EP2171111B1 - Extruded product made from aluminium alloy al-mg-si with improved resistance to corrosion - Google Patents

Extruded product made from aluminium alloy al-mg-si with improved resistance to corrosion Download PDF

Info

Publication number
EP2171111B1
EP2171111B1 EP08835140.8A EP08835140A EP2171111B1 EP 2171111 B1 EP2171111 B1 EP 2171111B1 EP 08835140 A EP08835140 A EP 08835140A EP 2171111 B1 EP2171111 B1 EP 2171111B1
Authority
EP
European Patent Office
Prior art keywords
weight
product according
alloy
extruded product
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08835140.8A
Other languages
German (de)
French (fr)
Other versions
EP2171111A1 (en
Inventor
Bruce Morere
Annabelle Bigot
Jérôme PIGNATEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP2171111A1 publication Critical patent/EP2171111A1/en
Application granted granted Critical
Publication of EP2171111B1 publication Critical patent/EP2171111B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the invention relates to extruded aluminum alloy products Al-Mg-Si (6000 series according to the nomenclature of the Aluminum Association) with improved corrosion resistance, in particular drawn tubes intended in particular for pipes or heat exchangers. thermal for automotive construction.
  • HFCs HydroFluoroCarbures
  • An air conditioner using CO2 as a refrigerant gas is based on gas compression and expansion.
  • a compressor compresses the CO2 at high pressure and it then goes into a gas cooler (traditionally called a condenser, but in which condensation does not occur when the refrigerant is CO2), then in an internal heat exchanger (which allows heat exchange with the low pressure zone).
  • the CO2 which is still gaseous, then passes into a regulator from which a liquid flows out which allows the cooling of the passenger compartment by passing through an evaporator.
  • the low pressure gas is then accumulated before circulating in the internal heat exchanger and back into the compressor for a new cycle.
  • the spun aluminum products can be used for the manufacture of heat exchangers (gas cooler, evaporator) and / or for the realization of the pipes allowing the refrigerant to circulate between the various elements of the cooling circuit.
  • CO2 as a refrigerant is made difficult by the pressure at which it must be used. Indeed, the critical temperature of CO2 is lower than that of HFC-134a and its critical pressure is higher which forces the air conditioning system to operate at higher pressures and temperatures than those currently used, whether in the high pressure part or the low pressure part of the circuit.
  • the materials used in the air conditioning circuit must therefore be stronger than current materials while maintaining at least equivalent performance in terms of manufacturing, shaping, assembly and corrosion resistance.
  • the CO2 thus needs to be compressed at high pressures of the order of 100 to 200 bar. Therefore, to allow the use of CO2 as a refrigerant, the pipes must withstand an operating pressure of 200 bar for high temperatures of 130-170 ° C which is high compared to current conditions, the order of 5 bars at 60 ° C.
  • JP 2005-068557 discloses a composition alloy (% by weight) Mn: 0.8 - 2, Cu: 0.22 - 0.6, Ti: 0.01 - 0.2, Fe: 0.01 - 0.4, Zn ⁇ 0.2, Sn ⁇ 0.018, In ⁇ 0.02.
  • JP 2007-070699 discloses a composition alloy (% by weight) Si: 0.31 - 0.7, Fe: 0.3 - 0.6, Mn: 0.01 - 0.4, and optionally Ti 0.01 - 0.3, Zr 0.05 - 0.3, Cr 0.05 - 0.3.
  • alloys used in the manufacture of pipe tubing are part of the 3XXX series.
  • the patent application WO 02/055750 of the Applicant thus concerns an alloy having an improved corrosion resistance of composition Si ⁇ 0.30, Fe: 0.20 - 0.50, Cu ⁇ 0.05, Mn: 0.5 - 1.2, Mg ⁇ 0.05, Zn ⁇ 0.50, Cr: 0.10 - 0.30, Ti ⁇ 0.05, Zr ⁇ 0.05.
  • the preferred contents are (% by weight) which consists of: Mg: 0.5 - 0.6, Si: 0.5 - 0.6, Fe: 0.15 - 0.25, Zn: 0.16 - 0.25,, Ti 0.16 - 0.25, Mn ⁇ 0.05, Cr ⁇ 0.03, Cu ⁇ 0.03, Ni ⁇ 0.03 remains aluminum and unavoidable impurities ⁇ 0.15% in which the ratio If / Mg is between 1.0 and 1.2.
  • Another object of the invention is the use of a spun product according to the invention in the manufacture of motor vehicles.
  • the static mechanical characteristics ie the tensile strength R m , the yield strength R p0,2 , and the elongation at break A, are determined by a tensile test according to the standards EN 10002-1 and EN 754-2.
  • the term "spun product” includes so-called “stretched” products, that is products that are made by spinning followed by stretching.
  • the alloy of the 6XXX series according to the invention comprises, with respect to alloys AA6060 and AA6063, an addition of zinc and titanium.
  • the zinc content must be between 0.16 and 0.3% by weight and preferably between 0.16 and 0.25% by weight.
  • the titanium content must be between 0.12 and 0.3% by weight, and preferably between 0.16 and 0.25% by weight.
  • the content of Cr, Cu and Ni must be maintained at an impurity level: less than 0.05% by weight and preferably less than 0.03% by weight.
  • the alloy according to the invention thus differs from the alloy AA6061 which contains 0.04 - 0.35% by weight of Cr and 0.15 - 0.40% by weight of Cu.
  • the combination of the addition of Zn and Ti makes it possible both to improve the mechanical properties and the resistance to corrosion.
  • the magnesium content is between 0.4 and 0.7% by weight and preferably between 0.5 and 0.6% by weight.
  • the silicon content is between 0.4 and 0.7% by weight and preferably between 0.5 and 0.6% by weight.
  • the addition of magnesium and silicon at a content of at least 0.4% by weight and preferably at least 0.5% by weight makes it possible to achieve the desired mechanical characteristics.
  • the magnesium content must however be limited to a maximum of 0.7% by weight and preferably 0.6% by weight to ensure satisfactory brazeability of the products, as well as a good performance in terms of extrusionability. .
  • the silicon content must also be limited to a maximum of 0.7% by weight and preferably 0.6% by weight.
  • the Si / Mg ratio is between 0.9 and 1.3 and preferably between 1.0 and 1.2.
  • the manganese content should be less than 0.10% by weight.
  • the iron content must be between 0.1 and 0.3% by weight and preferably between 0.15 and 0.25% by weight. Too high a content of iron contributes to the degradation of the corrosion resistance and a maximum content of 0.3% by weight is required, a maximum content of 0.25% by weight being preferred. For economic reasons of recycling, the iron content must be at least 0.1% by weight and preferably at least 0.15% by weight.
  • the process for producing the spun products according to the invention involves the casting of billets of the indicated alloy, the homogenization of the billets, their heating and their spinning in order to obtain a tube in straight length or in a crown, the solution and quenching and optionally one or more stretching passes to bring the product to the desired dimensions.
  • the tube can advantageously be annealed at a temperature between 400 ° C and 550 ° C to improve its ductility.
  • the spun products according to the invention are used in the T4 state, that is to say that the maturation is carried out at room temperature.
  • the products according to the invention can be obtained by quenching on a press.
  • the spun products according to the invention undergo a return which leads them to the T6 state, so as to maximize the mechanical strength.
  • the products according to the invention have a grain size of less than 45 ⁇ m and preferably less than 25 ⁇ m.
  • the products according to the invention have in the T4 state a high mechanical strength.
  • the breaking strength at room temperature is increased by more than 50% with respect to a 3XXX alloy product according to the demand.
  • WO 02/055750 in the H12 state and more than 10% with respect to a 6060 alloy product in the T4 state.
  • the advantage is confirmed for tests carried out at high temperature.
  • the breaking strength at 170 ° C is increased by almost 60% compared to a 3XXX alloy product according to demand WO 02/055750 in the H12 state and close to 10% with respect to a 6060 alloy product in the T4 state.
  • the tubes according to the invention have, in the T4 state, a tensile strength R m greater than 170 MPa at room temperature and greater than 140 MPa at 170 ° C.
  • the tubes according to the preferred composition of the invention have in the T4 state a breaking strength Rm greater than 180 MPa at room temperature and greater than 150 MPa at 170 ° C.
  • the elongation at break A% obtained with the products according to the invention is high: greater than 25% both at ambient temperature and at 170.degree.
  • the product according to the invention thus has important advantages in terms of fitness and resistance to rupture especially with respect to 3XXX alloy products according to demand WO 02/055750 .
  • the products according to the invention also have a high resistance to perforating corrosion, which makes it possible to obtain high durations of use without leakage.
  • the products according to the invention do not exhibit deep pits during a salt spray test of SWAAT type according to the ASTM G85A3 standard, whereas under the same conditions, they are observed for AA6106 alloy products. , AA6060 and even for AA6060 alloy products in which titanium has been added.
  • the combined addition of zinc and titanium allows the products according to the invention to achieve a resistance to corrosion in the T4 state equivalent to that obtained with the 3XXX alloy products according to the demand.
  • WO 02/055750 the combined addition of zinc and titanium allows the products according to the invention to achieve a resistance to corrosion in the T4 state equivalent to that obtained with the 3XXX alloy products according to the demand.
  • a preferred form of the spun product according to the invention is a cylindrical tube having only one cavity.
  • the spun products according to the invention can be used especially as tubes in the manufacture of motor vehicles.
  • the spun products according to the invention can be used as tubes for fuel lines, oil, brake fluid or refrigerant for automobiles and as tubes for heat exchangers for engine cooling and / or air conditioning systems.
  • passenger compartment especially if they use CO2 as a refrigerant gas.
  • the tubes, in particular the drawn tubes, according to the invention are more particularly adapted to be used in the form of cylindrical tubes having only one cavity for the fluid transfer lines used in passenger compartment air-conditioning systems of motor vehicles using CO2 as a refrigerant gas.
  • Alloys A, B, C and D correspond to compositions of the prior art, alloy A is part of the 5xxx series, alloy B according to demand WO02 / 055750 Part of the 3XXX series, alloys C and D are part of the 6XXX series.
  • the alloy E is an alloy 6060 in which titanium has been added and the alloy F is in accordance with the invention.
  • compositions are indicated in Table 1.
  • Table 1 Composition of the alloys A to F (% by weight).
  • alloy Ref, Yes Fe Cu mn mg Cr Zn Ti AA5049 AT 0.13 0.17 0.03 0.78 1.83 0.01 0.01 0.02 3XXX B 0.1 0.27 - 0.97 - 0.19 0.19 0.01 AA6106 VS 0.44 0.18 0.11 0.10 0.51 - 0.01 0.01 AA6060 D 0.54 0.22 - 0.08 0.52 - 0.02 0.01 AA6060 + Ti E 0.53 0.20 0.03 0.07 0.52 - 0.01 0.17 invention F 0.53 0.22 0.04 0.08 0.53 - 0.18 0.17
  • the alloy billet A was spun into finished lengths of straight tubes, which were then drawn and annealed to a diameter of 16 mm and a thickness of 1.25 mm in the final state O.
  • the alloy billets B, C, D, E and F were spun into tube crowns.
  • the 6XXX alloy products (C, D, E and F) were hardened on press. These rings were then stretched and annealed at a temperature between 400 and 550 ° C to obtain a diameter of 10 or 11 mm and a thickness of 1.25 or 1.5 mm. No significant differences were recorded between the five alloys B, C, D, E and F for their spinning and drawing properties.
  • the crowns of the sample B were then subjected to a new stretching pass to bring them to the H12 state according to the EN 515 standard.
  • the spun products obtained with the four alloys C, D, E, F of the 6xxx series have mechanical characteristics that are quite similar to each other and comparable to those obtained with alloy A of the 5XXX series.
  • the alloy F according to the invention has among the 6XXX alloys tested the best properties with in particular a higher tensile strength of more than 10% for a test performed at room temperature and of nearly 10% for a test performed at 170 ° C, compared to that obtained with AA6060 alloy.
  • the alloy F according to the invention has, in particular, improved mechanical characteristics with respect to the alloy B according to the application WO02 / 055750 of the prior art: a breaking strength R m increased by more than 50% at room temperature as well as at 140 ° C or 170 ° C, and an elongation at break of more than 25% at room temperature at 140 ° C or 170 ° C.
  • the average grain size was measured by the intercepts method on samples of tubes B, D, E and F. The results are shown in Table 4.
  • the tubes obtained with the alloy according to the invention have fine grains. equiaxes of the order of 25 microns. Table 4. Average grain size measured by the intercepts method. Alloy Direction L ( ⁇ m) T direction ( ⁇ m) Average ( ⁇ m) B 20 16 18 D 36 34 35 E 26 26 26 F 25 24 24
  • Corrosion resistance was measured using the Sea Water Acetic Acid Test (SWAAT) according to ASTM G85 A3. The measurements were made for periods of 500 cycles at the temperature of 49 ° C, three tubes of 200 mm length of each alloy A, B, C, D, E and F. At the end of the test, the tubes were removed from the chamber and stripped in a solution of nitric acid concentrated to 68% in order to dissolve the corrosion products. On each tube, the depth of the pits by defocusing is measured optically on the surface and the average of the depths of the 5 deepest stings. The average Pmoy of the values obtained for the 3 tubes is then calculated. The corrosion resistance is even better than Pmoy is weak. The results of 5 successive SWAAT test campaigns are shown in Table 3.
  • the alloy F according to the invention has a corrosion resistance much higher than that of other alloys C, D, E of the same series 6xxx, and that of the alloy A of the 5xxx series.
  • the alloy F does not exhibit deep pitting, it being understood that in the context of the present invention the term deep stitch means a Pmoy value greater than 0.5 mm.
  • Titanium test E alloy pits more deeply than F alloy, demonstrating the beneficial effect on the corrosion resistance of the combined Ti and Zn addition compared to the addition of titanium alone .
  • the alloy F according to the invention offers a corrosion resistance equivalent to that of the alloy B, according to the demand WO02 / 055750 of the prior art, known for its advantageous properties of corrosion resistance.
  • the alloy F according to the invention offers an advantageous combination of high mechanical properties at operating temperatures of automotive air conditioning systems using CO2 fluid, and high resistance to the necessary perforating corrosion so as to obtain high durations of use without leak.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne des produits filés en alliage d'aluminium Al-Mg-Si (série 6000 selon la nomenclature de l'Aluminum Association) à résistance à la corrosion améliorée, en particulier des tubes étirés destinés notamment à des canalisations ou à des échangeurs thermiques pour la construction automobile.The invention relates to extruded aluminum alloy products Al-Mg-Si (6000 series according to the nomenclature of the Aluminum Association) with improved corrosion resistance, in particular drawn tubes intended in particular for pipes or heat exchangers. thermal for automotive construction.

