EP2162741A2 - Device for controlling the immersion of probes and/or sensors measuring the physico-chemical parameters of liquids, and associated measuring system - Google Patents

Device for controlling the immersion of probes and/or sensors measuring the physico-chemical parameters of liquids, and associated measuring system

Info

Publication number
EP2162741A2
EP2162741A2 EP08826369A EP08826369A EP2162741A2 EP 2162741 A2 EP2162741 A2 EP 2162741A2 EP 08826369 A EP08826369 A EP 08826369A EP 08826369 A EP08826369 A EP 08826369A EP 2162741 A2 EP2162741 A2 EP 2162741A2
Authority
EP
European Patent Office
Prior art keywords
measuring system
immersion
probe
measurement
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08826369A
Other languages
German (de)
French (fr)
Inventor
Jean-Marc Aubert
Yann Emery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryptiris Sas
Original Assignee
Cryptiris Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryptiris Sas filed Critical Cryptiris Sas
Publication of EP2162741A2 publication Critical patent/EP2162741A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/283Means for supporting or introducing electrochemical probes

Definitions

  • the present invention relates to a device for managing the immersion of sensors or probes in a liquid whose physicochemical parameters are to be analyzed.
  • the measurement of physicochemical parameters of a liquid requires immersing probes. For example, the pH or the conductivity of said liquid can be measured. Depending on the needs, it may be necessary to obtain measurements on a regular basis to check the evolution of the liquid over time. According to the state of the art, the measurements can be carried out by an operator having measurement systems. However the mobilization of the operator during the measurement
  • Another known method makes it possible to carry out the measurements by means of autonomous measurement systems which carry out these measurements automatically and transmit them for processing purposes.
  • Such measurement systems comprise probes and / or sensors immersed permanently in the liquid that is to be analyzed.
  • the measuring systems are drifting, the probes and / or sensors age, foul and finish, sometimes very quickly, no longer provide correct measurements.
  • An expensive intervention of maintenance operators then becomes necessary to calibrate and clean or even replace the probes and / or sensors.
  • the fouling or the aging of the probes and sensors is mainly related to their constant residence in the liquid to be analyzed.
  • the device according to the invention overcomes the disadvantages listed above.
  • ⁇ tfàmm fàt ⁇ s fcfà? ® $$ FxW, $ ⁇ Y * £% M allows, according to the needs and / or the characteristics of a liquid to be analyzed, to finely manage the immersion and / or the depth of a probe or sensor within said liquid, to reduce the duration of immersion or to limit just the time needed to perform the measurements.
  • This advantage is particularly important for the implementation of a measuring system for the analysis of a liquid rapidly fouling the measurement probes.
  • the invention finds particular application in industrial fields using liquids with characteristics causing a fouling of the probes and / or sensors such as oil baths.
  • This invention also finds application in industrial wastewater treatment plants, domestic wastewater during their treatment in a treatment plant. By its universality the fields of application could not be limited to these precise examples.
  • the device according to the invention can be implemented in fixed or mobile measuring systems such as measuring buoys.
  • a device for managing the immersion of a probe or sensor attached to a system for measuring physico-chemical parameters of a liquid comprises means for moving a part of the mass of the system of measurement thus modifying the position of the center of gravity of the measuring system, generating a return torque formed by the weight and the buoyancy of Archimedes, causing the immersion or emersion of the probe or sensor.
  • the means for moving a part of the mass of the measurement system consists of a motor or servomotor which displaces a flyweight rotatably mounted about an axis. 5
  • the device may include a computer to trigger the means for moving a portion of the mass of the measuring system.
  • the device may further comprise a radio receiver for receiving remote commands operated by the computer or a microcontroller to deliver commands also operated by the computer.
  • the device according to the invention may further provoke movements of the measuring system in order to create a flow of liquid around the probe or sensor. It can also trigger a cleaning process coordinated with the immersion of the probe or sensor.
  • the device can trigger a calibration process of the probe or sensor coordinated with its immersion.
  • the means for displacing a part of the mass of the measurement system can also cause progressive or step-by-step movements of the measuring system, in order to allow a measurement of a physico-chemical characteristic at different depths within the measurement system. of the liquid that one seeks to analyze.
  • the invention furthermore provides for adapting a system for measuring physico-chemical parameters of a liquid, comprising at least one probe or sensor so that it may furthermore comprise an immersion management device according to the invention.
  • Said measurement system may alternatively comprise a shape placed close to the one or more probes or sensors for agitating the liquid having the effect of mixing it or breaking a film on the surface of the liquid during the movement of the measuring system.
  • the measurement system may alternatively comprise a probe attached to a point of attachment on the shape of the measuring system, by means of a link able to wind and unwind around said shape to allow a measurement in depth during immersion of the probe.
  • FIG. 1 shows a measurement system floating in a liquid
  • FIGS. 2, 3 and 4 show examples of the operation of a device for managing the immersion of probes and / or sensors according to the invention
  • FIG. 5 describes a measurement system comprising probes and / or sensors according to the invention
  • FIG. 6 describes a computer implemented by a device according to the invention
  • FIGS. 7, 8, 9A and 9B illustrate steps of different methods of using a measuring system comprising an immersion management device according to the invention
  • Figures 10, 13 and 14 show variants of a measuring system incorporating an immersion management device according to the invention
  • - Figures 11 and 12 respectively illustrate two embodiments of an immersion management device according to the invention.
  • FIG. 1 shows an example of application of the invention.
  • a measurement system 1 floats in a liquid 3 whose physico-chemical parameters are to be measured.
  • the floating system 1 makes measurements autonomously using probes 2.
  • the measurement system is presented in the form of a cylinder partially immersed in the liquid 3.
  • the measuring system 1 could be in the form of a sphere or any other floating shape.
  • the system may preferably have at least two stable equilibrium switchable following rotation along an axis.
  • the measuring system comprises a device according to the invention. So in the example in
  • the device according to the invention makes it possible to rotate the cylinder of the measurement system on itself in order to immerse the probes only for the time to perform the measurements.
  • This rotation is obtained by modifying 0commanded way, the position of the center of gravity of the cylinder.
  • This modification causes an imbalance which, to return to equilibrium, causes the rotation of the measuring system 1 about a transverse axis substantially parallel to the waterline.
  • Figures 2, 3 and 4 An example of the operation of the probe management device and / or sensor according to the invention is illustrated by Figures 2, 3 and 4.
  • the initial situation is illustrated in Figure 2: the measuring system 1 is at equilibrium: the probes (not 0resellingées in this figure) are outside liquid to be analyzed.
  • the sensor immersion management device is integrated in the measuring system. According to one example, it comprises a counterweight 4 rotatably mounted about an axis 5 substantially 5 parallel to the waterline. This balance lasts as long as the weight 4 is still.
  • the floating measurement system 1 Prior to measurements, the floating measurement system 1 must immerse its probes.
  • the immersion management device triggers the pivoting of the weight 4 about the axis 5.
  • the movement of the weight 4 has the effect of modifying the position of the center of gravity 6 so as to generate a booster torque between the thrust
  • the immersion stage of the probes " (during the acquisition of the measurements) is illustrated in FIG. 4.
  • the force of the gravitation passing through the center of gravity 6 is balanced by the thrust
  • the measuring system can have one or more probes or sensors, of different types. In the case of a plurality of probes or sensors, the
  • 35sondes may not all see the same sensitivity to 5 fouling.
  • An example of a probe arrangement is illustrated in FIG. 5.
  • a temperature probe 10 is not sensitive to the fouling phenomenon. It is thus possible to maintain this immersed temperature probe much longer than the others and to make acquisitions of the temperature of the liquid during the immersion periods of this temperature probe 10.
