EP2198248A2 - Transducteur a fibre optique multimode et a couplage de modes, procede de realisation - Google Patents

Transducteur a fibre optique multimode et a couplage de modes, procede de realisation

Info

Publication number
EP2198248A2
EP2198248A2 EP08840514A EP08840514A EP2198248A2 EP 2198248 A2 EP2198248 A2 EP 2198248A2 EP 08840514 A EP08840514 A EP 08840514A EP 08840514 A EP08840514 A EP 08840514A EP 2198248 A2 EP2198248 A2 EP 2198248A2
Authority
EP
European Patent Office
Prior art keywords
fiber
transducer
modes
modulation
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08840514A
Other languages
German (de)
English (en)
Inventor
Sylvain Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOSYLAB
Original Assignee
PHOSYLAB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOSYLAB filed Critical PHOSYLAB
Publication of EP2198248A2 publication Critical patent/EP2198248A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35377Means for amplifying or modifying the measured quantity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02071Mechanically induced gratings, e.g. having microbends

Definitions

  • the present invention relates to a multimode optical fiber and mode coupled transducer. It has applications in the field of metrology.
  • Fiber optic sensors have been the subject of many investigations for many years. Multimode optical fiber and mode-coupled solutions have been studied in the laboratory and the appearance of components such as the Bragg fiber network has enabled the design of very precise and multiplexable optical fiber sensors in large-scale networks, particularly for surveillance. civil engineering structures (bridge, tunnel, etc.).
  • the fiber Bragg grating is a component sensitive to temperature, to longitudinal deformation along its cylindrical axis of symmetry and finally to pressure. In fact, this component is an extremely versatile element which, integrated in suitable transduction mechanisms, is suitable for the measurement of very numerous physical and chemical parameters while providing the sensors thus developed with added values of the measurement by optical techniques.
  • Bragg grating technology remains at a significant cost.
  • multi-mode optical fiber sensors have become competitive, in particular because their manufacturing processes admit very wide tolerances in comparison with single-mode optical fiber technologies.
  • the object of the present invention is to propose a multimode optical fiber component which is sensitive (at least) to temperature, to longitudinal deformation along the axis of cylindrical symmetry of the fiber and to pressure while being very low cost. It also becomes possible with the invention to exploit the transduction mechanisms already developed for fiber Bragg gratings.
  • the parameter to be measured in the environment will be called "measurand" in the following.
  • the invention relates to an optical fiber transducer, said transducer being sensitive to at least one parameter (also called the measurand) of an environment in which it is placed, the modification of the parameter (s) causing a modification of at least one a measurable characteristic of a light wave injected into the optical fiber and passing through the transducer, the optical fiber being multimode and having means for the modification of the characteristic of the light wave to be a function of a mode coupling modification driven by modifying the parameter of the environment, the means leading to the modification of the coupling of modes causing during the modification a deformation of the fiber in the transducer in a given pattern.
  • the parameter also called the measurand
  • the means leading to the modification of the coupling mode is a hollow tube having internally a pattern in relief and enclosing the optical fiber at the transducer in a cross section of the fiber.
  • the following means can be used alone or in any technically possible combination, are employed:
  • the mode coupling modification is furthermore due to a modulation of the numerical aperture of the fiber (the refractive indices of the core and of the optical cladding have different coefficients of variation)
  • the deformation is a set of micro-curvatures causing coupling of the modes of the fiber without transformation of the structure of the modes of the fiber,
  • the deformation is an isotropic spatial modulation of the diameter of the fiber causing a coupling of the modes of the fiber without transformation of the structure of the modes of the fiber, the deformation is an anisotropic spatial modulation of the diameter of the fiber,
  • the deformation is a spatial modulation of the diameter of the fiber
  • the deformation varies according to the variation of the parameter of the environment
  • the deformation by spatial modulation of the diameter of the fiber varies in diameter (variable restrictions of the fiber, in particular by radial forces / pressures on the tube) as a function of the variation of the parameter of the environment,
  • the deformation by spatial modulation of the diameter of the fiber varies in frequency (the position of the deforming units varies, in particular by axial / longitudinal forces / pressures on the tube) as a function of the variation of the parameter of the environment,
  • the hollow tube internally comprising a pattern in relief and enclosing the optical fiber at the level of the transducer does not constrain said fiber at rest, said fiber being undeformed at rest, (the rest corresponds to the basal state of the parameter, that is to say it has no action on the transducer, ie this action corresponds to a basic considered state)
  • the tube is in two longitudinal parts closing on the fiber
  • the tube is in two longitudinal parts which can be separated from each other at least in the region of the transducer comprising the embossed pattern, (the two parts act as a clamp that can be clamped or loosened on the fiber)
  • each longitudinal portion comprises at at least one of its two longitudinal ends an extension acting as an elastic lever arm enabling the corresponding part to be brought back to a rest position in the absence of any action of the environment parameter (s), said extension having no influence on the characteristics of the light wave, (the rest corresponds to the basal state of the parameter, either that it has no action on the transducer, or that this action corresponds to a state considered basic)
  • each longitudinal part comprises at each of its two longitudinal ends an extension acting as an elastic lever arm enabling a return to a position of resting the corresponding part in the absence of action of the environment parameter (s), said extension having no influence on the characteristics of the light wave, (the rest corresponds to the basic state of the parameter, ie has no action on the transducer, or that this action corresponds to a state considered basic) - each longitudinal portion is an elongate half-cylinder,
  • the tube is in two longitudinal parts joined and joined together
  • the two longitudinal parts are joined together by welding, gluing, crimping or clipping,
  • the relief pattern comprises vertices and valleys whose amplitudes and spatial distribution are chosen according to at least one of the parameters of the environment and the measured characteristics of the light wave
  • the environment parameter is selected from one or more of the following possibilities:
  • the measured characteristic of the light wave is chosen from one or more of the following possibilities: attenuation of the light wave passing through the transducer;
  • the optical fiber comprises an inner core and an outer optical cladding
  • the optical fiber further comprises an outer coating
  • the tube is placed on the outer coating of the optical fiber, the outer coating of the optical fiber is removed at the level of the transducer, the tube being placed around the optical cladding of the fiber,
  • the core and the optical cladding of the fiber are made of glass
  • the glass of the optical cladding is doped
  • the outer coating is a mechanical sheath
  • the mechanical sheath is made of polyimide
  • the tube is made of aluminum.
  • the invention also relates to a method for producing an optical fiber transducer, such as for a transducer according to one or more of the characteristics described and having a pattern in relief inside a hollow tube enclosing the fiber and modifying the coupling of guided and / or radiated modes as a function of at least one parameter acting on said transducer by deformation, the pattern is determined from a spatial perturbation spectrum as a function of the modes to be coupled for the type of deformation provided for the parameter to be measured.
  • the process can be declined in the various ways described.
  • the present invention will now be exemplified without being limited thereto with the following description in relation to: FIG.
  • FIG. 1 which schematically represents one of the two parts of an example of a radial force transducer tube according to the invention, the various 2, which schematically represents one of the two parts of an example of an axial force transducer tube according to the invention, the various components of which are not part of the invention.
  • ladder. 3 which schematically shows a transducer in an exploded view, the two parts of a structured tube being separated from the optical fiber and of them, and
  • FIG. 4 which is an enlargement of a section of tube structured at the level of a structuring to visualize a portion of an example of relief pattern.
  • An optical fiber is a waveguide, that is a medium capable of guiding a wave signal that propagates along an axis which is the cylindrical axis of symmetry of the fiber and is called the axis of propagation. fiber.
  • the fiber is constituted in its simplest version of a heart and an optical sheath of confinement, called "sheath".
  • the optical properties of the core and the sheath are slightly different so that any signal coupled to one end of the fiber perceives two different propagation speeds between the core and the sheath.
  • the sheath may be a material very similar to that of the heart or air or vacuum.
  • the refractive index of the core should only be greater than that of the sheath. Note that the fiber is often surrounded by an outer coating that is intended to protect it mechanically, this coating is sometimes confused with the sheath.
  • the optical signal respects the fiber guiding conditions determined by the refractive indices of the core and sheath with respect to the wavelength of the signal, a portion of the signal energy is confined in the core of the fiber and stays in the sheath around the heart.
  • the signal energy is transmitted from the signal input end in the fiber to the output end of the fiber signal without loss (without attenuation) .
  • the signal is said guided.
  • the signal does not respect the guiding conditions of the fiber, the signal can propagate along the axis of the fiber (its energy is distributed without confinement between the core and the sheath) but its energy is entirely transmitted to the fiber. sheath and to the outside environment of the fiber after a certain distance traveled by the signal along the axis of the fiber.
  • the energy is said to be radiated away from the fiber and the signal is said to be radiating or radiated.
  • the fiber is said to be multimode if there exists in this fiber several different ways for a signal coupled to the fiber (injected into the fiber) to be guided and therefore to propagate along the fiber. These different ways of being guided and spreading are called guided modes of multimode fiber.
  • the guided modes of a fiber constitute a finite and discrete set. Guided modes are indexed according to their group order (index m). Each group of guided modes brings together the guided modes whose propagation constant has the same value (the propagation constant measures the distance between two points along the propagation axis at which the phase of the mode is the same, modulo 2 ⁇ ).
  • the value of the propagation constant of each group of guided modes of index m is less than the value of the propagation constant of groups of guided modes with index less than m.
  • the value of the propagation constant of all the guided modes is less than the value of the wave vector that the signal would have if it were propagated in a medium identical to that of the core of the fiber but without a guiding structure (free propagation ).
  • the value of the propagation constant of all the guided modes is greater than the value of the wave vector that the signal would have if it propagated in a medium identical to that of the cladding of the fiber but without a guiding structure.
  • the groups of guided modes can be ordered: the guided modes of the group of order 1 have the largest constant of propagation whereas the guided modes of the highest order group M have the smallest propagation constant .
  • M is the number of groups of guided modes in the fiber.
  • Rayon modes constitute a continuous and bounded whole. They are indexed by the value of their propagation constant, a value between 0 and the value of the wave vector that the signal would have if it were propagated in a medium identical to that of the cladding of the fiber but without a guiding structure. .
  • the value of their propagation constants is therefore less than the value of the propagation constants of all the guided modes.
  • modes of propagation of the optical signal can exchange energy with each other, a disturbance causing a modification of the mode structure throughout the disturbed segment of the fiber.
  • the modes are said to be coupled.
  • These energy exchanges can be modeled as a function of coupling coefficients that quantify the importance of energy exchange between modes throughout the disturbed segment of the fiber.
  • a disturbance causes the coupling between the guided modes, between the ray modes and between the guided modes on the one hand and the ray modes on the other hand.
  • the guided modes undergo loss of energy and therefore an attenuation of their energy.
  • the guided modes are said to be absorbent (provided that nothing in the environment of the fiber - including the tube or the possible mechanical sheath - couples the energy radiated back into the core of the fiber). Beyond a certain distance determined by the characteristics of the fiber and the perturbation applied, the guided modes have lost all their energy. This distance is specific to each guided mode and is called its effective attenuation length.
  • the disturbance does not stimulate any coupling between the modes of the fiber. If the values of the spectral components are greater than this value but lower than a higher value also determined by the characteristics of the fiber, the disturbance stimulates the coupling between certain guided modes of the fiber. Finally, if the value of the spectral components is greater than this second value, the disturbance stimulates the coupling between certain guided modes on the one hand and certain ray modes on the other hand.
  • the spatial spectrum of the perturbation can be synthesized to stimulate coupling between all / or the guided modes or between / all the guided modes on the one hand and the / all the ray modes on the other hand.
  • the spatial spectrum of the perturbation is limited to the spectral components that stimulate the coupling between guided modes, the analysis of the disturbance of a guide still provides that these modes are absorbing. Consequently, the stimulation of the coupling between all the guided modes up to the guided modes of the group of order m allows the energy of all these modes of order lower than m to be shunted towards the modes of the order group m which being absorbing cause the loss of energy of all these modes beyond its effective attenuation distance.
  • This coupling via a chosen group of absorbent guided modes is an indirect coupling of the energy. It requires spectral components whose value is higher than the value of the spectral components that couples the guided modes to the ray modes. Finally, the loss (attenuation) rate of this coupling is exactly m / M.
  • the amplitude of the spatial spectral components of the perturbation determines the coupling force between the modes and therefore their effective attenuation length. If the signal is detected before having traveled the greatest effective attenuation length of all the guided modes, a modulation of the amplitude of the disturbance causes a modulation of the energy of the signal detected at the exit of the segment. disturbed the guide.
  • the length of the disturbance (and thus the length of the pattern in relief in the tube) to the smallest effective attenuation length of the guided modes to establish a better efficiency of the modulation of the losses by the amplitude of the disturbance.
  • the modulation of the losses by the amplitude of the perturbation modulates the amplitude of the spectral components of the spatial spectrum of the disturbance but not their frequency.
  • the frequency of the spatial spectral components of the perturbation one can consider the case of a monochromatic perturbation and the other cases in which the non-monochromatic spectrum can be known or not. Note that the modulation of the losses by the frequency of the perturbation modulates the frequency of the spectral components of the spatial spectrum of the disturbance but not their amplitude.
  • the perturbation to be applied is sinusoidal with a pitch or spatial period ⁇ .
  • a disturbance favors the coupling between two modes whose difference between the values of their respective propagation constants is equal to the norm of the spatial wave vector of the perturbation, ie 2 ⁇ / ⁇ .
  • the transducer of the invention consists of an optical fiber buried in a disturbing medium called “surrounding medium", said “surrounding medium” being structured so that it applies to the surface or the volume of the fiber a disturbance with a spatial spectrum (amplitude and distribution in space) determined.
  • a disturbance of the micro-curvature type is a curvature of the fiber in a plane containing its axis of propagation. Unlike a simple curvature often called macro-curvature, a micro-curvature is a disturbance and not a simple modification of the fiber at rest.
