD FOR DISPLAYING AN AERONAUTICAL FLIGHT PLAN COMPRISING A FLIGHT DATA PARAMETERING STEP
KR20230006830A (en) Rotary release launching system
CA2615749C (en) Device for assisting ground navigation of an aircraft on an airport
EP0543698B1 (en) Device for employment of fault information in a single/multi-computer aircraft system
FR3054314A1 (en) AVIONIC DATA DISPLAY SYSTEM ON AT LEAST ONE DISPLAY SPACE, AIRCRAFT COCKPIT HAVING SUCH A SYSTEM, DISPLAY METHOD AND COMPUTER PROGRAM PRODUCT THEREFOR
FR2920245A1 (en) METHOD AND SYSTEM FOR SYNCHRONIZATION OF DISPLAY CONTEXT
CA2772516C (en) Device and method for evaluating the operational capacity of an aircraft
WO2008034795A1 (en) Backup instrument for an aircraft instrument panel detecting overload, particularly during the landing phase
CN112652328A (en) Integrated system for improved vehicle maintenance and safety
FR2935180A1 (en) INTERACTIVE DEVICE FOR CONTROLLING SERVITUDES IN AN AIRCRAFT
FR3094785A1 (en) UNIT AND INTERTIAL REFERENCE SYSTEM WITH IMPROVED INTEGRITY AND ASSOCIATED INTEGRITY CONTROL METHODS
FR3083897A1 (en) SYSTEM FOR MANAGING THE TASKS OF AN AIRCRAFT CREW DURING A MISSION AND ASSOCIATED METHOD
FR2883088A1 (en) Flight parameter e.g. heading, time stamped monitoring onboard equipment for flying club, has generalized packet radio service type modem sending stored values of aircraft velocity, engine speed and vertical acceleration to ground equipment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110401