  • the temperature probe 10 is outside the liquid. It can then be used to measure the ambient temperature of the air (or gas) located above the liquid.
  • the immersion management device 15 can be provided by a control controlling for example a motor (or a servomotor) - used to move the feeder 4 in a new equilibrium position.
  • This command can be delivered by a computer integrating appropriate programs and interfaces.
  • the immersion management device thus comprises such a computer and said motor or servomotor.
  • FIG. 6 illustrates an exemplary structure of a computer dedicated to an immersion management device according to the invention.
  • the computer comprises a microcontroller 13 which controls a motor 12 according to a program contained in a memory 14.
  • the computer is powered by a power source 11 which can be used (or made available) by other elements 0 of the measuring system 1, elements not directly related to the invention.
  • the microcontroller 13 sends the appropriate commands to the motor (or servomotor) 12 which rotates the flyweight 4.
  • the energy source 11, by For example, a battery forms the flyweight 4. This reduces the number of elements constituting the measurement system.
  • the buoyancy of the measuring system is thus optimized.
  • it is possible to increase the autonomy of the measurement system by favoring more substantial batteries whose mass is exploited by the immersion management device.
  • the immersion of the probes and / or sensors can be either: preprogrammed and triggered according to the evolution of the system environment floating-point measurement 1, for example an increase in the temperature of the liquid to be analyzed (FIG. 12),
  • - is triggered by the receipt of a 2015 command that may be issued from a radio or sound interface
  • the instructions (or programs) contained in the memory 14 of the computer may be modified by an external parameter setting device not shown.
  • External commands transiting the radio or sound interface may themselves have been conveyed by more extensive communication networks: for example through the switched telephone network, and / or by a computer network (Ethernet,
  • FIG. 7 illustrates an example of use of the measurement system comprising a management device
  • 35d immersion according to the invention in the context of a Double measurement made with the same probe: a measurement 21 outside the liquid before rotation 22 followed by a measurement 23 within the liquid.
  • the liquid analysis consists of a first measurement of 51a temperature outside the liquid followed by a measurement of the temperature of the liquid.
  • the second measurement 23 completed, the immersion management device rotates the floating measurement system 1 to cause the emergence of the probe. As the new equilibrium is reached, the measurement system remains at rest 25, waiting for a new measurement cycle 20.
  • This double measurement can be exploited as part of a calibration of the probe before making the measurements in the liquid.
  • FIG. 8 illustrates another example of the use of a measuring system comprising an immersion management device according to the invention as part of a measurement carried out in a liquid whose characteristics favor a rapid fouling and which allows a precleaning in the liquid before the emergence of the probe.
  • the immersion management device drives the dive 27 of the measurement probe into the liquid.
  • the measurement 28 of the 5physico-chemical parameter is then carried out. Succeeds a cleaning cycle 29 which may consist, for example, in an inversion of the polarities of the anodes and cathodes.
  • the immersion management device causes the probe to emerge. 0The measuring system remains at rest 31, waiting for a new measuring cycle 26.
  • FIGS. 9A and 9B illustrate an example of use of the immersion management device 5 according to the invention as part of a measurement carried out in a liquid by probes that require a liquid moving around them.
  • This type of measurement uses for example a four-electrode probe.
  • the immersion qestion device causes the dipping 33 of the measuring probe in the liquid.
  • the measurement 35 of the physicochemical parameter is then performed during a back and forth movement performed by partial rotations 34 of the floating measurement system.
  • the measurement made, the immersion management device causes the output 36 of the liquid probe and the measuring system remains at rest 37, waiting for a new measurement cycle 32.
  • FIG. 10 illustrates an exemplary embodiment of a measuring system comprising an immersion management device according to the invention coupled with a form 40 placed near the probes 8 and 9.
  • the form
  • the immersion management device thus causes the immersion of the form 40 and the probes 8 and 9.
  • the measurement carried out by means of the probes 8 and 9 is thus improved under the effect of immersion of the shape.
  • FIG. 11 illustrates an embodiment of the immersion management device according to the invention, comprising a radio receiver 50 for delivering a command 51 triggering the immersion of the probes and / or the sensors.
  • Said command 51 actuates the motor 52 which moves the weight, causes the rotation of the floating measuring system.
  • FIG. 12 illustrates an embodiment of the immersion management device able to automatically react to the change of a physicochemical parameter.
  • the device thus comprises for example a measurement electronics 60 for detecting said change.
  • Said electronics 60 delivers the control 51 which actuates the motor 52 moving the flyweight causing the rotation of the floating measuring system and thus the immersion of the probes and / or sensors.
  • the immersion management device controls a movement (for example a rotation about an axis substantially parallel to the waterline) of the measuring system, which movement is progressive or stepwise to allow a measurement of physicochemical characteristics. liquid at different depths. It is also possible to consider a probe or a sensor which, depending on its position on the measuring system and / or depending on the shape of the latter, may remain totally immersed but whose depth evolves under the action of the management device. immersion according to the invention.
  • the invention also provides a measurement system comprising at least one sensor, not directly positioned on the surface of said system but secured thereto by means of a cable or other flexible means.
  • Figures 13 and 14 thus illustrate a probe 70 attached to the measuring system 1 by means of a1ien 71 which may be for example a wire rope. 5
  • One end of the link 71 is hooked to the measuring system 1 at the hook point 72.
  • the other end is connected to the probe 70 which can be for example a conductivity probe.
  • Figure 13 illustrates the state of 5repos of the measurement system.
  • the probe 70 is then positioned substantially above the waterline 74.
  • the measurement sequence is shown in FIG. 14.
  • the immersion management device according to the invention displaces part of the mass of the measuring system thus modifying the position of its center of gravity.
  • the measurement system thus makes a movement, for example a rotation R. This movement causes the immersion of the probe 70.
  • a rotation R causes the immersion of the probe 70.
  • the measurement can be performed using said probe at a depth D greater than the depth of immersion of a probe 8 directly attached and positioned on the body or shape of the measuring system.
  • the device according to the invention controls an inverse movement allowing the emersion of the probe 70.
  • the immersion management device according to the invention can control one or more complete rotation cycles. the measuring system to allow a winding and / or unrolling of the link around the shape of the measuring system, such as a reel. It is thus possible to increase the depth D to make the measurement.
  • the link can also take place in steps in order to achieve several measurement steps at different depths. 0
  • the immersion management device comprises, according to a preferred embodiment, a flyweight 4 rotatably mounted about an axis 5. It furthermore comprises a motor or a servomotor for moving said flyweight 4 .
  • All Another embodiment of an immersion management device could be imagined: linear and transverse displacement of a mass, pumping and / or lateral evacuation (e) of a quantity of liquid to be analyzed, etc.
  • the immersion management device comprises a means capable of creating a displacement of the center of gravity of the measuring system generating a restoring torque formed by the weight and thrust of Archimedes. This return torque causes a rotation of the floating measurement system and thus the immersion of the probes and / or sensors of said measuring system.
  • Another embodiment would consist in implementing a flyweight 4 rotatably mounted about an axis substantially perpendicular to the waterline. In this case, the measurement system 0 would shift from equilibrium to a second equilibrium, immersing or emerging probes and / or sensors.
  • the rotation along an axis substantially parallel to the waterline is generally advantageous because it requires a small mass displacement unlike the last embodiment.

Abstract

The invention relates to a device for controlling the immersion of probes and/or sensors measuring the physico-chemical parameters of liquids, enabling the clogging or ageing of said probes and sensors to be significantly limited. The invention also relates to a floating measuring system comprising said immersion control device.