  • the macro-curvature transforms the structure of modes of the fiber that is to say that the profile of these modes changes in a determined way so that we can say that the structure of the modes adapts somehow to the new position of the fiber.
  • this modification is analysable even if the modelization proceeds by approximation to the first order or the second order of the exact solutions of the modes in the macro-curvature.
  • micro-curvature for its part, is treated as a perturbation that does not modify the modeling of the mode structure (modes of the fiber at rest) but couples the modes between them.
  • the disturbance by micro-curvature is most often understood as a succession of micro-curvatures throughout the disturbed segment of the fiber.
  • the coupling of modes that become absorbent reflects the fact that the mode structure of the fiber at rest does not have time to adapt to successive state changes.
  • the shape of the micro-curvatures determines which spectral components are present in the spatial spectrum of the disturbance and with what weights. The shape thus determines which modes are coupled and the amplitude of the perturbation (to which the weights of the spectral components are proportional) determines the strength of the coupling between the actually coupled modes.
  • the analysis of these spectral components and their weights namely the analysis of the spectrum of the micro-curvature can be reduced to the analysis of the spectrum of the curvature of the fiber.
  • the analysis of the micro-curvatures thus amounts to analyzing the curvature of the micro-curvatures.
  • This spectrum therefore determines which groups of modes are actually coupled and therefore whether the coupling is direct or indirect or both simultaneously.
  • the modulation in the context of the micro-curvature can be obtained by "movement” effect or by "numerical aperture” effect of the multimode fiber.
  • the "motion” effect there are two methods for modulating the energy of the guided signal between its entry into the disturbed segment and its output from the same disturbed segment.
  • each guided mode always carries energy at the output of the disturbed segment. If the fiber fully conforms to the shape of the micro-curvatures and only the amplitude of the micro-curvatures is modulated, then the force of the coupling between the actually coupled modes, ie the weight of the spectral components of the micro-curvatures (which weights are proportional to the amplitude of the micro-curvatures), is modulated and therefore the energy of the guided signal at the output of the disturbed segment is modulated proportionally. It is a modulation by the amplitude of the spatial spectrum of the disturbance. This method requires a movement converging towards the axis of the fiber of the "surrounding environment" and this, in the plane of micro-curvatures.
  • the effective spectrum of the micro-curvatures modulates the energy of the guided signal between its entry into the disturbed segment and its output from this same disturbed segment. It is a modulation by the frequency of the spatial spectrum of the disturbance.
  • This method also requires a convergent movement of the "surrounding environment" towards the axis of the fiber and this, in the plane of micro-curvatures.
  • a variation of the refractive index of the core of the fiber due to a variation of a parameter of the environment (the measurand) different from the variation of the refractive index of its optical cladding due to the same variation of a parameter of the environment (the measurand) causes a variation of the numerical aperture of the fiber and therefore a variation of the coupling modes effectively coupled and therefore a modulation of the energy of the guided signal between its entry into the disturbed segment and its output from this same disturbed segment.
  • a variation of the numerical aperture actually means a change in the structure of the modes. Treated as a disturbance, the numerical aperture variation causes the coupling between the modes.
  • thermo-optics variable of the refractive index as a function of temperature
  • elasto-optics variable of the refractive index as a function of the stress induced by pressure or deformation
  • This method which does not require movement of the "surrounding environment" with the exception of pre-movement, is therefore a method of modulation "by numerical aperture”.
  • the isotropic modulation of the diameters of the multimode fiber consists of a modulation of the transverse dimensions of the fiber, that is to say the dimensions of its cross section (which is the surface perpendicular to the axis of the fiber ) and it modifies the transverse dimensions of the heart. It also modifies the transverse dimensions of the optical cladding of the fiber provided that the cladding is not the "surrounding medium" itself. It finally modifies the transverse dimensions of the coating of the fiber if it exists.
  • the isotropic modulation of the diameters of the fiber is a disturbance of the fiber and causes, as in the case of micro-curvatures, the coupling between the modes of the fiber which become absorbent. Its spectrum therefore determines which groups of modes are actually coupled and therefore whether the coupling is direct or indirect.
  • micro-curvatures there exist with the isotropic modulation of diameters two methods by "motion" effect to modulate the energy of the guided signal between its entry into the disturbed segment and its output from this same disturbed segment. - If the length of the disturbed segment is smaller than the smaller of the effective attenuation lengths of the guided modes of the fiber, then each guided mode always carries the energy at the output of the disturbed segment.
  • the force of the coupling between the actually coupled modes ie the weight of the spectral components of the modulation (which are proportional to the amplitude of the modulation of the diameters of the fiber) are modulated and therefore the energy of the guided signal at the output of the disturbed segment is modulated proportionally.
  • This method of modulation by the amplitude of the spatial spectrum of the perturbation requires a movement converging towards the axis of the fiber, the "surrounding environment" all around the fiber.
  • the modes coupled together by the modulation of the diameters of the fiber lose all their energy before the guided signal leaves the disturbed segment.
  • the pitch of the modulation of the diameters of the fiber varies according to the parameter (the measurand)
  • the number of absorbed coupled modes of 1 to m ie the rate of modes m / M whose energy is totally lost at the exit of the disturbed segment also varies.
  • the effective spectrum of the modulation of the diameters of the fiber modulates the energy of the guided signal between its entry into the disturbed segment and its output from this same disturbed segment.
  • This method by the frequency of the spatial spectrum of the disturbance requires a movement, applied to the fiber, of the "surrounding medium” along and parallel to the axis of the fiber but also a determined and pre-applied movement converging towards the axis of the fiber of the "surrounding medium”.
  • a variation of the refractive index of the core of the fiber due to the variation of the parameter of the environment (the measurand) different the variation of the index of refraction of its sheath due to the same variation of the parameter (the measurand) causes a variation of the numerical aperture of the guide and thus a variation of the coupling ratio of the actually coupled modes and consequently a modulation of the energy of the guided signal between its entry into the disturbed segment and its exit from this same disturbed segment.
  • a variation of the numerical aperture actually means a change in the structure of the modes. treated As a disturbance, the numerical aperture variation causes the coupling between the modes.
  • the difference in refractive index variation between the core and the sheath is due to the difference in sensitivity of the refractive index to the parameter (the measurand) between the core and the sheath.
  • the pre-disturbance by the modulation of the diameters of the fiber by the motion brings the disturbed segment to the point of operation where the sensitivity of the energy losses of the guided signal to the variations of the numerical aperture is the best.
  • thermo-optics variable of the refractive index as a function of temperature
  • elasto-optics variable of the refractive index as a function of the stress induced by pressure or deformation
  • This method does not require movement of the "surrounding environment" except the pre-movement and is therefore a method of modulation "by numerical aperture".
  • the modulation of the transverse dimensions of the fiber modifies the transverse dimensions of the core. It also modifies and the transverse dimensions of the sheath of the fiber provided that the sheath is not the "surrounding environment" itself. It finally modifies the transverse dimensions of the coating of the fiber if it exists.
  • the modulation is termed anisotropic in the straight section of the fiber.
  • An example consists in modulating the diameter of a fiber with a circular cross section along the disturbed segment by elongating it in one direction and decreasing it in the perpendicular direction (elliptic contour) and then inversely in the same directions (rotation of the contour elliptical).
  • Such a disturbance is called anisotropic modulation of the diameters of the fiber.
  • the anisotropic modulation is a disturbance of the fiber and causes, as in previous disturbance cases, the coupling between the modes of the fiber which become absorbent. Its spectrum therefore determines which groups of modes are actually coupled and therefore whether the coupling is direct or indirect.
  • This method of modulation by the amplitude of the spatial spectrum of the disturbance requires a movement converging, towards the axis of the fiber, of the "surrounding medium" all around the fiber. If the length of the disturbed segment exceeds the greatest effective attenuation length of the guided modes of the fiber, the modes coupled together by the modulation of the diameters of the fiber lose all their energy before the guided signal leaves the disturbed segment. . If the pitch of the modulation of the diameters of the fiber varies according to the parameter (the measurand), then the number of absorbed coupled modes from 1 to m, ie the rate of modes m / M whose energy is totally lost at the exit of the disturbed segment also varies.
  • the effective spectrum of the modulation of the diameters of the fiber modulates the energy of the guided signal between its entry into the disturbed segment and its output from this same disturbed segment.
  • This method of frequency modulation of the spatial spectrum of the perturbation requires a movement applied to the fiber by the "surrounding medium” along and parallel to the axis of the fiber but also a determined and pre-applied motion converging towards the axis of the fiber by the "surrounding environment" all around the fiber.
  • a variation of the refractive index of the fiber core due to the measurand different from the variation of the refractive index of its sheath due to the same measurand causes a variation of the numerical aperture of the guide and therefore a variation of the coupling ratio of the actually coupled modes and therefore a modulation of the energy of the guided signal between its entry into the disturbed segment and its output of this same disturbed segment.
  • a variation of the numerical aperture actually means a change in the structure of the modes. Treated as a disturbance, the numerical aperture variation causes the coupling between the modes.
  • the difference in the refractive indices between the core and the sheath is due to the difference in sensitivity of the refractive index to the measurand between the core and the sheath.
  • the pre-disturbance by the modulation of the diameters of the fiber by the motion brings the disturbed segment to the point of operation where the sensitivity of the energy losses of the guided signal to the variations of the numerical aperture is the best.
  • thermo-optical reffractive index versus temperature
  • elasto-optical reffractive index versus stress
  • pressure-induced or deformation-induced are examples of effects that allow a measurand to modulate the numerical aperture of the fiber.
  • This method does not require movement of the "surrounding environment" except the pre-movement and is therefore a method of modulation "by numerical aperture".
  • the diameters of the fiber vary by thermal extension.
  • the refractive indices of the core and sheath of the fiber also vary. If, moreover, the variations in refractive index due to the thermal gradient are different between the core and the optical cladding of the fiber (difference in sensitivity of the refractive index at the temperature between the core and the cladding), the numerical aperture varies.
  • each fiber slice has its own structure of guided modes, and this effect is thermo-geometric or thermo-optical, in fact by a combination of both.
  • the spatial spectrum of the temperature gradient determines the nature of the coupling (direct or indirect). If the thermal extension of the fiber and the "surrounding medium" in the direction of the axis of the fiber is negligible, then a modulation of the amplitude of the thermal gradient modulates the coupling force between the actually coupled modes is to say the weight of the spatial spectral components of the temperature gradient and therefore modulates the energy of the signal between its entry into the disturbed segment and its output from this same segment, assuming that the length of the disturbed segment is smaller than the smallest effective attenuation length of guided modes. This modulation is done by the numerical aperture.
  • the pattern of the tube enclosing the optical fiber is determined as a function of the modes to be coupled for the type of deformation provided and the parameter to be measured (in particular the manner in which it will act on the tube and therefore the fiber).
  • the "surrounding medium" around the fiber is formed of two identical half-cylinders which are symmetrically joined together to form a cylindrical tube with an inside diameter and an outside diameter.
  • the inner surface of the two half-cylinders is structured by machining (with a mechanical tool or by laser machining) or etching (chemical etching after masking, for example) so as to form the pattern of the mechanical disturbance that must be applied to the fiber.
  • the two half-cylinders enclose the fiber and are welded together to form a tube around the fiber which tube applies to the fiber the mechanical disturbance synthesized as desired.
  • the two half-cylinders are glued, crimped or clipped together around the fiber.
  • This mechanical disturbance is either a set of micro-curvatures or an isotropic or anisotropic modulation of the diameters of the fiber.
  • the pattern is determined in advance by the synthesis of its spatial spectrum and according to whether the coupling mode chosen is the direct or indirect mode and according to the fact that the modulation of the spatial spectrum is done by the amplitude or the frequency and is induced by the motion or numerical aperture.
  • the fiber segment enclosed in the tube formed by the two half-cylinders whose internal surface is structured, is the multimode optical fiber transducer. Such a transducer arrangement is its preferred general structure.
  • This general transducer structure can be modified according to the parameter to which it is desired to make it sensitive and we will consider four examples in the following which are: the sensitivity to the displacement of the "surrounding environment”, the pressure of the "surrounding environment”, the longitudinal deformation of the "surrounding environment” and the thermal expansion of the "surrounding environment”.
  • Displacement sensitivity The general structure of the transducer is modified to make it sensitive to the displacement of the two half-cylinders towards each other.
  • Mechanical disturbance is a set of micro-curvatures.
  • the thickness of one or each of the half-cylindrical extensions is reduced to form two flexible beams. adjacent to the structured segment according to the reason for the disturbance.
  • the structured segments may be made to rest on the fiber by deforming it when subjected to a force, then return them to their initial position when the force exerted is removed provided that the inflection of the beams occurs in their elastic domain (outside plastic domain).
  • This condition is determined by the elasticity of the material, the thickness and length of the beams and finally the course of their inflection. Note that the extensions as their name suggests extend the structure and are not bridges on the half-cylinders.
  • the two half-cylinders grip the fiber and the ends of the opposite extensions to the structured segments are themselves welded together, the extensions forming flexible beams being not secured with their vis-à-vis.
  • the extensions only exist on one side of the half-cylinders (structured segments).
  • FIG. 1 An example of a half-cylinder 1 is given in FIG. 1 with the structured segment 2 having raised patterns 6 internally.
  • the structured segment 2 is extended on each side, axially / longitudinally, by beams 3 (or elastic tabs) and extensions 4 themselves with tabs 5 for attachment to complementary tabs of the opposite half-cylinder (not shown).
  • the forces applied are radial and schematized by thick arrows. These forces represented in axial compression may also be in axial tension (in the case where the fiber is pre-stressed at rest).
  • transducer results from the joining of two half-cylinders 8 with a structured internal face 6 and enclosing a multimode optical fiber 9, as shown in FIG. 3 in an exploded view.
  • any force exerted on the transducer perpendicular to the axis of the tube ( radial force) and micro-curvatures and in the region of the segments machined according to the pattern of the micro-curvatures brings the two half-cylinders closer to one another and causes a modulation of the curvature of the micro-curvatures printed on the fiber . This results in a modulation by the movement of the guided signal between its entry into the disturbed segment and its output from this same segment.
