EP2169035B1 - Method for setting the calorific value in fuel gases containing methane - Google Patents

Method for setting the calorific value in fuel gases containing methane Download PDF

Info

Publication number
EP2169035B1
EP2169035B1 EP20090171002 EP09171002A EP2169035B1 EP 2169035 B1 EP2169035 B1 EP 2169035B1 EP 20090171002 EP20090171002 EP 20090171002 EP 09171002 A EP09171002 A EP 09171002A EP 2169035 B1 EP2169035 B1 EP 2169035B1
Authority
EP
European Patent Office
Prior art keywords
calorific value
fuel gas
gas
methane
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20090171002
Other languages
German (de)
French (fr)
Other versions
EP2169035A1 (en
Inventor
Michael Goschin
Thomas Ryll
Klaus Rademann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Begatec GmbH
Original Assignee
Begatec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Begatec GmbH filed Critical Begatec GmbH
Publication of EP2169035A1 publication Critical patent/EP2169035A1/en
Application granted granted Critical
Publication of EP2169035B1 publication Critical patent/EP2169035B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas

Definitions

  • the invention relates to a method for adjusting the calorific value in methane-containing fuel gases.
  • Methane-containing fuel gases such as biogas, digester gases, mine gases, thermally produced fuel gases and combustion gases produced by degassing can often be fed into the public gas network only by suitable measures.
  • the reason for the limitation of the feed into the public gas network is justified by the German calibration law, since this allows only a deviation of 2% of the average settlement value within a billing period with supply of gas from different sources or directions. In Germany are z.Zt. two fundamentally different natural gases distributed in public gas networks. First, the natural gas H with a calorific value between 9.5 - 13.1 kWh / m 3 and secondly, the natural gas L with a calorific value between 8.4 - 9.5 kWh / m 3 .
  • biogas After processing the raw biogas, biogas has a calorific value of 10.4 - 10.8 kWh / m 3 . Usually this means that the limit of 2% compared to the billing period is exceeded with a standard combustion value of 11.1-11.5 kWh / m 3 .
  • LPG Liquefied petroleum gas
  • propane / butane mixture is now used to increase the calorific value.
  • This mixture comes from fossil sources and is as finite as natural gas and subject to variable market prices.
  • gas biogas or natural gas H
  • air is mixed with air via elaborate filtering and drying systems.
  • the fuel gas is excited by energy input to form a plasma, whereby the fuel gas or product gas then has a modified calorific value.
  • the plasma is preferably generated in a reactor, through which the fuel gas is passed continuously.
  • the energy input is preferably discontinuous, so that short-term plasmas are generated in the reactor.
  • the plasmas are generated by electric sparks, electric arcs, lasers, microwaves or the like.
  • the electrodes used in this case are preferably made of metal or carbon, with platinum or stainless steel being preferred. Platinum is the most preferred.
  • the calorific value of the fuel gas is changed, wherein the formation can be controlled so that a predetermined calorific value can be achieved, which can be set by a suitable means, which will be described below, to a defined value.
  • the basic organic component methane acetylene / ethyne is formed as the main product.
  • Other products include ethene, ethane, propene, propane, various hydrocarbons with a four carbon carbon skeleton, and hydrogen. There will also be connections with up to six Carbon atoms in the product gas obtained. In addition, carbon black or coal is obtained in good yields.
  • the unsaturated compounds are catalytically hydrogenated and the remaining portion of hydrogen can be separated.
  • the hydrogenation catalyst known catalysts such as metal asbestos, metals and metal oxides are used. Further suitable catalysts are known to the person skilled in the art.
  • the calorific value of the fuel gas is of course also influenced.
  • the separation is carried out by known methods. These are, for example, the diffusion through clay or ceramic components or hydrogen-permeable membranes of palladium alloys. Further suitable methods are known to the person skilled in the art.
  • the entire process can advantageously be carried out continuously in all steps.
  • An apparatus for carrying out the method essentially comprises a reactor, preferably a tubular reactor for the continuous passage of the methane-containing fuel gas.
  • the tubular reactor is provided with means for introducing energy into the fuel gas to form a plasma.
  • This device preferably generates pulsed short-time plasmas.
  • this has after the reactor to a device for the separation of the hydrogen, as described above in the method.
  • this has between the reactor and the means for separating the hydrogen, a means for the catalytic hydrogenation of the unsaturated compounds in the fuel gas, which flows out of the reactor after the plasma treatment.
  • a means for the catalytic hydrogenation of the unsaturated compounds in the fuel gas which flows out of the reactor after the plasma treatment.
  • the yield of the various products depends on the electrical power, the electrode geometry of the energy input device, its polarity, the flow rate of the fuel gas in the reactor, the gas pressure and the electrode material.
  • the selectivity is controlled according to the invention by varying these parameters, so that an increase in the calorific value of a methane-containing fuel gas by formation of higher-energy hydrocarbons or a reduction of the calorific value by formation of soot, which is removed from the gas stream occurs. Also by means of hydrogenation and / or separation of the hydrogen, the calorific value is influenced.
  • the most important and most easily varied parameters in the control of the process are the power of the plasma and the flow rate of the methane-containing fuel gas.
  • the main products can be classified according to the number of carbon atoms.
  • the C2 group two C atoms
  • the C3 group three C atoms
  • the C4 group four C atoms
  • Fig. 1 and Fig. 2 compare each of the products obtained in the different plasma performances. Shown are the C2 in Fig. 1 and C3-in Fig. 2 ,
  • Table 1 represents the percent yields of the carbon compounds and the calorific value produced as a function of the voltage and current of the reactor. Tab.1 Dependence of the reaction products on the reaction voltage Flow (l / h) 30 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 unit tension kV 4.7 6.0 9.0 12.0 15.0 electricity mA 2.4 4.1 7.4 10.6 14.0 hydrogen % 1.51 2.60 3.81 5.10 4.77 methane % 96.81 94.51 90.90 82.52 77,70 Ethan % 0.55 0.48 0.97 1.57 1.39 ethene % 0.17 0.37 0.66 1.57 1.90 acetylene % 0.85 1.73 3.24 7.43 11.34 propane % 0.00 0.00 0.00 0.05 0.04 propene % 0.00 0.00 0.04 0.11 0.14 1,2- % 0.00 0.04 0.05 0.17 0.26 propyne % 0.04 0.10 0.14 0.47 0.77 1,3-butadiene % 0.00 0.00 0.00 0.07 0.
  • Fig. 1 shows superimposed chromatograms and represents the increase in peak height (area) for ethane, ethene, and acetylene.
  • concentration can be found in Table 1.
  • Sample 1 corresponds to the lowest plasma power (4.7 kV) and Sample 5 to the highest plasma power (15 kV).
  • Particularly noteworthy here is the enormous increase in acetylene. With a voltage of approx. 15 kV, acetylene reaches a peak area of more than ten percent, making it the main product.
  • the sum of the C2 connections is about 15 kV voltage with over 15 percent higher than all other connections.
  • Fig. 2 shows propene and propadiene as a function of increasing plasma power. There is also a significant increase in peak height with increasing voltage.
  • the proportional peak area of propene and propadiene is about ten times smaller than the sum of the peak areas of the C2 group at about 15 kV. Propane is detectable only at voltages above 9 kV.
  • Table 2 shows that higher concentrations of higher hydrocarbons are obtained at 60 l / h than at 30 l / h.
  • the concentration of hydrogen in the product gas mixture correlates with low gas flows and high voltages. At low gas flows carbon is formed, which is recognizable as carbon fouling. The hydrogen yield then increases, the concentration of higher hydrocarbons decreases as carbon is formed.
  • Table 2 Dependence of the concentration as a function of the flow rate Flow (l / h) 60 30 unit tension kV 9.1 9.0 electricity mA 7.2 7.4 hydrogen 3,542 2.43 3.81 methane % 11,064 89.56 90.90 Ethan % 19.537 1.11 0.97 ethene % 19.537 0.96 0.66 acetylene % 19.537 5.04 3.24 propane % 25 0.00 0.00 propene % 25 0.07 0.04 1,2-propadiene % 25 0.10 0.05 propyne % 25 0.00 0.14 1,3-butadiene % 35 0.26 0.00 1.3 Butadiyne % 35 0.03 0.13 1-butyn % 35 0.33 0.00 n-pentane %
  • Fig. 5 shows that acetylene concentrations of over one percent at 30 l / h and about 15 kV are obtained.
  • the concentration of hydrogen in the product gas mixture correlates with low gas flows and high voltages.
  • Fig. 6 shows that more than 5% by volume hydrogen was measurable at reaction conditions of 30 l / h and 15 kV in the product gas.
  • Table 3 shows the results of methane conversion at 60 l / h with a platinum and a stainless steel electrode
  • Fig. 7 shows a schematic structure of a device.
  • This device 10 has a fuel gas source 11 with a discharge valve 12, from which the fuel gas is passed via a gas line to the flow reactor 13, in which a device for energy input 14 is arranged. Subsequently, the fuel gas / product gas changed in the calorific value is first conducted to a device for hydrogenation 15 and then to a device for the separation of hydrogen 16. In addition, the last device provided is a gas chromatograph 17 with which the composition of the product gas can be analyzed.
  • the gas analysis after carrying out the process with the device prototype described below shows, in addition to the main component methane, exclusively saturated higher hydrocarbons and no hydrogen.
  • the partial conversion of methane into higher hydrocarbons and the complete hydrogenation of unsaturated hydrocarbons such as acetylene and the complete separation of hydrogen has succeeded.
  • the increase in calorific value was over 11%.
  • the control of the ignition energy of the plasma allows adjustment of the calorific value. This means that almost every calorific value that is greater than 11.064 kWh / m3 can be set by varying the process parameters.
  • the methane reactor consists of a square tube (edge length 10 cm) in which at a distance of 5 cm twelve spark plugs are screwed.
  • the electrical mains voltage 230V, 50Hz
  • the required high voltage is achieved by a relay circuit with a very high clock frequency.
  • semiconductor relays are controlled by means of high-frequency pulsed DC voltage and thus clock the supply voltage of the coils.
  • the control of the ignition energy via a frequency controller and the amount of supply voltage for the coils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Einstellung des Brennwertes in methanhaltigen Brenngasen.The invention relates to a method for adjusting the calorific value in methane-containing fuel gases.

