EP2197724A2 - Method and system for controlling a power unit with power bypass - Google Patents

Method and system for controlling a power unit with power bypass

Info

Publication number
EP2197724A2
EP2197724A2 EP08840293A EP08840293A EP2197724A2 EP 2197724 A2 EP2197724 A2 EP 2197724A2 EP 08840293 A EP08840293 A EP 08840293A EP 08840293 A EP08840293 A EP 08840293A EP 2197724 A2 EP2197724 A2 EP 2197724A2
Authority
EP
European Patent Office
Prior art keywords
heat engine
engine
rotational speed
torque
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08840293A
Other languages
German (de)
French (fr)
Inventor
Ahmed Ketfi-Cherif
Mehdi Gati
Michel Mensler
Philippe Pognant-Gros
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2197724A2 publication Critical patent/EP2197724A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to hybrid propulsion systems and more particularly the management of a heat engine in a vehicle equipped with an infinitely variable electric transmission.
  • Hybrid propulsion systems are in particular either of the series type or of the parallel type.
  • the heat engine is in direct contact with the electric motors, the assembly being connected to a common drive shaft engaged with the drive wheels.
  • the heat engine drives part of the drive wheels while the electric motors drive the other drive wheels.
  • the combustion engine generally drives the front wheelset, and the electric motors the rear wheelset.
  • Patent applications FR2847015, FR2847014 and FR2847321 disclose infinitely variable electric drive power-through transmission systems which may comprise one or two compound trains.
  • the described transmission systems comprise two power paths on which the elements are distributed.
  • One of the two channels comprises a reduction stage and control means for regulating the distribution of power between the two channels.
  • These three patent applications describe transmission systems comprising at least one compound train making it possible to immobilize at least one of the inputs of the transmission system. Neither of these two requests proposes a system allowing a start of the engine when the vehicle is running and without the use of a starter.
  • the patent application JP2000-238555 describes a hybrid system comprising a heat engine and two electric motors. One of the two electric motors is permanently assigned to the propulsion of the vehicle while the second engine is used primarily for starting the engine.
  • This patent application also describes a system for controlling the operating state of a heat engine based on the detection of the engine temperature, its fuel consumption, the vibrations and the emitted emissions. This device for determining the operating state of the heat engine is limited by the influence of the environmental conditions on the various parameters analyzed as well as by the times and costs of the associated calculations.
  • the hybrid operating mode uses a kinematic chain based on a decoupling between the engine and the wheel. The effectiveness of such a system is potentially limited.
  • Alternative propulsion systems are recognized as being particularly effective when it comes to reducing greenhouse gas emissions and pollutants.
  • alternative propulsion systems for example hybrid powertrains, keep the internal combustion engine running at low rotational speeds.
  • hybrid powertrain that can operate in purely electric mode, but remaining able to reactivate said engine unnoticeably to the driver. If the implementation of such a mode of operation is easier in the case of a parallel-type hybrid propulsion, it is quite different in the case of a hybrid type of propulsion.
  • the present invention proposes a method of managing the heat engine in a hybrid hydride power vehicle allowing a starting of said engine while only the electric machines participate in the propulsion of the vehicle.
  • the present invention also proposes a method for managing the startup of a multi-phase thermal engine, based on the detection of the operation of the heat engine and improving driveability.
  • the initially stopped thermal engine is brought autonomously and in several phases of operation to a speed of rotation sufficient to participate in the propulsion of the vehicle, said vehicle being in motion under the action of electric machines.
  • the control method makes it possible to bring the thermal engine from a rotation speed of zero to a rotational speed compatible with a start.
  • the increase of the speed of rotation is achieved by a partial catch of the torque provided by the electric machines.
  • the engine provides a resistant torque.
  • the engine after ignition, provides engine torque.
  • the operating phases make it possible to take into account the different speeds of rotation and the different torques provided by the heat engine.
  • the rotation of the thermal engine being provided by the derivation of a portion of the torque provided by the electrical machines, it can be considered that the start of the engine is performed independently, without assistance outside the vehicle.
  • At least three operating phases can be defined by comparing the rotational speed of the heat engine with at least a first value and a second stored value.
  • the two electric open-loop machines can be controlled with respect to the speed of rotation of the heat engine so that the heat engine reaches a rotation speed sufficient to be detected.
  • the two closed loop electric machines can be controlled with respect to the speed of rotation of the heat engine. so that the heat engine reaches a rotational speed sufficient to allow the start of said engine.
  • a third operating phase defined by a rotational speed of the thermal engine greater than the second stored value, it is possible to control the heat engine and the two electrical machines in a closed loop with respect to the speed of rotation of the heat engine.
  • the electronic control means comprises a rotational speed estimation means located on the output shaft of the heat engine, an indirect determination means emitting values of the rotational speed of the heat engine, the wheel-resistant torque and the load torque of the heat engine.
  • the means for determining the torque setpoints can transmit the values of the torque setpoints of the electrical machines and of the engine according to the requests of the driver coming from the interface between the driver and the vehicle, the resistant torque of the engine and the wheel-resistant torque.
  • the operation phase determining means can receive the signal emitted by the thermal motor rotation speed estimation means and a signal from the memory and output an indication of the current operating phase.
  • control means can emit a signal triggering the starting of the engine according to the signal received from the phase determining means.
  • FIG 1 shows the main elements of a control system for starting a heat engine while driving
  • FIG. 2 illustrates the main steps of a control method for starting a thermal engine while driving.
  • FIG. 1 we can see the main bodies of a vehicle equipped with a power transmission bypass 5, a powertrain 21 and a control system 7.
  • the vehicle comprises a heat engine 1, two electric machine
  • the heat engine 1 is mechanically connected to the infinitely variable transmission 5 by the connection 14 for the purpose of torque transmission.
  • the infinitely variable transmission 5 is mechanically connected to a first electrical machine 2a by the link 15a, to a second electric machine 2b by the link 15b and to the wheels 3a and 3b by a mechanical link 16 and a torque distribution system.
  • the electrical machines 2a and 2b are connected to the battery 4 by the electrical connections 13a and 13b respectively.
  • the heat engine 1 is equipped with a means 12 for estimating the speed of rotation.
  • the infinitely variable transmission 5 ensures the derivation and regulation of the power supplied by the heat engine 1.
  • the two electric machines 2a and 2b operate independently of one another and allow either to provide a torque complementary to that provided by the heat engine 1, that is to provide a resistive torque subtracting that provided by the heat engine 1, the subtracted power being transformed into electrical energy recuperatively. It is thus possible to scan a continuous range of motive power without changing the power supplied by the heat engine 1.
  • the control means 7 is connected to the heat engine 1 by the connection 8, to the electric machine 2a through the connections 9a and 42, to the electric machine 2b by the connections 9b and 42b and by means the control means 7 is also connected to an interface 19 between the driver and the vehicle via the connection 20 through which the driver can express operating requests or receive information. .
  • the control means 7 checks the rotational speed of the heat engine 1 and controls the injection and ignition of said heat engine via the connection 8.
  • the control means 7 receives from the interface 19 the driver's requests. .