  • the transducer is sensitive to displacement, namely the displacement transmitted to the (x) half-cylinder (s) with its / its extensions (beams) by any mechanism which mechanism may possibly hold the other half-cylinder stationary.
  • displacement namely the displacement transmitted to the (x) half-cylinder (s) with its / its extensions (beams) by any mechanism which mechanism may possibly hold the other half-cylinder stationary.
  • the general structure of the transducer is modified to make it sensitive to the pressure exerted on the transducer tube.
  • the mechanical disturbance is either a set of micro-curvatures or a modulation of the diameters of the isotropic or anisotropic fiber.
  • the fiber is micro-curved so that its curvature is that of the micro-curvatures of the machined pattern on the inner surface of the half-rolls, ie the fiber completely marry the reason for machining half-cylinders.
  • the fiber is pre-disturbed by the movement when the two half-cylinders enclose it and are welded together.
  • the tube thus induces an initial rate of loss of the energy of the signal guided by the fiber between its entry into the disturbed segment and its output from this same segment and generates an initial distribution of stresses in the core, the cladding (if different from the "Surrounding environment") and the coating (if any) of the fiber.
  • the material of the core, the sheath and the coating of the fiber and the tube are all selected and their thicknesses so that any pressure exerted on the tube will be at least partially transmitted to the coating, the sheath and the core of the fiber. .
  • the materials of the fiber are still chosen so that they have distinct elasto-optical coefficients (distinct sensitivities between the coating, the sheath and the core of the refractive index at the pressure exerted on the material).
  • any pressure exerted on the transducer causes modulation by the numerical aperture of the guided signal between its entry into the disturbed segment and its output from this same segment.
  • the initial amplitude of the disturbance is chosen so that the sensitivity of the numerical aperture to the variations in the pressure exerted is maximum.
  • the choice of materials and the amplitude of the pressure exerted on the transducer cause the modulation by the amplitude of the spatial spectrum of the perturbation due to the compression of the tube to be not negligible, then, the modulation by the motion of the guided signal is added to the modulation by the numerical aperture.
  • the general structure of the transducer is modified to make it sensitive to the longitudinal deformation exerted on the transducer tube along its axis of symmetry (longitudinal deformation).
  • the mechanical disturbance is either a set of microbends or a modulation of the diameters of the isotropic or anisotropic fiber.
  • the fiber is micro-curved so that its curvature is that of the micro-curvatures of the machined pattern on the inner surface of the half-rolls, ie the fiber completely marry the reason for machining half-cylinders.
  • the fiber is pre-disturbed by the movement when the two half-cylinders enclose it and are welded together.
  • the tube thus induces an initial rate of loss of energy of the signal guided by the fiber between its entry in the disturbed segment and its exit from the same segment and generates an initial distribution of stresses in the core, the sheath (if different from the "surrounding environment") and the coating (if it exists) fiber.
  • the material of the core of the fiber, the sheath and the coating of the fiber as well as that of the tube are all chosen as well as their thicknesses and the length of the segment disturbed so that the tube has an apparent elasticity allowing to deform it longitudinally ( along its axis of symmetry) by exerting a given force.
  • any longitudinal deformation modulates the spatial spectrum of the perturbation by the frequency and by the movement. It follows that the energy of the guided signal is modulated between its entry into the disturbed segment and its output from this same segment.
  • FIG. 2 An example of a half-cylinder 10 is given in FIG. 2 with the structured segment 2 having raised patterns 6 internally.
  • the structured segment 2 extends on each side, axially / longitudinally, by flanges (flanges) 7 allowing the application of axial / longitudinal forces.
  • the flanges 7 may comprise bored or threaded orifices (not shown).
  • the structured segment 2 comprises tabs 5 allowing their attachment to complementary tabs of the opposite half-cylinder (not shown).
  • the forces applied are axial and schematized by thickened arrows (compression or traction).
  • the materials of the fiber can still be selected so that they have distinct elasto-optical coefficients (distinct sensitivities between the coating, the sheath and the core of the refractive index to the stress exerted on the material). If the choice of materials and the amplitude of the deformation exerted on the transducer cause the variation of the refractive index of the core of the fiber and the variation of the refractive index of the cladding of the fiber (these two variations being determined by the elasto-optical coefficients of each medium) are not negligible and are different, the modulation of the guided signal is then done by the numerical aperture. It is added to the modulation of the spatial spectrum by frequency and motion provided that it is not negligible. It is substituted if it is negligible.
  • the initial amplitude of the disturbance is chosen so that the sensitivity of the numerical aperture to the variations of the pressure exerted is maximum.
  • the general structure of the transducer is modified to make it sensitive to the temperature surrounding the transducer tube.
  • the mechanical disturbance is either a set of micro-curvatures or a modulation of the diameters of the isotropic or anisotropic fiber.
  • the fiber is micro-curved so that its curvature is exactly that of the micro-curvatures of the pattern machined or engraved on the inner surface of the half-rolls, this is at say that the fiber completely matches the half-cylinder pattern.
  • the fiber is pre-disturbed by the movement when the two half-cylinders enclose it and are welded together.
  • the tube thus induces an initial rate of loss of the energy of the signal guided by the fiber between its entry into the disturbed segment and its output from this same segment and generates an initial distribution of stresses in the core, the cladding (if different from the "Surrounding environment") and the coating (if any) of the fiber.
  • the core material of the fiber, sheath and coating of the fiber and the tube are all selected so that the temperature surrounding the tube induces longitudinal expansion of the tube.
  • the tube then exerts a longitudinal deformation on the fiber and thus modulates the spatial spectrum of the perturbation by frequency and motion. It follows that the energy of the guided signal is modulated between its entry into the disturbed segment and its output from this same segment.
  • the material and the thickness of the tube may be further chosen so that the thermal expansion of the tube in the plane of the cross section of the fiber is not negligible.
  • the tube then exerts a pressure on the fiber and thus causes a modulation of the spatial spectrum of the disturbance by the amplitude which modulates the energy of the guided signal between its entry into the disturbed segment and its output from this same segment.
  • the materials of the fiber may finally be selected so that they have distinct thermo-optical coefficients (distinct sensitivities between the coating, the sheath and the core of the refractive index at the temperature surrounding the material).
  • the temperature variations cause a modulation of the numerical aperture of the fiber.
  • the energy of the guided signal is thus modulated between its entry into the disturbed segment and its output from this same segment.
  • this modulation by the numerical aperture always adds to the preceding ones and is substituted when the modulations by the movement are negligible.
  • the initial magnitude of the disturbance is chosen so that the sensitivity of the numerical aperture to the temperature variations is maximum if this modulation is exploited.
  • the choice of the materials of the transducer according to their properties are as many degrees of freedom that make it possible to produce a transducer that is sensitive either to the surrounding temperature, or to the longitudinal deformation along its axis, or to the pressure / force / stress, or to displacement.
  • an almost total attenuation (plus 99% of energy loss) by coupling of the fundamental guided mode LP O i of the same fiber to the most strongly coupled radiated mode for the same amplitude of perturbation of the core diameter of the fiber optical provides a length of several meters for the transducer.
  • the step of the perturbation optimizes the energy exchange, that is to say that its inverse multiplied by 2 ⁇ is equal to the difference between the propagation constants of the coupled modes.
  • Disturbance amplitudes of the order of a few micrometers reduce the length of the transducer to a few millimeters for the total exchange of energy between the guided modes LP O i and LP 02 and a few centimeters for an almost total loss of energy.
  • modulation of the signal by direct coupling and by spectrum modulation of a perturbation which consists in the isotropic modulation of the core diameter of the fiber requires a transducer length of several centimeters (for example from 5 cm to 10 cm. cm according to the wavelength and the amplitude of the disturbance) in order to lose almost completely the energy of the guided modes then coupled to the ray modes by the perturbation.
  • the modulation of the spectrum of the disturbance results from the movement (for example longitudinal traction along the axis of the tube which is the axis of the variations induced by the disturbance) or from the modulation of the numerical aperture.
  • the spectrum of the perturbation is synthesized as follows.
  • the largest spatial frequency corresponding to the smallest required disturbance step and the smallest spatial frequency corresponding to the largest required disturbance step are determined so that the number of guided modes coupled to all the ray modes is M - m ⁇ n ⁇ for a disturbance that is at a certain point of action.
  • the guided modes whose energy is thus lost are of order of group of m ⁇ n + 1 to M.
  • the spectrum is then the window of the components of spatial frequency between the smallest spatial frequency and the greatest spatial frequency of the spectrum .
  • the spectrum of the spatial frequencies of the perturbation is translated into ordinary space by an apodized oscillation of pitch equal to the smallest step of the spectrum of the perturbation.
  • the rate of apodization is determined by the spatial width of the spatial frequencies of the perturbation spectrum.
  • an optical fiber whose core is made of glass (amorphous silica), with a core diameter of 200 ⁇ m excited by an optical wave of wavelength in the vacuum of 630 nm and a numerical aperture of 0.2.
  • M 141 groups of guided modes.
  • a variation of its core diameter with a perturbation spectrum whose smallest step is 50 ⁇ m and the largest step 8.535 mm couples the 100 group order modes from 42 to 141.
  • the amplitude the perturbation is of the order of one micrometer for a transducer a few centimeters in length.
  • the pressure transducer consists of an optical fiber glass material (amorphous silica) for the core and glass doped for the optical cladding.
  • the mechanical sheath is preferably polyimide.
  • the core diameter is 200 microns, the optical cladding diameter a few tens of microns extra, for example 230 microns and the mechanical cladding diameter of a few tens of additional micrometers also, for example 240 microns. It can be determined that an isotropic disturbance amplitude of the diameter of the fiber of the order of 10 microns on the mechanical sheath causes a few micrometers on the core of the fiber.
  • a transducer can be made with an aluminum tube with a wall thickness of 7 mm and which is engraved on its inside.
  • Aluminum has a Young's modulus of 75 GPa, ie of the same order of magnitude as those of glass and doped glass and greater than that of polyimide. In such a case, the transmission of the transducer is 29.05% (loss of energy of 700 modes out of a total of 747 guided modes).
  • the Young's modulus of the tube When such a transducer is immersed in a pressure field and the Young's modulus of the tube is not too large in front of that of the core material of the fiber at least, an internal stress field extends through all the transducer body from the outer surface of the aluminum tube to the center of the fiber core. If this were not the case for the Young's moduli, the tube would see the components of the stress tensor almost cancel out at the limit of its cylindrical inner surface and thus transmit no stress to the different layers of the optical fiber. Thus, it is preferable that the Young's modules of the fiber (core and optical cladding) and of the hollow tube in which the fiber is placed, are adjacent.
  • the Young's modulus of the tube will be chosen not to be too high compared to that of the fiber at the risk of seeing the sensitivity of the transducer reduce, see the transducer no longer react to changes in its environment. It is therefore possible to choose materials for the tube according to the materials of the fiber or vice versa.
  • the variation of the field of the internal stresses of the different materials of the fiber due to the variations of the internal stresses of the whole of the transducer due themselves to the variations of the pressure field in which the transducer is immersed modulates by the elasto-optical effect the refractive index of the core and the refractive index of the optical cladding of the fiber. This variation does not have the same amplitude between the two media because the glasses are slightly different because of the doping.
  • the numerical aperture of the fiber is modulated by the variations in the pressure field in which the transducer is located.
  • the modulation is of the order of a few thousandths to a few hundredths depending on the doping of the optical cladding and the modification of the elasto-optical coefficients with respect to those of undoped glass.
  • An increase of 1 hundredth of the numerical aperture causes an increase of the transmission by an additional 16.87% which brings it to 45.95% (loss of energy of 80 modes out of a total of 148 guided modes) which is perfectly detectable by a simple photo-detector circuit wired on amplifier transimpedance then amplifier.
  • An increase of 1 thousandth of the numerical aperture causes an increase in the transmission of 1.42% additional that brings it to 30.5% (loss of energy of 98 modes out of a total of 141 guided modes) which is a variation of the "small signal" type and which is still easily detectable thanks to synchronous modulation and demodulation techniques which have the advantage of extracting from the noise level the systematic and repeatable variations due to the variation of the pressure field measured.
  • the structure of the spectrum modulation deformation transducer and the previous movement is taken over by replacing the material of the optical cladding with PMMA of the same thickness (YPMMMA ⁇ 3.3 GPa) and the material of the mechanical cladding. by Tefzel® of the same thickness (YTefzel ⁇ 0.8 GPa).
  • the disturbance of more small step of 30 microns and amplitude of 30 microns then induces a deformation of the core diameter of 2.96 microns or 7.45% of the initial diameter of the heart.
  • the transmission is then 58.46% (loss of energy of 64 modes out of a total of 260 guided modes) for a numerical aperture of 0.37.
  • the structure of the deformation transducer by the modulation of the numerical aperture is again implemented but with a smaller pitch of the applied disturbance of 30 ⁇ m at room temperature.
  • the transmission is then 75.38 3 Zo (loss of energy of 64 modes out of a total of 260 guided modes) for a numerical aperture of 0.37.
  • the thermo-optical coefficients of the fused silica and the PMMA being respectively 9.2 ⁇ 6 Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Fiber Mode, Springfield chang et al., Chinese Journal of Physics, vol. . 38, No.
  • a temperature variation of 10 9 C results in a variation of the transmission of the transducer of 0.85% additional (loss of energy of 63 modes out of a total of 265 guided modes) for a numerical aperture of 0.3769.
  • a change in temperature of 50 ° C results in a further 4.55% change in transducer transmission (57 modes of energy loss over a total of 284 guided modes) for a 0.4033 numerical aperture.
  • a change in temperature of 100 ° C results in a further 7.9% change in transducer transmission (51 modes of energy loss over a total of 305 guided modes) for a numerical aperture of 0.4338.
  • FIG. 4 shows an internal structuring of a tube whose pattern has been determined according to the methods of the present invention.
  • the methods of modulation of the optical signal that can be implemented in the context of the invention are:
  • micro-curvatures isotropic modulation of the fiber rays, anisotropic modulation of the fiber rays, the direct coupling or indirect coupling of the modes,
  • the preferential implementation is however the modulation of the intensity of the light signal by the direct coupling of the guided modes to the ray modes and by the isotropic modulation or the anisotropic modulation of the diameters of the fiber, which this modulation occurs by the spectrum or the amplitude, by the movement or numerical aperture.
  • the sensitivity of the required transducer is more easily achievable while maintaining the dimensions of the transducer small because the necessary dimensions of the relief of the inner surface of the hollow tube of the transducer are of the order of tens to hundreds of micrometers .
  • the depth (or height) of india ations of the embossed pattern is at most "l OO ⁇ m unlike conventional microbending where deformations of the order of mm are implemented.
  • transducer of the invention inserted into suitable transduction mechanisms allows the measurement of many physical or chemical parameters.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