Etat de la techniqueState of the art

Aujourd'hui, trois véhicules sur quatre vendus en France disposent de la climatisation. En 2020, neuf véhicules sur dix seront climatisés. La climatisation automobile a un impact non négligeable sur le changement climatique pour deux raisons principales. La première est la surconsommation de carburant qu'elle entraîne. Celle-ci dépend beaucoup du type de véhicule et de l'utilisation que l'on en fait mais est estimée en moyenne à 7% de la consommation. La seconde est associée aux pertes de fluide frigorigène. Le fluide actuellement utilisé de façon courante (HFC-R134a, CH2 FCF3) a un impact sur l'effet de serre environ mille quatre cent fois plus important que la masse équivalente de gaz carbonique (CO2) et il est couramment admis que chaque véhicule perd chaque année le tiers du contenu (environ 900g) de la boucle de réfrigération.Today, three out of four vehicles sold in France have air conditioning. By 2020, nine out of ten vehicles will be air-conditioned. Automotive air conditioning has a significant impact on climate change for two main reasons. The first is the overconsumption of fuel it entails. This depends a lot on the type of vehicle and the use that one makes of it but is estimated on average at 7% of consumption. The second is associated with refrigerant losses. The currently used fluid (HFC-R134a, CH2 FCF3) has an impact on the greenhouse effect approximately one thousand four hundred times greater than the equivalent mass of carbon dioxide (CO2) and it is widely accepted that each vehicle loses each year the third of the content (about 900g) of the refrigeration loop.