  • the elements included in the control means 7 are shown in FIG. 2.
  • the control means 7 is connected to the interface 19 with the conductor via the connection 20.
  • the connection 20 continues until the means 36 for determining the instructions , itself connected by the connections 37 and 38 to the means 39 for determining the torque setpoints.
  • the means 39 for determining the torque setpoints is connected by at least one of its inputs to the means 44 for determining the observer by the connection 45 and by the connection 60 to the control means 58 of the feedback loop.
  • the means 39 for determining the torque setpoints is connected by the connection 9a to the electric machine 2a, via the connection 9b to the electric machine 2b and via the connection 40 to the control means 41 of the heat engine.
  • the observer determination means 44 is connected via its inputs to the electrical machines 2a and 2b through the connection 42 and the branch 42b, respectively.
  • the determining means 44 is connected by the bypass 43 of the connection 18 to the estimation means 12 of the rotational speed of the heat engine 1 and by at least one of its outputs by means of determination 47 of the operating phase by the connection 46.
  • the determination means 47 of the operating phase is connected by the connection 18 to the estimation means 12 of the speed of rotation of the heat engine 1, by at least one of its outputs to the control means 41 of the engine by the connection 48, by means of control 58 of the feedback loop by the connection 49 and the memory 51 by the bypass 50 of the connection 49.
  • the determining means 47 of the operating phase is connected by one of its inputs to the memory 51 via the connection 61.
  • the memory 51 is connected by the connection 52 to the subtractor 53, itself connected to the computer 56 by the connection
  • the subtractor 53 is connected to the estimation means 12 of the speed of rotation of the heat engine 1 by the bypass 54 of the connection 18.
  • the computer 56 is connected to the control means 58 of the feedback loop via the connection 57.
  • the control means 58 is connected by at least one of its inputs via the connection 59 to the memory 51 and via the connection 49 by means of determining 47 of the operating phase.
  • the control means 58 of the feedback loop is connected by its output to the means 39 for determining the torque setpoints via the connection 60.
  • the purpose of the control device is to gradually increase the speed of rotation of the heat engine without activating its operation. For this, several phases are defined and detected and make it possible to bring the heat engine 1 to a desired rotational speed.
  • the regulation of the powertrain during these phases is carried out either in closed loop or in open loop.
  • the feedback loop includes in particular the observer determination means 44, the operating phase determination means 47, and the control means 41 of the heat engine, and is controlled by the control means 58.
  • the memory 51 comprises in particular Wice values 1, Wice2 and Wice3 bounding three phases of operation. These values are communicated to the determination means 47 of the operating phase by the connection 61.
  • the determination means 47 of the operating phase then compares said values with the observed value of the rotation speed Wice obs of the heat engine from the average determining the observer 44 to determine the current operating phase.
  • a first phase is carried out in an open loop, until the speed of rotation is sufficient to be able to measure said rotational speed.
  • the second phase is performed in a closed loop so as to bring the heat engine to a speed of rotation sufficient to ignite it imperceptibly for the driver, that is to say without jerks or without loss of power noticeable motor.
  • the ignition is carried out during the second phase before the rotation speed reaches the idle speed Wice2.
  • the heat engine is brought to a speed of rotation sufficient for it to contribute to the propulsion of the vehicle. Said rotational speed must also make it possible to limit the risk of stalling the heat engine.
  • the control means 7 receives through the connection 20, the requests of the driver. These requests are transformed into operating instructions by the means 36 for determining the setpoints.
  • a set value of the power passing through the battery Pbat cons is emitted by the connection 37, a set value of the torque to the wheel TO cons is emitted by the connection 38.
  • the means 44 for determining the observer receives by the connection 42 the values of the rotational speeds We I and We2 of the electric machines 2a and 2b, respectively.
  • the means 44 for determining the observer also receives the value of the rotation speed Wice mes of the thermal combustion engine 1 via the connection 43.
  • the means 44 for determining the observer emits, by its outputs, an observed value of the resistant torque.
  • the means 44 for determining the observer also emits at least one of its outputs the observed value of the rotational speed of the engine thermal Wice obs to the means for determining 47 the operating phase by the connection 46.
  • observed value means a value that is estimated indirectly by a calculation means from one or more other measured values.
  • the determining means 47 of the operating phase receives the value of the speed of rotation of the heat engine Wice mes by the connection 18, as well as the values determining the first, second and third phase of operation, Wice 1, Wice 2 and Wice 3 of the memory 51.
  • the phase determining means 47 compares the Wice values Wice2 and Wice3 with the Wice_mes and Wice_obs values.
  • the determining means 47 estimates in which phase the powertrain is located. For this, the value of Wice is compared to Wice values l, Wice2 and Wice3. If Wice ⁇ Wice, then the first phase is detected.
  • the bypass 50 of the connection 49 allows the memory 51 to receive an indication of the current phase in order to transmit a stored value of the speed of rotation of the heat engine Wice mem corresponding to said phase.
  • the memory 51 comprises several stored values of the speed of rotation of the heat engine, corresponding to the different operating phases of said heat engine.
  • the value Wice mem is emitted by the connection 52 to the subtractor 53.
  • the subtractor 53 receives by another of its inputs, the measured value of the speed of rotation of the heat engine Wice mes of the estimation means 12 of the speed of rotation of the heat engine 1.
  • the subtractor 53 emits via the connection 55 a value corresponding to the subtraction of the current value of the stored value.
  • the calculator 56 determines the variable ui by applying the following equation:
  • the variable ui is transmitted by the connection 57 to the control means 58 of the feedback loop.
  • the control means 58 receives from the memory 51 a setpoint ui cons of the variable ui.
  • the connection 49 enables the control means 58 of the feedback loop to receive an indication of the current phase in order to enable it to choose the value of the variable ui to be transmitted by means 39 for determining the torque setpoints.
  • phase indication corresponds to the first phase
  • the setpoint ui cons of the variable ui is chosen. If the phase indication corresponds to the second phase or to a next phase, the value of the variable ui coming from the computer 56 is chosen.
  • the means 39 for determining the torque setpoints estimates the pairs of electrical machines 2a and 2b, respectively Te l and
  • Te2 as well as the Tice thermal engine cut.
  • the calculation to obtain the three pairs differs according to the operating phase of the powertrain.
  • Tdice obs is the observed value of the resistant motor torque In the second phase
  • the system of equations thus defined includes three unknowns for two equations.
  • Tice (max (Tice (Wice3)) + min (Tice (Wice3))) / 2
  • the torque values Te 1, Te 2 and Tice thus described are transmitted towards the corresponding drive members. It should be noted that the torque value of the engine is not sent directly to the engine.
  • a control means 41 of the heat engine receives the torque value Tice and an indication of the current operating phase via the connection 48. Thus, the torque value Tice is transmitted to the heat engine only if the powertrain is found in the third phase of operation. Otherwise, a null instruction is transmitted.
  • the system and the powertrain control method make it possible to control the heat engine of a hybrid powertrain to bring it from a zero rotation speed to a rotation speed sufficient to trigger its start. At an idle speed, the control system brings the engine to a sufficiently high speed of rotation to participate in the propulsion of the vehicle.
  • the control system mainly uses closed loop control so that the rotation speed rise is fast but gradual. Thus, the start of the engine is imperceptible to the driver.