L'invention concerne un transducteur à fibre optique, ledit transducteur étant sensible à au moins un paramètre d'un environnement dans lequel il est placé, la modification du/des paramètres entraînant une modification d'au moins une caractéristique mesurable d'une onde lumineuse injectée dans la fibre optique et traversant le transducteur, la fibre optique étant multimode et comportant un moyen pour que la modification de la caractéristique de l'onde lumineuse soit fonction d'une modification de couplage de modes entraînée par la modification du paramètre de l'environnement, le moyen conduisant à la modification du couplage de modes provoquant lors de la modification une déformation de la fibre dans le transducteur selon un motif déterminé. Selon l'invention, le moyen conduisant à la modification du couplage de modes est un tube creux comportant intérieurement un motif en relief et enserrant la fibre optique au niveau du transducteur dans une section droite de la fibre.

Description

Transducteu r à fibre optique m u ltimode et à couplage de modes, procédé de réalisation
La présente invention concerne un transducteur à fibre optique multimode et à couplage de modes. Elle a des applications dans le domaine de la métrologie.
Les capteurs à fibre optique ont fait l'objet de nombreuses investigations depuis de nombreuses années. Des solutions à fibre optique multimode et à couplage de mode ont été étudiées en laboratoire et l'apparition de composants comme le réseau de Bragg fibre a permis la conception de capteurs à fibre optique très précis et multiplexables en réseau de large envergure notamment pour la surveillance des structures du génie civil (pont, tunnel etc.). Le réseau de Bragg fibre est un composant sensible à la température, à la déformation longitudinale selon son axe de symétrie cylindrique et enfin à la pression. De fait, ce composant est un élément extrêmement versatile qui, intégré dans des mécanismes de transduction appropriés, convient pour la mesure de paramètres physiques et chimiques très nombreux tout en dotant les capteurs ainsi développés des valeurs ajoutées de la mesure par des techniques optiques. Cependant, la technologie des réseaux de Bragg reste d'un coût encore important.
Par contre, les capteurs à fibre optique multimode sont devenus compétitifs du fait notamment que leurs procédés de fabrication admettent des tolérances très élargies en comparaison avec les technologies à fibre optique monomode.
L'objet de la présente invention est de proposer un composant à fibre optique multimode qui est sensible (au moins) à la température, à la déformation longitudinale selon l'axe de symétrie cylindrique de la fibre et à la pression tout en étant à très faible coût. Il devient en outre possible avec l'invention d'exploiter les mécanismes de transduction déjà développés pour les réseaux de Bragg fibres.
Le paramètre à mesurer dans l'environnement sera appelé «mesurande» dans la suite.
Ainsi, l'invention concerne un transducteur à fibre optique, ledit transducteur étant sensible à au moins un paramètre (également appelé la mesurande) d'un environnement dans lequel il est placé, la modification du/des paramètres entraînant une modification d'au moins une caractéristique mesurable d'une onde lumineuse injectée dans la fibre optique et traversant le transducteur, la fibre optique étant multimode et comportant un moyen pour que la modification de la caractéristique de l'onde lumineuse soit fonction d'une modification de couplage de modes entraînée par la modification du paramètre de l'environnement, le moyen conduisant à la modification du couplage de modes provoquant lors de la modification une déformation de la fibre dans le transducteur selon un motif déterminé.
Selon l'invention, le moyen conduisant à la modification du couplage de modes est un tube creux comportant intérieurement un motif en relief et enserrant la fibre optique au niveau du transducteur dans une section droite de la fibre. Dans divers modes de mise en œuvre de l'invention, les moyens suivants pouvant être utilisés seuls ou selon toutes les combinaisons techniquement possibles, sont employés :
- la modification de couplage de modes est en outre due à une modulation de l'ouverture numérique de la fibre, (les indices de réfraction du cœur et de la gaine optique ont des coefficients de variation différents)
- la déformation est un ensemble de micro-courbures provoquant un couplage des modes de la fibre sans transformation de la structure des modes de la fibre,
- la déformation est une modulation spatiale isotrope du diamètre de la fibre provoquant un couplage des modes de la fibre sans transformation de la structure des modes de la fibre, - la déformation est une modulation spatiale anisotrope du diamètre de la fibre,
- la déformation est une modulation spatiale du diamètre de la fibre,
- la déformation varie en fonction de la variation du paramètre de l'environnement,
- la déformation par modulation spatiale du diamètre de la fibre varie en diamètre (étranglements variables de la fibre, notamment par forces/pressions radiales sur le tube) en fonction de la variation du paramètre de l'environnement,
- la déformation par modulation spatiale du diamètre de la fibre varie en fréquence (la position des motifs déformants varie, notamment par forces/pressions axiales/longitudinales sur le tube) en fonction de la variation du paramètre de l'environnement,
- le tube creux comportant intérieurement un motif en relief et enserrant la fibre optique au niveau du transducteur contraint ladite fibre au repos, ladite fibre étant déformée selon le motif déterminé au repos, (=pré-perturbation/pré-mouvement..., le repos correspond à l'état basai du paramètre, soit qu'il n'ait pas d'action sur le transducteur, soit que cette action corresponde à un état considéré de base)
- le tube creux comportant intérieurement un motif en relief et enserrant la fibre optique au niveau du transducteur ne contraint pas ladite fibre au repos, ladite fibre étant non déformée au repos, (le repos correspond à l'état basai du paramètre, soit qu'il n'ait pas d'action sur le transducteur, soit que cette action corresponde à un état considéré de base)
- le tube est en deux parties longitudinales se refermant sur la fibre,
- le tube est en deux parties longitudinales pouvant être séparées l'une de l'autre au moins dans la région du transducteur comportant le motif en relief, (les deux parties agissent comme une pince pouvant être serrée ou desserrée sur la fibre)
- chaque partie longitudinale comporte à au moins une de ses deux extrémités longitudinales un prolongement faisant office de bras de levier élastique permettant de ramener à une position de repos la partie correspondante en l'absence d'action du/des paramètres de l'environnement, ledit prolongement étant sans influence sur les caractéristiques de l'onde lumineuse, (le repos correspond à l'état basai du paramètre, soit qu'il n'ait pas d'action sur le transducteur, soit que cette action corresponde à un état considéré de base)
- chaque partie longitudinale comporte à chacune de ses deux extrémités longitudinales un prolongement faisant office de bras de levier élastique permettant de ramener à une position de repos la partie correspondante en l'absence d'action du/des paramètres de l'environnement, ledit prolongement étant sans influence sur les caractéristiques de l'onde lumineuse, (le repos correspond à l'état basai du paramètre, soit qu'il n'ait pas d'action sur le transducteur, soit que cette action corresponde à un état considéré de base) - chaque partie longitudinale est un demi-cylindre droit allongé,
- le tube est en deux parties longitudinales réunies et solidarisées ensembles,
- les deux parties longitudinales sont solidarisées ensembles par soudure, collage, sertissage ou clipsage,
- au moins une des deux parties comporte intérieurement le motif en relief, - le motif en relief comporte des sommets et creux dont les amplitudes et la distribution spatiale sont choisies en fonction d'au moins un des paramètres de l'environnement et de la/des caractéristiques mesurées de l'onde lumineuse,
- le paramètre de l'environnement est choisi parmi une ou plusieurs des possibilités suivantes :
- force par déformation du tube, - force par pression ou traction radiale sur le tube,
- force par pression ou traction longitudinale sur le tube,
- température,
- la caractéristique mesurée de l'onde lumineuse est choisie parmi une ou plusieurs des possibilités suivantes : - atténuation de l'onde lumineuse traversant le transducteur,
- déphasage de l'onde lumineuse traversant le transducteur,
- la fibre optique comporte un cœur interne et une gaine optique externe,
- la fibre optique comporte en outre un revêtement extérieur,
- le tube est disposé sur le revêtement extérieur de la fibre optique, - le revêtement extérieur de la fibre optique est retiré au niveau du transducteur, le tube étant disposé autour de la gaine optique de la fibre,
- le coeur et la gaine optique de la fibre sont en verre,
- le verre de la gaine optique est dopé,
- le revêtement extérieur est une gaine mécanique, - la gaine mécanique est en polyimide,
- le tube est en aluminium.
L'invention concerne également un procédé de réalisation d'un transducteur à fibre optique, tel que pour un transducteur selon l'une ou plusieurs des caractéristiques décrites et ayant un motif en relief à l'intérieur d'un tube creux enserrant la fibre et modifiant le couplage de modes guidés et/ou rayonnes en fonction d'au moins un paramètre agissant sur ledit transducteur par déformation, on détermine le motif à partir d'un spectre spatial de perturbation en fonction des modes à coupler pour le type de déformation prévu pour le paramètre à mesurer. Le procédé peut être décliné selon les diverses manières décrites. La présente invention va maintenant être exemplifiée sans pour autant en être limitée avec la description qui suit en relation avec : la Figure 1 qui représente schématiquement une des deux parties d'un exemple de tube pour transducteur de forces radiales selon l'invention, les différents éléments le composant n'étant pas à l'échelle, la Figure 2 qui représente schématiquement une des deux parties d'un exemple de tube pour transducteur de forces axiales selon l'invention, les différents éléments le composant n'étant pas à l'échelle. la Figure 3 qui représente schématiquement un transducteur en vue éclatée, les deux parties d'un tube structuré étant séparées de la fibre optique et d'entre-elles , et la Figure 4 qui est un agrandissement d'une coupe de tube structuré au niveau d'une structuration permettant de visualiser une portion d'un exemple de motif en relief.
Dans une première partie, les principes généraux à la base de l'invention vont être donnés en relation avec les moyens généraux mis en œuvre pour parvenir à la réalisation d'un transducteur selon l'invention.
Dans une seconde partie, une description plus détaillée de mise en œuvre et des exemples de réalisation vont être donnés.
Une fibre optique est un guide d'onde c'est à dire un milieu capable de guider un signal ondulatoire qui se propage le long d'un axe lequel est l'axe de symétrie cylindrique de la fibre et est appelé l'axe de propagation de la fibre. La fibre est constituée dans sa version la plus simple d'un cœur et d'une gaine optique de confinement, dite « gaine ». Les propriétés optiques du coeur et de la gaine sont légèrement différentes de sorte que tout signal couplé à une extrémité de la fibre perçoit deux vitesses de propagation différentes entre le coeur et la gaine. La gaine peut aussi bien être un matériau très proche de celui du coeur ou bien l'air ou encore le vide. L'indice de réfraction du coeur doit seulement être supérieur à celui de la gaine. Notons que la fibre est souvent entourée d'un revêtement extérieur qui a pour but de la protéger mécaniquement, ce revêtement se confondant parfois avec la gaine.
Si le signal optique respecte les conditions de guidage de la fibre déterminées par les indices de réfraction du coeur et de la gaine par rapport à la longueur d'onde du signal, une partie de l'énergie du signal est confinée dans le coeur de la fibre et reste dans la gaine aux abords du coeur. Dans le cas idéal (milieu parfait et non absorbant), l'énergie du signal est transmise de l'extrémité d'entrée du signal dans la fibre jusqu'à l'extrémité de sortie du signal de la fibre sans pertes (sans atténuation). Le signal est dit guidé.
Si le signal ne respecte pas les conditions de guidage de la fibre, le signal peut se propager le long de l'axe de la fibre (son énergie est répartie sans confinement entre le coeur et la gaine) mais son énergie est entièrement transmise à la gaine et à l'environnement extérieur de la fibre après une certaine distance parcourue par le signal le long de l'axe de la fibre.
L'énergie est dite rayonnée loin de la fibre et le signal est dit rayonnant ou encore rayonné. La fibre est dite multimode s'il existe dans cette fibre plusieurs manières différentes pour un signal couplé à la fibre (injecté dans la fibre) d'être guidé et donc de se propager le long de la fibre. Ces différentes manières d'être guidé et de se propager sont appelées les modes guidés de la fibre multimode. Les modes guidés d'une fibre constituent un ensemble fini et discret. Les modes guidés sont indexés selon leur ordre de groupe (indice m). Chaque groupe de modes guidés rassemble les modes guidés dont la constante de propagation a même valeur (la constante de propagation mesure la distance entre deux points le long de l'axe de propagation auxquels la phase du mode est la même, modulo 2π). La valeur de la constante de propagation de chaque groupe de modes guidés d'indice m est inférieure à la valeur de la constante de propagation des groupes de modes guidés d'indice inférieur à m. La valeur de la constante de propagation de tous les modes guidés est inférieure à la valeur du vecteur d'onde que le signal aurait s'il se propageait dans un milieu identique à celui du coeur de la fibre mais sans structure de guidage (propagation libre). La valeur de la constante de propagation de tous les modes guidés est supérieure à la valeur du vecteur d'onde que le signal aurait s'il se propageait dans un milieu identique à celui de la gaine de la fibre mais sans structure de guidage. Ainsi, les groupes de modes guidés peuvent être ordonnés : les modes guidés du groupe d'ordre 1 ont la constante de propagation la plus importante tandis que les modes guidés du groupe d'ordre le plus élevé M ont la constante de propagation la plus petite. En pratique, M est donc le nombre de groupes de modes guidés dans la fibre.
Les modes rayonnes constituent un ensemble continu et borné. Ils sont indexés par la valeur de leur constante de propagation, valeur comprise entre 0 et la valeur du vecteur d'onde que le signal aurait s'il se propageait dans un milieu identique à celui de la gaine de la fibre mais sans structure de guidage. La valeur de leurs constantes de propagation est donc inférieure à la valeur des constantes de propagation de tous les modes guidés.
Notons qu'il existe encore d'autres modes, par exemple les modes évanescents, mais ils ne sont pas pertinents dans le cadre de la présente invention.
Lorsqu'une fibre multimode est soumise à une perturbation, des modes de propagation du signal optique peuvent échanger de l'énergie entre eux, une perturbation provoquant une modification de la structure de modes tout au long du segment perturbé de la fibre. Dans ce cas, les modes sont dits couplés. On peut modéliser ces échanges d'énergie en fonction de coefficients de couplage qui quantifient l'importance de l'échange d'énergie entre les modes tout au long du segment perturbé de la fibre.
Ainsi, une perturbation provoque le couplage entre les modes guidés, entre les modes rayonnes et entre les modes guidés d'une part et les modes rayonnes d'autre part. De ce dernier type de couplage, il ressort qu'il y a fuite de l'énergie des modes guidés (dont l'énergie est dans le cas idéal en partie confiné dans le cœur, guidée et sans atténuation) vers les modes rayonnes (dont l'énergie n'est pas confinée même en partie dans le coeur du guide et est rayonnée vers l'environnement extérieur de la fibre). De ce fait, les modes guidés subissent une perte d'énergie et donc une atténuation de leur énergie. Les modes guidés sont dits absorbants (sous réserve que rien dans l'environnement de la fibre - y compris le tube ou l'éventuelle gaine mécanique - ne couple l'énergie rayonnée à nouveau dans le coeur de la fibre). Au-delà d'une certaine distance déterminée par les caractéristiques de la fibre et de la perturbation appliquée, les modes guidés ont perdu toute leur énergie. Cette distance est propre à chaque mode guidé et est appelée sa longueur effective d'atténuation.
Toujours selon la théorie de la perturbation d'une fibre, si le spectre dans l'espace des fréquences spatiales (le spectre spatial) de la perturbation est limité au composantes spectrales dont la valeur est inférieure à une valeur définie par les caractéristiques de la fibre, la perturbation ne stimule aucun couplage entre les modes de la fibre. Si les valeurs des composantes spectrales sont supérieures à cette valeur mais inférieure à une valeur plus élevée également déterminée par les caractéristiques de la fibre, la perturbation stimule le couplage entre certains modes guidés de la fibre. Enfin, si la valeur des composantes spectrales est supérieure à cette deuxième valeur, la perturbation stimule le couplage entre certains modes guidés d'une part et certains modes rayonnes d'autre part.
Le spectre spatial de la perturbation peut être synthétisé pour stimuler le couplage entre des/tous les modes guidés ou entre des/tous les modes guidés d'une part et des/tous les modes rayonnes d'autre part. Dans le cas d'un couplage indirect, de modes guidés à modes guidés, si le spectre spatial de la perturbation est limité aux composantes spectrales qui stimulent le couplage entre modes guidés, l'analyse de la perturbation d'un guide prévoit tout de même que ces modes sont absorbants. Par conséquent, la stimulation du couplage entre tous les modes guidés jusqu'aux modes guidés du groupe d'ordre m permet de faire fuir l'énergie de tous ces modes d'ordre inférieur à m vers les modes du groupe d'ordre m lesquels étant absorbants provoquent la perte de l'énergie de tous ces modes au-delà de sa distance d'atténuation efficace. Ce couplage via un groupe choisi de modes guidés absorbants est un couplage indirect de l'énergie. Il requière des composantes spectrales dont la valeur est plus élevée que la valeur des composantes spectrales qui couple les modes guidés aux modes rayonnes. Enfin, le taux de pertes (d'atténuation) de ce couplage est exactement m/M.
Dans le cas d'un couplage direct, de modes guidés à modes rayonnes, si le spectre spatial de la perturbation est limité aux composantes spectrales qui stimulent le couplage entre modes guidés d'une part et modes rayonnes d'autre part, la fuite de l'énergie des modes guidés est alors directe. Ce couplage requière des composantes spectrales dont la valeur est moins élevée que la valeur des composantes spectrales qui couple les modes guidés entre eux.
On en déduit qu'il est possible de provoquer un couplage sélectif de modes en synthétisant le spectre spatial de la perturbation correspondant et en l'appliquant à la fibre. On peut donc choisir le type de couplage que l'on souhaite favoriser en réalisant une perturbation de la fibre correspondant au spectre spatial synthétisé correspondant. Les moyens de synthèse de spectre spatial fonction du/des modes à favoriser sont connus et on pourra consulter utilement à ce sujet tout ouvrage traitant de la théorie de Fourier et/ou mettre en œuvre un logiciel commercialisé comme Matlab®.