Description

DISPOSITIF POUR GÉRER L' IMMERSION DE SONDES ET/OU DE DEVICE FOR MANAGING THE IMMERSION OF PROBES AND / OR
CAPTEURS MESURANT LES PARAMETRES PHYSICO-CHIMIQUES DESENSORS MEASURING THE PHYSICO-CHEMICAL PARAMETERS OF
LIQUIDES ET SYSTÈME DE MESURE ASSOCIÉLIQUIDS AND MEASUREMENT SYSTEM THEREFOR
La présente invention concerne un dispositif permettant de gérer l'immersion de capteurs ou de sondes dans un liquide dont on cherche à analyser des 5paramètres physico-chimiques.The present invention relates to a device for managing the immersion of sensors or probes in a liquid whose physicochemical parameters are to be analyzed.
La mesure de paramètres physico-chimiques d'un liquide nécessite d'immerger des sondes. On peut par exemple mesurer le PH ou la conductivité dudit liquide. Selon les besoins, il peut être nécessaire d'obtenir lOdes mesures de façon régulière pour vérifier l'évolution du liquide dans le temps. Selon l'état de la technique, les mesures peuvent être effectuées par un opérateur disposant de systèmes de mesure. Toutefois la mobilisation de l'opérateur pendant la mesureThe measurement of physicochemical parameters of a liquid requires immersing probes. For example, the pH or the conductivity of said liquid can be measured. Depending on the needs, it may be necessary to obtain measurements on a regular basis to check the evolution of the liquid over time. According to the state of the art, the measurements can be carried out by an operator having measurement systems. However the mobilization of the operator during the measurement
15s' avère coûteuse.It is expensive.
Une autre méthode connue permet d'effectuer les mesures au moyen de systèmes de mesure autonomes qui réalisent ces mesures automatiquement et les transmettent à des fins de traitement. De tels systèmes 0de mesure comportent des sondes et/ou capteurs immergés de manière permanente dans le liquide que l'on cherche à analyser. Selon la nature ou le conditionnement dudit liquide, les systèmes de mesure dérivent, les sondes et/ou capteurs vieillissent, s'encrassent et finissent, 5parfois très rapidement, par ne plus fournir de mesures correctes. Une coûteuse intervention d'opérateurs de maintenance devient alors nécessaire pour calibrer et nettoyer voire remplacer les sondes et/ou capteurs.Another known method makes it possible to carry out the measurements by means of autonomous measurement systems which carry out these measurements automatically and transmit them for processing purposes. Such measurement systems comprise probes and / or sensors immersed permanently in the liquid that is to be analyzed. Depending on the nature or the packaging of said liquid, the measuring systems are drifting, the probes and / or sensors age, foul and finish, sometimes very quickly, no longer provide correct measurements. An expensive intervention of maintenance operators then becomes necessary to calibrate and clean or even replace the probes and / or sensors.
L' encrassement ou le vieillissement des sondes et 0des capteurs est principalement lié à leur séjour constant dans le liquide à analyser.The fouling or the aging of the probes and sensors is mainly related to their constant residence in the liquid to be analyzed.
Le dispositif selon l' invention permet de remédier aux inconvénients listés précédemment. L'inventionThe device according to the invention overcomes the disadvantages listed above. The invention
"ψtfàmm fàtψs fcfà?®$$FxW,$ιY*£%M permet selon les besoins et/ou les caractéristiques d'un liquide à analyser, de gérer finement l'immersion et/ou la profondeur d'une sonde ou capteur au sein dudit liquide, d'en réduire la durée d'immersion voirede limiter celle-ci au juste temps nécessaire pour effectuer les mesures. Cet avantage est particulièrement déterminant pour la mise en œuvre de système de mesure destiné à l'analyse d'un liquide encrassant rapidement les sondes de mesure. L' invention trouve notamment son application dans les domaines industriels mettant en œuvre des liquides ayant des caractéristiques provoquant un encrassement des sondes et/ou des capteurs tels par exemple des bains d'huile. Cette invention trouve également sonapplication dans les stations de traitements d'effluents industriels, des eaux usées domestiques lors de leur traitement dans une station d'épuration. De par son universalité les domaines d'application ne pourraient être limités à ces exemples précis. Le dispositif selon l'invention peut être mis en place au sein de systèmes de mesure fixes ou mobiles comme par exemple des bouées de mesure."ψtfàmm fàtψs fcfà? ® $$ FxW, $ ιY * £% M allows, according to the needs and / or the characteristics of a liquid to be analyzed, to finely manage the immersion and / or the depth of a probe or sensor within said liquid, to reduce the duration of immersion or to limit just the time needed to perform the measurements. This advantage is particularly important for the implementation of a measuring system for the analysis of a liquid rapidly fouling the measurement probes. The invention finds particular application in industrial fields using liquids with characteristics causing a fouling of the probes and / or sensors such as oil baths. This invention also finds application in industrial wastewater treatment plants, domestic wastewater during their treatment in a treatment plant. By its universality the fields of application could not be limited to these precise examples. The device according to the invention can be implemented in fixed or mobile measuring systems such as measuring buoys.
A cette fin, il est prévu un dispositif pour gérer l'immersion d'une sonde ou capteur fixé(e) sur unsystème de mesure de paramètres physico-chimiques d'un liquide comporte des moyens pour déplacer une partie de la masse du système de mesure modifiant ainsi la position du centre de gravité du système de mesure, générant un couple de rappel formé du poids et de lapoussée d'Archimède, provoquant l'immersion ou l'émersion de la sonde ou capteur.To this end, there is provided a device for managing the immersion of a probe or sensor attached to a system for measuring physico-chemical parameters of a liquid comprises means for moving a part of the mass of the system of measurement thus modifying the position of the center of gravity of the measuring system, generating a return torque formed by the weight and the buoyancy of Archimedes, causing the immersion or emersion of the probe or sensor.
Dans un mode de réalisation préféré, les moyens pour déplacer une partie de la masse du système de mesure consiste en un moteur ou servomoteur qui déplaceune masselotte montée rotative autour d'un axe. 5In a preferred embodiment, the means for moving a part of the mass of the measurement system consists of a motor or servomotor which displaces a flyweight rotatably mounted about an axis. 5
En variante, il est prévu que le dispositif puisse comporter un calculateur pour déclencher les moyens pour déplacer une partie de la masse du système de mesure. Le dispositif peut en outre comporter un 5récepteur radio pour recevoir des commandes distantes exploitées par le calculateur voire un microcontrôleur pour délivrer des commandes également exploitées par le calculateur.Alternatively, it is expected that the device may include a computer to trigger the means for moving a portion of the mass of the measuring system. The device may further comprise a radio receiver for receiving remote commands operated by the computer or a microcontroller to deliver commands also operated by the computer.
Le dispositif selon l'invention peut en outre lOprovoquer des mouvements du système de mesure afin de créer un flux de liquide autour de la sonde ou capteur. Il peut par ailleurs déclencher un processus de nettoyage coordonné avec l'immersion de la sonde ou capteur.The device according to the invention may further provoke movements of the measuring system in order to create a flow of liquid around the probe or sensor. It can also trigger a cleaning process coordinated with the immersion of the probe or sensor.
15 Selon un autre mode de réalisation le dispositif peut déclencher un processus de calibration de la sonde ou capteur coordonné avec son immersion.According to another embodiment, the device can trigger a calibration process of the probe or sensor coordinated with its immersion.