Abstract

The invention relates to a method for controlling a hybrid power unit (21) with power bypass for an automobile comprising at least two driving wheels (3a, 3b), wherein the power unit (21) includes a thermal engine (1), at least two electric machines (2a, 2b), and an infinitely variable transmission (5) mechanically connecting the thermal engine (1) the two electric machines (2a, 2b) and the driving wheels (3a, 3b). In said method, the initially stopped thermal engine (1) is brought, in an independent manner and in several operation phases, to a rotation speed that is sufficient for participating in the propulsion of the vehicle, said vehicle moving under the action of the electric machines (2a, 2b).

Description

Procédé et système de commande d'un groupe motopropulseur à dérivation de puissance Method and system for controlling power train with power bypass
La présente invention concerne les systèmes de propulsion hybride et plus particulièrement la gestion d'un moteur thermique dans un véhicule équipé d'une transmission à variation infinie électrique.The present invention relates to hybrid propulsion systems and more particularly the management of a heat engine in a vehicle equipped with an infinitely variable electric transmission.
Les systèmes de propulsion hybride sont notamment soit de type série, soit de type parallèle. Dans les systèmes de type série, le moteur thermique est en prise directe avec les moteurs électriques, l' ensemble étant relié à un arbre de transmission commun en prise avec les roues motrices. Dans les systèmes de type parallèle, le moteur thermique assure l 'entraînement d'une partie des roues motrices tandis que les moteurs électriques assurent l' entraînement des autres roues motrices. Par exemple, dans le cas d'un véhicule à traction avant, le moteur thermique entraîne généralement le train de roues avant, et les moteurs électriques le train de roues arrières.Hybrid propulsion systems are in particular either of the series type or of the parallel type. In series type systems, the heat engine is in direct contact with the electric motors, the assembly being connected to a common drive shaft engaged with the drive wheels. In parallel type systems, the heat engine drives part of the drive wheels while the electric motors drive the other drive wheels. For example, in the case of a front-wheel drive vehicle, the combustion engine generally drives the front wheelset, and the electric motors the rear wheelset.
Dans la catégorie des systèmes de type série se situe le cas particulier des systèmes ne comprenant pas de système de découplage du moteur thermique avec les moteurs électriques et les roues. Une gestion particulière des différents organes moteurs doit être effectuée pour éviter à-coups et désagréments de conduite.In the category of series type systems is the particular case of systems not including a decoupling system of the engine with electric motors and wheels. A particular management of the different driving organs must be carried out to avoid jolts and inconveniences of driving.
Les demandes de brevet FR2847015 , FR2847014 et FR2847321 décrivent des systèmes de transmission infiniment variable à dérivation de puissance à variateur électrique pouvant comprendre un ou deux trains composés. Les systèmes de transmission décrits comprennent deux voies de puissance sur lesquelles les éléments sont repartis. L 'une des deux voies comprend un étage de réduction et des moyens de commande permettant de réguler la répartition de la puissance entre les deux voies. Ces trois demandes de brevet décrivent des systèmes de transmission comprenant au moins un train composé permettant d' immobiliser au moins une des entrées du système de transmission. Aucune de ces deux demandes ne propose de système permettant un démarrage du moteur thermique lorsque le véhicule roule et sans l'utilisation d'un démarreur.Patent applications FR2847015, FR2847014 and FR2847321 disclose infinitely variable electric drive power-through transmission systems which may comprise one or two compound trains. The described transmission systems comprise two power paths on which the elements are distributed. One of the two channels comprises a reduction stage and control means for regulating the distribution of power between the two channels. These three patent applications describe transmission systems comprising at least one compound train making it possible to immobilize at least one of the inputs of the transmission system. Neither of these two requests proposes a system allowing a start of the engine when the vehicle is running and without the use of a starter.
La demande de brevet JP2000-238555 décrit un système hybride comprenant un moteur thermique et deux moteurs électriques. L'un des deux moteurs électriques est affecté en permanence à la propulsion du véhicule tandis que le second moteur est utilisé principalement pour le démarrage du moteur thermique. Cette demande de brevet décrit également un système de contrôle de l' état de fonctionnement d'un moteur thermique basé sur la détection de la température du moteur, de sa consommation de carburant, des vibrations et des émissions polluantes émises. Ce dispositif de détermination de l 'état de fonctionnement du moteur thermique est limité par l' influence des conditions environnementales sur les différents paramètres analysés ainsi que par les temps et coûts des calculs associés. Le mode de fonctionnement hybride utilise une chaîne cinématique basée sur un découplage entre le moteur thermique et la roue. L 'efficacité d'un tel système est potentiellement limitée.The patent application JP2000-238555 describes a hybrid system comprising a heat engine and two electric motors. One of the two electric motors is permanently assigned to the propulsion of the vehicle while the second engine is used primarily for starting the engine. This patent application also describes a system for controlling the operating state of a heat engine based on the detection of the engine temperature, its fuel consumption, the vibrations and the emitted emissions. This device for determining the operating state of the heat engine is limited by the influence of the environmental conditions on the various parameters analyzed as well as by the times and costs of the associated calculations. The hybrid operating mode uses a kinematic chain based on a decoupling between the engine and the wheel. The effectiveness of such a system is potentially limited.
Les systèmes de propulsion alternatifs sont reconnus comme étant particulièrement efficaces lorsqu' il s ' agit de réduire les émissions de gaz à effet de serre et de polluants. Cependant, même lorsqu' ils sont utilisés dans un mode de fonctionnement majoritairement électrique, les systèmes de propulsion alternatifs, par exemple les groupes motopropulseurs hybrides, conservent le moteur à combustion interne en fonctionnement à basse vitesse de rotation. Pour atteindre un objectif de zéro émission polluante, notamment en fonctionnement urbain, il est intéressant de disposer d'un groupe motopropulseur hybride pouvant fonctionner en mode purement électrique, mais restant capable de réactiver ledit moteur thermique de façon imperceptible pour le conducteur. Si la mise en œuvre d'un tel mode de fonctionnement est plus aisée dans le cas d'une propulsion hybride de type parallèle, il en est tout autre dans le cas d'une propulsion hybride de type série.Alternative propulsion systems are recognized as being particularly effective when it comes to reducing greenhouse gas emissions and pollutants. However, even when used in a predominantly electric mode of operation, alternative propulsion systems, for example hybrid powertrains, keep the internal combustion engine running at low rotational speeds. To achieve a goal of zero pollutant emissions, especially in urban operation, it is advantageous to have a hybrid powertrain that can operate in purely electric mode, but remaining able to reactivate said engine unnoticeably to the driver. If the implementation of such a mode of operation is easier in the case of a parallel-type hybrid propulsion, it is quite different in the case of a hybrid type of propulsion.
En effet, l' absence de découplage du moteur thermique de la transmission dans un système équipé d'une transmission infiniment variable interdit l' arrêt du moteur thermique. En effet, un arrêt impliquerait le blocage de la transmission et une suppression du couple transmis aux roues. Un système permettant de contourner cette limitation est nécessaire ainsi qu'un moyen d' amener le moteur thermique à une vitesse de rotation suffisant pour suppléer les moteurs électriques dans la propulsion du véhicule, de façon autonome.Indeed, the absence of decoupling of the heat engine of the transmission in a system equipped with a transmission infinitely variable prohibits stopping the engine. Indeed, a stop would involve the blocking of the transmission and a suppression of the torque transmitted to the wheels. A system making it possible to circumvent this limitation is necessary as well as a means of bringing the thermal engine to a speed of rotation sufficient to supply the electric motors with the vehicle's propulsion, autonomously.
La présente invention propose un procédé de gestion du moteur thermique dans un véhicule hydride à dérivation de puissance permettant un démarrage dudit moteur alors que seules les machines électriques participent à la propulsion du véhicule.The present invention proposes a method of managing the heat engine in a hybrid hydride power vehicle allowing a starting of said engine while only the electric machines participate in the propulsion of the vehicle.
La présente invention propose également un procédé de gestion du démarrage d'un moteur thermique en plusieurs phases, basé sur la détection du fonctionnement du moteur thermique et améliorant l' agrément de conduite. Un procédé de commande d'un groupe motopropulseur hybride à dérivation de puissance pour un véhicule automobile muni d'au moins deux roues motrices, le groupe motopropulseur comprenant un moteur thermique, au moins deux machines électriques, et une transmission à variation infinie reliant mécaniquement le moteur thermique, les deux machines électriques et les roues motrices.The present invention also proposes a method for managing the startup of a multi-phase thermal engine, based on the detection of the operation of the heat engine and improving driveability. A method of controlling a power drive hybrid power train for a motor vehicle having at least two driving wheels, the power train comprising a heat engine, at least two electric machines, and an infinitely variable transmission mechanically connecting the thermal engine, both electric machines and drive wheels.
Au cours de l' application du procédé de commande, on amène de façon autonome et en plusieurs phases de fonctionnement, le moteur thermique initialement arrêté à une vitesse de rotation suffisante afin de pouvoir participer à la propulsion du véhicule, ledit véhicule étant en mouvement sous l' action des machines électriques.During the application of the control method, the initially stopped thermal engine is brought autonomously and in several phases of operation to a speed of rotation sufficient to participate in the propulsion of the vehicle, said vehicle being in motion under the action of electric machines.