De nombreuses études concernent actuellement le remplacement des HydroFluoroCarbures (HFC) par du CO2 pour les systèmes de climatisation. Le CO2 même s'il est un gaz à effet de serre a un impact beaucoup plus faible que les HFC, ce qui permettrait de diminuer la nocivité des émissions liées aux fuites.Many studies currently concern the replacement of HydroFluoroCarbures (HFCs) with CO2 for air conditioning systems. CO2, even though it is a greenhouse gas, has a much lower impact than HFCs, which would reduce the harmfulness of emissions related to leaks.

Le fonctionnement d'un climatiseur utilisant le CO2 comme gaz frigorigène est basé sur la compression du gaz et sa détente. Un compresseur comprime le CO2 à haute pression et celui-ci passe ensuite dans un refroidisseur de gaz (traditionnellement appelé condenseur, mais dans lequel la condensation ne se produit pas lorsque le fluide frigorigène est le CO2), puis dans un échangeur thermique interne (qui permet des échanges thermiques avec la zone basse pression). Le CO2, toujours gazeux passe alors dans un détendeur duquel sort un liquide qui permet le refroidissement de l'habitacle en passant dans un évaporateur. Le gaz à basse pression est ensuite accumulé avant de circuler dans l'échangeur thermique interne et de repartir dans le compresseur pour un nouveau cycle. Les produits filés en aluminium peuvent être utilisés pour la fabrication des échangeurs thermiques (refroidisseur de gaz, évaporateur) et/ou pour la réalisation des canalisations permettant au fluide frigorigène de circuler entre les différents éléments du circuit de refroidissement. L'utilisation du CO2 comme fluide frigorigène est rendue difficile par la pression à laquelle il doit être employé. En effet, la température critique du CO2 est plus basse que celle du HFC-134a et sa pression critique est plus élevée ce qui oblige le système de climatisation à fonctionner à des pressions et des températures plus élevées que celles utilisées actuellement, que ce soit dans la partie haute pression ou la partie basse pression du circuit. Les matériaux utilisés dans le circuit de la climatisation doivent donc être plus résistants que les matériaux actuels tout en maintenant des performances au moins équivalentes en termes de fabrication, de mise en forme, d'assemblage et de résistance à la corrosion. Pour un bon rendement frigorifique, le CO2 nécessite ainsi d'être comprimé à de fortes pressions de l'ordre de 100 à 200 bars. De ce fait, pour permettre l'utilisation du CO2 comme fluide frigorigène, les canalisations doivent résister à une pression de service de 200 bars pour des hautes températures de 130-170°C ce qui est élevé par rapport aux conditions actuelles, de l'ordre de 5 bars à 60 °C.The operation of an air conditioner using CO2 as a refrigerant gas is based on gas compression and expansion. A compressor compresses the CO2 at high pressure and it then goes into a gas cooler (traditionally called a condenser, but in which condensation does not occur when the refrigerant is CO2), then in an internal heat exchanger (which allows heat exchange with the low pressure zone). The CO2, which is still gaseous, then passes into a regulator from which a liquid flows out which allows the cooling of the passenger compartment by passing through an evaporator. The low pressure gas is then accumulated before circulating in the internal heat exchanger and back into the compressor for a new cycle. The spun aluminum products can be used for the manufacture of heat exchangers (gas cooler, evaporator) and / or for the realization of the pipes allowing the refrigerant to circulate between the various elements of the cooling circuit. The use of CO2 as a refrigerant is made difficult by the pressure at which it must be used. Indeed, the critical temperature of CO2 is lower than that of HFC-134a and its critical pressure is higher which forces the air conditioning system to operate at higher pressures and temperatures than those currently used, whether in the high pressure part or the low pressure part of the circuit. The materials used in the air conditioning circuit must therefore be stronger than current materials while maintaining at least equivalent performance in terms of manufacturing, shaping, assembly and corrosion resistance. For a good refrigerating efficiency, the CO2 thus needs to be compressed at high pressures of the order of 100 to 200 bar. Therefore, to allow the use of CO2 as a refrigerant, the pipes must withstand an operating pressure of 200 bar for high temperatures of 130-170 ° C which is high compared to current conditions, the order of 5 bars at 60 ° C.

Des alliages ont été proposés pour la réalisation de tubes plats pour les échangeurs de chaleur (refroidisseur de gaz, évaporateur) des systèmes de climatisation utilisant le CO2 comme gaz frigorigène.
JP 2005-068557 décrit un alliage de composition (% en poids)
Mn : 0,8 - 2, Cu : 0,22 - 0,6, Ti : 0,01 - 0,2, Fe : 0,01 - 0,4, Zn ≤ 0,2, Sn ≤ 0,018, In ≤ 0,02.
JP 2007-070699 décrit un alliage de composition (% en poids)
Si : 0,31 - 0,7, Fe : 0,3 - 0,6, Mn : 0,01 - 0,4, et optionnellement Ti 0,01 - 0,3, Zr 0,05 - 0,3, Cr 0,05 - 0,3.
Alloys have been proposed for the production of flat tubes for heat exchangers (gas coolers, evaporators) of air conditioning systems using CO2 as a refrigerant gas.
JP 2005-068557 discloses a composition alloy (% by weight)
Mn: 0.8 - 2, Cu: 0.22 - 0.6, Ti: 0.01 - 0.2, Fe: 0.01 - 0.4, Zn ≤ 0.2, Sn ≤ 0.018, In ≤ 0.02.
JP 2007-070699 discloses a composition alloy (% by weight)
Si: 0.31 - 0.7, Fe: 0.3 - 0.6, Mn: 0.01 - 0.4, and optionally Ti 0.01 - 0.3, Zr 0.05 - 0.3, Cr 0.05 - 0.3.

Ces alliages ne semblent pas permettre d'atteindre certaines des performances de dureté exigées, en particulier pour les tubes destinés aux canalisations.
Traditionnellement, les alliages utilisés pour la fabrication de tubes destinés aux canalisations font partie de la série 3XXX. La demande de brevet WO 02/055750 de la demanderesse concerne ainsi un alliage présentant une résistance à la corrosion améliorée de composition Si < 0,30, Fe : 0,20 - 0,50, Cu < 0,05, Mn : 0,5 - 1,2, Mg < 0,05, Zn < 0,50, Cr : 0,10 - 0,30, Ti < 0,05, Zr < 0,05.
On connait également de la demande de brevet WO 99/18250 un alliage de la série 3XXX de composition Cu < 0,03, Mn : 0,1 - 1,5, Ti 0,03 - 0,35, Mg < 1,0, Ni < 0,01, Zn : 0,05 - 1,0, Zr < 0,3, Fe < 0,50, Si< 0,50 Cr < 0,20.
These alloys do not seem to achieve some of the required hardness performance, especially for pipes intended for pipelines.
Traditionally, alloys used in the manufacture of pipe tubing are part of the 3XXX series. The patent application WO 02/055750 of the Applicant thus concerns an alloy having an improved corrosion resistance of composition Si <0.30, Fe: 0.20 - 0.50, Cu <0.05, Mn: 0.5 - 1.2, Mg < 0.05, Zn <0.50, Cr: 0.10 - 0.30, Ti <0.05, Zr <0.05.
We also know the patent application WO 99/18250 an alloy of the 3XXX series of composition Cu <0.03, Mn: 0.1 - 1.5, Ti 0.03 - 0.35, Mg <1.0, Ni <0.01, Zn: 0.05 1.0, Zr <0.3, Fe <0.50, Si <0.50 Cr <0.20.