Selon l'invention, les moyens pour déplacer une partie de la masse du système de mesure peuvent par 0ailleurs provoquer des mouvements progressifs ou par pas du système de mesure, afin de permettre une mesure d'une caractéristique physico-chimique à différentes profondeurs au sein du liquide que l'on cherche à analyser. 5 L' invention prévoit par ailleurs d' adapter un système de mesure de paramètres physico-chimiques d'un liquide, comportant au moins une sonde ou capteur pour qu' il puisse comporter en outre un dispositif de gestion d'immersion selon l'invention. Ledit système de 0mesure peut en variante comporter une forme placée à proximité de la ou des sondes ou capteurs pour provoquer une agitation du liquide ayant pour effet de le mélanger ou de rompre une pellicule en surface du liquide lors du mouvement du système de mesure. Le 5système de mesure peut comporter en variante une sonde fixée à un point d' accroche sur la forme du système de mesure, au moyen d'un lien apte à s'enrouler et à se dérouler autour de ladite forme pour permettre une mesure en profondeur lors de l'immersion de la sonde.According to the invention, the means for displacing a part of the mass of the measurement system can also cause progressive or step-by-step movements of the measuring system, in order to allow a measurement of a physico-chemical characteristic at different depths within the measurement system. of the liquid that one seeks to analyze. The invention furthermore provides for adapting a system for measuring physico-chemical parameters of a liquid, comprising at least one probe or sensor so that it may furthermore comprise an immersion management device according to the invention. . Said measurement system may alternatively comprise a shape placed close to the one or more probes or sensors for agitating the liquid having the effect of mixing it or breaking a film on the surface of the liquid during the movement of the measuring system. The measurement system may alternatively comprise a probe attached to a point of attachment on the shape of the measuring system, by means of a link able to wind and unwind around said shape to allow a measurement in depth during immersion of the probe.
D'autres caractéristiques et avantages apparaîtront plus clairement à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent parmi lesquelles : - la figure 1 présente un système de mesure flottant dans un liquide ; les figures 2, 3 et 4 présentent des exemples de fonctionnement d'un dispositif pour gérer l'immersion de sondes et/ou capteurs selon l'invention ; la figure 5 décrit un système de mesure comportant des sondes et/ou capteurs conforme à l'invention ; la figure 6 décrit un calculateur mis en œuvre par un dispositif selon l'invention ; les figures 7, 8, 9A et 9B illustrent des étapes de différents procédés d'utilisation d' un système de mesure comportant un dispositif de gestion d' immersion selon l'invention ; les figures 10, 13 et 14 présentent des variantes d' un système de mesure intégrant un dispositif de gestion d' immersion selon l' invention ; - les figures 11 et 12 illustrent respectivement deux variantes de réalisation d'un dispositif de gestion d'immersion selon l' invention. La figure 1 présente un exemple d'application l'invention. Un système de mesure 1 flotte dans un liquide 3 dont on cherche à mesurer les paramètres physico-chimiques. Le système flottant 1 effectue des 5mesures de façon autonome à l'aide de sondes 2. Le système de mesure est présenté sous la forme d'un cylindre partiellement immergé dans le liquide 3.Other features and advantages will emerge more clearly on reading the description which follows and on examining the figures which accompany it, among which: FIG. 1 shows a measurement system floating in a liquid; FIGS. 2, 3 and 4 show examples of the operation of a device for managing the immersion of probes and / or sensors according to the invention; FIG. 5 describes a measurement system comprising probes and / or sensors according to the invention; FIG. 6 describes a computer implemented by a device according to the invention; FIGS. 7, 8, 9A and 9B illustrate steps of different methods of using a measuring system comprising an immersion management device according to the invention; Figures 10, 13 and 14 show variants of a measuring system incorporating an immersion management device according to the invention; - Figures 11 and 12 respectively illustrate two embodiments of an immersion management device according to the invention. Figure 1 shows an example of application of the invention. A measurement system 1 floats in a liquid 3 whose physico-chemical parameters are to be measured. The floating system 1 makes measurements autonomously using probes 2. The measurement system is presented in the form of a cylinder partially immersed in the liquid 3.
Le système de mesure 1 pourrait se présenter sous la forme d' une sphère ou- de toute autre forme lOflottante. Le système peut préférentiellement présenter au moins deux équilibres stables commutables suite à une rotation suivant un axe. Pour pouvoir commuter d'un équilibre à un autre, le système de mesure comporte un dispositif selon l'invention. Ainsi dans l'exemple enThe measuring system 1 could be in the form of a sphere or any other floating shape. The system may preferably have at least two stable equilibrium switchable following rotation along an axis. In order to be able to switch from one equilibrium to another, the measuring system comprises a device according to the invention. So in the example in
15liaison avec la figure 1, le dispositif selon l'invention permet de faire pivoter sur lui-même le cylindre du système de mesure afin d' immerger les sondes uniquement le temps d'effectuer les mesures. Cette rotation est obtenue en modifiant de façon 0commandée, la position du centre de gravité du cylindre. Cette modification entraine un déséquilibre qui, pour revenir à l'équilibre, provoque la rotation du système de mesure 1 autour d'un axe transversal sensiblement parallèle à la ligne de flottaison.. 5 Un exemple de fonctionnement du dispositif de gestion de sonde et/ou capteur selon l'invention est illustré par les figures 2, 3 et 4. La situation initiale est illustrée par la figure 2 : le système de mesure 1 est à l'équilibre : les sondes (non 0représentées dans cette figure) sont en dehors du liquide à analyser. Le dispositif de gestion de l' immersion de sonde est intégré dans le système de mesure. Selon un exemple, il comporte une masselotte 4 montée rotative autour d'un axe 5 sensiblement 5 parallèle à la ligne de flottaison. Cet équilibre dure tant que la masselotte 4 est immobile.In connection with FIG. 1, the device according to the invention makes it possible to rotate the cylinder of the measurement system on itself in order to immerse the probes only for the time to perform the measurements. This rotation is obtained by modifying 0commanded way, the position of the center of gravity of the cylinder. This modification causes an imbalance which, to return to equilibrium, causes the rotation of the measuring system 1 about a transverse axis substantially parallel to the waterline. 5 An example of the operation of the probe management device and / or sensor according to the invention is illustrated by Figures 2, 3 and 4. The initial situation is illustrated in Figure 2: the measuring system 1 is at equilibrium: the probes (not 0représentées in this figure) are outside liquid to be analyzed. The sensor immersion management device is integrated in the measuring system. According to one example, it comprises a counterweight 4 rotatably mounted about an axis 5 substantially 5 parallel to the waterline. This balance lasts as long as the weight 4 is still.
Préalablement aux mesures, le système de mesure flottant 1 doit immerger ses sondes. Le dispositif de 5gestion d'immersion, déclenche le pivotement de la masselotte 4 autour de l'axe 5. Comme le montre la figure 3, le mouvement de la masselotte 4 a pour effet de modifier la position du centre de gravité 6 de façon à générer un couple de rappel entre la pousséePrior to measurements, the floating measurement system 1 must immerse its probes. The immersion management device triggers the pivoting of the weight 4 about the axis 5. As shown in FIG. 3, the movement of the weight 4 has the effect of modifying the position of the center of gravity 6 so as to generate a booster torque between the thrust
