EP2188569A2 - Joint de flexure pour la buse d'injection de carburant - Google Patents

Joint de flexure pour la buse d'injection de carburant

Info

Publication number
EP2188569A2
EP2188569A2 EP08832161A EP08832161A EP2188569A2 EP 2188569 A2 EP2188569 A2 EP 2188569A2 EP 08832161 A EP08832161 A EP 08832161A EP 08832161 A EP08832161 A EP 08832161A EP 2188569 A2 EP2188569 A2 EP 2188569A2
Authority
EP
European Patent Office
Prior art keywords
fuel
wall
swirler
nozzle
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08832161A
Other languages
German (de)
English (en)
Other versions
EP2188569B1 (fr
Inventor
Neal A. Thomson
Troy Hall
Daniel Haggerty
Mark Caples
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Collins Engine Nozzles Inc
Original Assignee
Delavan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delavan Inc filed Critical Delavan Inc
Priority to EP18169078.5A priority Critical patent/EP3425275B1/fr
Publication of EP2188569A2 publication Critical patent/EP2188569A2/fr
Application granted granted Critical
Publication of EP2188569B1 publication Critical patent/EP2188569B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2211/00Thermal dilatation prevention or compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00016Preventing or reducing deposit build-up on burner parts, e.g. from carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/11101Pulverising gas flow impinging on fuel from pre-filming surface, e.g. lip atomizers