Methanhaltige Brenngase wie beispielsweise Biogas, Faulgase, Grubengase, thermisch erzeugte Brenngase und durch Entgasung erzeugte Brenngase können häufig nur durch geeignete Maßnahmen in das öffentliche Gasnetz eingespeist werden. Der Grund für die Limitierung der Einspeisung in das öffentliche Gasnetz ist durch das deutsche Eichgesetz begründet, da dieses innerhalb eines Abrechnungszeitraumes bei Einspeisung von Gas aus verschieden Quellen oder Richtungen nur eine Abweichung von 2% vom Abrechnungsmittelwert erlaubt. In Deutschland werden z.Zt. zwei grundsätzlich verschiedene Erdgase in öffentlichen Gasnetzen verteilt. Erstens das Erdgas H mit einem Brennwert zwischen 9,5 - 13,1 kWh/m3 und zweitens das Erdgas L mit einem Brennwert zwischen 8,4 - 9,5 kWh/m3. Biogas hat nach einer Aufbereitung des Rohbiogases einen Brennwert von 10,4 - 10,8 kWh/m3. Üblicherweise wird damit wird damit die Grenze von 2% gegenüber dem Abrechnungszeitraum bei einem Regelbrennwert von 11,1 -11,5 kWh/m3 überschritten.Methane-containing fuel gases such as biogas, digester gases, mine gases, thermally produced fuel gases and combustion gases produced by degassing can often be fed into the public gas network only by suitable measures. The reason for the limitation of the feed into the public gas network is justified by the German calibration law, since this allows only a deviation of 2% of the average settlement value within a billing period with supply of gas from different sources or directions. In Germany are z.Zt. two fundamentally different natural gases distributed in public gas networks. First, the natural gas H with a calorific value between 9.5 - 13.1 kWh / m 3 and secondly, the natural gas L with a calorific value between 8.4 - 9.5 kWh / m 3 . After processing the raw biogas, biogas has a calorific value of 10.4 - 10.8 kWh / m 3 . Usually this means that the limit of 2% compared to the billing period is exceeded with a standard combustion value of 11.1-11.5 kWh / m 3 .

Zur Erreichung eines Brennwertes für das ins öffentliche Gasnetz einzuspeisende Biogas, das dem Erdgasbrennwert auf 2% angeglichen ist, werden technisch aufwendige und kostenintensive Maßnahmen ergriffen.To achieve a calorific value for the biogas to be fed into the public gas network, which is adjusted to the natural gas calorific value to 2%, technically complex and cost-intensive measures are taken.

Zur Anhebung des Brennwertes wird heute Flüssiggas (LPG) aus einem Propan/Butangemisch zugedüst. Dieses Gemisch entstammt fossilen Quellen und ist ebenso endlich wie Erdgas und unterliegt veränderlichen Marktpreisen. Zur Senkung des Brennwertes wird dem Gas (Biogas oder Erdgas H) über aufwendige Filter- und Trocknungsanlagen Luft beigemischt.Liquefied petroleum gas (LPG) from a propane / butane mixture is now used to increase the calorific value. This mixture comes from fossil sources and is as finite as natural gas and subject to variable market prices. To reduce the calorific value, gas (biogas or natural gas H) is mixed with air via elaborate filtering and drying systems.