Par ailleurs, certains alliages de la série 6XXX sont connus de la norme EN 754-2 pour la réalisation de tubes étirés.
Parmi les alliages présentant une bonne aptitude au filage, on peut citer les alliages AA6060, AA6061 et AA6063.
L'alliage AA6060 a la composition :

  • Mg : 0,35 - 0,6, Si : 0,30 - 0,6, Fe : 0,10 - 0,30, Cu < 0,10, Mn < 0,10, Cr < 0,05, Zn < 0,15, Ti < 0,10, autres <0,05 chaque et <0,15 total, reste aluminium.
L'alliage AA6061 a la composition:
  • Mg : 0,8 - 1.2, Si : 0,40 - 0,8, Fe : < 0.7, Cu : 0,15-0,40, Mn < 0,15, Cr 0,04-0,35, Zn < 0,25, Ti < 0,15, autres <0,05 chaque et <0,15 total, reste aluminium.
L'alliage AA6063 a la composition :
  • Mg : 0,45 - 0,9, Si : 0,20 - 0,6, Fe : < 0,35, Cu < 0,10, Mn < 0,10, Cr < 0,10, Zn < 0,10, Ti < 0,10, autres <0,05 chaque et <0,15 total, reste aluminium.
La demande EP 0 251 180 cite les alliages AA6061 et AA6063 pour la fabrication de tubes destinés à des applications automobiles.
Par ailleurs, l'alliage AA6106 de composition :
  • Mg : 0,40 - 0,8, Si : 0,30 - 0,6, Fe < 0 ,35, Cu < 0,25, Mn < 0,05 - 0,20, Cr < 0,20, Zn < 0,10, autres <0,05 chaque et <0,15 total, reste aluminium
est également connu de la demanderesse pour la réalisation de tubes étirés.
Le problème auquel répond la présente invention est de réaliser un produit filé en alliage 6XXX de résistance à la corrosion améliorée et de propriétés mécaniques permettant de résister à des pressions élevées et ce en particulier pour des températures d'utilisation comprises entre 130 à 170 °C tout en ayant des performances identiques ou supérieures en termes de fabrication, de mise en forme, d'assemblage et de résistance à la corrosion à celles des produits actuels des séries 3XXX, 5XXX et 6XXX.In addition, certain alloys of the 6XXX series are known from the EN 754-2 standard for the production of drawn tubes.
Among the alloys having a good spinnability, mention may be made of alloys AA6060, AA6061 and AA6063.
AA6060 alloy has the composition:
  • Mg: 0.35 - 0.6, Si: 0.30 - 0.6, Fe: 0.10 - 0.30, Cu <0.10, Mn <0.10, Cr <0.05, Zn 0.15, Ti <0.10, other <0.05 each and <0.15 total, remains aluminum.
AA6061 alloy has the composition:
  • Mg: 0.8 - 1.2, Si: 0.40 - 0.8, Fe: <0.7, Cu: 0.15-0.40, Mn <0.15, Cr 0.04-0.35, Zn < 0.25, Ti <0.15, other <0.05 each and <0.15 total, remains aluminum.
AA6063 alloy has the composition:
  • Mg: 0.45 - 0.9, Si: 0.20 - 0.6, Fe: <0.35, Cu <0.10, Mn <0.10, Cr <0.10, Zn <0.10 , Ti <0.10, other <0.05 each and <0.15 total, remains aluminum.
Requirement EP 0 251 180 quotes alloys AA6061 and AA6063 for the manufacture of tubes intended for automotive applications.
Moreover, the alloy AA6106 of composition:
  • Mg: 0.40 - 0.8, Si: 0.30 - 0.6, Fe <0.35, Cu <0.25, Mn <0.05 - 0.20, Cr <0.20, Zn < 0.10, other <0.05 each and <0.15 total, remaining aluminum
is also known to the applicant for the production of drawn tubes.
The problem addressed by the present invention is to provide a 6XXX alloy spun product of improved corrosion resistance and mechanical properties to withstand high pressures, particularly for operating temperatures between 130 ° C to 170 ° C while having the same or better performance in terms of manufacturing, forming, joining and corrosion resistance than current 3XXX, 5XXX and 6XXX series products .

Objet de l'inventionObject of the invention

L'invention a pour objet un produit filé, notamment un tube étiré, en alliage de la série 6XXX de composition (% en poids) qui se compose de :

  • Mg : 0,4 - 0,7, Si : 0,4 - 0,7, Fe : 0,1 - 0,3, Zn : 0,16 - 0,3, Ti 0,12 - 0,3, Mn < 0,10, Cu < 0,05, Cr < 0,05, Ni < 0,05, reste aluminium et des impuretés inévitables <0.15% dans lequel le rapport Si / Mg est compris entre 0,9 et 1,3.
The subject of the invention is a spun product, in particular a stretched tube, made of alloy of the 6XXX series of composition (% by weight) which consists of:
  • Mg: 0.4 - 0.7, Si: 0.4 - 0.7, Fe: 0.1 - 0.3, Zn: 0.16 - 0.3, Ti 0.12 - 0.3, Mn <0.10, Cu <0.05, Cr <0.05, Ni <0.05, aluminum remains and unavoidable impurities <0.15% in which the Si / Mg ratio is between 0.9 and 1.3.

Les teneurs préférentielles sont (% en poids) qui se compose de : Mg : 0,5 - 0,6, Si : 0,5 - 0,6, Fe : 0,15 - 0,25, Zn : 0,16 - 0,25, , Ti 0,16 - 0,25, Mn < 0,05, Cr < 0,03, Cu < 0,03, Ni < 0,03 reste aluminium et des impuretés inévitables <0.15% dans lequel le rapport Si / Mg est compris entre 1,0 et 1,2.The preferred contents are (% by weight) which consists of: Mg: 0.5 - 0.6, Si: 0.5 - 0.6, Fe: 0.15 - 0.25, Zn: 0.16 - 0.25,, Ti 0.16 - 0.25, Mn <0.05, Cr <0.03, Cu <0.03, Ni <0.03 remains aluminum and unavoidable impurities <0.15% in which the ratio If / Mg is between 1.0 and 1.2.

Un autre objet de l'invention est l'utilisation d'un produit filé selon l'invention dans la fabrication des véhicules automobiles.Another object of the invention is the use of a spun product according to the invention in the manufacture of motor vehicles.

Description de l'inventionDescription of the invention

Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Dans une expression mathématique « Si » signifie la teneur en silicium exprimée en pourcent massique, cela s'applique mutatis mutandis aux autres éléments chimiques. La désignation des alliages suit les règles de The Aluminum Association, connues de l'homme du métier ainsi que la norme EN 573-1. Les états métallurgiques sont définis dans la norme européenne EN 515. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon les normes EN 10002-1 et EN 754-2. Le terme « produit filé » inclut les produits dits « étirés », c'est-à-dire des produits qui sont élaborés par filage suivi d'un étirage.Unless stated otherwise, all the information relating to the chemical composition of the alloys is expressed in percent by weight. In a mathematical expression "Si" means the silicon content expressed in percent by weight, this applies mutatis mutandis to the other chemical elements. The designation of the alloys follows the rules of The Aluminum Association, known to those skilled in the art as well as the EN 573-1 standard. The metallurgical states are defined in the European standard EN 515. The chemical composition of standardized aluminum alloys is defined for example in the standard EN 573-3. Unless otherwise stated, the static mechanical characteristics, ie the tensile strength R m , the yield strength R p0,2 , and the elongation at break A, are determined by a tensile test according to the standards EN 10002-1 and EN 754-2. The term "spun product" includes so-called "stretched" products, that is products that are made by spinning followed by stretching.

Sauf mention contraire, les définitions de la norme européenne EN 12258-1 s'appliquent.Unless otherwise stated, the definitions of the European standard EN 12258-1 apply.

L'alliage de la série 6XXX selon l'invention comporte par rapport auxalliages AA6060 et AA6063 un ajout de zinc et de titane. Ainsi la teneur en zinc doit être comprise entre 0,16 et 0,3 % en poids et de manière préférée entre 0,16 et 0,25 % en poids. La teneur en titane doit comprise entre 0,12 et 0,3 % en poids, et de manière préférée comprise entre 0,16 et 0,25 % en poids. Par ailleurs, la teneur en Cr, Cu et Ni doit être maintenue à un niveau d'impureté : inférieure à 0,05 % en poids et de manière préférée inférieure à 0,03 % en poids. L'alliage selon l'invention diffère ainsi de l'alliage AA6061 qui contient 0.04 - 0.35 % en poids de Cr et 0.15 - 0.40 % en poids de Cu. La combinaison de l'ajout de Zn et de Ti permet à la fois d'améliorer les propriétés mécaniques et la résistance à la corrosion.The alloy of the 6XXX series according to the invention comprises, with respect to alloys AA6060 and AA6063, an addition of zinc and titanium. Thus, the zinc content must be between 0.16 and 0.3% by weight and preferably between 0.16 and 0.25% by weight. The titanium content must be between 0.12 and 0.3% by weight, and preferably between 0.16 and 0.25% by weight. Furthermore, the content of Cr, Cu and Ni must be maintained at an impurity level: less than 0.05% by weight and preferably less than 0.03% by weight. The alloy according to the invention thus differs from the alloy AA6061 which contains 0.04 - 0.35% by weight of Cr and 0.15 - 0.40% by weight of Cu. The combination of the addition of Zn and Ti makes it possible both to improve the mechanical properties and the resistance to corrosion.

