EP2161597A1 - Retro reflector for image-assisted operation systems - Google Patents
Retro reflector for image-assisted operation systems Download PDFInfo
- Publication number
- EP2161597A1 EP2161597A1 EP08163608A EP08163608A EP2161597A1 EP 2161597 A1 EP2161597 A1 EP 2161597A1 EP 08163608 A EP08163608 A EP 08163608A EP 08163608 A EP08163608 A EP 08163608A EP 2161597 A1 EP2161597 A1 EP 2161597A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- retroreflector
- cube corners
- cube
- corners
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0006—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/12—Reflex reflectors
- G02B5/122—Reflex reflectors cube corner, trihedral or triple reflector type
- G02B5/124—Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0807—Indication means
- A61B2090/081—Indication means for contamination or dirt
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3983—Reference marker arrangements for use with image guided surgery
Definitions
- the present invention relates to a retroreflector for image-guided surgery systems, a retroreflector manufacturing method, a vision-based surgery system, and the use of a retroreflector in an image-based surgical system.
- objects for example medical instruments or bones
- a marker device in order to be able to determine the position, ie the position and / or orientation, of the object.
- the marker devices are typically one or more diffusely reflecting spheres which reflect the light emitted by a light source.
- the reflected light is detected by a sensor, for example a 3D camera.
- the center of each reflection is determined and considered as the center of a sphere for the subsequent position calculation.
- the center of the reflection is assumed to be the center of the sphere, which, however, does not correspond to the actual center of the sphere. This usually results in an error in the calculation of the position of the object.
- a retroreflector reflects incident radiation, such as light, back parallel to the direction of incidence. This is due to multiple reflection in the retroreflector, with each incident beam undergoing a parallel shift. Due to this parallel displacement, the entire beam path is interrupted as soon as the retroreflector is covered over a large area. The retroreflector can therefore only be detected by the sensor if it is sufficiently visible and thus can be localized correctly.
- the retroreflector In an image-based surgical system, it is often necessary for the retroreflector to have retroreflective properties all around, ie in all spatial directions.
- a retroreflector is disclosed, for example, in the published patent application US 2008/0131115 A1 ,
- the retroreflector shown there consists of eight cube corners, the tips of the cube corners adjoining each other and each cube corner is formed of three reflective surfaces.
- the retroreflector serves to detect a sound field by modulating the retroreflective radiation from a membrane located in one of the reflective surfaces.
- a retroreflector according to claim 1 This object is achieved by a retroreflector according to claim 1.
- Production method for such a retroreflector are specified in the claims 8 and 11.
- Claim 14 relates to an image-guided operation system with a retroreflector according to the invention and claim 15 to the use of a retroreflector of eight cube corners in an image-based surgical system.
- the Retroreflector for Image Assisted Operating Systems includes eight cube corners and, in particular, includes only eight cube corners, with the cube corner tips adjacent to each other and each cube corner formed of three reflective surfaces.
- the tips of the cube corners therefore touch in a center of the retroreflector.
- the center of the retroreflector is the point at which the planes in which the reflective surfaces of the retroreflector lie intersect.
- the top of a cube corner is the point where the three reflective surfaces meet.
- the retroreflector on a pollution protection, which prevents deposition of dirt in the cube corners.
- the retroreflector can be easily cleaned after a use, for example an operation, in particular disinfected.
- the pollution protection is designed, a (adhesive) contact of dirt, especially dust or liquid, on the reflective surfaces to prevent.
- the contamination protection is a dirt-repellent coating of the reflective surfaces, in particular a nano-coating.
- the contamination protection is a surface located upstream of the tips of the cube corner. This surface thus has a distance from the top of a cube corner, for example, greater than 1 mm, 2 mm, 5 mm or 1 cm and / or greater than 0.1 or 0.5 or 1 times the edge length of the Top of the cube corner from the extending edge of a reflective surface.
- the upstream surface is optionally provided with a dirt-repellent coating, for example a nano-coating.
- the contamination protection comprises a transparent shell, which surrounds the cube corners and in particular has a smooth surface.
- the cube corners are therefore completely enveloped by the transparent shell.
- the shell has, for example, the shape of a spherical shell or a hollow cuboid, in particular a hollow cube. Due to the influence of the shell on the beam path, the shell should be as thin as possible, for example thinner than 2 mm, thinner than 1 mm or thinner than 0.5 mm, and have a refractive index that is as close as possible to the refractive index of air, for example less than 2, is less than 1.8 or less than 1.5.
- the refractive index is given for example for a wavelength of 589 nm or for infrared radiation at room temperature.
- the terms "reflective” and “transparent” in the context of this document refer to radiation of a wavelength that is to be reflected by the retroreflector. These are, for example, visible light or, in particular, infrared radiation.
- the soil protection comprises a filling of the cube corners with transparent material. This will also prevent dirt from getting in the edges and especially the top of the cube corners deposit.