Es sind aus den Druckschriften WO 00/21911 A1 und WO 03/055795 A1 Verfahren bekannt, bei denen methanhaltige Brenngase zur Ausbildung eines Plasmas angeregt werden, wobei überwiegend Wasserstoff und Kohlenstoff gebildet werden. Ein ähnliches Verfahren zur Anreicherung von Wasserstoff in einem Brenngas mittels Mikrowellen und eines Katalysators wird in der US 2008/1735323 A1 beschrieben. In der WO 93/12205 A1 wird ein Verfahren offenbart, bei dem durch einen pyrolytischen Prozess der Brennwert eines Gases verändert wird.It is from the pamphlets WO 00/21911 A1 and WO 03/055795 A1 Methods are known in which methane-containing fuel gases to form a plasma are excited, with predominantly hydrogen and carbon are formed. A similar process for the enrichment of hydrogen in a fuel gas by means of microwaves and a catalyst is described in US Pat US 2008/1735323 A1 described. In the WO 93/12205 A1 discloses a method in which the calorific value of a gas is changed by a pyrolytic process.

Es ist daher Aufgabe der Erfindung, ein Verfahren zu schaffen, mit dem einfach und kostengünstig der Brennwert in methanhaltigen Brenngasen eingestellt werden kann.It is therefore an object of the invention to provide a method by which the calorific value can be adjusted in methane-containing fuel gases simply and inexpensively.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a method having the features of claim 1.

Vorteilhafte Ausgestaltungen sind in den Unteransprüchen dargestellt.Advantageous embodiments are shown in the subclaims.

Bei dem erfindungsgemäßen Verfahren zur Einstellung des Brennwertes in methanhaltigen Brenngasen wird das Brenngas durch Energieeintrag zur Ausbildung eines Plasmas angeregt wird, wodurch das Brenngas oder Produktgas dann einen veränderten Brennwert aufweist. Das Plasma wird vorzugsweise in einem Reaktor erzeugt, durch den das Brenngas kontinuierlich geleitet wird.In the inventive method for adjusting the calorific value in methane-containing fuel gases, the fuel gas is excited by energy input to form a plasma, whereby the fuel gas or product gas then has a modified calorific value. The plasma is preferably generated in a reactor, through which the fuel gas is passed continuously.

Der Energieeintrag erfolgt vorzugsweise diskontinuierlich, so dass im Reaktor Kurzzeitplasmen erzeugt werden. Dabei werden die Plasmen durch elektrische Funken, Lichtbögen, Laser, Mikrowellen oder dergleichen erzeugt. Die dabei verwendeten Elektroden bestehen vorzugsweise aus Metall oder Kohlenstoff, wobei Platin oder Edelstahl bevorzugt werden. Platin wird am meisten bevorzugt.The energy input is preferably discontinuous, so that short-term plasmas are generated in the reactor. The plasmas are generated by electric sparks, electric arcs, lasers, microwaves or the like. The electrodes used in this case are preferably made of metal or carbon, with platinum or stainless steel being preferred. Platinum is the most preferred.

Es entstehen eine Vielzahl an gesättigten und ungesättigten, organischen Verbindungen sowie molekularer Wasserstoff. Durch die Veränderung der Zusammensetzung des Brenngases wird der Brennwert des Brenngases verändert, wobei die Bildung derart gesteuert werden kann, dass ein vorgegebener Brennwert erzielbar ist, der durch geeignete Maßnahme, die nachstehend beschrieben werden, auf einen definierten Wert eingestellt werden kann.It produces a variety of saturated and unsaturated organic compounds and molecular hydrogen. By changing the composition of the fuel gas, the calorific value of the fuel gas is changed, wherein the formation can be controlled so that a predetermined calorific value can be achieved, which can be set by a suitable means, which will be described below, to a defined value.

Dabei wird aus dem organischen Grundbaustein Methan Acetylen/Ethin als Hauptprodukt gebildet. Andere Produkte sind Ethen, Ethan, Propen, Propan, verschiedene Kohlenwasserstoffe mit einem Kohlenstoffgerüst aus vier Kohlenstoffatomen und Wasserstoff. Es werden auch Verbindungen mit bis zu sechs Kohlenstoffatomen im Produktgas erhalten. Zudem wird Ruß bzw. Kohle in guten Ausbeuten erhalten.In this case, the basic organic component methane acetylene / ethyne is formed as the main product. Other products include ethene, ethane, propene, propane, various hydrocarbons with a four carbon carbon skeleton, and hydrogen. There will also be connections with up to six Carbon atoms in the product gas obtained. In addition, carbon black or coal is obtained in good yields.

Mit dem gebildeten Wasserstoff werden die ungesättigten Verbindungen katalytisch hydriert und der verbleibende Anteil Wasserstoff kann abgetrennt werden. Als Hydrierungskatalysator werden bekannte Katalysatoren wie Metallasbest, Metalle und Metalloxide verwendet. Weitere geeignete Katalysatoren sind dem Fachmann bekannt.With the hydrogen formed, the unsaturated compounds are catalytically hydrogenated and the remaining portion of hydrogen can be separated. As the hydrogenation catalyst, known catalysts such as metal asbestos, metals and metal oxides are used. Further suitable catalysts are known to the person skilled in the art.

Durch Abtrennung des Wasserstoffs wird naturgemäß auch der Brennwert des Brenngases beeinflusst.By separating the hydrogen, the calorific value of the fuel gas is of course also influenced.

Die Abtrennung erfolgt mittels bekannter Verfahren. Dies sind beispielsweise die Diffusion durch Ton- oder Keramikbauteile oder wasserstoffpermeable Membranen aus Palladium-Legierungen. Weitere geeignete Verfahren sind dem Fachmann bekannt.The separation is carried out by known methods. These are, for example, the diffusion through clay or ceramic components or hydrogen-permeable membranes of palladium alloys. Further suitable methods are known to the person skilled in the art.

Das gesamte Verfahren kann in allen Schritte vorteilhafterweise kontinuierlich ausgeführt werden.The entire process can advantageously be carried out continuously in all steps.

Eine Vorrichtung zur Durchführung des Verfahrens weist im wesentlichen einen Reaktor, vorzugsweise einen Rohrreaktor zur kontinuierlichen Durchleitung des methanhaltigen Brenngases auf. Der Rohrreaktor ist mit einer Einrichtung zum Energieeintrag in das Brenngas zur Bildung eines Plasmas versehen. Diese Einrichtung erzeugt vorzugsweise gepulste Kurzzeitplasmen.An apparatus for carrying out the method essentially comprises a reactor, preferably a tubular reactor for the continuous passage of the methane-containing fuel gas. The tubular reactor is provided with means for introducing energy into the fuel gas to form a plasma. This device preferably generates pulsed short-time plasmas.