1Od' Archimède PÀ exercée sur le système de mesure flottant 1 au centre de poussée 7 et la force P de la gravitation terrestre passant par la nouvelle position du centre de gravité 6. Ce couple de rappel provoque la rotation R du système de mesure flottant 1 et entraîne1Od 'Archimedee exerted on the floating measuring system 1 at the center of thrust 7 and the force P of the earth gravity passing through the new position of the center of gravity 6. This restoring torque causes the rotation R of the floating measuring system 1 and trains
151' immersion des sondes.151 'immersion of the probes.
L'étape d'immersion des sondes "(pendant l'acquisition des mesures) est illustrée par la figure 4. La force de la gravitation terrestre passant par le centre de gravité 6 est équilibrée par la pousséeThe immersion stage of the probes " (during the acquisition of the measurements) is illustrated in FIG. 4. The force of the gravitation passing through the center of gravity 6 is balanced by the thrust
2Od' Archimède exercée sur le système de mesure flottant 1 au centre de poussée 7, cette situation reste stable tant que la masselotte 4 reste immobile.2Od Archimedean exerted on the floating measuring system 1 at the center of thrust 7, this situation remains stable as the weight 4 remains stationary.
L'acquisition des mesures terminée, un mouvement inverse à celui présenté en figure 3 est appliqué auOnce the measurement acquisition is complete, a reverse movement to that shown in Figure 3 is applied to the
25système de mesure flottant 1 par le dispositif de gestion d'immersion. Celui-ci déplace la masselotte 4 pour qu'elle retrouve la position qu'elle avait en liaison avec la figure 2. Les sondes du système de mesure flottant 1 émergent et se retrouvent alors à25 floating measurement system 1 by the immersion management device. This moves the weight 4 to find the position it had in connection with Figure 2. The probes of the floating measurement system 1 emerge and are then found at
301' air libre et ne sont plus encrassées par leur immersion dans le liquide.301 'free air and are no longer fouled by their immersion in the liquid.
Le système de mesure peut disposer d'une ou de plusieurs sondes ou capteurs, de différents types. Dans le cas d'une pluralité de sondes ou capteurs, lesThe measuring system can have one or more probes or sensors, of different types. In the case of a plurality of probes or sensors, the
35sondes peuvent ne pas voir toutes la même sensibilité à 5 l'encrassement. Un exemple de disposition de sondes est illustré par la figure 5. Dans cet exemple une sonde de température 10 n'est pas sensible au phénomène d'encrassement. Il est ainsi possible de maintenir 5cette sonde de température 10 immergée beaucoup plus longtemps que les autres et de faire des acquisitions de la température du liquide pendant les périodes d'immersion de cette sonde de température 10.35sondes may not all see the same sensitivity to 5 fouling. An example of a probe arrangement is illustrated in FIG. 5. In this example, a temperature probe 10 is not sensitive to the fouling phenomenon. It is thus possible to maintain this immersed temperature probe much longer than the others and to make acquisitions of the temperature of the liquid during the immersion periods of this temperature probe 10.
Pendant l'immersion des autres sondes 8 et 9, la lOsonde de température 10 est en dehors du liquide. Elle peut alors être utilisée pour mesurer la température ambiante de l'air (ou du gaz) situé au dessus du liquide .During the immersion of the other probes 8 and 9, the temperature probe 10 is outside the liquid. It can then be used to measure the ambient temperature of the air (or gas) located above the liquid.
Le déclenchement de la rotation de la masselotte 4The triggering of the rotation of the weight 4
15peut être assurée par une commande pilotant par exemple un moteur (ou un servomoteur)- utilisé pour déplacer la masselotte 4 dans une nouvelle position d'équilibre. Cette commande peut être délivrée par un calculateur intégrant des programmes et interfaces adéquats. Le 0dispositif de gestion d' immersion comporte ainsi un tel calculateur et ledit moteur ou servomoteur.15 can be provided by a control controlling for example a motor (or a servomotor) - used to move the feeder 4 in a new equilibrium position. This command can be delivered by a computer integrating appropriate programs and interfaces. The immersion management device thus comprises such a computer and said motor or servomotor.
La figure 6 illustre un exemple de structure d'un calculateur dédié à un dispositif de gestion d'immersion selon l'invention. Dans le cadre de ce mode 5de réalisation, le calculateur comporte un microcontrôleur 13 qui commande un moteur 12 selon un programme contenu dans une mémoire 14. Le calculateur est alimenté par une source d'énergie 11 qui peut être utilisée (ou mise à disposition) par d'autres éléments 0du système de mesure 1, éléments non directement en lien avec l'invention. Lorsque une rotation est souhaitée le microcontrôleur 13 envoie les commandes adéquates au moteur (ou servomoteur) 12 qui assure la rotation de la masselotte 4. Dans un mode de 5réalisation préféré, la source d'énergie 11, par 5 exemple une batterie, compose la masselotte 4. Cela permet de réduire le nombre d'éléments constituant le système de mesure. La flottabilité du système de mesure est ainsi optimisée. En outre, il est possible 5d' augmenter l'autonomie du système de mesure en privilégiant des batteries plus conséquentes dont la masse est exploitée par le dispositif de gestion d' immersion.FIG. 6 illustrates an exemplary structure of a computer dedicated to an immersion management device according to the invention. In the context of this embodiment, the computer comprises a microcontroller 13 which controls a motor 12 according to a program contained in a memory 14. The computer is powered by a power source 11 which can be used (or made available) by other elements 0 of the measuring system 1, elements not directly related to the invention. When a rotation is desired, the microcontroller 13 sends the appropriate commands to the motor (or servomotor) 12 which rotates the flyweight 4. In a preferred embodiment, the energy source 11, by For example, a battery forms the flyweight 4. This reduces the number of elements constituting the measurement system. The buoyancy of the measuring system is thus optimized. In addition, it is possible to increase the autonomy of the measurement system by favoring more substantial batteries whose mass is exploited by the immersion management device.
Comme nous le verrons ultérieurement au moyen des lOfigures 7, 8, 9A, 9B, 11 et 12, l'immersion des sondes et/ou des capteurs peut être soit : préprogrammée et déclenchée en fonction de l'évolution de l'environnement du système de mesure flottant 1, par exemple une élévation de la température 15du liquide à analyser (figure 12),As will be seen later by means of FIGS. 7, 8, 9A, 9B, 11 and 12, the immersion of the probes and / or sensors can be either: preprogrammed and triggered according to the evolution of the system environment floating-point measurement 1, for example an increase in the temperature of the liquid to be analyzed (FIG. 12),
- soit périodiquement (périodicité fournie par le microcontrôleur 13 lui-même ou par un autre dispositif du système de mesure flottant 1),either periodically (periodicity provided by the microcontroller 13 itself or by another device of the floating measurement system 1),
- soit déclenchée par la réception d'une commande 2015 qui peut être issue d'une interface radio ou sonore- is triggered by the receipt of a 2015 command that may be issued from a radio or sound interface
(figure 11) .(Figure 11).
Les instructions (ou programmes) contenues dans la mémoire 14 du calculateur peuvent être modifiées par un dispositif externe de paramétrage non représenté. LesThe instructions (or programs) contained in the memory 14 of the computer may be modified by an external parameter setting device not shown. The