En d' autres termes, le procédé de commande permet d' amener le moteur thermique d'une vitesse de rotation nulle à une vitesse de rotation compatible avec une mise en marche. L ' augmentation de la vitesse de rotation est réalisée par une prise partielle du couple fourni par les machines électriques. Jusqu' à l' allumage, le moteur thermique fournit un couple résistant. Le moteur thermique, après allumage, fournit un couple moteur. Les phases de fonctionnement permettent de tenir compte des différentes vitesses de rotation et des différents couples fournis par le moteur thermique. La mise en rotation du moteur thermique étant assurée par la dérivation d'une partie du couple fourni par les machines électriques, on peut considérer que le démarrage du moteur thermique est réalisé de façon autonome, sans assistance extérieure au véhicule. On peut définir au moins trois phases de fonctionnement en comparant la vitesse de rotation du moteur thermique à au moins une première valeur et une deuxième valeur mémorisées.In other words, the control method makes it possible to bring the thermal engine from a rotation speed of zero to a rotational speed compatible with a start. The increase of the speed of rotation is achieved by a partial catch of the torque provided by the electric machines. Until ignition, the engine provides a resistant torque. The engine, after ignition, provides engine torque. The operating phases make it possible to take into account the different speeds of rotation and the different torques provided by the heat engine. The rotation of the thermal engine being provided by the derivation of a portion of the torque provided by the electrical machines, it can be considered that the start of the engine is performed independently, without assistance outside the vehicle. At least three operating phases can be defined by comparing the rotational speed of the heat engine with at least a first value and a second stored value.
Au cours d'une première phase de fonctionnement définie par une vitesse de rotation du moteur thermique inférieure à la première valeur mémorisée, on peut commander les deux machines électriques en boucle ouverte par rapport à la vitesse de rotation du moteur thermique afin que le moteur thermique atteigne une vitesse de rotation suffisante pour être détectée.During a first operating phase defined by a rotational speed of the thermal engine that is lower than the first stored value, the two electric open-loop machines can be controlled with respect to the speed of rotation of the heat engine so that the heat engine reaches a rotation speed sufficient to be detected.
Au cours d'une deuxième phase de fonctionnement définie par une vitesse de rotation du moteur thermique comprise entre la première valeur mémorisée et la deuxième valeur mémorisée, on peut commander les deux machines électriques en boucle fermée par rapport à la vitesse de rotation du moteur thermique afin que le moteur thermique atteigne une vitesse de rotation suffisante pour permettre la mise en route dudit moteur thermique.During a second operating phase defined by a rotational speed of the heat engine between the first stored value and the second stored value, the two closed loop electric machines can be controlled with respect to the speed of rotation of the heat engine. so that the heat engine reaches a rotational speed sufficient to allow the start of said engine.
Au cours d'une troisième phase de fonctionnement définie par une vitesse de rotation du moteur thermique supérieure à la deuxième valeur mémorisée, on peut commander le moteur thermique et les deux machines électriques en boucle fermée par rapport à la vitesse de rotation du moteur thermique.During a third operating phase defined by a rotational speed of the thermal engine greater than the second stored value, it is possible to control the heat engine and the two electrical machines in a closed loop with respect to the speed of rotation of the heat engine.
Un système de commande d'un groupe motopropulseur hybride à dérivation de puissance pour un véhicule automobile muni d'au moins deux roues motrices, le groupe motopropulseur comprenant un moteur thermique, au moins deux machines électriques, et une transmission à variation infinie reliant mécaniquement le moteur thermique, les deux machines électriques et les roues motrices, le véhicule étant par ailleurs équipé d'un moyen de commande électronique. Le moyen de commande électronique comprend un moyen d' estimation de vitesse de rotation situé sur l' arbre de sortie du moteur thermique, un moyen de détermination indirecte émettant des valeurs de la vitesse de rotation du moteur thermique, du couple résistant à la roue et du couple résistant du moteur thermique en fonction des régimes de rotation des machines électriques et du moteur thermique, un moyen de détermination des consignes de couple du moteur thermique et des machines électriques, un moyen de détermination de la phase de fonctionnement en fonction de la vitesse de rotation du moteur thermique, une boucle de rétroaction permettant de commander le moteur thermique, et un moyen de pilotage de la boucle de rétroaction permettant de désactiver ladite boucle de rétroaction en fonction de la phase de fonctionnement courante.A control system of a hybrid powertrain with power bypass for a motor vehicle equipped with at least two driving wheels, the power train comprising a heat engine, at least two electric machines, and an infinitely variable transmission mechanically connecting the engine, the two electric machines and the driving wheels, the vehicle being furthermore equipped with an electronic control means. The electronic control means comprises a rotational speed estimation means located on the output shaft of the heat engine, an indirect determination means emitting values of the rotational speed of the heat engine, the wheel-resistant torque and the load torque of the heat engine. according to the rotational speeds of the electrical machines and the heat engine, a means for determining the torque setpoints of the heat engine and the electric machines, a means for determining the operating phase as a function of the speed of rotation of the heat engine, a feedback loop for controlling the heat engine, and a control means of the feedback loop for disabling said feedback loop according to the current operating phase.
Dans un système de commande comprenant une interface entre le conducteur et le véhicule, le moyen de détermination des consignes de couple peut émettre les valeurs des consignes de couple des machines électriques et du moteur thermique en fonction des requêtes du conducteur provenant de l'interface entre le conducteur et le véhicule, du couple résistant du moteur thermique et du couple résistant à la roue.In a control system comprising an interface between the driver and the vehicle, the means for determining the torque setpoints can transmit the values of the torque setpoints of the electrical machines and of the engine according to the requests of the driver coming from the interface between the driver and the vehicle, the resistant torque of the engine and the wheel-resistant torque.
Dans un système de commande comprenant une mémoire, le moyen de détermination de phase de fonctionnement peut recevoir le signal émis par le moyen d'estimation de la vitesse de rotation du moteur thermique et un signal provenant de la mémoire et émet en sortie une indication de la phase de fonctionnement courante.In a control system comprising a memory, the operation phase determining means can receive the signal emitted by the thermal motor rotation speed estimation means and a signal from the memory and output an indication of the current operating phase.
Dans un système de commande comprenant un moyen de commande du moteur thermique, ledit moyen de commande peut émettre un signal déclenchant la mise en route du moteur thermique en fonction du signal reçu du moyen de détermination de phase.In a control system comprising a control means of the thermal engine, said control means can emit a signal triggering the starting of the engine according to the signal received from the phase determining means.
D ' autres buts, caractéristiques et avantages apparaîtront à la lecture de la description suivante donnée uniquement en tant qu' exemple non limitatif et faite en référence aux dessins annexés sur lesquels :Other purposes, features and advantages will be apparent from reading the following description given only as a that non-limiting example and made with reference to the accompanying drawings in which:
-la figure 1 illustre les principaux éléments d'un système de commande permettant de démarrer un moteur thermique en roulant ; et - la figure 2 illustre les principales étapes d'un procédé de commande permettant de démarrer un moteur thermique en roulant.FIG 1 shows the main elements of a control system for starting a heat engine while driving; and FIG. 2 illustrates the main steps of a control method for starting a thermal engine while driving.
Sur la figure 1 , on peut voir les principaux organes d'un véhicule équipé d'une transmission à dérivation de puissance 5 , d'un groupe motopropulseur 21 et d'un système de commande 7. Le véhicule comprend un moteur thermique 1 , deux machines électriquesIn Figure 1, we can see the main bodies of a vehicle equipped with a power transmission bypass 5, a powertrain 21 and a control system 7. The vehicle comprises a heat engine 1, two electric machine
2a et 2b, des roues motrices 3 a et 3b, une batterie 4 et une transmission à variation infinie 5.2a and 2b, drive wheels 3a and 3b, a battery 4 and an infinitely variable transmission 5.
Le moteur thermique 1 est relié mécaniquement à la transmission à variation infinie 5 par la connexion 14 en vue d'une transmission de couple. La transmission à variation infinie 5 est reliée mécaniquement à une première machine électrique 2a par la liaison 15a, à une deuxième machine électrique 2b par la liaison 15b et aux roues 3a et 3b par une liaison mécanique 16 et un système de répartition de couple. Les machines électriques 2a et 2b sont reliées à la batterie 4 par les connexions électriques 13a et 13b respectivement.The heat engine 1 is mechanically connected to the infinitely variable transmission 5 by the connection 14 for the purpose of torque transmission. The infinitely variable transmission 5 is mechanically connected to a first electrical machine 2a by the link 15a, to a second electric machine 2b by the link 15b and to the wheels 3a and 3b by a mechanical link 16 and a torque distribution system. The electrical machines 2a and 2b are connected to the battery 4 by the electrical connections 13a and 13b respectively.
Le moteur thermique 1 est équipé d'un moyen d' estimation 12 de la vitesse de rotation.The heat engine 1 is equipped with a means 12 for estimating the speed of rotation.
La transmission à variation infinie 5 assure la dérivation et la régulation de la puissance fournie par le moteur thermique 1. Les deux machines électriques 2a et 2b fonctionnent indépendamment l'une de l' autre et permettent soit de fournir un couple complémentaire à celui fourni par le moteur thermique 1 , soit de fournir un couple résistif se soustrayant à celui fourni par le moteur thermique 1 , la puissance soustraite étant transformée en énergie électrique de façon récupérative. On peut ainsi balayer une gamme continue de puissance motrice sans changer la puissance fournie par le moteur thermique 1.The infinitely variable transmission 5 ensures the derivation and regulation of the power supplied by the heat engine 1. The two electric machines 2a and 2b operate independently of one another and allow either to provide a torque complementary to that provided by the heat engine 1, that is to provide a resistive torque subtracting that provided by the heat engine 1, the subtracted power being transformed into electrical energy recuperatively. It is thus possible to scan a continuous range of motive power without changing the power supplied by the heat engine 1.