Nach einer Ausführungsform der Vorrichtung weist diese nach dem Reaktor eine Einrichtung zur Abtrennung des Wasserstoffes auf, wie voranstehend beim Verfahren beschrieben.According to one embodiment of the device, this has after the reactor to a device for the separation of the hydrogen, as described above in the method.

Nach einer weiteren Ausführungsform der Vorrichtung besitzt diese zwischen Reaktor und der Einrichtung zur Abtrennung des Wasserstoffs eine Einrichtung zur katalytischen Hydrierung der ungesättigten Verbindungen im Brenngas, das nach der Plasmabehandlung aus dem Reaktor strömt. Geeignete Katalysatoren sind voranstehend beschrieben.According to a further embodiment of the device, this has between the reactor and the means for separating the hydrogen, a means for the catalytic hydrogenation of the unsaturated compounds in the fuel gas, which flows out of the reactor after the plasma treatment. Suitable catalysts are described above.

Weitere Einrichtungen zur Verfahrensparameter, die nachstehend aufgeführt werden, weist die Vorrichtung nach Bedarf auf, insbesondere sind dies Einrichtungen zur Regelung der Strömungsgeschwindigkeit des Brenngases im Reaktor und dem Gasdruck.Further equipment for process parameters, which are listed below, has the device as needed, in particular, these are devices for controlling the flow rate of the fuel gas in the reactor and the gas pressure.

Nachstehende Ausführungen betreffen sowohl das erfindungsgemäße Verfahren als auch die Vorrichtung zur Durchführung des Verfahrens.The following statements relate both to the method according to the invention and to the device for carrying out the method.

Die Ausbeute der verschiedenen Produkte hängt von der elektrischen Leistung, der Elektrodengeometrie der Einrichtung zum Energieeintrag, deren Polarität, der Strömungsgeschwindigkeit des Brenngases im Reaktor, dem Gasdruck sowie dem Elektrodenmaterial ab.The yield of the various products depends on the electrical power, the electrode geometry of the energy input device, its polarity, the flow rate of the fuel gas in the reactor, the gas pressure and the electrode material.

Die Selektivität wird erfindungsgemäß durch Variation dieser Parameter gesteuert, so dass eine Erhöhung des Brennwertes eines methanhaltigen Brenngases durch Bildung energetisch höherwertiger Kohlenwasserstoffe oder eine Reduzierung des Brennwertes durch Bildung von Ruß, der aus dem Gastrom entfernt wird, erfolgt. Auch mittels Hydrierung und/oder Abtrennung des Wasserstoffs wird der Brennwert beeinflusst.The selectivity is controlled according to the invention by varying these parameters, so that an increase in the calorific value of a methane-containing fuel gas by formation of higher-energy hydrocarbons or a reduction of the calorific value by formation of soot, which is removed from the gas stream occurs. Also by means of hydrogenation and / or separation of the hydrogen, the calorific value is influenced.

Die wichtigsten und am leichtesten zu variierenden Parameter bei der Steuerung des Verfahrens sind die Leistung des Plasmas sowie die Fließgeschwindigkeit des methanhaltigen Brenngases.The most important and most easily varied parameters in the control of the process are the power of the plasma and the flow rate of the methane-containing fuel gas.

Die Hauptprodukte können nach der Anzahl ihrer Kohlenstoffatome eingeteilt werden. Somit werden im Folgenden die C2-Gruppe (zwei C-Atome), die C3-Gruppe (drei C-Atome) und die C4-Gruppe (vier C-Atome) im Einzelnen betrachtet.The main products can be classified according to the number of carbon atoms. Thus, in the following, the C2 group (two C atoms), the C3 group (three C atoms) and the C4 group (four C atoms) are considered in detail.

Wie ausgeführt, steigt die Konzentration der Produkte mit der Steigerung der Leistung des Plasmas. Die Chromatogramme gemäß Fig. 1 und Fig. 2 vergleichen jeweils die erhaltenen Produkte bei den unterschiedlichen Plasmaleistungen. Dargestellt sind die C2- in Fig. 1 und C3- in Fig. 2.As stated, the concentration of the products increases with the increase of the power of the plasma. The chromatograms according to Fig. 1 and Fig. 2 compare each of the products obtained in the different plasma performances. Shown are the C2 in Fig. 1 and C3-in Fig. 2 ,

Tabelle 1 stellt die prozentualen Ausbeuten der Kohlenstoffverbindungen und des erzeugten Brennwerts in Abhängigkeit von Spannung und Stromstärke des Reaktors dar. Tab.1 Abhängigkeit der Reaktionsprodukte von der Reaktionsspannung Durchfluß (l/h) 30 Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Einheit Spannung kV 4,7 6,0 9,0 12,0 15,0 Strom mA 2,4 4,1 7,4 10,6 14,0 Wasserstoff % 1,51 2,60 3,81 5,10 4,77 Methan % 96,81 94,51 90,90 82,52 77,70 Ethan % 0,55 0,48 0,97 1,57 1,39 Ethen % 0,17 0,37 0,66 1,57 1,90 Acetylen % 0,85 1,73 3,24 7,43 11,34 Propan % 0,00 0,00 0,00 0,05 0,04 Propen % 0,00 0,00 0,04 0,11 0,14 1,2- % 0,00 0,04 0,05 0,17 0,26 Propin % 0,04 0,10 0,14 0,47 0,77 1,3-Butadien % 0,00 0,00 0,00 0,07 0,11 1,3-Butadiin % 0,07 0,14 0,13 0,63 1,11 1-Butin % 0,00 0,00 0,00 0,04 0,05 n-Pentan % 0,00 0,04 0,05 0,22 0,36 0,00 0,00 0,00 0,06 0,07 Brennwert kWhlm3 11,11 11,15 11,27 11,92 12,51 Table 1 represents the percent yields of the carbon compounds and the calorific value produced as a function of the voltage and current of the reactor. Tab.1 Dependence of the reaction products on the reaction voltage Flow (l / h) 30 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 unit tension kV 4.7 6.0 9.0 12.0 15.0 electricity mA 2.4 4.1 7.4 10.6 14.0 hydrogen % 1.51 2.60 3.81 5.10 4.77 methane % 96.81 94.51 90.90 82.52 77,70 Ethan % 0.55 0.48 0.97 1.57 1.39 ethene % 0.17 0.37 0.66 1.57 1.90 acetylene % 0.85 1.73 3.24 7.43 11.34 propane % 0.00 0.00 0.00 0.05 0.04 propene % 0.00 0.00 0.04 0.11 0.14 1,2- % 0.00 0.04 0.05 0.17 0.26 propyne % 0.04 0.10 0.14 0.47 0.77 1,3-butadiene % 0.00 0.00 0.00 0.07 0.11 1.3 Butadiyne % 0.07 0.14 0.13 0.63 1.11 1-butyn % 0.00 0.00 0.00 0.04 0.05 n-pentane % 0.00 0.04 0.05 0.22 0.36 0.00 0.00 0.00 0.06 0.07 condensing kWh 3 11.11 11.15 11.27 11.92 12.51