Parmi les caractéristiques du spectre spatial, on peut considérer plus particulièrement les amplitudes de ses composantes ainsi que leurs fréquences (plus généralement spectre dans le domaine des fréquences).
En ce qui concerne l'amplitude des composantes spectrales spatiales de la perturbation, elle détermine la force du couplage entre les modes et donc leur longueur efficace d'atténuation. Si le signal est détecté avant d'avoir parcouru la plus grande longueur efficace d'atténuation d'entre tous les modes guidés, une modulation de l'amplitude de la perturbation provoque une modulation de l'énergie du signal détectée à la sortie du segment perturbé du guide.
Notons qu'il est préférable de limiter la longueur de la perturbation (donc la longueur du motif en relief dans le tube) à la plus petite longueur efficace d'atténuation des modes guidés pour établir une meilleure efficacité de la modulation des pertes par l'amplitude de la perturbation. La modulation des pertes par l'amplitude de la perturbation module l'amplitude des composantes spectrales du spectre spatial de la perturbation mais pas leur fréquence.
En ce qui concerne la fréquence des composantes spectrales spatiales de la perturbation on peut considérer le cas d'une perturbation monochromatique et les autres cas dans lesquels le spectre non monochromatique peut être connu ou non. Notons que la modulation des pertes par la fréquence de la perturbation module la fréquence des composantes spectrales du spectre spatial de la perturbation mais pas leur amplitude.
Dans le cas d'une perturbation monochromatique qui est donc une perturbation dont le spectre spatial se réduit à une seule composante, la perturbation à appliquer est sinusoïdale avec un pas ou période spatiale Λ. Une telle perturbation favorise le couplage entre deux modes dont la différence entre les valeurs de leurs constantes de propagation respectives est égale à la norme du vecteur d'onde spatial de la perturbation soit 2π/Λ.
Dans le cas d'une perturbation à spectre déterminé, en choisissant exactement quels modes doivent être couplés entre eux par la perturbation, on peut déterminer les composantes spectrales requises qui permettent alors de synthétiser le spectre spatial de la perturbation et donc sa forme dans l'espace conformément à la théorie de Fourier.
Le cas d'une perturbation à spectre indéterminé peut être étudié d'un point de vue théorique, notamment par des outils d'analyse de l'impact d'une perturbation dont le spectre est indéterminé et seulement connu par ses caractéristiques statistiques (moyenne de la valeur des composantes spectrales, écart type, longueur de corrélation etc.).
Si l'on s'intéresse maintenant aux différentes natures de perturbations provoquant le couplage de modes on peut considérer les perturbations mécaniques et les perturbations thermiques. Parmi les perturbations mécaniques, on peut considérer la modulation due à des microcourbures de la fibre multimode et la modulation isotrope ou anisotrope sur le diamètre de la fibre multimode.
En pratique, le transducteur de l'invention consiste en une fibre optique ensevelie dans un milieu perturbateur appelé «milieu environnant», ledit « milieu environnant » étant structuré afin qu'il applique à la surface ou au volume de la fibre une perturbation avec un spectre spatial (amplitude et distribution dans l'espace) déterminé.
En ce qui concerne une perturbation de type micro-courbure, c'est une courbure de la fibre dans un plan contenant son axe de propagation. A la différence d'une courbure simple souvent appelée macro-courbure, une micro-courbure est une perturbation et non pas une simple modification de la fibre au repos.
En effet, la macro-courbure transforme la structure de modes de la fibre c'est à dire que le profil de ces modes change de façon déterminée de sorte que l'on peut dire que la structure des modes s'adapte en quelque sorte à la nouvelle position de la fibre. Mathématiquement, cette modification est analysable même si la modélisation procède par approximation au premier ordre ou au deuxième ordre des solutions exactes des modes dans la macro-courbure.
La micro-courbure, quant à elle, est traitée comme une perturbation qui ne modifie pas la modélisation de la structure de modes (modes de la fibre au repos) mais couple les modes entre eux. De plus, la perturbation par micro-courbure s'entend le plus souvent comme une succession de micro-courbures tout au long du segment perturbé de la fibre. Dans la pratique, le couplage des modes qui deviennent donc absorbants reflète le fait que la structure de modes de la fibre au repos n'a pas le temps de s'adapter aux changements d'états successifs
(plusieurs micro-courbures) de la fibre et par conséquent perdent une partie de leur énergie (ils sont absorbants) puisque cette structure n'est pas celle de modes parfaitement guidés dans le segment perturbé.
De fait, la forme des micro-courbures détermine quelles composantes spectrales sont présentes dans le spectre spatial de la perturbation et avec quels poids. La forme détermine donc quels modes sont couplés et l'amplitude de la perturbation (à laquelle sont proportionnels les poids des composantes spectrales) détermine la force du couplage entre les modes effectivement couplés. L'analyse de ces composantes spectrales et de leurs poids à savoir l'analyse du spectre de la micro-courbure peut être ramenée à l'analyse du spectre de la courbure de la fibre. L'analyse des micro-courbures revient donc à analyser la courbure des micro-courbures.
Ce spectre détermine donc quels groupes de modes sont effectivement couplés et donc si le couplage est direct ou indirect ou bien les deux simultanément.
La modulation dans le cadre de la micro-courbure peut être obtenue par effet de « mouvement » ou par effet « d'ouverture numérique » de la fibre multimode. Pour ce qui concerne l'effet de « mouvement », il existe deux méthodes pour moduler l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé.
- Si la longueur du segment perturbé est plus petite que la plus petite des longueurs efficaces des modes guidés de la fibre, alors chaque mode guidé transporte toujours de l'énergie à la sortie du segment perturbé. Si la fibre épouse pleinement la forme des micro-courbures et que seule est modulée l'amplitude des micro-courbures, alors la force du couplage entre les modes effectivement couplés, c'est à dire le poids des composantes spectrales des micro-courbures (lesquels poids sont proportionnels à l'amplitude des micro-courbures), est modulée et par conséquent l'énergie du signal guidé à la sortie du segment perturbé est modulée proportionnellement. Il s'agit d'une modulation par l'amplitude du spectre spatial de la perturbation. Cette méthode requière un mouvement convergeant vers l'axe de la fibre du « milieu environnant » et, ce, dans le plan des micro-courbures.
- Si la longueur du segment perturbé excède la plus grande longueur efficace d'atténuation des modes guidés de la fibre, les modes couplés entre eux par les micro-courbures perdent toute leur énergie avant que le signal guidé ne sorte du segment perturbé. Si les micro-courbures ne sont appliquées que progressivement, c'est à dire que la perturbation module le spectre de la courbure de la position du guide optique au repos (courbure nulle = rayon de courbure infini) jusqu'à un spectre définit par le « milieu environnant » (fixé par ce même milieu), les micro- courbures augmentent progressivement le nombre de modes couplés absorbants de 1 à m c'est à dire le taux de modes m/M dont l'énergie est totalement perdue à la sortie du segment perturbé. Ainsi, le spectre effectif des micro-courbures module l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé. Il s'agit d'une modulation par la fréquence du spectre spatial de la perturbation. Cette méthode requière également un mouvement convergeant du « milieu environnant » vers l'axe de la fibre et, ce, dans le plan des micro-courbures.
Ainsi, dans les deux méthodes d'exploitation des micro-courbures décrites ci-dessus on peut dire que la modulation est obtenue par le « mouvement » du « milieu environnant ».
Pour ce qui concerne l'effet « d'ouverture numérique », on constate qu'en appliquant l'une ou l'autre des méthodes de perturbation des micro-courbures «par le mouvement» décrite précédemment et en fixant l'ampleur de la perturbation à un point de fonctionnement déterminé, il est encore possible de moduler l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment en modulant l'ouverture numérique de la fibre.
En effet, dès lors que la fibre est pré-perturbée par des micro-courbures par le « mouvement », une variation de l'indice de réfraction du coeur de la fibre due à une variation d'un paramètre de l'environnement (la mesurande) différente de la variation de l'indice de réfraction de sa gaine optique due à la même variation d'un paramètre de l'environnement (la mesurande) entraîne une variation de l'ouverture numérique de la fibre et donc une variation du taux de couplage des modes effectivement couplés et par conséquent une modulation de l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé. Une variation de l'ouverture numérique signifie en effet un changement de la structure des modes. Traitée comme une perturbation, la variation d'ouverture numérique provoque le couplage entre les modes. La différence de variation des indices de réfraction entre le coeur et la gaine optique est due à la différence de sensibilité de l'indice de réfraction au paramètre (la mesurande) entre le coeur et la gaine optique. La pré-perturbation par des micro-courbures par le mouvement amène le segment perturbé au point de fonctionnement où la sensibilité des pertes d'énergie du signal guidé aux variations de l'ouverture numérique est la meilleure. Les effets thermo-optique (variation de l'indice de réfraction en fonction de la température) et élasto-optique (variation de l'indice de réfraction en fonction de la contrainte induite par pression ou par déformation) sont des exemples d'effets permettant à un paramètre de l'environnement (la mesurande) de moduler l'ouverture numérique de la fibre.
Cette méthode qui ne requière pas de mouvement du « milieu environnant » à l'exception du pré-mouvement est donc une méthode de modulation « par l'ouverture numérique ».
En ce qui concerne maintenant la modulation isotrope des diamètres de la fibre multimode, elle consiste en une modulation des dimensions transversales de la fibre c'est à dire des dimensions de sa section droite (laquelle est la surface perpendiculaire à l'axe de la fibre) et elle modifie les dimensions transversales du coeur. Elle modifie également les dimensions transversales de la gaine optique de la fibre sous réserve que la gaine ne soit pas le « milieu environnant » lui-même. Elle modifie enfin les dimensions transversales du revêtement de la fibre s'il existe. Lorsque tous les diamètres dans la section droite de la fibre (un diamètre s'entend comme la distance séparant deux points du contour du cœur, de la gaine optique ou du revêtement et alignés avec le centre de la section droite de la fibre lui-même défini par l'intersection de l'axe de la fibre avec sa section droite) sont modulés en longueur dans les mêmes proportions et en phase (c'est à dire augmentent ou diminuent ensembles) la modulation est qualifiée d'isotrope dans la section droite de la fibre. Un exemple pratique consiste à moduler tout au long du segment perturbé le diamètre d'une fibre à section droite circulaire. Une telle perturbation est appelée modulation isotrope des diamètres de la fibre.
La modulation isotrope des diamètres de la fibre est une perturbation de la fibre et provoque, comme dans le cas des micro-courbures, le couplage entre les modes de la fibre lesquels deviennent absorbants. Son spectre détermine donc quels groupes de modes sont effectivement couplés et donc si le couplage est direct ou indirect. Comme dans le cas des micro-courbures, il existe avec la modulation isotrope des diamètres deux méthodes par effet « mouvement » pour moduler l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé. - Si la longueur du segment perturbé est plus petite que la plus petite des longueurs efficaces d'atténuation des modes guidés de la fibre, alors chaque mode guidé transporte toujours de l'énergie à la sortie du segment perturbé. Si seule est modulée l'amplitude de la modulation des diamètres de la fibre, alors la force du couplage entre les modes effectivement couplés, c'est à dire le poids des composantes spectrales de la modulation (lesquels sont proportionnels à l'amplitude de la modulation des diamètres de la fibre), sont modulés et par conséquent l'énergie du signal guidé à la sortie du segment perturbé est modulée proportionnellement. Cette méthode de modulation par l'amplitude du spectre spatial de la perturbation, requière un mouvement convergeant, vers l'axe de la fibre, du « milieu environnant » tout autour de la fibre. - Si la longueur du segment perturbé excède la plus grande longueur efficace d'atténuation des modes guidés de la fibre, les modes couplés entre eux par la modulation des diamètres de la fibre perdent toute leur énergie avant que le signal guidé ne sorte du segment perturbé. Si le pas de la modulation des diamètres de la fibre varie en fonction du paramètre (la mesurande), alors le nombre de modes couplés absorbants de 1 à m, c'est à dire le taux de modes m/M dont l'énergie est totalement perdue à la sortie du segment perturbé varie également. Ainsi, le spectre effectif de la modulation des diamètres de la fibre module l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé. Cette méthode par la fréquence du spectre spatial de la perturbation requière un mouvement, appliqué à la fibre, du « milieu environnant » le long de et parallèlement à l'axe de la fibre mais également un mouvement déterminé et pré-appliqué convergeant vers l'axe de la fibre du « milieu environnant ».
Les deux méthodes d'exploitation de la modulation isotrope des diamètres de la fibre décrites ci-dessus fonctionnent «par le mouvement» du « milieu environnant ».
Comme dans le cas des micro-courbures, il existe avec la modulation isotrope des diamètres une méthode par effet « d'ouverture numérique » pour moduler l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé.
En effet, en appliquant l'une ou l'autre des méthodes de perturbation par la modulation isotrope des diamètres de la fibre «par le mouvement» et en fixant l'ampleur de la perturbation à un point de fonctionnement déterminé, il est encore possible de moduler l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment et ce en modulant l'ouverture numérique de la fibre.
En effet, dès lors que la fibre est pré-perturbée par une modulation de ses diamètres par le mouvement, une variation de l'indice de réfraction du coeur de la fibre due à la variation du paramètre de l'environnement (la mesurande) différente de la variation de l'indice de réfraction de sa gaine due à la même variation du paramètre (la mesurande) entraîne une variation de l'ouverture numérique du guide et donc une variation du taux de couplage des modes effectivement couplés et par conséquent une modulation de l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé. Une variation de l'ouverture numérique signifie en effet un changement de la structure des modes. Traitée comme une perturbation, la variation d'ouverture numérique provoque le couplage entre les modes.
La différence de variation des indices de réfraction entre le coeur et la gaine est due à la différence de sensibilité de l'indice de réfraction au paramètre (la mesurande) entre le coeur et la gaine. La pré-perturbation par la modulation des diamètres de la fibre par le mouvement amène le segment perturbé au point de fonctionnement où la sensibilité des pertes d'énergie du signal guidé aux variations de l'ouverture numérique est la meilleure.
Les effets thermo-optique (variation de l'indice de réfraction en fonction de la température) et élasto-optique (variation de l'indice de réfraction en fonction de la contrainte induite par pression ou par déformation) sont des exemples d'effets permettant à une mesurande de moduler l'ouverture numérique de la fibre.
Cette méthode ne requière pas de mouvement du « milieu environnant » à l'exception du pré-mouvement et est donc une méthode de modulation «par l'ouverture numérique».
En ce qui concerne la modulation des dimensions transversales de la fibre c'est à dire des dimensions de sa section droite (laquelle est la surface perpendiculaire à l'axe de la fibre), elle modifie les dimensions transversales du coeur. Elle modifie également et les dimensions transversales de la gaine de la fibre sous réserve que la gaine ne soit pas le « milieu environnant » lui-même. Elle modifie enfin les dimensions transversales du revêtement de la fibre s'il existe. Lorsque tous les diamètres dans la section droite de la fibre sont modulés en longueur dans des proportions et des phases différentes (c'est à dire qu'ils n'augmentent ou ne diminuent pas ensemble), la modulation est qualifiée d'anisotrope dans la section droite de la fibre. Un exemple consiste à moduler tout au long du segment perturbé le diamètre d'une fibre à section droite circulaire en l'allongeant dans une direction et en le diminuant dans la direction perpendiculaire (contour elliptique) puis inversement dans les mêmes directions (rotation du contour elliptique). Une telle perturbation est appelée modulation anisotrope des diamètres de la fibre.
La modulation anisotrope est une perturbation de la fibre et provoque comme dans les cas de perturbation précédents le couplage entre les modes de la fibre lesquels deviennent absorbants. Son spectre détermine donc quels groupes de modes sont effectivement couplés et donc si le couplage est direct ou indirect.
En ce qui concerne la modulation par le mouvement, il existe encore deux méthodes pour moduler l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé. - Si la longueur du segment perturbé est plus petite que la plus petite des longueurs efficaces d'atténuation des modes guidés de la fibre, alors chaque mode guidé transporte toujours de l'énergie à la sortie du segment perturbé. Si seule est modulée l'amplitude de la modulation des diamètres de la fibre, alors la force du couplage entre les modes effectivement couplés c'est à dire le poids des composantes spectrales de la modulation (lesquels sont proportionnels à l'amplitude de la modulation des diamètres de la fibre) est modulé et par conséquent l'énergie du signal guidé à la sortie du segment perturbé est modulée proportionnellement. Cette méthode de modulation par l'amplitude du spectre spatial de la perturbation requière un mouvement convergeant, vers l'axe de la fibre, du « milieu environnant » tout autour de la fibre. - Si la longueur du segment perturbé excède la plus grande longueur efficace d'atténuation des modes guidés de la fibre, les modes couplés entre eux par la modulation des diamètres de la fibre perdent toute leur énergie avant que le signal guidé ne sorte du segment perturbé. Si le pas de la modulation des diamètres de la fibre varie en fonction du paramètre (la mesurande), alors le nombre de modes couplés absorbants de 1 à m c'est à dire le taux de modes m/M dont l'énergie est totalement perdue à la sortie du segment perturbé varie également. Ainsi, le spectre effectif de la modulation des diamètres de la fibre module l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé. Cette méthode de modulation par la fréquence du spectre spatial de la perturbation requière un mouvement appliqué à la fibre par le « milieu environnant » le long de et parallèlement à l'axe de la fibre mais également un mouvement déterminé et pré-appliqué convergeant vers l'axe de la fibre par le « milieu environnant » tout autour de la fibre.