Definitions

  • the present invention relates to injectors and nozzles for high temperature applications, and more particularly, to fuel injectors and nozzles for gas turbine engines.
  • a variety of devices and methods are known in the art for injecting fuel into gas turbine engines. Of such devices, many are directed to injecting fuel into combustors of gas turbine engines under high temperature conditions.
  • Fuel injectors for gas turbine engines on an aircraft direct fuel from a manifold to a combustion chamber of a combustor.
  • the fuel injector typically has an inlet fitting connected to the manifold for receiving the fuel, a fuel nozzle located within the combustor for spraying fuel into the combustion chamber, and a housing stem extending between and fluidly interconnecting the inlet fitting and the fuel nozzle.
  • the housing stem typically has a mounting flange for attachment to the casing of the combustor.
  • Fuel injectors are usually heat- shielded because of high operating temperatures arising from high temperature gas turbine compressor discharge air flowing around the housing stem and nozzle.
  • the heat shielding prevents the fuel passing through the injector from breaking down into its constituent components (i.e., "coking"), which may occur when the wetted wall temperatures of a fuel passage exceed 400° F.
  • the coke in the fuel passages of the fuel injector can build up to restrict fuel flow to the nozzle.
  • injectors have included annular stagnant air gaps as insulation between external walls, such as those in thermal contact with high temperature ambient conditions, and internal walls in thermal contact with the fuel.
  • the walls heretofore have been anchored at one end and free at the other end for relative movement. If the downstream tip ends of the walls are left free for relative movement, even a close fitting sliding interface between the downstream tip ends can allow fuel to pass into the air gap formed between the walls. This can result in carbon being formed in the air gap, which carbon is not as good an insulator as air.
  • the carbon may build up to a point where it blocks venting of the air gap to the stem, which can lead to an accumulation of fuel in the air gap. This can lead to diminished injector service life and may require frequent and costly cleaning of the fuel injector.
  • the invention includes a fuel injector for a gas turbine engine.
  • the fuel injector has an injector body including a feed arm with a nozzle body connected thereto.
  • a fuel conduit fluidly connects a fuel inlet portion of the feed arm to a fuel circuit in the nozzle body to form a fuel path through the injector body.
  • An outer feed arm wall is included outboard of the fuel conduit.
  • a prefilmer within the nozzle body is operatively connected to the fuel conduit of the feed arm to define a portion of the fuel circuit in the nozzle body.
  • the fuel conduit of the feed arm and the prefilmer of the nozzle body form portions of an interior wall of the injector body.
  • An outer nozzle body wall is included outboard of the prefilmer.
  • the outer nozzle body wall and outer feed arm wall form portions of an exterior wall of the injector body.
  • a main insulative gap is defined between the interior and exterior walls of the injector body to thermally insulate the fuel path of the injector body from ambient conditions.
  • a fuel swirler wall is disposed radially inward of the prefilmer, with a prefilmer chamber defined therebetween.
  • An inner air swirler is disposed radially inward of a portion of the fuel swirler wall.
  • An inner insulative gap is defined between the fuel swirler and the inner air swirler, wherein the inner insulative gap is in fluid communication with the main insulative gap.
  • the flexible sealing means internal to the nozzle body isolate the inner insulative gap from any ambient fluid entering into the main insulative gap therethrough and provide relative axial and radial movement between the fuel swirler wall and the inner air swirler.
  • the flexible sealing means includes an annular flexure beam disposed in a gap between the fuel swirler wall and the inner air swirler, wherein the annular flexure beam is joined at a first end to the fuel swirler wall and is joined at a second end to the inner air swirler. It is also contemplated that the flexible sealing means can include a c-seal, o-ring, d-ring, e-ring, or any other suitable type seal disposed between the fuel swirler wall and the inner air swirler.
  • the flexible sealing means can include a bellows structure disposed across the main insulative gap.
  • a bellows structure can be disposed between the fuel conduit and a portion of the exterior wall surrounding the fuel conduit.
  • the inner air swirler can include an upstream portion and a downstream portion joined together, the downstream portion being joined to the fuel swirler wall, with an upstream seal section of the downstream portion of the inner air swirler forming an annular flexure beam disposed between the upstream portion of the inner air swirler and the fuel swirler wall.
  • isolating means can be provided internal to the injector body for sealing a portion of the main insulative gap from ambient fluids and providing relative movement between the interior and exterior walls of the injector body.
  • the isolating means can include a generally sigmoid flexure seal disposed across a portion of the main insulative gap between the exterior wall and the prefilmer. It is contemplated that at least a portion of the main insulative gap can contain a noble gas, vacuum, or other suitable insulative material. It is also contemplated that the main insulative gap can include stagnant air that is vented by an opening located in a region where fuel can not enter. A portion of the main insulative gap within the feed arm can be vented to engine compressor discharge air.
  • the invention also includes a nozzle including an inlet at an upstream end of the nozzle, a discharge outlet at a downstream end of the nozzle, and a fluid delivery passage extending between the inlet and the discharge outlet.
  • An interior annular wall bounds one side of the fluid delivery passage along a length thereof.
  • the internal annular wall is in heat transfer relation with fluid passing through the fuel delivery passage.