Fig. 1 zeigt übereinander gelegte Chromatogramme und stellt die Zunahme der Peakhöhe (Fläche) für Ethan, Ethen und Acetylen. Die entsprechenden Angaben bezüglich der Konzentration sind Tabelle 1 zu entnehmen. Probe 1 entspricht der niedrigsten Plasmaleistung (4,7 kV) und Probe 5 der höchsten Plasmaleistung (15 kV). Hierbei ist besonders der enorme Zuwachs des Acetylens hervorzuheben. Mit einer Spannung von ca. 15 kV erreicht Acetylen einen Anteil an Peakfläche von über zehn Prozent und ist damit das Hauptprodukt. Die Summe der C2-Verbindungen liegt bei ca. 15 kV Spannung mit über 15 Prozent höher als bei sämtlichen anderen Verbindungen. Fig. 1 shows superimposed chromatograms and represents the increase in peak height (area) for ethane, ethene, and acetylene. The corresponding information regarding the concentration can be found in Table 1. Sample 1 corresponds to the lowest plasma power (4.7 kV) and Sample 5 to the highest plasma power (15 kV). Particularly noteworthy here is the enormous increase in acetylene. With a voltage of approx. 15 kV, acetylene reaches a peak area of more than ten percent, making it the main product. The sum of the C2 connections is about 15 kV voltage with over 15 percent higher than all other connections.

Fig. 2 zeigt Propen und Propadien in Abhängigkeit von steigender Plasmaleistung. Es ist ebenfalls eine deutliche Zunahme der Peakhöhe mit zunehmender Spannung zu verzeichnen. Die anteilige Peakfläche von Propen und Propadien liegt bei ca. 15 kV ungefähr zehnmal kleiner als die Summe der Peakflächen der C2-Gruppe. Propan ist erst bei Spannungen über 9 kV detektierbar. Fig. 2 shows propene and propadiene as a function of increasing plasma power. There is also a significant increase in peak height with increasing voltage. The proportional peak area of propene and propadiene is about ten times smaller than the sum of the peak areas of the C2 group at about 15 kV. Propane is detectable only at voltages above 9 kV.

Einen Zuwachs der Produktkonzentration um den Faktor "2" lässt sich auch in Fig. 3 beobachten, wo der Einfluss des Wechsels der Polarität untersucht wird. Das heißt, dass die C3-Gruppe beim Wechsel der Spannung von negativ zu positiv mit deutlichen höheren Ausbeuten erhalten werden kann.An increase of the product concentration by the factor "2" can also be found in Fig. 3 observe where the influence of the change of polarity is examined. This means, that the C3 group can be obtained from negative to positive when the voltage changes from negative to positive with significantly higher yields.

Die Abhängigkeit der Methankonvertierung von der Spannung der Hochspannungsquelle, der Polarität sowie von der Gasfließgeschwindigkeit ist deutlich gegeben.The dependence of the methane conversion on the voltage of the high voltage source, the polarity as well as the gas flow rate is clearly given.

Die Korrelation von Gasfluss, Spannung und der Konzentration von Edukt und Produkten ist in den Fig. 4 - 6 wiedergegeben. Dargestellt ist der Verlauf der Methankonzentration (Fig. 4), der Acetylenkonzentration (Fig. 5) der Wasserstoffkonzentration (Fig. 6).The correlation of gas flow, voltage and the concentration of educt and products is in the Fig. 4-6 played. The course of the methane concentration ( Fig. 4 ), the acetylene concentration ( Fig. 5 ) of the hydrogen concentration ( Fig. 6 ).

Da Methan im Plasma umgesetzt wird, nimmt seine Konzentration mit steigender Plasmaleistung ab. Betrachtet man den Verlauf in seiner Gesamtheit, sieht man den größten Umsatz bei sehr hohen Spannungen und niedrigen Gasflüssen.Since methane is converted in plasma, its concentration decreases with increasing plasma power. Looking at the course in its entirety, one sees the largest sales at very high voltages and low gas flows.

Die Bildung von höheren Kohlenwasserstoffen hängt neben der Plasmaleistung ebenfalls stark von der Gasfließgeschwindigkeit ab. Grundsätzlich steigen die Umsätze mit ansteigender Plasmaleistung. In dem betrachteten Versuchsintervall sind die höchsten Umsätze bei hohen Flüssen zu erhalten.The formation of higher hydrocarbons, in addition to the plasma power, also depends strongly on the gas flow rate. Basically, sales increase with increasing plasma output. In the considered experimental interval, the highest sales are obtained at high flows.

Tabelle 2 zeigt, dass höhere Konzentrationen höherer Kohlenwasserstoffe bei 60 l/h als bei 30 l/h erhalten werden.Table 2 shows that higher concentrations of higher hydrocarbons are obtained at 60 l / h than at 30 l / h.

Die Konzentration des Wasserstoffs in der Produktgasmischung korreliert mit niedrigen Gasflüssen und hohen Spannungen. Bei niedrigen Gasflüssen entsteht Kohlenstoff, der als Verrußung erkennbar ist. Die Wasserstoffausbeute steigt dann, die Konzentration höherer Kohlenwasserstoffe sinkt, da Kohlenstoff entsteht. Tab.2:Abhängigkeit der Konzentration im Abhängigkeit von der Flussrate Durchfluß (l/h) 60 30 Einheit Spannung kV 9,1 9,0 Strom mA 7,2 7,4 Wasserstoff 3,542 2,43 3,81 Methan % 11,064 89,56 90,90 Ethan % 19,537 1,11 0,97 Ethen % 19,537 0,96 0,66 Acetylen % 19,537 5,04 3,24 Propan % 25 0,00 0,00 Propen % 25 0,07 0,04 1,2-Propandien % 25 0,10 0,05 Propin % 25 0,00 0,14 1,3-Butadien % 35 0,26 0,00 1,3-Butadiin % 35 0,03 0,13 1-Butin % 35 0,33 0,00 n-Pentan % 40 0,00 0,05 0,11 0,00 Brennwert KWh/m3 11,65 11,27 The concentration of hydrogen in the product gas mixture correlates with low gas flows and high voltages. At low gas flows carbon is formed, which is recognizable as carbon fouling. The hydrogen yield then increases, the concentration of higher hydrocarbons decreases as carbon is formed. Table 2: Dependence of the concentration as a function of the flow rate Flow (l / h) 60 30 unit tension kV 9.1 9.0 electricity mA 7.2 7.4 hydrogen 3,542 2.43 3.81 methane % 11,064 89.56 90.90 Ethan % 19.537 1.11 0.97 ethene % 19.537 0.96 0.66 acetylene % 19.537 5.04 3.24 propane % 25 0.00 0.00 propene % 25 0.07 0.04 1,2-propadiene % 25 0.10 0.05 propyne % 25 0.00 0.14 1,3-butadiene % 35 0.26 0.00 1.3 Butadiyne % 35 0.03 0.13 1-butyn % 35 0.33 0.00 n-pentane % 40 0.00 0.05 0.11 0.00 condensing KWh / m 3 11.65 11.27