La teneur en magnésium est comprise entre 0,4 et 0,7% en poids et de préférence entre 0,5 et 0,6 % en poids. La teneur en silicium est comprise entre 0,4 et 0,7% en poids et de préférence entre 0,5 et 0,6 % en poids. L'ajout de magnésium et de silicium à une teneur d'au moins 0,4 % en poids et de préférence d'au moins 0,5 % en poids permet d'atteindre les caractéristiques mécaniques souhaitées. La teneur en magnésium doit cependant être limitée au maximum à 0,7 % en poids et de préférence à 0,6 % en poids pour assurer une brasabilité satisfaisante des produits, ainsi qu'une bonne performance en termes d'aptitude à l'extrusion. La teneur en silicium doit également être limitée au maximum à 0,7 % en poids et de préférence à 0,6 % en poids. Le rapport Si / Mg est compris entre 0,9 et 1,3 et préférentiellement entre 1,0 et 1,2.The magnesium content is between 0.4 and 0.7% by weight and preferably between 0.5 and 0.6% by weight. The silicon content is between 0.4 and 0.7% by weight and preferably between 0.5 and 0.6% by weight. The addition of magnesium and silicon at a content of at least 0.4% by weight and preferably at least 0.5% by weight makes it possible to achieve the desired mechanical characteristics. The magnesium content must however be limited to a maximum of 0.7% by weight and preferably 0.6% by weight to ensure satisfactory brazeability of the products, as well as a good performance in terms of extrusionability. . The silicon content must also be limited to a maximum of 0.7% by weight and preferably 0.6% by weight. The Si / Mg ratio is between 0.9 and 1.3 and preferably between 1.0 and 1.2.

La teneur en manganèse doit être inférieure à 0,10 % en poids.The manganese content should be less than 0.10% by weight.

La teneur en fer doit être comprise entre 0,1 et 0,3 % en poids et de préférence comprise entre 0,15 et 0,25% en poids. Une teneur trop élevée en fer contribue à la dégradation de la résistance à la corrosion et une teneur maximale de 0,3% en poids est nécessaire, une teneur maximale de 0,25% en poids étant préférée. Pour des raisons économiques de recyclage la teneur en fer doit être d'au moins 0,1 % en poids et de préférence d'au moins 0,15% en poids.The iron content must be between 0.1 and 0.3% by weight and preferably between 0.15 and 0.25% by weight. Too high a content of iron contributes to the degradation of the corrosion resistance and a maximum content of 0.3% by weight is required, a maximum content of 0.25% by weight being preferred. For economic reasons of recycling, the iron content must be at least 0.1% by weight and preferably at least 0.15% by weight.

Le procédé de fabrication des produits filés selon l'invention, notamment des tubes, comporte la coulée de billettes de l'alliage indiqué, l'homogénéisation des billettes, leur réchauffage et leur filage pour obtenir un tube en longueur droite ou en couronne, la mise en solution et la trempe et optionnellement une ou plusieurs passes d'étirage pour amener le produit aux dimensions souhaitées. Le tube peut de façon avantageuse être recuit à une température comprise entre 400 °C et 550 °C pour améliorer sa ductilité. De manière préférée, les produits filés selon l'invention sont utilisés à l'état T4, c'est-à-dire que la maturation est effectuée à température ambiante. Les produits selon l'invention peuvent être obtenus par trempe sur presse. Dans un autre mode de réalisation de l'invention, les produits filés selon l'invention subissent un revenu qui les conduit à l'état T6, de façon à maximiser la résistance mécanique.The process for producing the spun products according to the invention, in particular tubes, involves the casting of billets of the indicated alloy, the homogenization of the billets, their heating and their spinning in order to obtain a tube in straight length or in a crown, the solution and quenching and optionally one or more stretching passes to bring the product to the desired dimensions. The tube can advantageously be annealed at a temperature between 400 ° C and 550 ° C to improve its ductility. Preferably, the spun products according to the invention are used in the T4 state, that is to say that the maturation is carried out at room temperature. The products according to the invention can be obtained by quenching on a press. In another embodiment of the invention, the spun products according to the invention undergo a return which leads them to the T6 state, so as to maximize the mechanical strength.

Les produits selon l'invention présentent une taille de grain inférieure à 45 µm et de manière préférée inférieure à 25 µm.The products according to the invention have a grain size of less than 45 μm and preferably less than 25 μm.

Les produits selon l'invention présentent à l'état T4 une résistance mécanique élevée. Ainsi à l'état T4 la résistance à la rupture à température ambiante est augmentée de plus de 50% par rapport à un produit en alliage 3XXX selon la demande WO 02/055750 à l'état H12 et de plus de 10% par rapport à un produit en alliage 6060 à l'état T4. L'avantage est confirmé pour les tests réalisés à température élevée. Ainsi à l'état T4 la résistance à la rupture à 170 °C est augmentée de près de 60% par rapport à un produit en alliage 3XXX selon la demande WO 02/055750 à l'état H12 et de près de 10% par rapport à un produit en alliage 6060 à l'état T4. En particulier, les tubes selon l'invention présentent à l'état T4 une résistance à la rupture Rm supérieure à 170 MPa à température ambiante et supérieure à 140 MPa à 170 °C. De plus, les tubes selon la composition préférentielle de l'invention présentent à l'état T4 une résistance à la rupture Rm supérieure à 180 MPa à température ambiante et supérieure à 150 MPa à 170 °C. L'allongement à rupture A% obtenu avec les produits selon l'invention est élevé : supérieur à 25% aussi bien à température ambiante qu'à 170 °C. Le produit selon l'invention présente ainsi des avantages importants en termes d'aptitude à la mise en forme et de résistance à la rupture en particulier par rapport aux produits en alliage 3XXX selon la demande WO 02/055750 .The products according to the invention have in the T4 state a high mechanical strength. Thus, in the T4 state, the breaking strength at room temperature is increased by more than 50% with respect to a 3XXX alloy product according to the demand. WO 02/055750 in the H12 state and more than 10% with respect to a 6060 alloy product in the T4 state. The advantage is confirmed for tests carried out at high temperature. Thus in the T4 state the breaking strength at 170 ° C is increased by almost 60% compared to a 3XXX alloy product according to demand WO 02/055750 in the H12 state and close to 10% with respect to a 6060 alloy product in the T4 state. In particular, the tubes according to the invention have, in the T4 state, a tensile strength R m greater than 170 MPa at room temperature and greater than 140 MPa at 170 ° C. In addition, the tubes according to the preferred composition of the invention have in the T4 state a breaking strength Rm greater than 180 MPa at room temperature and greater than 150 MPa at 170 ° C. The elongation at break A% obtained with the products according to the invention is high: greater than 25% both at ambient temperature and at 170.degree. The product according to the invention thus has important advantages in terms of fitness and resistance to rupture especially with respect to 3XXX alloy products according to demand WO 02/055750 .

Les produits selon l'invention présentent également une haute résistance à la corrosion perforante ce qui permet d'obtenir des durées élevées d'utilisation sans fuite. En particulier, les produits selon l'invention ne présentent pas de piqûres profondes lors d'un test de brouillard salin de type SWAAT selon la norme ASTM G85A3, alors que dans les mêmes conditions, celles-ci sont observées pour des produits en alliage AA6106, AA6060 et même pour des produits en alliage AA6060 dans lequel du titane a été ajouté. De façon inattendue, l'ajout combiné de zinc et de titane permet aux produits selon l'invention d'atteindre une résistance à la corrosion à l'état T4 équivalente à celle obtenue avec les produits en alliage 3XXX selon la demande WO 02/055750 .The products according to the invention also have a high resistance to perforating corrosion, which makes it possible to obtain high durations of use without leakage. In particular, the products according to the invention do not exhibit deep pits during a salt spray test of SWAAT type according to the ASTM G85A3 standard, whereas under the same conditions, they are observed for AA6106 alloy products. , AA6060 and even for AA6060 alloy products in which titanium has been added. Unexpectedly, the combined addition of zinc and titanium allows the products according to the invention to achieve a resistance to corrosion in the T4 state equivalent to that obtained with the 3XXX alloy products according to the demand. WO 02/055750 .