  • An exterior annular wall is interposed between the interior annular wall and ambient conditions, wherein the exterior and interior walls have downstream tip ends that are adapted for relative longitudinal movement at an interface.
  • An internal insulating gap is interposed between the interior and exterior walls to insulate the internal wall from ambient temperature conditions exterior to the nozzle.
  • Flexible sealing means internal to the nozzle are included for isolating a portion of the insulating gap from any ambient fluid entering into the portion of the gap through the interface and for allowing axial and radial movement between the interior and exterior annular walls.
  • the flexible sealing means includes a generally sigmoid shaped flexure seal disposed across the portion of the insulating gap, wherein the flexure seal is contained entirely within the insulating gap.
  • the flexible sealing means can be formed as a separate component.
  • Fig. 1 is a cross-sectional, side elevation view of a first representative embodiment of a nozzle portion of a fuel injector constructed in accordance with the present invention, showing an annular flexure beam between the fuel swirler and the inner air swirler;
  • Fig. 2 is a cross-sectional side elevation view of another representative embodiment of a nozzle portion of a fuel injector constructed in accordance with the present invention, showing a flexure seal inside a gap formed between the interior and exterior annular walls;
  • Fig. 3 is cross-sectional side elevation view of a portion of a representative embodiment of a nozzle constructed in accordance with the present invention, showing a c-seal between the fuel swirler and the inner air swirler;
  • Fig. 4 is a cross-sectional side elevation view of a representative embodiment of a nozzle portion of a fuel injector constructed in accordance with the present invention, showing a bellows structure between the fluid delivery passage and a portion of the exterior annular wall;
  • Fig. 5 is a cross-sectional side elevation view of a representative embodiment of a nozzle portion of a fuel injector constructed in accordance with the present invention, showing a two-part inner air swirler forming a flexure seal across the insulative gap between inner air swirler and the fuel swirler.
  • FIG. 1 a partial view of an exemplary embodiment of an injector in accordance with the invention is shown in Fig. 1 and is designated generally by reference character 200.
  • Other embodiments of injectors and nozzles in accordance with the invention, or aspects thereof, are provided in Figs. 2-5, as will be described.
  • the devices and methods of the invention can be used in gas turbine engines, or in any other suitable application, for enhanced injector performance.
  • a fuel delivery passage 212 connects a fuel inlet of the injector with discharge outlet 204, allowing for a flow of fuel through the injector 200.
  • An interior wall 208 including fuel conduit 213 within feed arm 218 and prefilmer 227 in nozzle body 220, bounds one side of fluid delivery passage 212.
  • An insulative gap 206 exists between walls 208, 210, portions of which are generally annular. This helps insulate interior fuel passage 212 from ambient conditions. Insulative gap 206 is important for reducing or preventing coking that can occur if the fuel reaches temperatures around 400° F. Coking inside the fuel passage could eventually choke the fuel flow if unchecked.
  • Flexure seal 222 divides gap 206 into a downstream portion 206a and upstream portion 206b. Flexure seal 222 discourages ambient fluids including fuel from entering upstream gap 206b through the opening between wall tips 214. This keeps upstream gap 206b clear from fuel and thus prevents coking buildup therein. Flexure seal 222 is elongate and includes a portion generally sigmoid in shape, as shown in cross-section in Fig. 1. It can therefore flex to accommodate different amounts of thermal expansion between interior and exterior walls 208, 210. Those skilled in the art will readily appreciate that a variety of suitable shapes can be used in lieu of the sigmoid shape shown in Fig. 1 without departing from the spirit and scope of the invention.
  • Flexure seal 222 forms a portion of outer wall 210, j oining the outer air cap (which includes outer air swirler 224) and feed arm 218 portions of outer wall 210. Another end 222b is joined to interior wall 208, to further extend the generally sigmoid cross-sectional shape of flexure seal 222. Flexure seal 222 can be joined to injector 200 by brazing, welding, fastening, or any other suitable joining method. Flexure seal 222 accommodates radial thermal expansion differences about the centerline of nozzle body 220. Flexure seal 222 also accommodates thermal expansion differences in other directions, such as the direction along the centerline of feed arm 218, which can also be significant.
  • a fuel swirler wall 226 is located radially inward from prefilmer portion 227 of annular wall 208, with a fuel prefilming chamber defined therebetween.
  • An inner air swirler 228 is disposed radially inward from fuel swirler wall 226 with an insulative gap 230 therebetween.
  • inner swirler 228 also acts as a heat shield insulating fuel in the prefilmer chamber from hot gases flowing through inner swirler 228.
  • nozzle 200 includes vents 244, which allow for air in gaps 206/230 to freely expand and contract with changes in temperature.
  • Vents 244 are openings at diametrical clearances between components, such as interfaces between tip ends 214, but can also include bores passing through single components such as inner air swirler 228 and outer wall 210.
  • fuel can be drawn into vents 244 by capillary action, gravity, and/or suction caused by the contraction of cooling air in gaps 206/230, for example when the engine shuts down. Subsequently, if the fuel is heated upon operation of injector 200, coking can occur within gaps 206/230.
  • flexure seal 222 has the advantage of discouraging fuel from passing through vents 244 into upstream portions of gap 206b.
  • an annular flexure beam 232 separates gap 230 into upstream and downstream portions 230a and 230b, respectively.
  • Flexure beam 232 is joined at one end to fuel swirler wall 226, and at its other end to inner air swirler 228. This configuration allows for relative thermal expansion differentials between walls 226, 228 while preventing coking in upstream gap 230a, which is contiguous with gap 206.