Fig. 5 zeigt, dass Acetylenkonzentrationen von über einem Prozent bei 30 l/h und ca. 15 kV erhalten werden. Fig. 5 shows that acetylene concentrations of over one percent at 30 l / h and about 15 kV are obtained.

Die Konzentration des Wasserstoffs in der Produktgasmischung korreliert mit niedrigen Gasflüssen und hohen Spannungen. Fig. 6 zeigt, dass mehr als 5 Vol% Wasserstoff bei Umsetzungsbedingungen von 30 l/h und 15 kV im Produktgas messbar waren.The concentration of hydrogen in the product gas mixture correlates with low gas flows and high voltages. Fig. 6 shows that more than 5% by volume hydrogen was measurable at reaction conditions of 30 l / h and 15 kV in the product gas.

Ebenso ist eine Abhängigkeit vom Material der verwendeten Elektroden und ihrer Geometrie im Reaktionsraum gegeben, wobei insbesondere die selektive Steigerung der Ausbeute von Ethan, Ethen und Acetylen besonders zu bemerken ist.Likewise, a dependence on the material of the electrodes used and their geometry in the reaction space is given, in particular, the selective increase in the yield of ethane, ethene and acetylene is particularly noteworthy.

Die voran gegangen Ausführungen betreffen die Verwendung von Edelstahlelektroden.The preceding statements concern the use of stainless steel electrodes.

In Tabelle 3 werden die Ergebnisse der Methankonvertierung bei 60 l/h mit einer Platin- und einer Edelstahlelektrode gezeigtTable 3 shows the results of methane conversion at 60 l / h with a platinum and a stainless steel electrode

Gezeigt werden die Volumenprozente. Wiederholt wurden die Versuche mit positiver und negativer Hochspannung durchgeführt. Dargestellt sind lediglich die Ergebnisse der positiven Spannung. Der Trend ist bei negativer Spannung identischThe volume percentages are shown. Repeatedly, the tests were carried out with positive and negative high voltage. Only the results of the positive voltage are shown. The trend is identical for negative voltage

Es ist ersichtlich, dass eine höhere Ausbeute bei Verwendung der Platinelektrode gegeben ist. Insbesondere bei sehr hohen Spannungen (15 kV) kann ein Zuwachs von Acetylen von bis zu 37 % beobachtet werden. Beim Ethan beobachtet man eine Steigerung der Ausbeute um 85 % und bei Ethen noch eine Ausbeutesteigerung von 63 %. Mit zunehmender Kohlenstoffzahl und Anzahl der Mehrfachbindungen sinkt die Ausbeutesteigerung. Elektrodenmaterial Platin Edelstahl Platin Edelstahl Platin Edelstahl Platin Edelstahl Spannung 6 6,93 9,1 9,08 12,1 12 15,1 15,05 Strom 2,95 3,6 6,4 7,24 9,7 10,4 13,2 E 3,7 Wasserstoff 1,15 1,29 2,24 2,43 3,23 3,45 4,34 4,12 Methan 93,55 95,31 86,04 89,56 80,51 82,26 71,52 78,78 Ethan 1,13 0,68 1.76 1,11 2,33 1,56 3,11 1,68 Ethen 0,62 0,38 1,44 0,96 2,15 1,67 3,24 1,97 Acetylen 3,00 2,04 6,98 5,04 9,68 8,62 14,23 10,35 Propan 0,00 0,00 0,04 0,00 0,06 0,05 0,09 0,05 Propen 0,04 0,00 0,10 0,07 0,15 0,14 0,22 0,16 1,2-Propandlen 0,06 0,04 0,15 0,10 0,21 0,22 0,35 0,29 Propin 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,3-Butadien 0,16 0,09 0,40 0,28 0,57 0,58 0,96 0,76 1,3-Butadiin 0,00 0,00 0,06 0,03 0,07 0,09 0,13 0,12 1-Butin 0,23 0,13 0,61 0,33 0,76 1,00 1,33 1,25 n-Pentan 0,00 0,00 0,03 0,00 0,04 0,06 0,07 0,07 0,06 0,04 0,17 0,11 0,23 0,31 0,41 0,40 Brennwert 11,48 11,28 12,04 11,65 12,40 12,25 13,12 12,49 It can be seen that there is a higher yield when using the platinum electrode. Especially at very high voltages (15 kV) an increase of acetylene of up to 37% can be observed. When ethane is observed one Increase in yield by 85% and ethene still a yield increase of 63%. With increasing carbon number and number of multiple bonds decreases the yield increase. electrode material platinum stainless steel platinum stainless steel platinum stainless steel platinum stainless steel tension 6 6.93 9.1 9.08 12.1 12 15.1 15.05 electricity 2.95 3.6 6.4 7.24 9.7 10.4 13.2 E 3.7 hydrogen 1.15 1.29 2.24 2.43 3.23 3.45 4.34 4.12 methane 93.55 95.31 86.04 89.56 80.51 82.26 71.52 78.78 Ethan 1.13 0.68 1.76 1.11 2.33 1.56 3.11 1.68 ethene 0.62 0.38 1.44 0.96 2.15 1.67 3.24 1.97 acetylene 3.00 2.04 6.98 5.04 9.68 8.62 14,23 10.35 propane 0.00 0.00 0.04 0.00 0.06 0.05 0.09 0.05 propene 0.04 0.00 0.10 0.07 0.15 0.14 0.22 0.16 1,2-Propandlen 0.06 0.04 0.15 0.10 0.21 0.22 0.35 0.29 propyne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1,3-butadiene 0.16 0.09 0.40 0.28 0.57 0.58 0.96 0.76 1.3 Butadiyne 0.00 0.00 0.06 0.03 0.07 0.09 0.13 0.12 1-butyn 0.23 0.13 0.61 0.33 0.76 1.00 1.33 1.25 n-pentane 0.00 0.00 0.03 0.00 0.04 0.06 0.07 0.07 0.06 0.04 0.17 0.11 0.23 0.31 0.41 0.40 condensing 11.48 11.28 12.04 11.65 12.40 12.25 13.12 12,49