- the filling is designed so that it produces a smooth surface of the retroreflector. Such a surface is for example that of a sphere or a cuboid, in particular a cube.
- the reflective surfaces of the cube corners are formed, for example, by reflective coated walls.
- a wall can also be reflective coated on both sides and thus form two reflective surfaces of two adjacent cube corners.
- the reflective surfaces are formed by walls of reflective material. Also in this case, one wall may form two reflective surfaces of two adjacent cube corners.
- the reflective surfaces of the cube corners are formed by a partial coating of the filling.
- the filling is poured, for example, using a mold, so that an eighth ball, an equilateral pyramid with a triangular base or a cuboid arises.
- the three straight surfaces of the eighth sphere, the three side surfaces of the pyramid or three side surfaces of the cuboid are provided with a reflective coating and then joined together to form the retroreflector.
- two coated surfaces touch each other.
- only one is provided with a reflective coating.
- the retroreflector on a holding bar by means of which the retroreflector can be attached to an object.
- the center axis of the holding bar coincides with the intersection of two reflecting surfaces of one of the cube corners.
- the support bar extends or terminates in one edge of a cube corner or several adjacent cube corners.
- the retaining bar thus at least partially forms the extension of an edge, which is formed by two reflective surfaces of a cube corner. This arrangement has the advantage that the retaining bar does not affect the reflection properties of any of the cube corners.
- the retaining rod is centrally located in one of the cube corners and firmly connected to the top of this cube corner.
- a central arrangement means that a point on the central axis of the support bar of each of the three reflective surfaces of the cube corner has the same distance.
- the projection of the center axis of the support rod into one of the reflective surfaces forms the bisecting line between the other two reflective surfaces.
- a manufacturing method for a retroreflector eight cube corners, each consisting of three reflecting surfaces, are first of all arranged in such a way that their tips adjoin one another. Then the cube corners are provided with a dirt protection.
- the reflective surfaces are formed, for example, of a substrate provided with a reflective layer, or the reflective surfaces are formed of walls made of reflective material.
- the soil protection is created by filling the cube corners with a transparent material.
- the cube corners are poured, for example.
- the design of the filling can produce different surface shapes of the retroreflector.
- the contamination protection is produced by enveloping the cube corners with a transparent shell.
- the transparent shell is produced for example by means of injection molding.
- One possibility is to create two half shells that are placed around the cube corners and joined together.
- the connecting line between the two half-shells preferably coincides with the edges of reflective surfaces.
- the connecting line is not in the beam path incident or reflected light.
- each partial body is coated with a reflective material and the coated partial bodies are assembled to form the retroreflector.
- a coating can be made by any suitable coating technique, such as by deposition, spraying or sticking. Either all three side surfaces of each partial body are coated, which touch a side surface of another partial body in the composite retroreflector, or only one of two contacting side surfaces of adjacent partial bodies is coated.
- the eight body parts are generated by three sections of a transparent solid body, the solid body is thus geachtelt.
- the three sections are preferably perpendicular to each other. If material is lost when performing the cuts, for example during a cutting process, the layers are preferably made thick enough to compensate for the removed material of the solid body. The solid body has therefore after assembly again exactly its original form.
- the invention also relates to an image-based operating system with a light source, at least one retroreflector described above for reflecting the light of the light source, at least one detector for detecting the reflected light and a computing unit for calculating the position of the retroreflector from the output signal of the detector.
- the detector is, for example, a camera, in particular a 3D camera.
- the light source is preferably located in the immediate vicinity of the detector. The position of the retroreflector results in the position of the object marked with the retroreflector.
- the invention relates to the use of a retroreflector of eight cube corners, wherein the tips of the cube corners abut each other and each cube corner is formed of three reflective surfaces, in an image-based operating system.
- the cube corner 2 consists of three mutually perpendicular surfaces 3, 4 and 5.
- the surfaces 3, 4 and 5 consist of walls which are provided with a reflective coating, for example a coating of silver, aluminum, copper, gold or mixtures thereof metals.
- the reflective coating can be provided with a dirt-repellent nano-coating.
- the exemplary light beam L striking the cube corner 2 is first reflected on the surface 3, then on the surface 5 and finally on the surface 4, so that it is reflected back in total by the cube corners 2 with an offset parallel to the direction of incidence.
- Shown in the FIG. 2 is a first arrangement of eight cube corners 2 whose tips are adjacent to each other at the center of the array.
- the reflecting surfaces of the cube corners 2 are formed by reflective coated walls, wherein each wall is coated on both sides and thus forms two reflective surfaces for two adjacent cube corners 2.
- the reflecting surfaces and thus the walls of each cube corner 2 are each perpendicular to each other, so that each four of the total twelve walls lie in a common plane.