  • flexure beam 232 and flexure seal 222 working in conjunction can seal gaps 206/230 from fuel while still allowing for relative thermal expansion differences in the various parts of injector 200. It is possible for gap 206 to be airtight. Gap 206 can contain a vacuum, which provides significant insulation between walls 208 and 210.
  • gap 206 It is also possible to fill gap 206 with air, which can also provide suitable insulation.
  • Noble gasses such as Argon
  • Noble gasses also reduce oxidation of stainless steel, nickel, and other alloys commonly used in nozzle construction.
  • a further advantage of using noble gasses is inflammability.
  • Other insulating materials can also be used, such as fiber insulation, insulating powders, and insulative slurries. Those skilled in the art will readily appreciate that any suitable insulation material can be used in gap 206 without departing from the spirit and scope of the invention.
  • gap 206 can be airtight, as discussed above, it is not necessary for gap 206 to be airtight. It is also contemplated that the main insulative gap can include stagnant air that is vented by an opening located in a region where fuel can not enter. For example, a vent into gap 206 can be included so as to allow venting of gap 206 with compressor discharge air such that fuel cannot enter gap 206.
  • flexure seal 222 has been shown as an individual component joined to other nozzle components, it is also possible for a flexure seal to be formed integrally with at least one other nozzle component.
  • the flexure seal can be formed integrally with an outer air swirler, e.g. swirler 224.
  • swirler 224 e.g. swirler 224
  • FIG. 2 shows another exemplary embodiment of an injector 600.
  • Injector 600 includes a single outer air swirler 624 and inner air swirler 628. A portion of outer air swirler 624 is joined to stem portion 618 to form exterior wall 610. Interior wall 608 is spaced apart from exterior wall 610 to form gap 606 much as described above. Flexure seal 622 is completely contained within gap 606 and forms no exterior surface of wall 610. One end of flexure seal 622 is joined to an inside surface of exterior wall 610 and the other end is joined to an outer surface of interior wall 608. A flexure beam 632 is also included, which operates in the same manner as flexure beam 232, described above. Welded aperture 638 is provided in exterior wall 610.
  • gap 606 Prior to welding aperture 638, gap 606 can be evacuated or filled with suitable insulating material, by any suitable process. The insulating material is then sealed in when aperture 638 is welded.
  • injector 600 could be introduced into a noble gas environment with aperture 638 open, allowing gas to enter gap 606. Welding aperture 638 within a noble gas environment seals gap 606, which remains filled with the noble gas. It is also possible to seal insulating material in a gap without using aperture 638.
  • nozzles without aperture 638 can nonetheless have insulating material sealed in their respective gap by brazing, welding, mechanical sealing or packing of respective components.
  • FIG. 3 shows a nozzle portion of a further exemplary embodiment of an injector 700 in accordance with the present invention.
  • Injector 700 includes interior and exterior walls 708, 710 with gap 706 sealed by flexure seal 722, much as described above.
  • Injector 700 further includes outer air swirler 724, fuel swirler wall 726, and inner air swirler 728, as described above.
  • injector 700 includes a c-seal 740, which seals gap 730 in a similar manner by resiliently engaging between inner air swirler 728 and fuel swirler wall 726.
  • c-seal 740 in conjunction with a noble gas insulator.
  • the inner air swirler 728 and c-seal 740 can be inserted into fuel swirler wall 726 while injector 700 is in an argon chamber.
  • Inner air swirler 728 can then be welded to feed arm 718.
  • Inner air swirler 728 and fuel swirler wall 726 compress c- seal 740, trapping the argon in gap 706.
  • FIG. 4 Yet another embodiment of a seal configuration is shown in Fig. 4 in conjunction with injector 800.
  • Injector 800 includes bellows 842, which cooperate with flexure seal 822 to seal gap 806 between walls 808, 810.
  • a c-seal or other suitable seal can be used in lieu of bellows 842 in the same general location by making gap 806 narrower and otherwise configuring gap 806 for sealing by c-seal, or other suitable seal type.
  • Injector 800 also includes a weld aperture 838 located on feed arm 818, which operates similar to weld aperture 638, described above.
  • weld apertures are optional and can be located at any suitable location on a nozzle without departing from the spirit and scope of the invention.
  • An additional advantage of using a sealed insulating cavity in accordance with the invention is that the pressure gradient across the sealed cavity and the exterior of the inlet fitting of the injector can be reduced when compared to a vented air cavity.
  • the pressure inside the sealed cavity will be determined by the pressure of the gas during welding and the temperature of the gas during operation. Therefore, stress on the inlet fitting can be reduced by matching the desired operating pressure with the pressure of the gas at the time of manufacture.
  • the combustor pressure would be accounted for across two areas, the nozzle tip and the inlet, with each accounting for half of the total combustor pressure. In this manner, the full combustor pressure will not act on the inlet fitting.
  • injector 900 includes inner wall 908, exterior wall 910, with gap 906 therebetween, sigmoid seal 922, air cap 924, prefilmer 927, and fuel swirler 926 much as described above. Gap 930 between fuel swirl er 926 and the inner air swirler is sealed by a two-part inner air swirler wall with upstream section 933 joined to downstream section 928, which is in turn joined to fuel swirler 926. A seal portion 932 of downstream section 928 is located between upstream section 933 and fuel swirler 926. This two-part inner air swirler construction allows seal portion 932 of downstream section 928 of the inner air swirler to function much as flexure beams 232/632 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