Les deux méthodes d'exploitation de la modulation anisotrope des diamètres de la fibre décrites ci-dessus fonctionnent «par le mouvement» du « milieu environnant ».
En ce qui concerne la modulation par l'ouverture numérique de la fibre, en appliquant l'une ou l'autre des méthodes de perturbation par la modulation anisotrope des diamètres de la fibre «par le mouvement» et en fixant l'ampleur de la perturbation à un point de fonctionnement déterminé, il est encore possible de moduler l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment.
En effet, dès lors que la fibre est pré-perturbée par une modulation de ses diamètres par le mouvement, une variation de l'indice de réfraction du coeur de la fibre due à la mesurande différente de la variation de l'indice de réfraction de sa gaine due à la même mesurande entraîne une variation de l'ouverture numérique du guide et donc une variation du taux de couplage des modes effectivement couplés et donc une modulation de l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment perturbé. Une variation de l'ouverture numérique signifie en effet un changement de la structure des modes. Traitée comme une perturbation, la variation d'ouverture numérique provoque le couplage entre les modes.
La différence de variation des indices de réfraction entre le coeur et la gaine est due à la différence de sensibilité de l'indice de réfraction à la mesurande entre le coeur et la gaine. La pré-perturbation par la modulation des diamètres de la fibre par le mouvement amène le segment perturbé au point de fonctionnement où la sensibilité des pertes d'énergie du signal guidé aux variations de l'ouverture numérique est la meilleure.
Les effets thermo-optique (variation de l'indice de réfraction en fonction de la température) et élasto-optique (variation de l'indice de réfraction en fonction de la contrainte induite par pression ou par déformation) sont des exemples d'effets permettant à une mesurande de moduler l'ouverture numérique de la fibre.
Cette méthode ne requière pas de mouvement du « milieu environnant » à l'exception du pré-mouvement et est donc une méthode de modulation «par l'ouverture numérique». Dans le cas des perturbations thermiques, si la température de la fibre optique est modulée localement et selon un motif donné de gradient de température tout au long de l'axe du segment perturbé, les diamètres de la fibre varient par extension thermique. Les indices de réfraction du coeur et de la gaine de la fibre varient également. Si de plus, les variations d'indice de réfraction dues au gradient thermique sont différentes entre le coeur et la gaine optique de la fibre (différence de sensibilité de l'indice de réfraction à la température entre le coeur et la gaine), l'ouverture numérique varie. Pour finir, chaque tranche de fibre a sa propre structure de modes guidés et, ce, par effet soit thermo-géométrique, soit thermo-optique, en fait par une combinaison des deux. Il y a alors couplage entre les modes de la fibre. Le spectre spatial du gradient de température détermine la nature du couplage (direct ou indirect). Si l'extension thermique de la fibre et du « milieu environnant » dans la direction de l'axe de la fibre est négligeable, alors une modulation de l'amplitude du gradient thermique module la force du couplage entre les modes effectivement couplés c'est à dire le poids des composantes spectrales spatiales du gradient de température et par conséquent module l'énergie du signal entre son entrée dans le segment perturbé et sa sortie de ce même segment en supposant que la longueur du segment perturbé est plus petite que la plus petite longueur effective d'atténuation des modes guidés. Cette modulation se fait donc par l'ouverture numérique.
Enfin, on peut considérer le cas des perturbations mixtes correspondant à toute perturbation combinant plusieurs des perturbations précédemment décrites et qui ne se compensent pas. On va maintenant détailler la mise en œuvre fonctionnelle de l'invention consistant à:
- ensevelir un segment d'une fibre au repos qui doit être perturbé dans le «milieu environnant» (en pratique un tube enserrant la fibre) après avoir structuré ledit « milieu environnant » afin qu'il applique à la surface ou au volume de la fibre la perturbation souhaitée avec le spectre spatial (amplitude et distribution dans l'espace), laquelle dépend de la valeur du paramètre à mesurer (la mesurande), de sorte que le phénomène du couplage de modes qui dépend du spectre spatial de la perturbation est plus ou moins important selon les variations de la valeur de la mesurande.
Ainsi, on détermine le motif du tube enserrant la fibre optique en fonction des modes à coupler pour le type de déformation prévue et le paramètre à mesurer (en particulier la façon dont il va agir sur le tube et donc la fibre).
Le choix du matériau du « milieu environnant » ainsi que sa structuration sont détermines par notamment:
- la manière dont la mesurande agit sur le « milieu environnant » (la sensibilité du « milieu environnant » à la mesurande), - par l'action que le « milieu environnant » doit avoir sur la fibre et
- le type de couplage de modes que cette action induit et stimule (à modulation d'amplitude des composantes spectrales ou bien à modulation des composantes spectrales elles-mêmes du spectre spatial, en couplage direct ou en couplage indirect). Dans une mise en oeuvre préférentielle d'un dispositif permettant l'exécution fonctionnelle de l'invention, le « milieu environnant » autour de la fibre est formé de deux demi- cylindres identiques qui sont joints ensembles de façon symétrique pour former un tube cylindrique avec un diamètre intérieur et un diamètre extérieur. La surface intérieure des deux demi-cylindres est structurée par usinage (avec un outil mécanique ou par usinage laser) ou gravure (attaque chimique après masquage par exemple) de manière à former le motif de la perturbation mécanique qui doit être appliquée à la fibre. Les deux demi-cylindres enserrent la fibre et sont soudés ensembles pour former un tube autour de la fibre lequel tube applique à la fibre la perturbation mécanique synthétisée comme souhaitée. En alternative de la soudure, les deux demi-cylindres sont collés, sertis ou clipsés ensembles autour de la fibre. Cette perturbation mécanique est soit un ensemble de micro-courbures, soit une modulation isotrope ou anisotrope des diamètres de la fibre. Le motif est préalablement déterminé par la synthèse de son spectre spatial et selon que le mode de couplage choisi est le mode direct ou indirect et selon encore que la modulation du spectre spatial se fait par l'amplitude ou la fréquence et est induite par le mouvement ou l'ouverture numérique. Le segment de fibre enserré dans le tube formé par les deux demi-cylindres dont la surface interne est structurée, est le transducteur à fibre optique multimode. Une telle disposition de transducteur est sa structure générale préférée.
Cette structure générale de transducteur peut être modifiée selon le paramètre auquel on souhaite le rendre sensible et on va en considérer quatre exemples dans la suite qui sont : la sensibilité au déplacement du « milieu environnant », à la pression du « milieu environnant », la déformation longitudinale du « milieu environnant » et la dilatation thermique du « milieu environnant ».
Sensibilité au déplacement La structure générale du transducteur est modifiée afin de le rendre sensible au déplacement des deux demi-cylindres l'un vers l'autre. La perturbation mécanique est un ensemble de micro-courbures.
Les deux demi-cylindres à surface interne structurées (segments structurés) et qui ne sont pas solidarisés ensembles se poursuivent par des prolongements d'une certaine longueur et la surface interne des prolongements n'est pas structurée (usiné/gravée) selon le motif de la perturbation mais forme un sillon (ou toute autre forme non perturbante pour la fibre) capable de recevoir la fibre sans la perturber. Le long d'une partie de ces prolongements qui se trouvent de part et d'autre des segments structurés selon le motif de la perturbation, l'épaisseur de l'un ou de chacun des prolongements demi-cylindriques est réduite pour former deux poutrelles flexibles attenantes au segment structuré selon le motif de la perturbation. Ainsi, grâce aux poutrelles infléchies, les segments structurés peuvent être amenés à s'appuyer sur la fibre en la déformant lorsqu'ils sont soumis à une force, puis les faire revenir à leur position initiale lorsque la force exercée est supprimée sous réserve que l'inflexion des poutrelles se produit dans leur domaine d'élasticité (hors domaine plastique). Cette condition est déterminée par l'élasticité du matériau, l'épaisseur et la longueur des poutrelles et enfin la course de leur inflexion. A noter que les prolongements comme leur nom l'indique prolongent la structure et ne sont pas des ponts sur les demi-cylindres.
Les deux demi-cylindres (segments structurés) enserrent la fibre et les extrémités des prolongements opposés aux segments structurés sont quant à eux soudés ensembles, les prolongements formant poutrelles flexibles étant non solidarisés avec leur vis-à-vis. Dans une variante les prolongements n'existent que d'un seul coté des demi-cylindres (segments structurés).
Un exemple de demi-cylindre 1 est donné sur la Figure 1 avec le segment structuré 2 comportant des motifs en relief 6 intérieurement. Le segment structuré 2 se prolonge de chaque coté, axialement/longitudinalement, par des poutrelles 3 (ou pattes élastiques) et des prolongements 4 proprement dits comportant des pattes 5 permettant leur fixation à des pattes complémentaires du demi-cylindre opposé (non représenté). Les forces appliquées sont radiales et schématisées par des flèches empâtées. Ces forces représentées en compression axiale peuvent également être en traction axiale (dans le cas où la fibre est pré-contrainte au repos).
On comprend que le transducteur résulte de l'accolement de deux demi-cylindres 8 à face interne structurée 6 et enserrant une fibre optique multimode 9 comme représenté Figure 3 en vue éclatée.
Si la fibre est droite entre les deux demi-cylindres, lorsque aucune force n'est exercée sur les demi-cylindres (pas de micro-courbures imprimées à la fibre), toute force exercée sur le transducteur perpendiculairement à l'axe du tube (force radiale) et des micro-courbures et dans la zone des segments usinés selon le motif des micro-courbures rapproche les deux demi- cylindres l'un de l'autre et provoque une modulation de la courbure des micro-courbures imprimées à la fibre. Il en résulte une modulation par le mouvement du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment.
Dans cette mise en oeuvre de la perturbation avec des micro-courbures, le transducteur est sensible au déplacement, à savoir le déplacement transmis au(x) demi-cylindre(s) avec son/ses prolongements (poutrelles) par n'importe quel mécanisme, lequel mécanisme peut éventuellement maintenir l'autre demi-cylindre immobile. En connaissant l'élasticité du transducteur dans la direction perpendiculaire à son axe, ce transducteur est aussi sensible à la force.
Pression du milieu environnant et notamment pression hydrostatique. La structure générale du transducteur est modifiée afin de le rendre sensible à la pression exercée sur le tube du transducteur. La perturbation mécanique est soit un ensemble de micro-courbures, soit une modulation des diamètres de la fibre isotrope ou anisotrope.
Si la perturbation mise en œuvre est un ensemble de micro-courbures, la fibre est micro- courbée de sorte que sa courbure soit celle des micro-courbures du motif usiné sur la surface interne des demi-cylindres c'est à dire que la fibre épouse complètement le motif de l'usinage des demi-cylindres.
Dans ce cas comme dans le cas d'une modulation des diamètres de la fibre isotrope ou anisotrope, la fibre est pré-perturbée par le mouvement lorsque les deux demi-cylindres l'enserrent et sont soudés ensembles. Le tube induit ainsi un taux initial de perte de l'énergie du signal guidé par la fibre entre son entrée dans le segment perturbé et sa sortie de ce même segment et génère une distribution de contraintes initiales dans le coeur, la gaine (si différente du « milieu environnant ») et le revêtement (s'il existe) de la fibre.
Le matériau du coeur, de la gaine et du revêtement de la fibre et du tube sont tous choisis ainsi que leurs épaisseurs en sorte que toute pression exercée sur le tube sera au moins partiellement transmise au revêtement, à la gaine et au coeur de la fibre. Les matériaux de la fibre sont encore choisis de sorte qu'ils possèdent des coefficients élasto-optiques distincts (sensibilités distinctes entre le revêtement, la gaine et le coeur de l'indice de réfraction à la pression exercée sur le matériau). Ainsi, toute pression exercée sur le transducteur provoque une modulation par l'ouverture numérique du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment. L'amplitude initiale de la perturbation est choisie de telle sorte que la sensibilité de l'ouverture numérique aux variations de la pression exercée est maximale.
Si toutefois le choix des matériaux et l'amplitude de la pression exercée sur le transducteur font que la modulation par l'amplitude du spectre spatial de la perturbation due à la compression du tube n'est pas négligeable, alors, la modulation par le mouvement du signal guidé s'ajoute à la modulation par l'ouverture numérique.
Déformation longitudinale du milieu environnant
La structure générale du transducteur est modifiée afin de le rendre sensible à la déformation longitudinale exercée sur le tube du transducteur le long de son axe de symétrie (déformation longitudinale). La perturbation mécanique est soit un ensemble de microcourbures, soit une modulation des diamètres de la fibre isotrope ou anisotrope.
Si la perturbation mise en œuvre est un ensemble de micro-courbures, la fibre est micro- courbée de sorte que sa courbure soit celle des micro-courbures du motif usiné sur la surface interne des demi-cylindres c'est à dire que la fibre épouse complètement le motif de l'usinage de demi-cylindres.
Dans ce cas comme dans le cas d'une modulation des diamètres de la fibre isotrope ou anisotrope, la fibre est pré-perturbée par le mouvement lorsque les deux demi-cylindres l'enserrent et sont soudés ensembles. Le tube induit ainsi un taux initial de perte de l'énergie du signal guidé par la fibre entre son entrée dans le segment perturbé et sa sortie de ce même segment et génère une distribution de contraintes initiales dans le coeur, la gaine (si différente du « milieu environnant ») et le revêtement (s'il existe) de la fibre.
Le matériau du coeur de la fibre, de la gaine et du revêtement de la fibre ainsi que celui du tube sont tous choisis ainsi que leurs épaisseurs et la longueur du segment perturbé en sorte que le tube ait une élasticité apparente permettant de le déformer longitudinalement (le long de son axe de symétrie) en exerçant une force donnée.
Dans ce cas, toute déformation longitudinale module le spectre spatial de la perturbation par la fréquence et par le mouvement. Il résulte que l'énergie du signal guidé est modulée entre son entrée dans le segment perturbé et sa sortie de ce même segment.
Un exemple de demi-cylindre 10 est donné sur la Figure 2 avec le segment structuré 2 comportant des motifs en relief 6 intérieurement. Le segment structuré 2 se prolonge de chaque coté, axialement/longitudinalement, par des brides (collerettes) 7 permettant l'application de forces axiales/longitudinales. Les brides 7 peuvent comporter de orifices alésés ou taraudés (non représentés). Le segment structuré 2 comporte des pattes 5 permettant leur fixation à des pattes complémentaires du demi-cylindre opposé (non représenté). Les forces appliquées sont axiales et schématisées par des flèches empâtées (compression ou traction).
Toutefois, les matériaux de la fibre peuvent encore être choisis de sorte qu'ils possèdent des coefficients élasto-optiques distincts (sensibilités distinctes entre le revêtement, la gaine et le coeur de l'indice de réfraction à la contrainte exercée sur le matériau). Si le choix des matériaux et l'amplitude de la déformation exercée sur le transducteur font que la variation de l'indice de réfraction du coeur de la fibre et la variation de l'indice de réfraction de la gaine de la fibre (ces deux variations étant déterminées par les coefficients élasto-optiques de chaque milieu) ne sont pas négligeables et sont différentes, la modulation du signal guidé se fait alors par l'ouverture numérique. Elle s'ajoute à la modulation du spectre spatial par la fréquence et par le mouvement sous réserve que celle-ci ne soit pas négligeable. Elle s'y substitue si celle-ci est négligeable.
Dans le cas d'une modulation par l'ouverture numérique, l'amplitude initiale de la perturbation est choisie de telle sorte que la sensibilité de l'ouverture numérique aux variations de la pression exercée est maximale.
Dilatation thermique du milieu environnant
La structure générale du transducteur est modifiée afin de le rendre sensible à la température environnant le tube du transducteur. La perturbation mécanique est un soit un ensemble de micro-courbures, soit une modulation des diamètres de la fibre isotrope ou anisotrope.
Si la perturbation mise en œuvre est un ensemble de micro-courbures, la fibre est micro- courbée de sorte que sa courbure soit exactement celle des micro-courbures du motif usiné ou gravé sur la surface interne des demi-cylindres, c'est à dire que la fibre épouse complètement le motif des demi-cylindres. Dans ce cas comme dans le cas d'une modulation des diamètres de la fibre isotrope ou anisotrope, la fibre est pré-perturbée par le mouvement lorsque les deux demi-cylindres l'enserrent et sont soudés ensembles. Le tube induit ainsi un taux initial de perte de l'énergie du signal guidé par la fibre entre son entrée dans le segment perturbé et sa sortie de ce même segment et génère une distribution de contraintes initiales dans le coeur, la gaine (si différente du « milieu environnant ») et le revêtement (s'il existe) de la fibre.
Le matériau du coeur de la fibre, de la gaine et du revêtement de la fibre et du tube sont tous choisis en sorte que la température environnant le tube induit une dilatation longitudinale du tube. Le tube exerce alors une déformation longitudinale sur la fibre et module ainsi le spectre spatial de la perturbation par la fréquence et par le mouvement. Il résulte que l'énergie du signal guidé est modulée entre son entrée dans le segment perturbé et sa sortie de ce même segment.
Le matériau et l'épaisseur du tube peuvent encore être choisis de sorte que la dilatation thermique du tube dans le plan de la section droite de la fibre n'est pas négligeable. Le tube exerce alors une pression sur la fibre et provoque ainsi une modulation du spectre spatial de la perturbation par l'amplitude ce qui module l'énergie du signal guidé entre son entrée dans le segment perturbé et sa sortie de ce même segment.