Une forme préférée du produit filé selon l'invention est un tube cylindrique ne comportant qu'une seule cavité.A preferred form of the spun product according to the invention is a cylindrical tube having only one cavity.

Les produits filés selon l'invention sont utilisables notamment comme tubes dans la fabrication des véhicules automobiles. En particulier les produits filés selon l'invention sont utilisables comme tubes de canalisations de carburant, d'huile, de liquide de freins ou de fluide frigorigène pour automobiles et comme tubes destinés aux échangeurs thermiques des systèmes de refroidissement moteur et/ou de climatisation d'habitacle des véhicules automobiles, en particulier s'ils utilisent le CO2 comme gaz frigorigène. Les tubes, notamment les tubes étirés, selon l'invention sont plus particulièrement adaptés pour être utilisés sous la forme de tubes cylindriques ne comportant qu'une seule cavité pour les canalisations de transfert de fluide utilisés dans les systèmes de climatisation habitacle de véhicules automobile utilisant le CO2 comme gaz frigorigène.The spun products according to the invention can be used especially as tubes in the manufacture of motor vehicles. In particular, the spun products according to the invention can be used as tubes for fuel lines, oil, brake fluid or refrigerant for automobiles and as tubes for heat exchangers for engine cooling and / or air conditioning systems. passenger compartment, especially if they use CO2 as a refrigerant gas. The tubes, in particular the drawn tubes, according to the invention are more particularly adapted to be used in the form of cylindrical tubes having only one cavity for the fluid transfer lines used in passenger compartment air-conditioning systems of motor vehicles using CO2 as a refrigerant gas.

ExempleExample

On a coulé et homogénéisé des billettes en 5 alliages répertoriés de A à F.Five alloy billets were cast and homogenized from A to F.

Les alliages A, B, C et D correspondent à des compositions de l'art antérieur, l'alliage A fait partie de la série 5xxx, l'alliage B selon la demande WO02/055750 fait partie de la série 3XXX, les alliages C et D font partie de la série 6XXX. L'alliage E est un alliage 6060 dans lequel a été ajouté du titane et l'alliage F est conforme à l'invention.Alloys A, B, C and D correspond to compositions of the prior art, alloy A is part of the 5xxx series, alloy B according to demand WO02 / 055750 Part of the 3XXX series, alloys C and D are part of the 6XXX series. The alloy E is an alloy 6060 in which titanium has been added and the alloy F is in accordance with the invention.

Les compositions (% en poids) sont indiquées au tableau 1. Tableau 1. Composition des alliages A à F (% en poids). alliage Ref, Si Fe Cu Mn Mg Cr Zn Ti AA5049 A 0,13 0,17 0,03 0,78 1,83 0,01 0,01 0,02 3XXX B 0,1 0,27 - 0,97 - 0,19 0,19 0,01 AA6106 C 0,44 0,18 0,11 0,10 0,51 - 0,01 0,01 AA6060 D 0,54 0,22 - 0,08 0,52 - 0,02 0,01 AA6060+Ti E 0,53 0,20 0,03 0,07 0,52 - 0,01 0,17 invention F 0,53 0,22 0,04 0,08 0,53 - 0,18 0,17 The compositions (% by weight) are indicated in Table 1. Table 1. Composition of the alloys A to F (% by weight). alloy Ref, Yes Fe Cu mn mg Cr Zn Ti AA5049 AT 0.13 0.17 0.03 0.78 1.83 0.01 0.01 0.02 3XXX B 0.1 0.27 - 0.97 - 0.19 0.19 0.01 AA6106 VS 0.44 0.18 0.11 0.10 0.51 - 0.01 0.01 AA6060 D 0.54 0.22 - 0.08 0.52 - 0.02 0.01 AA6060 + Ti E 0.53 0.20 0.03 0.07 0.52 - 0.01 0.17 invention F 0.53 0.22 0.04 0.08 0.53 - 0.18 0.17

La billette d'alliage A a été filée en longueurs finies de tubes droits, qui ont ensuite été étirés et recuits pour obtenir un diamètre de 16 mm et une épaisseur de 1,25 mm à l'état final O.The alloy billet A was spun into finished lengths of straight tubes, which were then drawn and annealed to a diameter of 16 mm and a thickness of 1.25 mm in the final state O.

Les billettes d'alliage B, C, D, E et F ont été filées en couronnes de tubes. Les produits en alliage 6XXX (C, D, E et F) ont été trempés sur presse. Ces couronnes ont ensuite été étirées et recuites à une température comprise entre 400 et 550 °C pour obtenir un diamètre de 10 ou 11 mm et une épaisseur de 1,25 ou 1,5 mm. Aucune différence significative n'a été enregistrée entre les cinq alliages B, C, D, E et F concernant leur aptitude au filage et à l'étirage. Les couronnes de l'échantillon B ont subi ensuite une nouvelle passe d'étirage pour les amener à l'état H12 selon la norme EN 515. On a mesuré, sur des échantillons des 6 tubes, la résistance à la rupture Rm (en MPa), la limite d'élasticité Rp0,2 (en MPa) et l'allongement à rupture A%, à température ambiante ainsi qu' à 140°C et 170°C de façon à simuler les conditions d'utilisation du tube dans une installation de climatisation utilisant le CO2 comme fluide frigorigène. Les résultats sont indiqués au tableau 2. Tableau 2. Caractéristiques mécaniques obtenues à température ambiante et à haute température. Température 20°C Température 140°C Température 170°C Ref. Rp0,2 (MPa) Rm (MPa) A% Rp0,2 (MPa) Rm (MPa) A% Rp0,2 (MPa) Rm (MPa) A% A 95 206 28 93 187 31 93 172 34 B 122 132 29 112 112 4 106 106 5 C 131 178 25 114 153 20 123 166 19 D 125 185 27 118 162 24 113 155 23 E 119 182 28 111 159 25 115 162 24 F 121 206 31 116 185 27 109 168 27 The alloy billets B, C, D, E and F were spun into tube crowns. The 6XXX alloy products (C, D, E and F) were hardened on press. These rings were then stretched and annealed at a temperature between 400 and 550 ° C to obtain a diameter of 10 or 11 mm and a thickness of 1.25 or 1.5 mm. No significant differences were recorded between the five alloys B, C, D, E and F for their spinning and drawing properties. The crowns of the sample B were then subjected to a new stretching pass to bring them to the H12 state according to the EN 515 standard. On the samples of the 6 tubes, the breaking strength R m (in MPa), the yield strength R p0.2 (in MPa) and the elongation at break A%, at room temperature as well as at 140 ° C and 170 ° C so as to simulate the conditions of use of the tube in an air conditioning system using CO2 as a refrigerant. The results are shown in Table 2. Table 2. Mechanical characteristics obtained at ambient temperature and at high temperature. Temperature 20 ° C Temperature 140 ° C Temperature 170 ° C Ref. Rp 0.2 (MPa) Rm (MPa) AT% Rp 0.2 (MPa) Rm (MPa) AT% Rp 0.2 (MPa) Rm (MPa) AT% AT 95 206 28 93 187 31 93 172 34 B 122 132 29 112 112 4 106 106 5 VS 131 178 25 114 153 20 123 166 19 D 125 185 27 118 162 24 113 155 23 E 119 182 28 111 159 25 115 162 24 F 121 206 31 116 185 27 109 168 27

Les produits filés obtenus avec les quatre alliages C, D, E, F de la série 6xxx présentent des caractéristiques mécaniques assez similaires entre elles et comparables à celles obtenues avec l'alliage A de la série 5XXX. L'alliage F selon l'invention présente parmi les alliages 6XXX testés les meilleures propriétés avec notamment une résistance à la rupture supérieure de plus de 10 % pour un test effectué à température ambiante et de près de 10% pour un test effectué à 170 °C, par rapport à celle obtenue avec l'alliage AA6060.The spun products obtained with the four alloys C, D, E, F of the 6xxx series have mechanical characteristics that are quite similar to each other and comparable to those obtained with alloy A of the 5XXX series. The alloy F according to the invention has among the 6XXX alloys tested the best properties with in particular a higher tensile strength of more than 10% for a test performed at room temperature and of nearly 10% for a test performed at 170 ° C, compared to that obtained with AA6060 alloy.