Le moyen de commande 7 est relié au moteur thermique 1 par la connexion 8, à la machine électrique 2a par les connexions 9a et 42, à la machine électrique 2b par les connexions 9b et 42b et au moyen d' estimation 12 de la vitesse de rotation par la connexion 18. Le moyen de commande 7 est également relié à une interface 19 entre le conducteur et le véhicule par la connexion 20 par laquelle le conducteur peut exprimer des requêtes de fonctionnement ou recevoir des informations.The control means 7 is connected to the heat engine 1 by the connection 8, to the electric machine 2a through the connections 9a and 42, to the electric machine 2b by the connections 9b and 42b and by means the control means 7 is also connected to an interface 19 between the driver and the vehicle via the connection 20 through which the driver can express operating requests or receive information. .
Le moyen de commande 7 vérifie la vitesse de rotation du moteur thermique 1 et commande l' injection et l 'allumage dudit moteur thermique par l' intermédiaire de la connexion 8. Le moyen de commande 7 reçoit de l' interface 19 les requêtes du conducteur. Les éléments compris dans le moyen de commande 7 sont représentés sur la figure 2. Le moyen de commande 7 est relié à l' interface 19 avec le conducteur par la connexion 20. La connexion 20 se poursuit jusqu' au moyen de détermination 36 des consignes, lui- même relié par les connexions 37 et 38 au moyen 39 de détermination des consignes de couple. Le moyen 39 de détermination des consignes de couple est connecté par au moins une de ses entrées au moyen 44 de détermination de l' observateur par la connexion 45 et par la connexion 60 au moyen de pilotage 58 de la boucle de rétroaction. Le moyen de détermination 39 des consignes de couple est connecté par la connexion 9a à la machine électrique 2a, par la connexion 9b à la machine électrique 2b et par la connexion 40 au moyen de commande 41 du moteur thermique.The control means 7 checks the rotational speed of the heat engine 1 and controls the injection and ignition of said heat engine via the connection 8. The control means 7 receives from the interface 19 the driver's requests. . The elements included in the control means 7 are shown in FIG. 2. The control means 7 is connected to the interface 19 with the conductor via the connection 20. The connection 20 continues until the means 36 for determining the instructions , itself connected by the connections 37 and 38 to the means 39 for determining the torque setpoints. The means 39 for determining the torque setpoints is connected by at least one of its inputs to the means 44 for determining the observer by the connection 45 and by the connection 60 to the control means 58 of the feedback loop. The means 39 for determining the torque setpoints is connected by the connection 9a to the electric machine 2a, via the connection 9b to the electric machine 2b and via the connection 40 to the control means 41 of the heat engine.
Le moyen de détermination 44 de l' observateur est relié par ses entrées aux machines électriques 2a et 2b par la connexion 42 et la dérivation 42b, respectivement. Le moyen de détermination 44 est relié par la dérivation 43 de la connexion 18 au moyen d'estimation 12 de la vitesse de rotation du moteur thermique 1 et par au moins une de ses sorties au moyen de détermination 47 de la phase de fonctionnement par la connexion 46. Le moyen de détermination 47 de la phase de fonctionnement est relié par la connexion 18 au moyen d' estimation 12 de la vitesse de rotation du moteur thermique 1 , par au moins une de ses sorties au moyen de contrôle 41 du moteur thermique par la connexion 48, au moyen de pilotage 58 de la boucle de rétroaction par la connexion 49 et à la mémoire 51 par la dérivation 50 de la connexion 49. Le moyen de détermination 47 de la phase de fonctionnement est relié par une de ses entrées à la mémoire 51 par l' intermédiaire de la connexion 61 .The observer determination means 44 is connected via its inputs to the electrical machines 2a and 2b through the connection 42 and the branch 42b, respectively. The determining means 44 is connected by the bypass 43 of the connection 18 to the estimation means 12 of the rotational speed of the heat engine 1 and by at least one of its outputs by means of determination 47 of the operating phase by the connection 46. The determination means 47 of the operating phase is connected by the connection 18 to the estimation means 12 of the speed of rotation of the heat engine 1, by at least one of its outputs to the control means 41 of the engine by the connection 48, by means of control 58 of the feedback loop by the connection 49 and the memory 51 by the bypass 50 of the connection 49. The determining means 47 of the operating phase is connected by one of its inputs to the memory 51 via the connection 61.
La mémoire 51 est connectée par la connexion 52 au soustracteur 53 , lui-même connecté au calculateur 56 par la connexionThe memory 51 is connected by the connection 52 to the subtractor 53, itself connected to the computer 56 by the connection
55. Le soustracteur 53 est connecté au moyen d' estimation 12 de la vitesse de rotation du moteur thermique 1 par la dérivation 54 de la connexion 18.55. The subtractor 53 is connected to the estimation means 12 of the speed of rotation of the heat engine 1 by the bypass 54 of the connection 18.
Le calculateur 56 est relié au moyen de pilotage 58 de la boucle de rétroaction par la connexion 57. Le moyen de pilotage 58 est connecté par au moins une de ses entrée par la connexion 59 à la mémoire 51 et par la connexion 49 au moyen de détermination 47 de la phase de fonctionnement. Le moyen de pilotage 58 de la boucle de rétroaction est relié par sa sortie au moyen 39 de détermination des consignes de couple par la connexion 60.The computer 56 is connected to the control means 58 of the feedback loop via the connection 57. The control means 58 is connected by at least one of its inputs via the connection 59 to the memory 51 and via the connection 49 by means of determining 47 of the operating phase. The control means 58 of the feedback loop is connected by its output to the means 39 for determining the torque setpoints via the connection 60.
Le dispositif de commande a pour but d' élever progressivement la vitesse de rotation du moteur thermique sans en activer le fonctionnement. Pour cela, plusieurs phases sont définies et détectées et permettent d' amener le moteur thermique 1 à une vitesse de rotation souhaitée. La régulation du groupe motopropulseur au cours de ces phases est réalisée soit en boucle fermée, soit en boucle ouverte. La boucle de rétroaction comprend notamment le moyen de détermination 44 de l' observateur, le moyen de détermination 47 de la phase de fonctionnement, et le moyen de commande 41 du moteur thermique, et est commandée par le moyen de pilotage 58.The purpose of the control device is to gradually increase the speed of rotation of the heat engine without activating its operation. For this, several phases are defined and detected and make it possible to bring the heat engine 1 to a desired rotational speed. The regulation of the powertrain during these phases is carried out either in closed loop or in open loop. The feedback loop includes in particular the observer determination means 44, the operating phase determination means 47, and the control means 41 of the heat engine, and is controlled by the control means 58.
La mémoire 51 comprend notamment des valeurs Wice l , Wice2 et Wice3 bornant trois phases de fonctionnement. Ces valeurs sont communiquées au moyen de détermination 47 de la phase de fonctionnement par la connexion 61. Le moyen de détermination 47 de la phase de fonctionnement compare alors lesdites valeurs à la valeur observée de la vitesse de rotation Wice obs du moteur thermique issue du moyen de détermination de l' observateur 44 afin de déterminer la phase de fonctionnement courante. Une première phase est réalisée en boucle ouverte, jusqu' à ce que la vitesse de rotation soit suffisante pour pouvoir mesurer la dite vitesse de rotation. La deuxième phase est réalisée en boucle fermée de façon à amener le moteur thermique à une vitesse de rotation suffisante pour en réaliser l' allumage de façon imperceptible pour le conducteur, c'est-à-dire sans à-coups ou sans perte de puissance motrice notable. L' allumage est réalisé au cours de la deuxième phase avant que la vitesse de rotation n' atteigne le régime de ralenti Wice2.The memory 51 comprises in particular Wice values 1, Wice2 and Wice3 bounding three phases of operation. These values are communicated to the determination means 47 of the operating phase by the connection 61. The determination means 47 of the operating phase then compares said values with the observed value of the rotation speed Wice obs of the heat engine from the average determining the observer 44 to determine the current operating phase. A first phase is carried out in an open loop, until the speed of rotation is sufficient to be able to measure said rotational speed. The second phase is performed in a closed loop so as to bring the heat engine to a speed of rotation sufficient to ignite it imperceptibly for the driver, that is to say without jerks or without loss of power noticeable motor. The ignition is carried out during the second phase before the rotation speed reaches the idle speed Wice2.
Lors de la troisième phase, le moteur thermique est amené à une vitesse de rotation suffisante pour qu' il puisse contribuer à la propulsion du véhicule. Ladite vitesse de rotation doit également permettre de limiter les risques de calage du moteur thermique.During the third phase, the heat engine is brought to a speed of rotation sufficient for it to contribute to the propulsion of the vehicle. Said rotational speed must also make it possible to limit the risk of stalling the heat engine.
En fonctionnement, le moyen de commande 7 reçoit par la connexion 20, les requêtes du conducteur. Ces requêtes sont transformées en consignes de fonctionnement par le moyen de détermination 36 des consignes. Une valeur de consigne de la puissance transitant par la batterie Pbat cons est émise par la connexion 37, une valeur de consigne du couple à la roue TO cons est émise par la connexion 38. Le moyen 44 de détermination de l' observateur reçoit par la connexion 42 les valeurs des vitesses de rotation We I et We2 des machines électriques 2a et 2b, respectivement. Le moyen 44 de détermination de l' observateur reçoit également la valeur de la vitesse de rotation Wice mes du moteur à combustion thermique 1 par la connexion 43. Le moyen 44 de détermination de l' observateur émet par ses sorties une valeur observée du couple résistant à la roue Tdwh obs et une valeur observée du couple résistant du moteur thermique Tdice obs par la connexion 45. Le moyen 44 de détermination de l' observateur émet également par au moins une de ses sorties la valeur observée de la vitesse de rotation du moteur thermique Wice obs à destination du moyen de détermination 47 de la phase de fonctionnement par la connexion 46. Par valeur observée, on entend une valeur qui est estimée indirectement par un moyen de calcul à partir d'une ou plusieurs autres valeurs mesurées. Le moyen de détermination 47 de la phase de fonctionnement reçoit la valeur de la vitesse de rotation du moteur thermique Wice mes par la connexion 18 , ainsi que les valeurs déterminant la première, deuxième et troisième phase de fonctionnement, Wice l , Wice2 et Wice3 de la mémoire 51 . Le moyen de détermination 47 de la phase compare les valeurs Wice l Wice2 et Wice3 et les valeurs Wice_mes et Wice_obs.In operation, the control means 7 receives through the connection 20, the requests of the driver. These requests are transformed into operating instructions by the means 36 for determining the setpoints. A set value of the power passing through the battery Pbat cons is emitted by the connection 37, a set value of the torque to the wheel TO cons is emitted by the connection 38. The means 44 for determining the observer receives by the connection 42 the values of the rotational speeds We I and We2 of the electric machines 2a and 2b, respectively. The means 44 for determining the observer also receives the value of the rotation speed Wice mes of the thermal combustion engine 1 via the connection 43. The means 44 for determining the observer emits, by its outputs, an observed value of the resistant torque. at the wheel Tdwh obs and an observed value of the resistive torque of the engine Tdice obs by the connection 45. The means 44 for determining the observer also emits at least one of its outputs the observed value of the rotational speed of the engine thermal Wice obs to the means for determining 47 the operating phase by the connection 46. By observed value means a value that is estimated indirectly by a calculation means from one or more other measured values. The determining means 47 of the operating phase receives the value of the speed of rotation of the heat engine Wice mes by the connection 18, as well as the values determining the first, second and third phase of operation, Wice 1, Wice 2 and Wice 3 of the memory 51. The phase determining means 47 compares the Wice values Wice2 and Wice3 with the Wice_mes and Wice_obs values.