La présente invention concerne un injecteur qui comprend une entrée à une extrémité amont de l'injecteur, une sortie de décharge à une extrémité aval de l'injecteur, et un passage de distribution de fluide qui s'étend entre l'entrée et la sortie de décharge. Des parois extérieure et intérieure de l'injecteur comportent des extrémités aval qui sont mobiles de façon relativement longitudinale à une ou plusieurs interfaces. Un espace isolant interne est interposé entre les parois intérieure et extérieure pour isoler un carburant par rapport aux conditions de température ambiantes à l'extérieur de l'injecteur. Une ou plusieurs structures d'étanchéité internes à l'injecteur isolent une partie de l'espace isolant pour empêcher tout fluide ambiant d'entrer dans l'espace à travers la ou les interfaces tout en fournissant un mouvement relatif entre les parois intérieure et extérieure de l'injecteur.
EP08832161.7A 2007-09-17 2008-09-17 Joint de flexure pour la buse d'injection de carburant Active EP2188569B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18169078.5A EP3425275B1 (fr) 2007-09-17 2008-09-17 Joint de flexion pour buse d'injection de carburant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US99405307P 2007-09-17 2007-09-17
PCT/US2008/076610 WO2009039142A2 (fr) 2007-09-17 2008-09-17 Joint flexible pour injecteur de carburant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP18169078.5A Division EP3425275B1 (fr) 2007-09-17 2008-09-17 Joint de flexion pour buse d'injection de carburant