L'alliage F selon l'invention présente notamment des caractéristiques mécaniques améliorées par rapport à l'alliage B selon la demande WO02/055750 de l'art antérieur : une résistance à rupture Rm augmentée de plus de 50% aussi bien à température ambiante qu'à 140 °C ou 170 °C, et un allongement à rupture A% supérieur à 25% aussi bien à température ambiante qu'à 140 °C ou 170 °C.The alloy F according to the invention has, in particular, improved mechanical characteristics with respect to the alloy B according to the application WO02 / 055750 of the prior art: a breaking strength R m increased by more than 50% at room temperature as well as at 140 ° C or 170 ° C, and an elongation at break of more than 25% at room temperature at 140 ° C or 170 ° C.

La taille de grain moyenne a été mesurée par la méthode des intercepts sur des échantillons des tubes B, D, E et F. Les résultats sont présentés dans le tableau 4. Les tubes obtenus avec l'alliage selon l'invention présentent des grains fins équiaxes de l'ordre de 25 µm. Tableau 4. Taille de grain moyenne mesurée par la méthode des intercepts. Alliage Sens L (µm) Sens T (µm) Moyenne (µm) B 20 16 18 D 36 34 35 E 26 26 26 F 25 24 24 The average grain size was measured by the intercepts method on samples of tubes B, D, E and F. The results are shown in Table 4. The tubes obtained with the alloy according to the invention have fine grains. equiaxes of the order of 25 microns. Table 4. Average grain size measured by the intercepts method. Alloy Direction L (μm) T direction (μm) Average (μm) B 20 16 18 D 36 34 35 E 26 26 26 F 25 24 24

La résistance à la corrosion a été mesurée à l'aide du test SWAAT (Sea Water Acetic Acid Test) selon la norme ASTM G85 A3. Les mesures ont été faites pour des durées de 500 cycles à la température de 49 °C, sur trois tubes de longueur 200 mm de chaque alliage A, B, C, D, E et F. A la fin de l'essai, les tubes sont sortis de l'enceinte et décapés dans une solution d'acide nitrique concentrée à 68% afin de dissoudre les produits de corrosion. Sur chaque tube, on mesure ensuite optiquement en surface la profondeur des piqûres par défocalisation et on calcule la moyenne des profondeurs des 5 piqûres les plus profondes. On calcule ensuite la moyenne Pmoy des valeurs obtenues pour les 3 tubes. La résistance à la corrosion est d'autant meilleure que Pmoy est faible. Les résultats de 5 campagnes d'essai SWAAT successives sont indiqués dans le tableau 3. Le nombre de signes * indique le nombre de tubes percés dans le lot de trois tube testés. Tableau 3. Résultats obtenus au test de corrosion SWAAT. Campagne d'essai Alliage A Pmoy (µm) Alliage B Pmoy (µm) Alliage C Pmoy (µm) Alliage D Pmoy (µm) Alliage E Pmoy (µm) Alliage F Pmoy (µm) 1 1110 Non testé 1020 Non testé Non testé Non testé 2 1250*** 220 Non testé 1250*** Non testé Non testé 3 Non testé 210 1250 *** 750 Non testé Non testé 4 Non testé 430 Non testé 910 550 350 5 Non testé 320 Non testé 920 540 200 Corrosion resistance was measured using the Sea Water Acetic Acid Test (SWAAT) according to ASTM G85 A3. The measurements were made for periods of 500 cycles at the temperature of 49 ° C, three tubes of 200 mm length of each alloy A, B, C, D, E and F. At the end of the test, the tubes were removed from the chamber and stripped in a solution of nitric acid concentrated to 68% in order to dissolve the corrosion products. On each tube, the depth of the pits by defocusing is measured optically on the surface and the average of the depths of the 5 deepest stings. The average Pmoy of the values obtained for the 3 tubes is then calculated. The corrosion resistance is even better than Pmoy is weak. The results of 5 successive SWAAT test campaigns are shown in Table 3. The number of signs * indicates the number of tubes drilled in the batch of three tubes tested. Table 3. Results obtained in the SWAAT corrosion test. Trial campaign Alloy A Pmoy (μm) B Poyoy alloy (μm) C Pmoy alloy (μm) Pmoy D alloy (μm) E alloy Pmoy (μm) F Pmoy alloy (μm) 1 1110 Not tested 1020 Not tested Not tested Not tested 2 1250 *** 220 Not tested 1250 *** Not tested Not tested 3 Not tested 210 1250 *** 750 Not tested Not tested 4 Not tested 430 Not tested 910 550 350 5 Not tested 320 Not tested 920 540 200

On constate que l'alliage F selon l'invention présente une tenue à la corrosion très supérieure à celle des autres alliages C, D, E de la même série 6xxx, et à celle de l'alliage A de la série 5xxx. Ainsi l'alliage F ne présente pas de piqûre profonde, étant entendu que dans le cadre de la présente invention le terme piqûre profonde signifie une valeur de Pmoy supérieure à 0,5 mm.It is found that the alloy F according to the invention has a corrosion resistance much higher than that of other alloys C, D, E of the same series 6xxx, and that of the alloy A of the 5xxx series. Thus, the alloy F does not exhibit deep pitting, it being understood that in the context of the present invention the term deep stitch means a Pmoy value greater than 0.5 mm.

L'alliage d'essai E au titane piqure plus profondément que l'alliage F, ce qui démontre l'effet bénéfique sur la résistance à la corrosion de l'ajout combiné de Ti et de Zn, comparé à l'ajout de titane seul.Titanium test E alloy pits more deeply than F alloy, demonstrating the beneficial effect on the corrosion resistance of the combined Ti and Zn addition compared to the addition of titanium alone .

L'alliage F selon l'invention offre une résistance à la corrosion équivalente à celle de l'alliage B, selon la demande WO02/055750 de l'art antérieur, réputé pour ses propriétés avantageuses de résistance à la corrosion.The alloy F according to the invention offers a corrosion resistance equivalent to that of the alloy B, according to the demand WO02 / 055750 of the prior art, known for its advantageous properties of corrosion resistance.

L'alliage F selon l'invention offre une combinaison avantageuses de propriétés mécaniques élevées aux températures de fonctionnement des systèmes de climatisation automobile utilisant le fluide CO2, et de haute résistance à la corrosion perforante nécessaire de façon à obtenir des durées élevées d'utilisation sans fuite.The alloy F according to the invention offers an advantageous combination of high mechanical properties at operating temperatures of automotive air conditioning systems using CO2 fluid, and high resistance to the necessary perforating corrosion so as to obtain high durations of use without leak.

Claims (15)