Dans un premier temps, le moyen de détermination 47 estime la valeur à considérer parmi Wice obs et Wice mes. Si Wice_obs<Wice l , alors Wice = Wice obsIn a first step, the determining means 47 estimates the value to be considered among Wice obs and Wice mes. If Wice_obs <Wice l, then Wice = Wice obs
Si Wice_obs>Wice l , alors Wice = Wice_mes Dans un deuxième temps, le moyen de détermination 47 estime dans quelle phase le groupe motopropulseur se trouve. Pour cela, la valeur de Wice est comparée aux valeurs Wice l , Wice2 et Wice3. Si Wice l < Wice, alors la première phase est détectée.If Wice_obs> Wice 1, then Wice = Wice_mes In a second step, the determining means 47 estimates in which phase the powertrain is located. For this, the value of Wice is compared to Wice values l, Wice2 and Wice3. If Wice <Wice, then the first phase is detected.
Si Wice2 > Wice > Wice l , alors la deuxième phase est détectée.If Wice2> Wice> Wice l, then the second phase is detected.
Si Wice3 > Wice > Wice2, alors la troisième phase est détectée. En fonction de la phase détectée, un signal correspondant est émis par la connexion 49.If Wice3> Wice> Wice2, then the third phase is detected. Depending on the phase detected, a corresponding signal is emitted by the connection 49.
En parallèle, la dérivation 50 de la connexion 49 permet à la mémoire 51 de recevoir une indication de la phase actuelle afin d' émettre une valeur mémorisée de la vitesse de rotation du moteur thermique Wice mem correspondant à ladite phase. La mémoire 51 comprend plusieurs valeurs mémorisées de la vitesse de rotation du moteur thermique, correspondant aux différentes phases de fonctionnement dudit moteur thermique. La valeur Wice mem est émise par la connexion 52 à destination du soustracteur 53. Le soustracteur 53 reçoit par une autre de ses entrées, la valeur mesurée de la vitesse de rotation du moteur thermique Wice mes du moyen d' estimation 12 de la vitesse de rotation du moteur thermique 1. Le soustracteur 53 émet par la connexion 55 une valeur correspondante à la soustraction de la valeur courante de la valeur mémorisée. Le calculateur 56 détermine la variable ui en appliquant l' équation suivante :In parallel, the bypass 50 of the connection 49 allows the memory 51 to receive an indication of the current phase in order to transmit a stored value of the speed of rotation of the heat engine Wice mem corresponding to said phase. The memory 51 comprises several stored values of the speed of rotation of the heat engine, corresponding to the different operating phases of said heat engine. The value Wice mem is emitted by the connection 52 to the subtractor 53. The subtractor 53 receives by another of its inputs, the measured value of the speed of rotation of the heat engine Wice mes of the estimation means 12 of the speed of rotation of the heat engine 1. The subtractor 53 emits via the connection 55 a value corresponding to the subtraction of the current value of the stored value. The calculator 56 determines the variable ui by applying the following equation:
-lors de la phase 2 : ui = -K2 • (Wice_obs - Wice2) et K2 = une constante déterminée en laboratoire-in phase 2: ui = -K 2 • (Wice_obs - Wice2) and K 2 = a determined constant in the laboratory
-lors de la phase 3 : ui = -K3 • (Wice_obs - Wice3) et K3 = une constante déterminée en laboratoire-in phase 3: ui = -K 3 • (Wice_obs - Wice3) and K 3 = a determined constant in the laboratory
La variable ui est transmise par la connexion 57 vers le moyen de pilotage 58 de la boucle de rétroaction. Le moyen de pilotage 58 reçoit de la mémoire 51 , une valeur de consigne ui cons de la variable ui. La connexion 49 permet au moyen de pilotage 58 de la boucle de rétroaction de recevoir une indication de la phase actuelle afin de lui permettre de choisir la valeur de la variable ui à transmettre au moyen 39 de détermination des consignes de couple.The variable ui is transmitted by the connection 57 to the control means 58 of the feedback loop. The control means 58 receives from the memory 51 a setpoint ui cons of the variable ui. The connection 49 enables the control means 58 of the feedback loop to receive an indication of the current phase in order to enable it to choose the value of the variable ui to be transmitted by means 39 for determining the torque setpoints.
Si l' indication de phase correspond à la première phase, la valeur de consigne ui cons de la variable ui est choisie. Si l 'indication de phase correspond à la deuxième phase ou à une phase suivante, la valeur de la variable ui provenant du calculateur 56 est choisie.If the phase indication corresponds to the first phase, the setpoint ui cons of the variable ui is chosen. If the phase indication corresponds to the second phase or to a next phase, the value of the variable ui coming from the computer 56 is chosen.
Le moyen 39 de détermination des consignes de couple estime les couples des machines électriques 2a et 2b, respectivement Te l etThe means 39 for determining the torque setpoints estimates the pairs of electrical machines 2a and 2b, respectively Te l and
Te2 ainsi que le coupe du moteur thermique Tice. Le calcul permettant d' obtenir les trois couples diffère selon la phase de fonctionnement du groupe motopropulseur.Te2 as well as the Tice thermal engine cut. The calculation to obtain the three pairs differs according to the operating phase of the powertrain.
Lors de la première phase,In the first phase,
[ ui cons = Tice obs - a • Tel - b • Te2 - c • Tdwh obs [TO cons = α • Tel + β • Te2 + γ • Tdice obs + Tdwh obs où a,b,c,α,β,γ sont des paramètres physiques connus et dépendant de la transmission.[ui cons = Tice obs - a • Tel - b • Te2 - c • Tdwh obs [TO cons = α • Tel + β • Te2 + γ • Tdice obs + Tdwh obs where a, b, c, α, β, γ are known physical parameters and dependent on the transmission.
Tdice obs est la valeur observée du couple moteur résistant Lors de la deuxième phase,Tdice obs is the observed value of the resistant motor torque In the second phase,
fui = Tice obs - a • Tel - b • Te2 - c • Tdwh obs [TO cons = α • Tel + β • Te2 + γ • Tdice obs + Tdwh obs avec ui = -K2 • (Wice_obs - Wice2) et K2 = une constante déterminée en laboratoirefui = Tice obs - a • Tel - b • Te2 - c • Tdwh obs [TO cons = α • Tel + β • Te2 + γ • Tdice obs + Tdwh obs with ui = -K 2 • (Wice_obs - Wice2) and K 2 = a determined constant in the laboratory
Lors de la troisième phase,In the third phase,
fui = a • Tel + b • Te2 + c • Tice + d • Tdwh_obs [TO cons = α • Tel + β • Te2 + γ • Tice + δ • Tdwh obs avec δ un autre paramètre physique connu et dépendant de la transmission ui = -K3 • (Wice_obs - Wice3) etfui = a • Tel + b • Te2 + c • Tice + d • Tdwh_obs [TO cons = α • Tel + β • Te2 + γ • Tice + δ • Tdwh obs with δ another known physical parameter and depending on the transmission ui = -K 3 • (Wice_obs - Wice3) and
K3 = une constante déterminée en laboratoireK 3 = a determined constant in the laboratory
II est à noter que lors de la troisième phase, le moteur est actif et commandable. Le couple résistant Tdice obs est donc remplacé par le couple moteur Tice.It should be noted that during the third phase, the engine is active and controllable. The resistor torque Tdice obs is therefore replaced by the motor torque Tice.
Le système d' équations ainsi défini comprend trois inconnues pour deux équations. Afin de déterminer la troisième inconnue, on pose un couple du moteur thermique arbitraire, par exempleThe system of equations thus defined includes three unknowns for two equations. In order to determine the third unknown, we put a torque of the arbitrary thermal engine, for example
Tice = (max(Tice(Wice3))+min(Tice(Wice3)))/2Tice = (max (Tice (Wice3)) + min (Tice (Wice3))) / 2
Les valeurs de couple Te l , Te2 et Tice ainsi décrites sont émises en direction des organes moteurs correspondant. Il est à noter que la valeur de couple du moteur thermique n' est pas émise directement vers le moteur thermique. Un moyen de commande 41 du moteur thermique reçoit la valeur du couple Tice ainsi qu'une indication de la phase de fonctionnement courante par la connexion 48. Ainsi, la valeur de couple Tice n' est transmise au moteur thermique que si le groupe motopropulseur se trouve dans la troisième phase de fonctionnement. Sinon, une consigne nulle est transmise.The torque values Te 1, Te 2 and Tice thus described are transmitted towards the corresponding drive members. It should be noted that the torque value of the engine is not sent directly to the engine. A control means 41 of the heat engine receives the torque value Tice and an indication of the current operating phase via the connection 48. Thus, the torque value Tice is transmitted to the heat engine only if the powertrain is found in the third phase of operation. Otherwise, a null instruction is transmitted.
Le système et le procédé de commande du groupe motopropulseur permettent de commander le moteur thermique d'un groupe motopropulseur hybride afin de l' amener d'une vitesse de rotation nulle à une vitesse de rotation suffisante pour déclencher sa mise en route. D 'un régime de ralenti, le système de commande amène le moteur thermique à une vitesse de rotation suffisamment élevée pour pouvoir participer à la propulsion du véhicule.The system and the powertrain control method make it possible to control the heat engine of a hybrid powertrain to bring it from a zero rotation speed to a rotation speed sufficient to trigger its start. At an idle speed, the control system brings the engine to a sufficiently high speed of rotation to participate in the propulsion of the vehicle.
Le système de commande utilise principalement une commande en boucle fermée de façon à ce que l' élévation de vitesse de rotation soit rapide mais progressive. Ainsi, la mise en marche du moteur thermique est imperceptible pour le conducteur. The control system mainly uses closed loop control so that the rotation speed rise is fast but gradual. Thus, the start of the engine is imperceptible to the driver.