Les matériaux de la fibre peuvent enfin être choisis de sorte qu'ils possèdent des coefficients thermo-optiques distincts (sensibilités distinctes entre le revêtement, la gaine et le coeur de l'indice de réfraction à la température environnant le matériau). Dans ce cas, les variations de température provoquent une modulation de l'ouverture numérique de la fibre.
L'énergie du signal guidé est donc modulée entre son entrée dans le segment perturbé et sa sortie de ce même segment. En pratique, cette modulation par l'ouverture numérique s'ajoute toujours aux précédentes et s'y substituent lorsque les modulations par le mouvement sont négligeables.
L'ampleur initiale de la perturbation est choisie de telle sorte que la sensibilité de l'ouverture numérique aux variations de température soit maximale si cette modulation est exploitée.
Ainsi, le choix des matériaux du transducteur en fonction de leurs propriétés (élasticité, expansion thermique, coefficients thermo-optiques ou élasto-optiques), le choix des dimensions du tube, de la fibre et du segment perturbé, le choix de la nature de la perturbation et du type de couplage de modes induit sont autant de degrés de liberté qui permettent de réaliser un transducteur sensible soit à la température environnante, soit à la déformation longitudinale le long de son axe, soit à la pression/force/contrainte, soit au déplacement. On détaille maintenant la mise en œuvre de l'invention.
Les calculs et évaluations de grandeurs nécessaires à la réalisation d'un transducteur à fibre optique multimode se font dans le cadre du couplage entre modes (non évanescents) d'une fibre optique à savoir un diélectrique (non magnétique) faiblement absorbant (hors perturbation) et dans l'approximation du faible guidage. Ces calculs et évaluations sont basés sur la théorie établie et les exemples exposés par Dietrich Marcuse (Theory of Dielectric Optical Waveguides, Dietrich Marcuse, 2πd édition, chapitres 1 à 4, Académie Press Inc., ISBN 0-12-470951 -6, 1991 ).
Comme précédemment expliqué, selon qu'il est choisi de moduler la transmission du segment perturbé de la fibre optique multimode, à savoir le transducteur, par le mouvement et par l'amplitude ou par le mouvement et par le spectre ou encore par l'ouverture numérique, par couplage direct ou par couplage indirect, par l'action de micro-courbures ou l'action des variations isotropes du diamètre de coeur de la fibre ou encore l'action des variations anisotropes du diamètre de coeur de la fibre (ex.: variation de son ellipticité), différentes situations se présentent pour la longueur du segment perturbé, l'amplitude de la perturbation et son spectre.
En particulier, il est possible de déduire la longueur que le transducteur doit, soit excéder (couplage direct), soit ne pas dépasser (couplage indirect). Ainsi, les calculs effectués selon la théorie de Marcuse concernant le couplage entre deux modes guidés dû par exemple aux variations isotropes du diamètre de coeur de la fibre et d'une amplitude de l'ordre de quelques dizaines de nanomètres pour un diamètre initial de 5 μm (soit de l'ordre du pourcent du diamètre initial) aboutissent à une longueur de l'ordre du centimètre pour un échange total de l'énergie du mode fondamental LPOi vers le mode voisin LP02.
De même, une atténuation presque totale (plus 99% de perte d'énergie) par couplage du mode guidé fondamental LPOi de la même fibre au mode rayonné le plus fortement couplé pour une même amplitude de perturbation du diamètre de coeur de la fibre optique prévoit une longueur de plusieurs mètres pour le transducteur. Dans les deux cas, le pas de la perturbation optimise l'échange d'énergie c'est a dire que son inverse multiplié par 2π est égal à la différence entre les constantes de propagation des modes couplés. Des amplitudes de perturbation de l'ordre de quelques micromètres ramènent la longueur du transducteur à quelques millimètres pour l'échange total d'énergie entre les modes guidés LPOi et LP02 et à quelques centimètres pour une perte presque totale de l'énergie du mode guidé fondamental LP Oi par échange d'énergie avec le mode rayonné qui lui est le plus fortement couplé. Les autres échanges totaux d'énergie entre modes guidés ou un des modes guidés d'une part et l'ensemble des modes rayonnées d'autre part, exigent des longueurs de transducteur un peu plus importantes mais les ordres de grandeur restent les même: quelques millimètres entre modes guidés et quelques centimètres entre un des modes guidés et tous les modes rayonnes. Tout ceci pour des amplitudes de perturbation de quelques pourcents de la valeur du diamètre de la fibre non perturbée et aux longueurs d'onde de l'optique allant du visible au proche infrarouge. En particulier, la modulation du signal par couplage direct et par modulation par le spectre d'une perturbation qui consiste en la modulation isotrope du diamètre de coeur de la fibre exige une longueur de transducteur de plusieurs centimètres (allant par exemple de 5 cm à 10 cm selon la longueur d'onde et l'amplitude de la perturbation) afin de perdre presque totalement l'énergie des modes guidés alors couplés aux modes rayonnes par la perturbation. Ceci s'applique que la modulation du spectre de la perturbation résulte du mouvement (par exemple traction longitudinale le long de l'axe du tube qui est l'axe des variations induites par la perturbation) ou de la modulation de l'ouverture numérique.
Le pas de la perturbation qui couple un des modes guidés d'ordre de groupe inférieur (m = 0, 1, 2) aux plus proches modes rayonnes (à savoir les modes rayonnes les plus proches dans l'espace des constantes de propagation avec une constante légèrement inférieure à k0 ngo où k0 est le vecteur d'onde de l'onde optique dans le vide et ngo l'indice de réfraction de la gaine optique de la fibre) est de quelques micromètres pour une fibre optique d'ouverture numérique 0,5, de diamètre de coeur de 200 μm et excitée à la longueur d'onde de 630 nm. Le pas de la perturbation qui couple un des modes guidés d'ordre de groupe supérieur (m = M, M - 1 , M - 2, M: nombre total de groupe de modes guidés) aux plus proches modes rayonnes est de quelques centaines de micromètres voire quelques millimètres pour la même fibre optique.
Ainsi, le spectre de la perturbation est synthétisé comme suit. La plus grande fréquence spatiale correspondant au plus petit pas nécessaire de perturbation et la plus petite fréquence spatiale correspondant au plus grand pas nécessaire de perturbation sont déterminés en sorte que le nombre de modes guidés couplés à l'ensemble des modes rayonnes soit M - mιnι pour une perturbation qui est à un point d'action déterminé. Les modes guidés dont l'énergie est ainsi perdue sont d'ordre de groupe de mιnι + 1 à M. Le spectre est alors la fenêtre des composantes de fréquence spatiale comprise entre la plus petite fréquence spatiale et la plus grande fréquence spatiale du spectre. Par une transformée de Fourier, le spectre des fréquences spatiales de la perturbation se traduit dans l'espace ordinaire par une oscillation apodisée de pas égal au plus petit pas du spectre de la perturbation. Le taux d'apodisation (étalement de la perturbation dans l'espace ordinaire) est déterminé par la largeur dans l'espace des fréquences spatiales du spectre de la perturbation. Par exemple, une fibre optique dont le coeur est en verre (silice amorphe), de diamètre de coeur de 200 μm excitée par une onde optique de longueur d'onde dans le vide de 630 nm et d'ouverture numérique de 0,2 compte M = 141 groupes de modes guidés. Une variation de son diamètre de coeur avec un spectre de perturbation dont le plus petit pas est 50 μm et le plus grand pas 8,535 mm couple les 100 modes d'ordre de groupe de 42 à 141. Afin de respecter les proportions mentionnées ci-dessus pour la longueur du transducteur et l'amplitude de la perturbation au niveau du diamètre de coeur, l'amplitude la perturbation est de l'ordre du micromètre pour un transducteur de quelques centimètres de longueur.
Exemple de transducteur de pression par modulation de l'ouverture numérique. Le transducteur de pression est constitué d'une fibre optique à matériau en verre (silice amorphe) pour le coeur et en verre dopé pour la gaine optique. La gaine mécanique est de préférence en polyimide. Le diamètre de coeur est 200 μm, le diamètre de gaine optique de quelques dizaines de micromètre supplémentaires, par exemple 230 μm et le diamètre de gaine mécanique de quelques dizaines de micromètres supplémentaires également, par exemple 240 μm. On peut déterminer qu'une amplitude de perturbation isotrope du diamètre de la fibre de l'ordre de 10 μm sur la gaine mécanique entraîne quelques micromètres sur le coeur de la fibre. Cette valeur se déduit du rapport des élasticités divisées chacune par l'épaisseur des matériaux du coeur et des gaines de la fibre (les raideurs par unité de surface des ressorts équivalents à chaque milieu dans la direction radiale de la fibre). Selon le modèle utilisé, modèle de ressorts couplés en série, l'amplitude de la déformation du diamètre du coeur se déduit de l'amplitude de la perturbation qui s'applique directement à la gaine mécanique selon la formule suivante:
ï <?» F1
avec pour valeurs de module d'Young du cœur (verre) VcoeuΛ ~ 72 GPa, de diamètre du coeur dœeur = 200 μm, de module d'Young de la gaine optique (verre dopé) Ygo ~ 72 GPa, de diamètre de la gaine optique dgo = 230 μm, de module d'Young de la gaine mécanique (polyimide) Ygm -2,5 GPa et de diamètre de la gaine mécanique dgm = 240 μm, l'amplitude de la perturbation inscrite dans le tube, à savoir 30 μm, imprime au niveau du coeur de la fibres une perturbation dont l'amplitude est ~ 0,082 x 30 = 2,46 μm, soit 7,23% du diamètre de coeur de la fibre hors perturbation.
Un transducteur peut être réalisé avec un tube en aluminium d'une épaisseur de paroi de 7 mm et qui est gravé à sa face interne. L'aluminium a un module d'Young de 75 GPa, à savoir du même ordre de grandeur que ceux du verre et du verre dopé et supérieur à celui du polyimide. Dans un tel cas, la transmission du transducteur est de 29,05% (perte de l'énergie de 700 modes sur un total de 747 modes guidés).
Lorsqu'un tel transducteur est plongé dans un champ de pression et que le module d'Young du tube n'est pas trop grand devant celui du matériau du coeur de la fibre au moins, un champ de contraintes internes s'étend à travers tout le corps du transducteur depuis la surface externe du tube en aluminium jusqu'au centre du coeur de la fibre. Si tel n'était pas le cas pour les modules d'Young, le tube verrait les composantes du tenseur de contraintes presque s'annuler à la limite de sa surface intérieure cylindrique et ne transmettrait donc aucune contrainte aux différentes couches de la fibre optique. Ainsi, il est préférable que les modules d'Young de la fibre (cœur et gaine optique) et du tube creux dans lequel est placée la fibre, soient voisins. A tout le moins, le module d'Young du tube sera choisi pour ne pas être trop élevé par rapport à celui de la fibre sous peine de voir la sensibilité du transducteur se réduire, voir le transducteur ne plus réagir aux modifications de son environnement. On peut donc choisir des matériaux pour le tube en fonction des matériaux de la fibre ou inversement. La variation du champ des contraintes internes des différents matériaux de la fibre due aux variations des contraintes internes de l'ensemble du transducteur dues elles-mêmes aux variations du champ de pression dans lequel est plongé le transducteur modulent par effet élasto-optique l'indice de réfraction du coeur et l'indice de réfraction de la gaine optique de la fibre. Cette variation n'a pas la même amplitude entre les deux milieux car les verres sont légèrement différents du fait du dopage. Finalement, l'ouverture numérique de la fibre est modulée par les variations du champ de pression dans lequel se trouve le transducteur. La modulation est de l'ordre de quelques millièmes à quelques centièmes selon le dopage de la gaine optique et la modification des coefficients élasto-optiques par rapport à ceux du verre non dopé.
Une augmentation de 1 centième de l'ouverture numérique provoque une augmentation de la transmission de 16,87% supplémentaires ce qui l'amène à 45,95% (perte de l'énergie de 80 modes sur un total de 148 modes guidés,) ce qui est parfaitement détectable par un simple circuit photo-détecteur câblé sur amplificateur transimpédance puis amplificateur. Une augmentation de 1 millième de l'ouverture numérique provoque une augmentation de la transmission de 1,42% supplémentaire ce l'amène à 30,5% (perte de l'énergie de 98 modes sur un total de 141 modes guidés) ce qui est une variation de type « petit signal » et qui est encore facilement détectable grâce à des techniques de modulation et de démodulation synchrone qui ont l'avantage d'extraire du niveau de bruit les variations systématiques et répétables dues à la variation du champ de pression mesuré.
Exemple de transducteur de déformation par modulation du spectre et par le mouvement.
Dans cet exemple, la structure du transducteur de pression par modulation de l'ouverture numérique est reprise sans modification. Alors, dans les mêmes conditions de couplage mais avec le plus petit pas du spectre de la perturbation amené à 45 μm on provoque des pertes optiques presque totales par couplage direct de tous les modes guidés de la fibre aux modes rayonnes (perte de l'énergie de tous les modes guidés) soit une transmission de 0%.
Une variation de 3% de la longueur du transducteur et donc des composantes du spectre de la perturbation (en termes de pas) et donc du plus petit pas de ce spectre, induit alors une augmentation de 11,35% supplémentaires de la transmission (perte de l'énergie de 125 modes sur un total de 141 modes guidés). Une augmentation de 2% de la longueur du transducteur induit une augmentation de 6,38% supplémentaires de la transmission (perte de l'énergie de 132 modes sur un total de 141 modes guidés). De telles variations sont parfaitement détectables par les moyens indiqués précédemment.
Exemple de transducteur de déformation par modulation de l'ouverture numérique.
Dans cet exemple, la structure du transducteur de déformation par modulation du spectre et par le mouvement précédent est reprise en remplaçant le matériau de la gaine optique par du PMMA de même épaisseur (YPMMMA ~ 3,3 GPa) et le matériau de la gaine mécanique par du Tefzel® de même épaisseur (YTefzel ~ 0,8 GPa). La perturbation de plus petit pas de 30 μm et d'amplitude de 30 μm induit alors une déformation du diamètre de coeur de 2,96 μm soit 7,45% du diamètre initial de coeur. La transmission est alors de 58,46% (perte de l'énergie de 64 modes sur un total de 260 modes guidés) pour une ouverture numérique de 0,37. Avec un coefficient élasto-optique transversal (le long des directions dans la section droite de la fibre) de 0,27 dans le coeur (Substrate-Strain-Induced tunability of Dense Wavelength-Division Multiplexing Thin-Film Filter, Rémy Parmentier et Michel Lequime, Optic Letters, vol. 28, n° 9, May 2003) et de 0,297 dans la gaine optique (Strain and Température Sensitivity of a Single-Mode Polymer Optical Fibre, Manuel Silva-Lopez et al., Donghui Zhao et al., Optics Letters, vol. 30, n ° 23, December 2005), une déformation de 5% résulte en une diminution de transmission du transducteur de 0,77% en moins (perte de l'énergie de 65 modes sur un total de 258 modes guidés) pour une ouverture numérique de 0,3669 sachant que la variation de l'indice de réfraction le long des directions dans la section droite de la fibre est bien la variation d'indice « vue » par les modes qui se propagent dans la fibre. Ces variations de type «petit signal» sont encore une fois détectables et exploitables comme indiqué précédemment. Exemple de transducteur de température par modulation de l'ouverture numérique.
Dans cet exemple, la structure du transducteur de déformation par la modulation de l'ouverture numérique est de nouveau mise en oeuvre mais avec un plus petit pas de la perturbation appliquée de 30 μm à la température ambiante. La transmission est alors de 75,383Zo (perte de l'énergie de 64 modes sur un total de 260 modes guidés) pour une ouverture numérique de 0,37. Alors, les coefficients thermo-optiques de la silice fondue et du PMMA étant respectivement de 9,2 10~6 {Hétérodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode fibre, Springfield chang and al., Chinese Journl of Physics, vol. 38, n ° 3- 1, J u ne 2000) et de -7,2 70'4 {Strain and Température Sensitivity of a Single-Mode Polymer Optical Fibre, Manuel Silva-Lopez et al., Donghui Zhao et al., Optics Letters, vol. 30, n ° 23, December 2005), une variation de température de l'environnement du transducteur et transmise à tout le corps du transducteur provoque une variation de la transmission de la fibre dans le transducteur.
Ainsi, une variation de température de 109C entraîne une variation de la transmission du transducteur de 0,85% supplémentaire (perte de l'énergie de 63 modes sur un total de 265 modes guidés) pour une ouverture numérique de 0,3769. Une variation de température de 50 °C entraîne une variation de la transmission du transducteur de 4,55% supplémentaires (perte de l'énergie de 57 modes sur un total de 284 modes guidés) pour une ouverture numérique de 0,4033. Une variation de température de 100°C entraîne une variation de la transmission du transducteur de 7,9% supplémentaire (perte de l'énergie de 51 modes sur un total de 305 modes guidés) pour une ouverture numérique de 0,4338. De telles variations sont encore une fois détectables et exploitables par les moyens indiqués précédemment.
La Figure 4 permet de visualiser une structuration interne de tube dont le motif a été déterminé selon les procédés de la présente invention. Comme on a pu le voir, les méthodes de modulation du signal optique pouvant être mises en œuvre dans le cadre de l'invention sont :
- les micro-courbures, modulation isotrope des rayons de la fibre, modulation anisotrope des rayons de la fibre, - le couplage direct ou couplage indirect des modes,
- la modulation par le spectre ou par l'amplitude,
- modulation par le mouvement ou par l'ouverture numérique.
Dans le cadre de l'invention, la mise en œuvre préférentielle est toutefois la modulation de l'intensité du signal lumineux par le couplage direct des modes guidés aux modes rayonnes et par la modulation isotrope ou la modulation anisotrope des diamètres de la fibre, que cette modulation survienne par le spectre ou l'amplitude, par le mouvement ou l'ouverture numérique. En effet et dans ce cas, la sensibilité du transducteur requise est plus facilement réalisable tout en maintenant les dimensions du transducteur petites car les dimensions nécessaires du relief de la surface interne du tube creux du transducteur sont de l'ordre des dizaines aux centaines de micromètres. De préférence, la profondeur (ou hauteur) des inde ations du motif en relief est au maximum de "l OOμm contrairement aux micro-courbures classiques dans lesquelles des déformations de l'ordre du mm sont mises en œuvre. Ceci permet de réaliser un transducteur suffisamment sensible tout en limitant, d'une part, ses dimensions soit sa longueur et, d'autre part, son diamètre et donc, finalement, son volume. Ce critère est décisif pour les mesures dans les environnements ou l'espace occupé par le transducteur est une contrainte.
Le transducteur de l'invention inséré dans des mécanismes de transduction appropriés permet la mesure de nombreux paramètres physiques ou chimiques.