  1. Extruded product, particularly a drawn tube, made of 6XXX alloy having a composition (% by weight) consisting of:
    Mg: 0.4 - 0.7, Si: 0.4 - 0.7, Fe: 0.1 - 0.3, Zn: 0.16 - 0.3, Ti 0.12 - 0.3, 0.05 < Mn < 0.10, Cu < 0.05, Cr < 0.05, Ni < 0.05, others < 0.05 each and < 0.15 total, remainder aluminium, wherein the Si:Mg ratio is between 0.9 and 1.3.
  2. Product according to claim 1, characterised in that Zn 0.16 - 0.25% by weight.
  3. Product according to any one of claims 1 or 2, characterised in that Ti 0.16 - 0.25% by weight.
  4. Product according to any one of claims 1 to 3, characterised in that Mg: 0.5 - 0.6% by weight.
  5. Product according to any one of claims 1 to 4, characterised in that Fe: 0.15 - 0.25% by weight.
  6. Product according to any one of claims 1 to 5, characterised in that (% by weight) Cr < 0.03%, Cu < 0.03, Ni < 0.03.
  7. Extruded product according to any one of claims 1 to 6 characterised in that the grain size thereof is less than 45 µm.
  8. Extruded product according to any one of claims 1 to 7 characterised in that the rupture strength Rm thereof in the T4 state is greater than 170 MPa at ambient temperature and greater than 140 MPa at 170°C.
  9. Extruded product according to claim 8, having a composition (% by weight) consisting of:
    Mg: 0.5 - 0.6, Si: 0.5 - 0.6, Fe: 0.15 - 0.25, Zn: 0.16 - 0.25, Ti 0.16 - 0.25, 0.05 < Mn < 0.10, Cr < 0.03, Cu < 0.03, Ni < 0.03 others < 0.05 each and < 0.15 total, remainder aluminium, wherein the Si:Mg ratio is between 1.0 and 1.2, characterised in that in the T4 state the rupture strength Rm thereof is greater than 180 MPa at ambient temperature and greater than 150 MPa at 170°C.
  10. Extruded product according to any one of claims 1 to 9 characterised in that it exhibits no deep pitting during a salt spray type test as per the standard ASTM G85 A3.
  11. Extruded product according to any one of claims 1 to 10 characterised in that it consists of a cylindrical tube only comprising a single cavity.
  12. Use of an extruded product according to any one of claims 1 to 11 in the manufacture of motor vehicles.
  13. Use according to claim 12 as a fuel, oil, brake fluid or coolant fluid duct tube.
  14. Use according to claim 12 as a tube of a heat exchanger of an engine cooling and/or motor vehicle passenger compartment air conditioning system wherein CO2 is used as a coolant gas.
  15. Use according to claim 13, wherein said extruded product is in the form of a cylindrical tube only comprising a single cavity, as a fluid transfer duct in a passenger compartment air conditioning system using CO2 as a coolant gas.
EP08835140.8A 2007-07-27 2008-07-21 Extruded product made from aluminium alloy al-mg-si with improved resistance to corrosion Active EP2171111B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705511A FR2919307B1 (en) 2007-07-27 2007-07-27 FILE PRODUCT OF AI-MG-SI ALUMINUM ALLOY HAVING IMPROVED CORROSION RESISTANCE
PCT/FR2008/001073 WO2009043992A1 (en) 2007-07-27 2008-07-21 Extruded product made from aluminium alloy al-mg-si with improved resistance to corrosion

Publications (2)

Publication Number Publication Date
EP2171111A1 EP2171111A1 (en) 2010-04-07
EP2171111B1 true EP2171111B1 (en) 2017-03-22

Family

ID=39203297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08835140.8A Active EP2171111B1 (en) 2007-07-27 2008-07-21 Extruded product made from aluminium alloy al-mg-si with improved resistance to corrosion

Country Status (9)

Country Link
US (1) US20100200205A1 (en)
EP (1) EP2171111B1 (en)
JP (1) JP2010534765A (en)
KR (1) KR20100051081A (en)
CN (1) CN101765669A (en)
BR (1) BRPI0814132A2 (en)
FR (1) FR2919307B1 (en)
MX (1) MX2010000786A (en)
WO (1) WO2009043992A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8690207B2 (en) * 2008-12-04 2014-04-08 Norsk Hydro Asa Impact absorbing member and a method for making same
CN102146543A (en) * 2010-02-05 2011-08-10 古河Sky株式会社 Aluminum alloy extrusion material for a connector which is excellent in extrusion property and sacrificial anode property
FR2996857B1 (en) * 2012-10-17 2015-02-27 Constellium France ELEMENTS OF ALUMINUM ALLOY VACUUM CHAMBERS
CN103540814A (en) * 2013-10-17 2014-01-29 常熟市良益金属材料有限公司 Aluminum magnesium alloy
CN106414782B (en) 2014-01-21 2020-01-31 奥科宁克公司 6XXX aluminium alloy
CN103993206B (en) * 2014-04-16 2016-05-25 池州市光明塑钢有限公司 A kind of aluminium alloy extrusions and preparation method thereof for printing
CN103911533A (en) * 2014-04-26 2014-07-09 广东兴发铝业有限公司 Formula of 6061 aluminum alloy extrusion section for refrigerated container
CN104152758A (en) * 2014-08-12 2014-11-19 山东裕航特种合金装备有限公司 Production process of high-strength aluminum alloy hollow profile for automobile shock absorber
CN104313415A (en) * 2014-11-12 2015-01-28 江苏礼德铝业有限公司 Aluminum alloy
US11313019B2 (en) 2015-12-23 2022-04-26 Norsk Hydro Asa Method for producing a heat treatable aluminum alloy with improved mechanical properties
CN111575559B (en) * 2020-07-07 2021-06-29 福建祥鑫股份有限公司 Corrosion-resistant 6-series aluminum alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829944A (en) * 1986-06-25 1989-05-16 Showa Aluminum Corporation Intake manifold and process for producing same
US5976278A (en) * 1997-10-03 1999-11-02 Reynolds Metals Company Corrosion resistant, drawable and bendable aluminum alloy, process of making aluminum alloy article and article
FR2819525B1 (en) * 2001-01-12 2003-02-28 Pechiney Rhenalu LAMINATED OR ALUMINUM AL-Mn ALLOY PRODUCTS WITH IMPROVED CORROSION RESISTANCE
AU2003290435A1 (en) * 2002-12-27 2004-07-29 Showa Denko K.K. Aluminum pipe and process for producing same
JP2005068557A (en) * 2003-08-07 2005-03-17 Showa Denko Kk Aluminum alloy excellent in high-temperature strength, member for heat exchanger, heat exchange tube, and heat exchanger
JP4612510B2 (en) * 2005-09-08 2011-01-12 カルソニックカンセイ株式会社 Aluminum alloy extruded tube for heat exchanger, heat exchanger and method for producing the tube
CN101384741A (en) * 2006-02-17 2009-03-11 诺尔斯海德公司 Aluminium alloy with improved crush properties

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2919307A1 (en) 2009-01-30
US20100200205A1 (en) 2010-08-12
EP2171111A1 (en) 2010-04-07
BRPI0814132A2 (en) 2015-02-03
CN101765669A (en) 2010-06-30
MX2010000786A (en) 2010-03-30
JP2010534765A (en) 2010-11-11
FR2919307B1 (en) 2009-10-02
WO2009043992A1 (en) 2009-04-09
KR20100051081A (en) 2010-05-14

Similar Documents

Publication Publication Date Title
EP2171111B1 (en) Extruded product made from aluminium alloy al-mg-si with improved resistance to corrosion
EP2171114B1 (en) Extruded products in aluminium alloy al-mn with improved mechanical strength
EP1564307A1 (en) Aluminium alloy extruded product for heat exchangers and method of manufacturing the same
JP4630323B2 (en) Copper alloy tube for heat exchangers with excellent fracture strength
EP1075935A1 (en) Strip or tube for the fabrication of brazed heat exchangers
JP5049536B2 (en) Aluminum piping material for automotive heat exchangers
WO2016051099A1 (en) Isotropic aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
WO2003044235A2 (en) Aluminium alloy strips for heat exchangers
EP1349965B1 (en) Rolled or extruded aluminium al-mn alloy products with improved corrosion resistance
US9631879B2 (en) Aluminum alloy for extrusion and drawing processes
CA3085811A1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture
FR3111143A1 (en) High temperature performance aluminum copper magnesium alloy products
JP5878235B2 (en) Aluminum alloy for microporous hollow material having excellent extrudability and intergranular corrosion resistance and method for producing the same
KR20130109198A (en) Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same
CA2638403A1 (en) Aluminum alloy for extrusion and drawing processes
FR2857981A1 (en) Thin sheet or strip of aluminum alloy for bottle caps and wrapping foil has a thickness of less than 200 microns, is essentially free of manganese, and has increased mechanical strength
EP1484420B1 (en) Use of a rolled or extruded aluminium alloy product having a high corrosion resistance
CH696934A5 (en) AlMgSi alloy.
EP2716403B1 (en) Copper alloys for heat exchangers
CA2621543A1 (en) Aluminum alloy tube and aluminum alloy structural member for automobile using the same
JP2002038232A (en) Aluminum alloy piping material for heat exchanger
WO2023187301A1 (en) Recycled 6xxx alloy sheet and manufacturing process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PIGNATEL, JEROME

Inventor name: MORERE, BRUCE

Inventor name: BIGOT, ANNABELLE

17Q First examination report despatched

Effective date: 20100929

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM FRANCE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM ISSOIRE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 21/08 20060101ALI20160913BHEP

Ipc: C22C 21/08 20060101AFI20160913BHEP

Ipc: C22F 1/04 20060101ALI20160913BHEP

INTG Intention to grant announced

Effective date: 20161018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 877851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008049382

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 877851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008049382

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170721

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170721

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230727

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 16

Ref country code: DE

Payment date: 20230727

Year of fee payment: 16