Claims

REVENDICATIONS
1. Procédé de commande d'un groupe motopropulseur hybride à dérivation de puissance pour un véhicule automobile muni d' au moins deux roues motrices (3a, 3b), le groupe motopropulseur (21 ) comprenant un moteur thermique ( 1 ), au moins deux machines électriques (2a, 2b), et une transmission (5) à variation infinie reliant mécaniquement le moteur thermique ( 1 ), les deux machines électriques (2a, 2b) et les roues motrices (3 a, 3b), caractérisé par le fait que l' on amène, de façon autonome et en plusieurs phases de fonctionnement, le moteur thermique ( 1 ) initialement arrêté à une vitesse de rotation suffisante afin de pouvoir participer à la propulsion du véhicule, ledit véhicule étant en mouvement sous l' action des machines électriques (2a, 2b), et caractérisé en outre par le fait qu' au cours d'une première phase de fonctionnement définie par une vitesse de rotation du moteur thermique inférieure à une première valeur mémorisée, on commande les deux machines électriques (2a, 2b) en boucle ouverte par rapport à la vitesse de rotation du moteur thermique ( 1 ) afin que le moteur thermique ( 1 ) atteigne une vitesse de rotation suffisante pour être détectée.A method of controlling a power drive hybrid power train for a motor vehicle having at least two driving wheels (3a, 3b), the power train (21) comprising a heat engine (1), at least two electric machines (2a, 2b), and an infinitely variable transmission (5) mechanically connecting the heat engine (1), the two electric machines (2a, 2b) and the drive wheels (3 a, 3b), characterized in that to bring, independently and in several operating phases, the heat engine (1) initially stopped at a sufficient rotational speed in order to be able to participate in the propulsion of the vehicle, said vehicle being in motion under the action of the electrical machines (2a, 2b), and further characterized in that during a first operating phase defined by a rotational speed of the thermal engine less than a first stored value, both are controlled electric machines (2a, 2b) in open loop relative to the rotational speed of the heat engine (1) so that the heat engine (1) reaches a rotational speed sufficient to be detected.
2. Procédé de commande selon la revendication principale dans lequel on définit au moins trois phases de fonctionnement en comparant la vitesse de rotation du moteur thermique à au moins une première valeur et une deuxième valeur mémorisées.2. Control method according to the main claim wherein is defined at least three operating phases by comparing the rotational speed of the engine to at least a first value and a second stored value.
3. Procédé de commande selon la revendication 2 dans lequel au cours d'une deuxième phase de fonctionnement définie par une vitesse de rotation du moteur thermique comprise entre la première valeur mémorisée et la deuxième valeur mémorisée, on commande les deux machines électriques (2a, 2b) en boucle fermée par rapport à la vitesse de rotation du moteur thermique ( 1 ) afin que le moteur thermique ( 1 ) atteigne une vitesse de rotation suffisante pour permettre la mise en route dudit moteur thermique (1 ). 3. Control method according to claim 2 wherein during a second phase of operation defined by a speed of rotation of the engine between the first stored value and the second stored value, the two electrical machines (2a, 2b) in a closed loop with respect to the speed of rotation of the heat engine (1) so that the heat engine (1) reaches a rotational speed sufficient to allow the start of said heat engine (1).
4. Procédé de commande selon la revendication 2, dans lequel au cours d'une troisième phase de fonctionnement définie par une vitesse de rotation du moteur thermique supérieure à la deuxième valeur mémorisée, on commande le moteur thermique ( 1 ) et les deux machines électriques (2a, 2b) en boucle fermée par rapport à la vitesse de rotation du moteur thermique ( 1 ).4. A control method according to claim 2, wherein during a third operating phase defined by a rotational speed of the engine greater than the second stored value, the engine is controlled (1) and the two electrical machines (2a, 2b) closed loop with respect to the rotational speed of the heat engine (1).
5. Système de commande d'un groupe motopropulseur hybride à dérivation de puissance pour un véhicule automobile muni d'au moins deux roues motrices (3 a, 3b), le groupe motopropulseur (21 ) comprenant un moteur thermique ( 1 ), au moins deux machines électriques (2a, 2b), et une transmission (5) à variation infinie reliant mécaniquement le moteur thermique ( 1 ), les deux machines électriques (2a, 2b) et les roues motrices (3a, 3b), le véhicule étant par ailleurs équipé d'un moyen de commande électronique (7) caractérisé par le fait que le moyen de commande électronique5. Control system of a hybrid powertrain with power bypass for a motor vehicle equipped with at least two driving wheels (3 a, 3b), the power train (21) comprising a heat engine (1), at least two electric machines (2a, 2b), and an infinitely variable transmission (5) mechanically connecting the heat engine (1), the two electric machines (2a, 2b) and the drive wheels (3a, 3b), the vehicle being elsewhere equipped with an electronic control means (7) characterized in that the electronic control means
(7) comprend un moyen d' estimation ( 12) de vitesse de rotation situé sur l' arbre de sortie ( 14) du moteur thermique ( 1 ), un moyen de détermination indirecte (44) émettant des valeurs de la vitesse de rotation du moteur thermique ( 1 ), du couple résistant à la roue et du couple résistant du moteur thermique ( 1 ) en fonction des régimes de rotation des machines électriques (2a, 2b) et du moteur thermique ( 1 ), un moyen de détermination (39) des consignes de couple du moteur thermique ( 1 ) et des machines électriques (2a, 2b), un moyen de détermination (47) de la phase de fonctionnement en fonction de la vitesse de rotation du moteur thermique ( 1 ), une boucle de rétroaction permettant de commander le moteur thermique ( 1 ), et un moyen de pilotage (58) de la boucle de rétroaction permettant de désactiver ladite boucle de rétroaction en fonction de la phase de fonctionnement courante.(7) comprises a rotational speed estimation means (12) located on the output shaft (14) of the heat engine (1), an indirect determination means (44) emitting rotational speed values of the the heat-resistant motor (1), the wheel-resistant torque and the load torque of the heat engine (1) according to the rotational speeds of the electric machines (2a, 2b) and the heat engine (1), a determining means (39) ) torque setpoints of the heat engine (1) and the electric machines (2a, 2b), a means (47) for determining the operating phase as a function of the speed of rotation of the heat engine (1), a feedback for controlling the heat engine (1), and control means (58) of the feedback loop for disabling said feedback loop according to the current operating phase.
6. Système de commande selon la revendication 5 comprenant une interface ( 19) entre le conducteur et le véhicule, le moyen de détermination (39) des consignes de couple émettant les valeurs des consignes de couple des machines électriques et du moteur thermique en fonction des requêtes du conducteur provenant de l' interface ( 19) entre le conducteur et le véhicule, du couple résistant du moteur thermique ( 1 ) et du couple résistant à la roue.6. Control system according to claim 5 comprising an interface (19) between the driver and the vehicle, the means of determination (39) of the torque setpoints transmitting the values of the torque setpoints of the electrical machines and of the engine according to the driver 's requests from the interface (19) between the driver and the vehicle, the resistive torque of the heat engine ( 1) and the wheel-resistant torque.
7. Système de commande selon l'une des revendications 5 ou 6, comprenant une mémoire (51 ), le moyen (47) de détermination de phase de fonctionnement reçoit le signal émis par le moyen d' estimation (12) de la vitesse de rotation du moteur thermique ( 1 ) et un signal provenant de la mémoire (51 ) et émet en sortie une indication de la phase de fonctionnement courante.7. Control system according to one of claims 5 or 6, comprising a memory (51), the means (47) for determining the operating phase receives the signal transmitted by the estimation means (12) of the speed of rotating the heat engine (1) and a signal from the memory (51) and outputting an indication of the current operating phase.
8. Système de commande selon la revendication 7 comprenant un moyen de commande (41 ) du moteur thermique ( 1 ) émettant un signal déclenchant la mise en route du moteur thermique ( 1 ) en fonction du signal reçu du moyen (47) de détermination de phase de fonctionnement. 8. Control system according to claim 7 comprising a control means (41) of the heat engine (1) emitting a signal triggering the start of the engine (1) according to the signal received from the means (47) for determining the phase of operation.
EP08840293A 2007-10-18 2008-09-30 Method and system for controlling a power unit with power bypass Withdrawn EP2197724A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0758413A FR2922505B1 (en) 2007-10-18 2007-10-18 METHOD AND SYSTEM FOR CONTROLLING POWER-DERIVING MOTOR POWER PUMPS
PCT/FR2008/051747 WO2009050402A2 (en) 2007-10-18 2008-09-30 Method and system for controlling a power unit with power bypass