Claims

REVE N D ICATIONS
1. Transducteur à fibre optique, ledit transducteur étant sensible à au moins un paramètre d'un environnement dans lequel il est placé, la modification du/des paramètres entraînant une modification d'au moins une caractéristique mesurable d'une onde lumineuse injectée dans la fibre optique et traversant le transducteur, la fibre optique étant multimode et comportant un moyen pour que la modification de la caractéristique de l'onde lumineuse soit fonction d'une modification de couplage de modes entraînée par la modification du paramètre de l'environnement, le moyen conduisant à la modification du couplage de modes provoquant lors de la modification une déformation de la fibre dans le transducteur selon un motif déterminé, caractérisé en ce que le moyen conduisant à la modification du couplage de modes est un tube creux comportant intérieurement un motif en relief et enserrant la fibre optique au niveau du transducteur dans une section droite de la fibre.
2. Transducteur selon la revendication 1 , caractérisé en ce que la déformation est un ensemble de micro-courbures provoquant un couplage des modes de la fibre sans transformation de la structure des modes de la fibre.
3. Transducteur selon la revendication 1 , caractérisé en ce que la déformation est une modulation spatiale du diamètre de la fibre provoquant un couplage des modes de la fibre sans transformation de la structure des modes de la fibre.
4. Transducteur selon la revendication 1 , 2 ou 3, caractérisé en ce que le tube creux comportant intérieurement un motif en relief et enserrant la fibre optique au niveau du transducteur contraint ladite fibre au repos, ladite fibre étant déformée selon le motif déterminé au repos.
5. Transducteur selon la revendication 1 , 2 ou 3, caractérisé en ce que le tube creux comportant intérieurement un motif en relief et enserrant la fibre optique au niveau du transducteur ne contraint pas ladite fibre au repos, ladite fibre étant non déformée au repos.
6. Transducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que le tube est en deux parties longitudinales se refermant sur la fibre.
7. Transducteur selon la revendication 6, caractérisé en ce que chaque partie longitudinale comporte à au moins une de ses deux extrémités longitudinale un prolongement faisant office de bras de levier élastique permettant de ramener à une position de repos la partie correspondante en l'absence d'action du/des paramètres de l'environnement, ledit prolongement étant sans influence sur les caractéristiques de l'onde lumineuse.
8. Transducteur selon la revendication 7, caractérisé en ce que chaque partie longitudinale comporte à chacune de ses deux extrémités longitudinales un prolongement faisant office de bras de levier élastique permettant de ramener à une position de repos la partie correspondante en l'absence d'action du/des paramètres de l'environnement, ledit prolongement étant sans influence sur les caractéristiques de l'onde lumineuse.
9. Transducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que le tube est en deux parties longitudinales réunies et solidarisées ensembles.
10. Transducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que le paramètre de l'environnement est choisi parmi une ou plusieurs des possibilités suivantes :
- force par déformation du tube,
- force par pression ou traction radiale sur le tube,
- force par pression ou traction longitudinale sur le tube, - température.
1 1 . Procédé de réalisation d'un transducteur à fibre optique, caractérisé en ce que pour un transducteur selon l'une quelconque des revendications précédentes ayant un motif en relief à l'intérieur d'un tube creux enserrant la fibre et modifiant le couplage de modes guidés et/ou rayonnes en fonction d'au moins un paramètre agissant sur ledit transducteur par déformation, on détermine le motif à partir d'un spectre spatial de perturbation en fonction des modes à coupler pour le type de déformation prévu pour le paramètre à mesurer.
EP08840514A 2007-09-26 2008-09-26 Transducteur a fibre optique multimode et a couplage de modes, procede de realisation Withdrawn EP2198248A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0757883A FR2921482B1 (fr) 2007-09-26 2007-09-26 Transducteur a fibre optique multimode et a couplage de modes, procede de realisation
PCT/FR2008/051723 WO2009050385A2 (fr) 2007-09-26 2008-09-26 Transducteur a fibre optique multimode et a couplage de modes, procede de realisation

Publications (1)

Publication Number Publication Date
EP2198248A2 true EP2198248A2 (fr) 2010-06-23

Family

ID=39545044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08840514A Withdrawn EP2198248A2 (fr) 2007-09-26 2008-09-26 Transducteur a fibre optique multimode et a couplage de modes, procede de realisation

Country Status (4)

Country Link
US (1) US20100303404A1 (fr)
EP (1) EP2198248A2 (fr)
FR (1) FR2921482B1 (fr)
WO (1) WO2009050385A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508594B (zh) * 2018-06-08 2024-06-21 中国人民解放军国防科技大学 一种基于压电陶瓷的高谐振频率光纤相位调制器
US10466412B1 (en) * 2018-08-31 2019-11-05 Nexans Selective mode suppressing multi-mode fiber optic cable for increased bandwidth
US11823567B2 (en) 2021-08-04 2023-11-21 Xerox Corporation Traffic monitoring using optical sensors
US11782231B2 (en) * 2021-08-04 2023-10-10 Xerox Corporation Installation of optical sensors for use in traffic monitoring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443700A (en) * 1980-02-01 1984-04-17 Pedro B. Macedo Optical sensing apparatus and method
US4530078A (en) * 1982-06-11 1985-07-16 Nicholas Lagakos Microbending fiber optic acoustic sensor
GB2125572B (en) * 1982-08-03 1985-12-24 Standard Telephones Cables Ltd Optical fibre sensors
US4915468A (en) * 1987-02-20 1990-04-10 The Board Of Trustees Of The Leland Stanford Junior University Apparatus using two-mode optical waveguide with non-circular core

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009050385A2 *

Also Published As

Publication number Publication date
FR2921482A1 (fr) 2009-03-27
US20100303404A1 (en) 2010-12-02
FR2921482B1 (fr) 2009-11-13
WO2009050385A3 (fr) 2009-08-20
WO2009050385A2 (fr) 2009-04-23

Similar Documents

Publication Publication Date Title
FR3071626B1 (fr) Dispositif de couplage optique pour un circuit photonique.
US6982996B1 (en) Large diameter optical waveguide, grating, and laser
EP0713084B1 (fr) Micro-système optique de type rosette de jauges de contraintes à guides diélectriques, pour la mesure d&#39;une contrainte longitudinale en structure plane
US7349600B2 (en) Active in-fiber optic components powered by in-fiber light
US20090129721A1 (en) Fiber optic gas sensor
FR2974263A1 (fr) Hydrophone tout optique insensible a la temperature et a la pression statique
Zhang et al. Microfiber Fabry–Perot interferometer for dual-parameter sensing
Smith et al. Surface-relief fiber Bragg gratings for sensing applications
WO2006123068A1 (fr) Procede et appareil pour la determination d’un allongement, et capteur d’extensometrie mis en oeuvre pour ce procede
EP2198248A2 (fr) Transducteur a fibre optique multimode et a couplage de modes, procede de realisation
US10408995B1 (en) Optical sensing fiber
Lee et al. Optical characteristics of a refractive optical attenuator with respect to the wedge angles of a silicon optical leaker
Bayuwati et al. Investigation on the use of standard single mode fiber as a displacement sensor using 1050 nm LED light source
Chen et al. Refractive index sensors based on a chirped core long-period fiber grating
Kumar et al. Optimization of Performance of FBG using Various Apodization Function for Quasi-Distributed Sensors Network
WO2024120735A1 (fr) Dispositif de mesure d&#39;une grandeur physique utilisant l&#39;effet vernier optique
Cibula et al. In-line optical fiber-sensors based on low-loss semi-reflective in-fiber mirrors
Thews Measurement of Temperature, Refractive Index, or Axial Acceleration with Etched PCF Microfiber Structure
Wu et al. Multifunctional Line-by-Line Tilted Waveguide Bragg Gratings Directly Written by Femtosecond Laser
dos Santos et al. Tuning bimetallic Au@ Ag nanorods localized surface plasmon resonance on side-polished optical fiber sensing configurations at near-infrared wavelengths
Liu et al. Scheme of optical fiber temperature sensor employing deep-grooved process optimization
FR3143111A1 (fr) Dispositif de mesure d’une grandeur physique
Chen et al. Fiber optic gas sensor
Sensing et al. 17.1 OVERVIEW AND SCOPE OF CHAPTER
Arora et al. Effect of effective refractive index of grating in FBG splitter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100423

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130403