25commandes provenant de l'extérieur transitant par l'interface radio ou sonore peuvent elles-mêmes avoir été véhiculées par des réseaux de communication plus étendus : par exemple à travers le réseau téléphonique commuté, et/ou par un réseau informatique (Ethernet,External commands transiting the radio or sound interface may themselves have been conveyed by more extensive communication networks: for example through the switched telephone network, and / or by a computer network (Ethernet,
30Token ring) et/ou par une liaison GSM et/ou GPRS, et/ou par ou une autre liaison radio.30Token ring) and / or by a GSM and / or GPRS link, and / or by or another radio link.
La figure 7 illustre un exemple d'utilisation du système de mesure comportant un dispositif de gestionFIG. 7 illustrates an example of use of the measurement system comprising a management device
35d' immersion selon l'invention dans le cadre d'une 5 double mesure réalisée avec une même sonde : une mesure 21 à l'extérieur du liquide avant rotation 22 suivi d'une mesure 23 au sein du liquide. Par exemple, l'analyse du liquide consiste en une première mesure de 51a température extérieure au liquide suivie d'une mesure de la température du liquide. La seconde mesure 23 achevée, le dispositif de gestion d'immersion fait pivoter le système de mesure flottant 1 pour provoquer l'émersion dé là sonde. Le nouvel équilibre atteint, le lOsystème de mesure reste au repos 25, en attente d'un nouveau cycle de mesure 20.35d 'immersion according to the invention in the context of a Double measurement made with the same probe: a measurement 21 outside the liquid before rotation 22 followed by a measurement 23 within the liquid. For example, the liquid analysis consists of a first measurement of 51a temperature outside the liquid followed by a measurement of the temperature of the liquid. The second measurement 23 completed, the immersion management device rotates the floating measurement system 1 to cause the emergence of the probe. As the new equilibrium is reached, the measurement system remains at rest 25, waiting for a new measurement cycle 20.
Cette double mesure peut être exploitée dans le cadre d'un calibrage de la sonde avant d'effectuer les mesures au sein du liquide.This double measurement can be exploited as part of a calibration of the probe before making the measurements in the liquid.
1515
La figure 8 illustre un autre exemple d'utilisation d'un système de mesure comportant un dispositif de gestion d'immersion selon l'invention dans le cadre d'une mesure effectuée dans un liquide dont les 0caractéristiques favorisent un encrassement rapide et qui permet un nettoyage préalable dans le liquide avant l'émersion ' de la sonde. Le dispositif de gestion d' immersion entraîne la plongée 27 de la sonde de mesure dans le liquide. La mesure 28 du paramètre 5physico-chimique est alors effectuée. Succède un cycle de nettoyage 29 qui peut consister, par exemple, en une inversion des polarités des anodes et cathodes. Ce processus de nettoyage terminé, le dispositif de gestion d'immersion entraîne l'émersion 30 de la sonde. 0Le système de mesure reste au repos 31, en attente d'un nouveau cycle de mesure 26.FIG. 8 illustrates another example of the use of a measuring system comprising an immersion management device according to the invention as part of a measurement carried out in a liquid whose characteristics favor a rapid fouling and which allows a precleaning in the liquid before the emergence of the probe. The immersion management device drives the dive 27 of the measurement probe into the liquid. The measurement 28 of the 5physico-chemical parameter is then carried out. Succeeds a cleaning cycle 29 which may consist, for example, in an inversion of the polarities of the anodes and cathodes. After this cleaning process is completed, the immersion management device causes the probe to emerge. 0The measuring system remains at rest 31, waiting for a new measuring cycle 26.
Les figures 9A et 9B illustrent un exemple d'utilisation du dispositif de gestion d'immersion 5selon l'invention dans le cadre d'une mesure effectuée dans un liquide par des sondes qui requièrent un liquide en mouvement autour d'elles. Ce type de mesure met en œuvre par exemple une sonde à quatre électrodes. Le dispositif de qestion d'immersion entraine laplongée 33 de la sonde de mesure dans le liquide. La mesure 35 du paramètre physico-chimique est alors effectuée pendant un mouvement de va et vient réalisé par des rotations partielles 34 du système de mesure flottant. La mesure réalisée, le dispositif de gestiond' immersion entraîne la sortie 36 de la sonde du liquide et le système de mesure reste au repos 37, en attente d' un nouveau cycle de mesure 32.FIGS. 9A and 9B illustrate an example of use of the immersion management device 5 according to the invention as part of a measurement carried out in a liquid by probes that require a liquid moving around them. This type of measurement uses for example a four-electrode probe. The immersion qestion device causes the dipping 33 of the measuring probe in the liquid. The measurement 35 of the physicochemical parameter is then performed during a back and forth movement performed by partial rotations 34 of the floating measurement system. The measurement made, the immersion management device causes the output 36 of the liquid probe and the measuring system remains at rest 37, waiting for a new measurement cycle 32.
La figure 10 illustre un exemple de réalisationd'un système de mesure comportant un dispositif de gestion d'immersion selon l'invention couplé avec une forme 40 placée à proximité des sondes 8 et 9. La formeFIG. 10 illustrates an exemplary embodiment of a measuring system comprising an immersion management device according to the invention coupled with a form 40 placed near the probes 8 and 9. The form
40 entre en premier dans le liquide. Ainsi elle- mélange le liquide ou rompt une pellicule formée d'unesubstance en surface du liquide qui pourrait sinon perturber la mesure. Le dispositif de gestion d'immersion provoque ainsi l'immersion de la forme 40 puis des sondes 8 et 9. La mesure réalisée au moyen des sondes 8 et 9 est ainsi améliorée sous l'effetd' immersion de la forme.40 enters the liquid first. Thus it mixes the liquid or breaks a film formed of a substance on the surface of the liquid which could otherwise disturb the measurement. The immersion management device thus causes the immersion of the form 40 and the probes 8 and 9. The measurement carried out by means of the probes 8 and 9 is thus improved under the effect of immersion of the shape.
La figure 11 illustre un mode de réalisation du dispositif de gestion d'immersion selon l'invention, comportant un récepteur radio 50 pour délivrer unecommande 51 déclenchant l'immersion des sondes et/ou des capteurs. Ladite commande 51 actionne le moteur 52 qui déplaçant la masselotte, provoque la rotation du système de mesure flottant. La figure 12 illustre un mode réalisation du dispositif de gestion d' immersion apte à réagir automatiquement au changement d'un paramètre physicochimique. Le dispositif comporte ainsi par exemple uneélectronique de mesure 60 pour détecter ledit changement. Ladite électronique 60 délivre la commande 51 qui actionne le moteur 52 déplaçant la masselotte provoquant la rotation du système de mesure flottant et ainsi l'immersion des sondes et/ou des capteurs.FIG. 11 illustrates an embodiment of the immersion management device according to the invention, comprising a radio receiver 50 for delivering a command 51 triggering the immersion of the probes and / or the sensors. Said command 51 actuates the motor 52 which moves the weight, causes the rotation of the floating measuring system. FIG. 12 illustrates an embodiment of the immersion management device able to automatically react to the change of a physicochemical parameter. The device thus comprises for example a measurement electronics 60 for detecting said change. Said electronics 60 delivers the control 51 which actuates the motor 52 moving the flyweight causing the rotation of the floating measuring system and thus the immersion of the probes and / or sensors.