Publications (2)

Publication Number Publication Date
EP2188569A2 true EP2188569A2 (fr) 2010-05-26
EP2188569B1 EP2188569B1 (fr) 2018-04-25

Family

ID=40116676

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08832161.7A Active EP2188569B1 (fr) 2007-09-17 2008-09-17 Joint de flexure pour la buse d'injection de carburant
EP18169078.5A Active EP3425275B1 (fr) 2007-09-17 2008-09-17 Joint de flexion pour buse d'injection de carburant

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18169078.5A Active EP3425275B1 (fr) 2007-09-17 2008-09-17 Joint de flexion pour buse d'injection de carburant

Country Status (2)

Country Link
EP (2) EP2188569B1 (fr)
WO (1) WO2009039142A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8196845B2 (en) * 2007-09-17 2012-06-12 Delavan Inc Flexure seal for fuel injection nozzle
US20090255258A1 (en) * 2008-04-11 2009-10-15 Delavan Inc Pre-filming air-blast fuel injector having a reduced hydraulic spray angle
US8015816B2 (en) * 2008-06-16 2011-09-13 Delavan Inc Apparatus for discouraging fuel from entering the heat shield air cavity of a fuel injector
GB0916944D0 (en) 2009-09-28 2009-11-11 Rolls Royce Plc Air blast fuel injector
US20120137691A1 (en) * 2010-12-01 2012-06-07 Bottcher Andreas Gas turbine assembly and method therefor
US9488105B2 (en) 2010-12-01 2016-11-08 Siemens Aktiengesellschaft Gas turbine assembly and method therefor
US20120180494A1 (en) * 2011-01-14 2012-07-19 General Electric Company Turbine fuel nozzle assembly
US20130036740A1 (en) * 2011-08-09 2013-02-14 Ulrich Woerz Multi-fuel injection nozzle
CN103398398B (zh) * 2013-08-12 2016-01-20 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种燃气轮机燃烧室火焰筒与过渡段的双密封连接结构
US9759356B2 (en) 2014-07-03 2017-09-12 United Technologies Corporation Insulated flowpath assembly
US20160003157A1 (en) 2014-07-03 2016-01-07 United Technologies Corporation Additive manufactured tube assembly
GB2571071B (en) * 2018-02-09 2022-04-06 Rolls Royce Plc Nozzle for fuel injector with a sealing member
GB201909167D0 (en) 2019-06-26 2019-08-07 Rolls Royce Plc Fuel injector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962889A (en) * 1987-12-11 1990-10-16 Fuel Systems Textron Inc. Airblast fuel injection with adjustable valve cracking pressure
US5605287A (en) * 1995-01-17 1997-02-25 Parker-Hannifin Corporation Airblast fuel nozzle with swirl slot metering valve
US6655611B2 (en) * 2001-02-12 2003-12-02 Delphi Technologies, Inc. Electromagnetic fuel injector comprising flexible element for positioning armature
US6622488B2 (en) * 2001-03-21 2003-09-23 Parker-Hannifin Corporation Pure airblast nozzle
US20060158091A1 (en) * 2005-01-20 2006-07-20 Jack Jiang Fluorescent lamp assembly
US8240151B2 (en) 2006-01-20 2012-08-14 Parker-Hannifin Corporation Fuel injector nozzles for gas turbine engines
US7703287B2 (en) * 2006-10-31 2010-04-27 Delavan Inc Dynamic sealing assembly to accommodate differential thermal growth of fuel injector components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009039142A2 *

Also Published As

Publication number Publication date
EP3425275A1 (fr) 2019-01-09
EP3425275B1 (fr) 2020-11-18
EP2188569B1 (fr) 2018-04-25
WO2009039142A3 (fr) 2010-04-15
WO2009039142A2 (fr) 2009-03-26

Similar Documents

Publication Publication Date Title
US8196845B2 (en) Flexure seal for fuel injection nozzle
EP3425275B1 (fr) Joint de flexion pour buse d'injection de carburant
US8015815B2 (en) Fuel injector nozzles, with labyrinth grooves, for gas turbine engines
EP1811229B1 (fr) Buses d'injecteur de carburant pour moteurs de turbines à gaz
US8015816B2 (en) Apparatus for discouraging fuel from entering the heat shield air cavity of a fuel injector
EP1369644B1 (fr) Bande laminée d'un injecteur de carburant
US9638422B2 (en) Active purge mechanism with backflow preventer for gas turbine fuel injectors
EP0886744B1 (fr) Buse a bouclier thermique interieur
US6076356A (en) Internally heatshielded nozzle
US6523350B1 (en) Fuel injector fuel conduits with multiple laminated fuel strips
US7383686B2 (en) Secondary flow, high pressure turbine module cooling air system for recuperated gas turbine engines
US9068508B2 (en) Gas turbine internal manifold mounting arrangement
US9080771B2 (en) Combustion chamber having a ventilated spark plug
US20070193272A1 (en) Gas turbine engine fuel injector
US6354085B1 (en) Fuel injector with a fuel filter arrangement for a gas turbine engine
US8020384B2 (en) Fuel injector nozzle with macrolaminate fuel swirler
US5307635A (en) Fuel nozzle with combined radial and axial bellows
US10344983B2 (en) Assembly of tube and structure crossing multi chambers
US10982856B2 (en) Fuel nozzle with sleeves for thermal protection
EP4339515A1 (fr) Buse de carburant
GB2516445A (en) A fuel spray nozzle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100303

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170511

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20171103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 993324

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008055020

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180425

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180726

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 993324

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008055020

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180825

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230823

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 16

Ref country code: DE

Payment date: 20230822

Year of fee payment: 16