Publications (1)

Publication Number Publication Date
EP2197724A2 true EP2197724A2 (en) 2010-06-23

Family

ID=39431106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08840293A Withdrawn EP2197724A2 (en) 2007-10-18 2008-09-30 Method and system for controlling a power unit with power bypass

Country Status (5)

Country Link
US (1) US8457822B2 (en)
EP (1) EP2197724A2 (en)
JP (1) JP5514113B2 (en)
FR (1) FR2922505B1 (en)
WO (1) WO2009050402A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904366B1 (en) * 2006-07-25 2008-10-03 Valeo Sys Controle Moteur Sas THERMAL MOTOR WITH COMBUSTION CHAMBER DEACTIVATION AND COMPENSATION OF THE BALANCING PRODUCTS AND CORRESPONDING DEACTIVATION SYSTEMS
JP2012524206A (en) * 2009-04-17 2012-10-11 ユニフラックス ワン リミテッド ライアビリティ カンパニー Exhaust gas treatment equipment
US10451022B2 (en) 2016-11-02 2019-10-22 Paccar Inc Intermittent restart for automatic engine stop start system
US10690103B2 (en) 2017-09-26 2020-06-23 Paccar Inc Systems and methods for using an electric motor in predictive and automatic engine stop-start systems
US10487762B2 (en) 2017-09-26 2019-11-26 Paccar Inc Systems and methods for predictive and automatic engine stop-start control
US10883566B2 (en) * 2018-05-09 2021-01-05 Paccar Inc Systems and methods for reducing noise, vibration and/or harshness associated with cylinder deactivation in internal combustion engines
US10746255B2 (en) 2018-05-09 2020-08-18 Paccar Inc Systems and methods for reducing noise, vibration, and/or harshness during engine shutdown and restart

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257480B2 (en) * 1997-10-09 2002-02-18 トヨタ自動車株式会社 Starting device and starting method for internal combustion engine
US6338391B1 (en) * 1999-03-01 2002-01-15 Paice Corporation Hybrid vehicles incorporating turbochargers
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
JP3931465B2 (en) 1999-02-19 2007-06-13 トヨタ自動車株式会社 Engine start control device, control method, and hybrid vehicle
DE19909424A1 (en) * 1999-02-23 2000-08-24 Peter Tenberge Hybrid gearing for vehicle
JP2000295886A (en) * 1999-04-06 2000-10-20 Sankyo Seiki Mfg Co Ltd Speed controller for motor
JP4249916B2 (en) * 2000-09-18 2009-04-08 エドワーズ株式会社 Brushless motor control circuit, brushless motor device, and vacuum pump device
US6891302B1 (en) * 2000-09-23 2005-05-10 Christopher W. Gabrys Light-weight high-power electrical machine
JP2002195137A (en) * 2000-12-27 2002-07-10 Aisin Aw Co Ltd Hybrid vehicle and control method for the same
FR2847015B1 (en) 2002-11-08 2005-08-05 Renault Sa INFINITELY VARIABLE TRANSMISSION WITH POWER DERIVATION WITH ELECTRIC VARIATOR
FR2847014B1 (en) 2002-11-08 2005-08-05 Renault Sa INFINITELY VARIABLE TRANSMISSION WITH POWER DERIVATION, ELECTRIC VARIATOR AND COMPOUND TRAIN
FR2847321B1 (en) 2002-11-14 2005-09-02 Renault Sa INFINITELY VARIABLE TRANSMISSION WITH ELECTRIC VARIATOR AND TWO COMPOUND TRAINS
JP2004340010A (en) 2003-05-15 2004-12-02 Toyota Motor Corp Engine starting system for vehicle
JP4234710B2 (en) * 2005-10-26 2009-03-04 トヨタ自動車株式会社 Electric vehicle drive control device and control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009050402A2 *

Also Published As

Publication number Publication date
FR2922505B1 (en) 2010-03-05
WO2009050402A2 (en) 2009-04-23
JP5514113B2 (en) 2014-06-04
US8457822B2 (en) 2013-06-04
FR2922505A1 (en) 2009-04-24
WO2009050402A3 (en) 2009-06-18
JP2011501717A (en) 2011-01-13
US20110060489A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
EP2197724A2 (en) Method and system for controlling a power unit with power bypass
EP0782940B1 (en) Driving system for a hybrid driven vehicle and control method
EP1937963A1 (en) Method for starting a hybrid vehicle heat engine
WO2011080439A1 (en) Method for disconnecting an electrical machine on a running gear of a vehicle, in particular a hybrid motor vehicle
EP3724468B1 (en) System and method for controlling the temperature of a catalyst of a vehicle exhaust line, and a motor vehicle incorporating same
FR2994920A1 (en) Method for optimizing electric rolling and starting of depollution system of e.g. petrol engine of hybrid vehicle, involves supporting rolling of system without requiring starting of engine if power is lesser than starting threshold
FR2809352A1 (en) Drive unit for a hybrid vehicle, has arrangement which ensures smooth torque during the changeover from series to parallel mode and vice-versa
EP1224092B1 (en) Control method for hybrid vehicle
EP2937554B1 (en) Diagnostic method for detecting a slip in the accessory drive belt of a power train
FR2915163A1 (en) SYSTEM AND METHOD FOR CONTROLLING A HYBRID POWER UNIT FOR RECHARGING A BATTERY
EP2928716A1 (en) Method for controlling the coupling/decoupling of a traction machine of a motor vehicle
EP2941374B1 (en) Method and system for correcting oscillations of regime of a running gear
WO2012056135A1 (en) Method of limiting the maximum torque that can be delivered or received by an electric machine powered by a battery and traction chain for hybrid vehicle implementing the method
FR3058696B1 (en) DEVICE FOR CONTROLLING A ROBOTIZED GEARBOX FOR A MOTOR VEHICLE WITH HYBRID PROPULSION
FR3048938B1 (en) SYSTEM AND METHOD FOR PREVENTING TORQUE OSCILLATIONS IN A TRANSMISSION OF A HYBRID PROPULSION MOTOR VEHICLE
EP3219562A1 (en) System and method for correcting torque oscillations in a transmission of a motor vehicle with hybrid propulsion
FR3068942A1 (en) METHOD FOR STARTING A HYBRID VEHICLE WITH AN INCREASED BATTERY POWER
EP1369281A1 (en) Method and apparatus for monitoring engine start and shut-down in a series hybrid vehicle
FR3075260A1 (en) SYSTEM AND METHOD FOR CONTROLLING THE TEMPERATURE OF A CATALYST OF A VEHICLE EXHAUST LINE, AND MOTOR VEHICLE INCORPORATING THEM
FR2992041A1 (en) Method for checking use of electric motor and thermal motor of power unit of hybrid vehicle i.e. car, involves determining motor to be utilized according to current operating mode of power unit, and current speed of vehicle
WO2009044073A2 (en) Control system for the management of electrical energy passing via a storage element in a hybrid power unit equipped with an infinitely variable transmission
FR2790428A1 (en) Power management method for hybrid drive motor vehicle involves controlling release and stoppage of generator as function of state of battery
FR2927872A1 (en) Internal combustion engine starting controlling method for motor vehicle, involves bringing initially stopped engine to rotational speed by action of electric machines during operation phases to permit engine for propulsion of vehicle
FR3074224A1 (en) SYSTEM AND METHOD FOR STARTING A CATALYST OF A CATALYST OF A VEHICLE EXHAUST LINE, AND A MOTOR VEHICLE INCORPORATING THEM
WO2020120854A1 (en) Method for commanding the starting of a heat engine of a hybrid vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100330

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160713

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161124