Fig. 7 zeigt einen schematischen Aufbau einer Vorrichtung. Diese Vorrichtung 10 weist einen Brenngasquelle 11 mit einem Abspenventil 12 auf, von dieser wird das Brenngas über eine Gasleitung zum Strömungsreaktor 13 geleitet, in dem eine Einrichtung zum Energieeintrag 14 angeordnet. Anschließend wird das im Brennwert veränderte Brenngas/Produktgas erst zu einer Einrichtung zur Hydrierung 15 und anschließend zu einer Einrichtung zur Abtrennung von Wasserstoff 16 geleitet. Zudem ist als letzte Einrichtung ein Gaschromatograph 17 vorgesehen, mit dem die Zusammensetzung des Produktgases analysiert werden kann. Fig. 7 shows a schematic structure of a device. This device 10 has a fuel gas source 11 with a discharge valve 12, from which the fuel gas is passed via a gas line to the flow reactor 13, in which a device for energy input 14 is arranged. Subsequently, the fuel gas / product gas changed in the calorific value is first conducted to a device for hydrogenation 15 and then to a device for the separation of hydrogen 16. In addition, the last device provided is a gas chromatograph 17 with which the composition of the product gas can be analyzed.

Die Gasanalyse nach Durchführung des Verfahrens mit dem nachstehend beschriebenen Prototypen der Vorrichtung zeigt neben der Hauptkomponente Methan, ausschließlich gesättigte höhere Kohlenwasserstoffe und keinerlei Wasserstoff. Damit ist die teilweise Umsetzung von Methan in höhere Kohlenwasserstoffe und die vollständige Hydrierung der ungesättigten Kohlenwasserstoffe wie Acetylen sowie die vollständige Abtrennung von Wasserstoff gelungen. Die Erhöhung des Brennwertes erfolgte über 11%. Die Steuerung der Zündenergie des Plasmas erlaubt eine Einstellung des Brennwertes. Das heißt, dass nahezu jeder Brennwert der größer als 11,064 kWh/m3 ist, durch Variation der Verfahrensparameter einstellbar ist. Tabelle 4 Ergebnisse der Gasanalyse bezogen auf Methan Gaszusammensetzung vor dem Reaktor nach dem Reaktor Komponenten % % Methan 100 98,765 Ethan 1,024 Propan 0,128 Butan 0,069 Pentan 0,004 Neopentan 0,005 Hexan 0,005 Wasserstoff 0 0 Summe 100 100 kWh/m3 kWh/m3 Brennwert 11,064 11,193 The gas analysis after carrying out the process with the device prototype described below shows, in addition to the main component methane, exclusively saturated higher hydrocarbons and no hydrogen. Thus, the partial conversion of methane into higher hydrocarbons and the complete hydrogenation of unsaturated hydrocarbons such as acetylene and the complete separation of hydrogen has succeeded. The increase in calorific value was over 11%. The control of the ignition energy of the plasma allows adjustment of the calorific value. This means that almost every calorific value that is greater than 11.064 kWh / m3 can be set by varying the process parameters. Table 4 Results of gas analysis based on methane gas composition in front of the reactor after the reactor components % % methane 100 98.765 Ethan 1,024 propane 0,128 butane 0,069 pentane 0,004 neopentane 0.005 hexane 0.005 hydrogen 0 0 total 100 100 kWh / m 3 kWh / m 3 condensing 11,064 11.193

Nachfolgend ist die eingesetzte Energie tabellarisch aufgeführt: Tabelle 5 Energieträger Edukte Produkte kWh kWh Methan 100 l 1,1064 Heizofen Hydrierung und 0,175 Hochspannung für Methanreaktor 0,09 Produktgas 98,8% 1,1059 Wasserstoff 1,2 % 0,0036 Summe 1,3714 1,1095 Wirkungsgrad 80,9% The energy used is listed in tabular form below: Table 5 fuels reactants Products kWh kWh Methane 100 l 1.1064 Heating furnace hydrogenation and 0,175 High voltage for methane reactor 0.09 Product gas 98.8% 1.1059 Hydrogen 1.2% 0.0036 total 1.3714 1.1095 efficiency 80.9%

Als Prototypen der Vorrichtung zur Erhöhung des Brennwertes in Brenngasen wurde ein 2-Zoll Gasrohr mit Zündkerzen bestückt. Die elektrische Entladung im Gasstrom setzt das Methan in der oben beschriebenen Weise um. Die Ausführung besteht aus handelüblichen Bauteilen und kann im Dauerbetrieb eingesetzt werden.As a prototype of the device for increasing the calorific value in fuel gases, a 2-inch gas pipe was equipped with spark plugs. The electrical discharge in the gas stream converts the methane in the manner described above. The design consists of commercially available components and can be used in continuous operation.

Der Methanreaktor besteht aus einem Vierkantrohr (Kantenlänge 10 cm) in das im Abstand von 5 cm zwölf Zündkerzen eingeschraubt sind. Durch einen Transformator wird die elektrische Netzspannung (230V, 50Hz) in 12 Volt transformiert, anschließend gleichgerichtet und auf zwölf Spulen verteilt. Die benötigte Hochspannung wird durch eine Relaisschaltung mit sehr hoher Taktfrequenz erreicht. Hierbei werden Halbleiterrelais mittels hochfrequent gepulster Gleichspannung angesteuert und takten somit die Versorgungsspannung der Spulen. Die Steuerung der Zündenergie erfolgt über einen Frequenzregler und die Höhe der Versorgungsspannung für die Spulen.The methane reactor consists of a square tube (edge length 10 cm) in which at a distance of 5 cm twelve spark plugs are screwed. By a transformer, the electrical mains voltage (230V, 50Hz) is transformed into 12 volts, then rectified and distributed on twelve coils. The required high voltage is achieved by a relay circuit with a very high clock frequency. In this case, semiconductor relays are controlled by means of high-frequency pulsed DC voltage and thus clock the supply voltage of the coils. The control of the ignition energy via a frequency controller and the amount of supply voltage for the coils.