Selon une variante de réalisation, il est possible de déclencher l'immersion ou l'émersion de sondes ou capteurs progressive ou par paliers. Ainsi, le dispositif de gestion d'immersion commande un mouvement (par exemple une rotation autour d'un axe sensiblement parallèle à la ligne de flottaison) du système de mesure, mouvement qui est progressif ou par pas afin de permettre une mesure de caractéristiques physicochimiques du liquide à différentes profondeurs. Il estégalement possible de considérer une sonde ou un capteur qui, selon sa position sur le système de mesure et/ou en fonction de la forme de celui-ci, puisse rester totalement immergée mais dont la profondeur évolue sous l'action du dispositif de gestiond' immersion conforme à l'invention.According to an alternative embodiment, it is possible to trigger the immersion or emersion of probes or sensors progressive or step. Thus, the immersion management device controls a movement (for example a rotation about an axis substantially parallel to the waterline) of the measuring system, which movement is progressive or stepwise to allow a measurement of physicochemical characteristics. liquid at different depths. It is also possible to consider a probe or a sensor which, depending on its position on the measuring system and / or depending on the shape of the latter, may remain totally immersed but whose depth evolves under the action of the management device. immersion according to the invention.
La gestion des pas peut être réalisée au moyen d'un calculateur tel que décrit précédemment en liaison notamment avec la figure 6.The management of the steps can be carried out by means of a computer as described previously in connection with in particular with FIG.
L' invention prévoit également un système de mesurecomprenant au moins une - sonde, non directement positionnée sur la surface dudit système mais fixée sur celui-ci au moyen d'un câble ou de tout autre moyen flexible. Les figures 13 et 14 illustrent ainsi une sonde 70 fixée au système de mesure 1 au moyen d'un1ien 71 qui peut être par exemple un câble métallique. 5The invention also provides a measurement system comprising at least one sensor, not directly positioned on the surface of said system but secured thereto by means of a cable or other flexible means. Figures 13 and 14 thus illustrate a probe 70 attached to the measuring system 1 by means of a1ien 71 which may be for example a wire rope. 5
Une extrémité du lien 71 est accrochée au système de mesure 1 au point d'accroché 72. L'autre extrémité est connectée à la sonde 70 qui peut être par exemple une sonde de conductivité . La figure 13 illustre l'état de 5repos du système de mesure. La sonde 70 est alors positionnée sensiblement au dessus de ligne de flottaison 74.One end of the link 71 is hooked to the measuring system 1 at the hook point 72. The other end is connected to the probe 70 which can be for example a conductivity probe. Figure 13 illustrates the state of 5repos of the measurement system. The probe 70 is then positioned substantially above the waterline 74.
La séquence de mesure est présentée en figure 14. Le dispositif de gestion d'immersion selon l'invention, lOdéplace une partie de la masse du système de mesure modifiant ainsi la position de son centre de gravité. Le système de mesure effectue ainsi un mouvement, par exemple une rotation R. Ce mouvement entraine l'immersion de la sonde 70. Grâce au lien 71, uneThe measurement sequence is shown in FIG. 14. The immersion management device according to the invention displaces part of the mass of the measuring system thus modifying the position of its center of gravity. The measurement system thus makes a movement, for example a rotation R. This movement causes the immersion of the probe 70. With the link 71, a
15mesure peut être réalisée en utilisant ladite sonde à une profondeur D supérieure à la profondeur d' immersion d'une sonde 8 directement fixée et positionnée sur le corps ou forme du système de mesure. A l'issue de la mesure, le dispositif selon l'invention commande un 0mouvement inverse permettant l'émersion de la sonde 70. En variante, le dispositif de gestion d'immersion selon l'invention peut commander un ou plusieurs cycles de rotation complets du système de mesure pour permettre un enroulement et/ou déroulement du lien autour de la 5forme du système de mesure, tel un moulinet. Il est ainsi possible d'accroître la profondeur D pour effectuer la mesure. Le lien peut en outre se dérouler par pas afin de réaliser plusieurs paliers de mesure à des profondeurs différentes. 0The measurement can be performed using said probe at a depth D greater than the depth of immersion of a probe 8 directly attached and positioned on the body or shape of the measuring system. At the end of the measurement, the device according to the invention controls an inverse movement allowing the emersion of the probe 70. In a variant, the immersion management device according to the invention can control one or more complete rotation cycles. the measuring system to allow a winding and / or unrolling of the link around the shape of the measuring system, such as a reel. It is thus possible to increase the depth D to make the measurement. The link can also take place in steps in order to achieve several measurement steps at different depths. 0
En liaison avec les figures 3 à 5, le dispositif de gestion d'immersion comporte, suivant un mode de réalisation préféré, une masselotte 4 montée rotative autour d'un axe 5. Il comporte en outre un moteur ou 5servomoteur pour déplacer ladite masselotte 4. Tout 5 autre mode de réalisation d'un dispositif de gestion d' immersion pourrait être imaginé : déplacement linéaire et transversal d'une masse, pompage et/ou évacuation latéral (e) d'une quantité de liquide à 5analyser etc. Il suffit que le dispositif de gestion d' immersion comporte un moyen apte à créer un déplacement du centre de gravité du système de mesure générant un couple de rappel formé du poids et de la poussée d'Archimède. Ce couple de rappel provoque une lOrotation du système de mesure flottant et ainsi l'immersion des sondes et/ou des capteurs dudit système de mesure.In connection with FIGS. 3 to 5, the immersion management device comprises, according to a preferred embodiment, a flyweight 4 rotatably mounted about an axis 5. It furthermore comprises a motor or a servomotor for moving said flyweight 4 . All Another embodiment of an immersion management device could be imagined: linear and transverse displacement of a mass, pumping and / or lateral evacuation (e) of a quantity of liquid to be analyzed, etc. It suffices that the immersion management device comprises a means capable of creating a displacement of the center of gravity of the measuring system generating a restoring torque formed by the weight and thrust of Archimedes. This return torque causes a rotation of the floating measurement system and thus the immersion of the probes and / or sensors of said measuring system.
En outre, ces mêmes figures illustrent un mode de réalisation préféré où une masselotte 4 pivote autourIn addition, these same figures illustrate a preferred embodiment where a counterweight 4 pivots around
15d'un axe 5 sensiblement parallèle à la ligne de flottaison. Un autre mode de réalisation consisterait à mettre en œuvre une masselotte 4 montée rotative autour d'un axe sensiblement perpendiculaire à la ligne de flottaison. Dans ce cas, le système de mesure 0basculerait d'un équilibre à un second équilibre, immergeant ou émergeant sondes et/ou capteurs.15an axis 5 substantially parallel to the waterline. Another embodiment would consist in implementing a flyweight 4 rotatably mounted about an axis substantially perpendicular to the waterline. In this case, the measurement system 0 would shift from equilibrium to a second equilibrium, immersing or emerging probes and / or sensors.
La rotation suivant un axe sensiblement parallèle à la ligne de flottaison est généralement avantageuse car nécessite un faible déplacement de masse contrairement 5au dernier mode de réalisation. The rotation along an axis substantially parallel to the waterline is generally advantageous because it requires a small mass displacement unlike the last embodiment.