Es konnte gezeigt werden, dass es möglich ist, den Brennwert von methanhaltigen Gasen mittels elektrischer Energie zu erhöhen. Die dabei gebildeten ungesättigten Kohlenwasserstoffe wurden katalytisch hydriert. Der verbleibende Wasserstoff wurde vollständig abgetrennt und dem System entzogen. Er kann separat und hochfein gewonnen werden und energetisch genutzt werden (Brennstoffzelle etc.). Der bisher nicht optimierte Wirkungsgrad beträgt 81%. Das erzeugte Gas kann direkt in ein öffentliches Gasnetz als Austauschgas für Erdgas H eingespeist werden. Jegliche Konditionierung mit Flüssiggas kann dadurch eingespart werden.It has been shown that it is possible to increase the calorific value of methane-containing gases by means of electrical energy. The unsaturated hydrocarbons thereby formed were catalytically hydrogenated. The remaining hydrogen was completely separated and removed from the system. It can be obtained separately and very fine and used energetically (fuel cell, etc.). The not yet optimized efficiency is 81%. The generated gas can be directly into a public gas network as a substitute gas for natural gas H. Any conditioning with LPG can be saved.

Claims (4)

  1. Method for setting the calorific value in fuel gases containing methane, characterized in that the fuel gas is continuously conveyed through a reactor, wherein an excitation of the fuel gas for the purpose of plasma formation is performed, by means of energy input, in such a manner that ethyne, as a main product, is formed from methane and a fuel gas having an increased calorific value, which is indicated in kWh/m3, is discharged from the reactor, wherein the plasma is generated by means of electric sparks, arcs, lasers and microwaves and wherein the fuel gas having a changed calorific value is hydrogenated.
  2. Method according to claim 1, characterized in that hydrogenation is performed catalytically.
  3. Method according to claim 1 or 2, characterized in that the hydrogen still present by changing the calorific value in the fuel gas and after hydrogenation is separated from the fuel gas.
  4. Method according to any one of claims 1 to 3, characterized in that the calorific value is set by variation of at least one of the following parameters:
    electrical power of the plasma,
    flow velocity of the fuel gas,
    electrode geometry,
    polarity of the electrodes,
    pressure of the fuel gas, and
    electrode material.
EP20090171002 2008-09-22 2009-09-22 Method for setting the calorific value in fuel gases containing methane Not-in-force EP2169035B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008048819 2008-09-22

Publications (2)

Publication Number Publication Date
EP2169035A1 EP2169035A1 (en) 2010-03-31
EP2169035B1 true EP2169035B1 (en) 2013-07-24

Family

ID=41397614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090171002 Not-in-force EP2169035B1 (en) 2008-09-22 2009-09-22 Method for setting the calorific value in fuel gases containing methane

Country Status (1)

Country Link
EP (1) EP2169035B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010896B4 (en) * 2010-03-03 2014-12-04 Scharr Tec Gmbh & Co. Kg Method and apparatus for conditioning biomethane-containing gas
DE102011077788A1 (en) * 2011-06-20 2012-12-20 Evonik Degussa Gmbh Method for modifying a methane-containing gas volume flow
PL227975B1 (en) * 2012-07-31 2018-02-28 Inst Tele I Radiotech Method for and apparatus for increasing the calorific value of the biogas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO175984C (en) * 1991-12-12 1995-01-18 Kvaerner Eng Process for reducing the carbon content of a feed stream of natural gas or other hydrocarbon gases and use thereof
NL1010288C2 (en) * 1998-10-12 2000-04-13 Stichting Energie Method for the conversion of hydrogen into substitute natural gas.
DE10163475C1 (en) * 2001-12-21 2003-09-25 Siemens Ag Process and apparatus for the treatment or conversion of gaseous fuels
AP2008004698A0 (en) * 2006-06-05 2008-12-31 Plascoenergy Ip Holdings S L A gasifier comprising vertically successive processing regions
US8075869B2 (en) * 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst

Also Published As

Publication number Publication date
EP2169035A1 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
EP2720788B1 (en) Method for modifying a methane-containing gas stream
DE19757936B4 (en) Process for producing a H2-CO gas mixture
DE602005005921T2 (en) Emission control system and method of control
EP1288182B1 (en) Method for direct methane pyrolysis
DE3015900A1 (en) METHOD FOR PRODUCING NITROGEN OXIDES
DE10210112B4 (en) Process for producing hydrogen using a non-thermal plasma
DE102009034464A1 (en) Process and apparatus for the dehydrogenation of alkanes with a homogenization of the product composition
EP2169035B1 (en) Method for setting the calorific value in fuel gases containing methane
WO2003027452A1 (en) Device and method for exhaust gas after-treatment
DE1088938B (en) Process for the removal of nitrogen oxides from exhaust gases that arise during the production of nitric acid through the oxidation of ammonia
DE102007038967A1 (en) Method for enhancing the combustion of a solid fuel
DE583851C (en) Process for the production of higher carbon hydrocarbons by heating methane
EP1503975A2 (en) Method for producing unsaturated halogenic hydrocarbons and device suitable for use with said method
WO2017050704A1 (en) Method for thermal cracking of hydrocarbons and corresponding device
EP1456119B1 (en) Method and device for converting a fuel
EP1995352A1 (en) Method for creating a flammable mixture
DE4003564A1 (en) Removing particulates from exhausts and flue gases
WO2022268391A1 (en) Method for operating an electrolysis plant, and electrolysis plant
WO2016087547A1 (en) Device and method for improving combustion
DE10162202A1 (en) Hydrocarbon reformer
EP4079825A1 (en) System and method for producing synthetic fuels without carbon dioxide emission
WO2003055794A2 (en) Method and device for treating and/or reforming gaseous fuels, use of the same in a power plant, and corresponding power plant
EP1456118B1 (en) Method and device for converting a fuel
DE102022126660A1 (en) Plasma electrode arrangement and plasma lysis device
DE317502C (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100930

17Q First examination report despatched

Effective date: 20120116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 623481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009007634

Country of ref document: DE

Effective date: 20130919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009007634

Country of ref document: DE

Representative=s name: GULDE HENGELHAUPT ZIEBIG & SCHNEIDER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009007634

Country of ref document: DE

Representative=s name: GULDE HENGELHAUPT ZIEBIG & SCHNEIDER, DE

Effective date: 20131011

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009007634

Country of ref document: DE

Owner name: BEGA.TEC GMBH, DE

Free format text: FORMER OWNER: BEGA.TEC GMBH, 10785 BERLIN, DE

Effective date: 20131011

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009007634

Country of ref document: DE

Representative=s name: GULDE & PARTNER PATENT- UND RECHTSANWALTSKANZL, DE

Effective date: 20131011

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131124

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131025

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

BERE Be: lapsed

Owner name: BEGA.TEC G.M.B.H.

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131024

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

26N No opposition filed

Effective date: 20140425

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130922

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009007634

Country of ref document: DE

Effective date: 20140425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090922

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130922

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 623481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221122

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009007634

Country of ref document: DE