Claims

REVENDICATIONS
1. Dispositif pour gérer l'immersion d'une sonde ou capteur (8, 9, 10, 70) fixée sur un système de mesure (1) de paramètres physico-chimiques d'un liquide (3), caractérisé en ce qu'il comporte des moyens (4, 5, 12) pour déplacer une partie de la masse du système de mesure modifiant ainsi la position du centre de gravité (6) du système de mesure (1), générant ainsi un couple de rappel formé du poids (P) et de la poussée d'Archimède (PA), provoquant l'immersion ou l'émersion de la sonde ou capteur (8, 9, 10) .1. Device for managing the immersion of a probe or sensor (8, 9, 10, 70) fixed on a measurement system (1) of physicochemical parameters of a liquid (3), characterized in that it comprises means (4, 5, 12) for moving a part of the mass of the measuring system thus modifying the position of the center of gravity (6) of the measuring system (1), thus generating a restoring torque formed by the weight (P) and buoyancy (PA), causing immersion or emergence of the probe or sensor (8, 9, 10).
2. Dispositif selon la revendication 1 caractérisé en ce que les moyens pour déplacer une partie de la masse du système de mesure consiste en un moteur ou servomoteur (12) qui déplace une masselotte (4) montée rotative autour d'un axe2. Device according to claim 1 characterized in that the means for moving a portion of the mass of the measuring system consists of a motor or servomotor (12) which moves a flyweight (4) rotatably mounted about an axis
(5) sensiblement parallèle à la ligne de flottaison du système de mesure (1) .(5) substantially parallel to the waterline of the measuring system (1).
3. Dispositif selon la revendication 1 ou 2 caractérisé en ce qu' il comporte un calculateur pour déclencher les moyens pour déplacer une partie de la masse du système de mesure.3. Device according to claim 1 or 2 characterized in that it comprises a computer for triggering the means for moving a portion of the mass of the measuring system.
4. Dispositif selon la revendication 3, caractérisé en ce qu' il comporte en outre un récepteur radio (50) pour recevoir des commandes distantes (51) exploitées par le calculateur.4. Device according to claim 3, characterized in that it further comprises a radio receiver (50) for receiving remote commands (51) operated by the computer.
5. Dispositif selon les revendications 3 ou 4, caractérisé en ce que le calculateur comporte un microcontrôleur (13) pour délivrer des commandes (51) exploitées par le calculateur, ledit microcontrôleur (13) exécutant des instructions contenues dans une mémoire (14) du calculateur.5. Device according to claims 3 or 4, characterized in that the calculator comprises a microcontroller (13) for issuing commands (51) operated by the computer, said microcontroller (13) executing instructions contained in a memory (14) of the computer.
6. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce qu'il provoque des mouvements (33, 34, 36) du système de mesure afin de créer un flux de liquide autour de la sonde ou capteur.6. Device according to any one of the preceding claims characterized in that it causes movements (33, 34, 36) of the measuring system to create a liquid flow around the probe or sensor.
7. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce qu' il déclenche en outre un processus de nettoyage coordonné avec l'immersion de la sonde ou capteur.7. Device according to any one of the preceding claims, characterized in that it also triggers a cleaning process coordinated with the immersion of the probe or sensor.
8. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce qu' il déclenche en outre un processus de calibration de la sonde ou capteur coordonné avec son immersion.8. Device according to any one of the preceding claims, characterized in that it also triggers a calibration process of the probe or sensor coordinated with its immersion.
9. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que les moyens pour déplacer une partie de la masse du système de mesure provoque des mouvements progressifs ou par pas dudit système de mesure afin de permettre une mesure d'une caractéristique physico-chimique à différentes profondeurs . 9. Device according to any one of the preceding claims, characterized in that the means for moving a part of the mass of the measurement system causes progressive movements or steps of said measuring system to allow a measurement of a physical characteristic. chemical at different depths.
10. Système de mesure (1) de paramètres physico- chimiques d'un liquide (3) comportant au moins une sonde ou capteur (8, 9, 10) caractérisé en ce qu' il comporte en outre un dispositif de gestion d'immersion selon l'une quelconque des revendications 1 à 8.Measuring system (1) of physico-chemical parameters of a liquid (3) comprising at least one probe or sensor (8, 9, 10), characterized in that it further comprises an immersion management device according to any one of claims 1 to 8.
11. Système de mesure selon la revendication 10, caractérisé en ce qu'il comporte une forme (40) placée à proximité de la ou des sondes ou capteurs (8, 9, 10) pour provoquer une agitation du liquide (3) ayant pour effet de le mélanger ou de rompre une pellicule en surface du liquide, lors du mouvement (33, 34, 36) du système de mesure sous l'action du dispositif de gestion d' immersion.11. Measuring system according to claim 10, characterized in that it comprises a form (40) placed close to the one or more probes or sensors (8, 9, 10) for causing agitation of the liquid (3) having effect of mixing or breaking a film on the surface of the liquid, during the movement (33, 34, 36) of the measuring system under the action of the immersion management device.
12. Système de mesure selon la revendication 10, caractérisé en ce qu' il comporte une sonde ou capteur (70) fixé à un point d'accroché (72) sur la forme du système de mesure, au moyen d'un lien (71) apte à s'enrouler et à se dérouler autour de ladite forme pour permettre une mesure en profondeur (D) lors de l'immersion de la sonde (70). 12. Measuring system according to claim 10, characterized in that it comprises a probe or sensor (70) fixed to a point of attachment (72) on the shape of the measuring system, by means of a link (71). ) able to wind and unwind around said shape to allow a depth measurement (D) during immersion of the probe (70).
EP08826369A 2007-06-18 2008-06-17 Device for controlling the immersion of probes and/or sensors measuring the physico-chemical parameters of liquids, and associated measuring system Withdrawn EP2162741A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704311A FR2917499B1 (en) 2007-06-18 2007-06-18 DYNAMIC DEVICE FOR IMMERSION OF PROBES AND / OR SENSORS MEASURING THE PHYSIO-CHEMICAL PARAMETERS OF LIQUIDS
PCT/FR2008/000839 WO2009010656A2 (en) 2007-06-18 2008-06-17 Device for controlling the immersion of probes and/or sensors measuring the physico-chemical parameters of liquids, and associated measuring system

Publications (1)

Publication Number Publication Date
EP2162741A2 true EP2162741A2 (en) 2010-03-17

Family

ID=39316437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08826369A Withdrawn EP2162741A2 (en) 2007-06-18 2008-06-17 Device for controlling the immersion of probes and/or sensors measuring the physico-chemical parameters of liquids, and associated measuring system

Country Status (3)

Country Link
EP (1) EP2162741A2 (en)
FR (1) FR2917499B1 (en)
WO (1) WO2009010656A2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763537A (en) * 1986-12-15 1988-08-16 The Texas A&M University System Process for protecting electrochemical sensors from biofouling in an aquatic environment
JPH0263993A (en) * 1988-08-30 1990-03-05 Mitsui Eng & Shipbuild Co Ltd Unmanned diving machine
GB2365122B (en) * 2000-05-31 2004-05-05 Abb Instrumentation Ltd Analysis device
US6916219B2 (en) * 2001-11-09 2005-07-12 Apprise Technologies, Inc. Remote sampling system
US20050207939A1 (en) * 2003-12-05 2005-09-22 Christopher Roussi Water-quality assessment system
GB2414968B (en) * 2004-06-07 2008-10-22 Thales Uk Plc Buoyant device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009010656A3 *

Also Published As

Publication number Publication date
FR2917499B1 (en) 2009-08-21
FR2917499A1 (en) 2008-12-19
WO2009010656A3 (en) 2009-04-02
WO2009010656A2 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
FR2981750A1 (en) ACQUISITION DEVICE FOR PERFORMING MEASUREMENTS AND / OR SAMPLING SAMPLES IN A LIQUID
EP2255179B1 (en) Device for monitoring the structure of a vehicle
EP2162741A2 (en) Device for controlling the immersion of probes and/or sensors measuring the physico-chemical parameters of liquids, and associated measuring system
CA2633430A1 (en) Automated-precision pressure meter
EP0815445B1 (en) Method and device for producing vertical profiles of measured variables characterising a body of sea water
FR2878308A1 (en) CONTROLLED AUTO SOLENOID DEVICE
EP0167550B1 (en) Apparatus for measuring and displaying the speed of a craft, particularly a sail-board
WO2013068696A1 (en) Device with capacitive antenna for measuring a liquid level
FR2901112A3 (en) DEVICE FOR AUTOMATIC DEFROSTING OF A MIRROR
FR2894678A1 (en) Fluid speed measurement device for e.g. storm overflow, has compression force sensor fixed to immersion end of rigid support, where end is immersed such that fluid flow direction is parallel to compression direction
WO2019185998A1 (en) Method for monitoring at least one measurement of the structural state of a building
EP2303678B1 (en) System and method for the inspection of the hull of a maritime vessel
EP3627144A1 (en) Method for checking a rope
FR3081826A1 (en) UNDERWATER / EMERGING DEVICE FOR OBSERVATION IN THE MARINE ENVIRONMENT OR INLAND WATERS
FR2941975A1 (en) DEVICE FOR PRESSURIZING A PART OF THE WALL OF A WELL
EP0643310B1 (en) Device for monitoring the discharge of a plurality of series connected batteries
WO1999035329A1 (en) Monitoring control device with real time data sampling for machine used in the cable industry
FR3103948A1 (en) Monitoring device for a mixer truck comprising an agitating tank
FR3098294A1 (en) Device for measuring the spacing of two parts of a catenary tensioning device
EP3048428A1 (en) Counter with dual counting means
EP3701115A1 (en) System for releasing a core-sampling barrel, and core sampler comprising such a system
EP2028574A1 (en) Method for operating an electromechanical actuator for a motorised screen drive and actuator therefore
FR2886399A1 (en) ELECTRONIC THERMOMETER WITH ENERGY ACCUMULATION
FR2508102A1 (en) Relative hourly fuel consumption rate meter for diesel IC engine - uses camshaft rotation speed and toothed rack displacement sensors supplying multiplication circuit
WO2020016326A1 (en) Omnidirectional sensor for determining an environmental value of a pivoting object

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100118

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111231