- the reflective surfaces each have the shape of a rectangle, in particular a square, so that the edges 6 of the arrangement of eight cube corners 2 each have the shape of a rectangle or a square.
- the edges 6 of the assembly are composed of those edges of the reflective surfaces that do not touch others adjacent reflective surfaces.
- Each of the edges 6 consists of the edges of those reflecting surfaces lying in the same plane.
- the FIG. 3 shows a retroreflector 1, wherein the arrangement of eight cube corners 2 from the FIG. 2 was surrounded with a transparent shell 7 in the form of a hollow cuboid, for example a hollow cube.
- the shell 7 is in the FIG. 3 shown cut.
- the size of the cuboid or cube is chosen so that the edges 6 of the walls of the cube corner 2 rest against the inner surface of the cuboid or cube.
- the edges 6 are fixedly connected to the inner surface of the shell 7, for example glued, whereby the stability of the cube corners 2 increases.
- the FIG. 4 shows a second arrangement of eight cube corners 12, wherein the reflective surfaces of the cube corners 12 are not rectangles, but circular sectors. Each sector corresponds to a quarter circular disk.
- the reflective surfaces are connected to each other at their radial edges and are perpendicular to each other. This results in an arrangement of eight cube corners 12, wherein the three edges 13 of the arrangement have the shape of full circles.
- the edges 13 of the assembly are composed of those edges of the reflective surfaces that do not abut other reflective surfaces.
- Each of the edges 13 consists of the edges of those reflective surfaces lying in the same plane.
- the arrangement of eight cube corners forms the core of a retroreflector 11.
- a holding bar 14 is provided, which extends from the center of the arrangement of the eight cube corners 12 along the intersection of two side surfaces of one of the cube corners 12.
- the holding bar 14 is thus located exactly in the edge where two walls of a cube corner 12 touch. This does not affect the reflection properties of this cube corner.
- the support rod 14 serves to attach the retroreflector 11 to an object whose position is to be determined.
- FIG. 5 shows the retroreflector 11 in a partially sectioned side view, the arrangement of eight ball corners 12 from FIG. 4 is enveloped by a spherical shell 15.
- the spherical shell 15 consists of two half-shells.
- the arrangement of eight cube corners 12 is used in the production of the retroreflector 11 in the first half-shell, then the second half-shell is placed and connected to the first half-shell, for example by gluing.
- the connecting line of the two half-shell preferably lies directly against one of the three circular edges 13. As a result, the connection point between the two half-shells does not form an impurity in the beam path.
- the outer diameter of the retroreflector 11 is preferably between 1 cm and 2 cm, including the interval edges.
- the wall thickness of the walls of the cube corners 12 and the spherical shell 15 is preferably less than one twentieth of the diameter of the retroreflector 11.
- the cube corners 2, 12 are filled with a transparent material.
- the filling is formed so that the outer surface of the retroreflector 1 has the shape of a cuboid or cube.
- the filling is designed so that the retroreflector 11 has the outer shape of a sphere.
- FIG. 6 schematically shows an image-based operation system 21 with a 3D camera 22 and a computing unit 23.
- the 3D camera has two image sensors 24, each of which receives a two-dimensional image.
- the detection areas of the image sensors 24 are indicated by dashed lines.
- the image-based operation system 21 is configured to determine the location of an object 26.
- the object 26 is fixedly connected to a retroreflector 11.
- the firm connection between object 26 and retroreflector 11 has the consequence that their positions have a fixed relationship to each other. If the position of the retroreflector 11 is known, the position of the object 26 can be determined directly from this.
- each of the image sensors 24 is surrounded by a ring of light-emitting diodes 25, wherein the light-emitting diodes 25 preferably emit light in the infrared range.
- the emitted light hits the Retroreflector 11 and is reflected back to the two image sensors 24.
- the output signals of the image sensors 24 are transmitted to the arithmetic unit 23 and evaluated there. Since the two image sensors 24 detect the retroreflector 11 from different positions, the position of the retroreflector 11 and thus the position of the object in space can be determined.
- the orientation of the object 26 can be determined from the detected positions of the retroreflectors 11 in addition to the position. At least three retroreflectors 11 are preferably combined to form a marker device and connected to the object 26.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Optical Elements Other Than Lenses (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft einen Retroreflektor für bildgestützte Operationssysteme, ein Herstellungsverfahren für einen Retroreflektor, ein bildgestütztes Operationssystem und die Verwendung eines Retroreflektors in einem bildgestützten Operationssystem.The present invention relates to a retroreflector for image-guided surgery systems, a retroreflector manufacturing method, a vision-based surgery system, and the use of a retroreflector in an image-based surgical system.
Bei bildgestützten Operationssystemen werden Objekte, beispielsweise medizinische Instrumente oder Knochen, mit Markervorrichtung versehen, um die Lage, also die Position und/oder Ausrichtung, des Objekts ermitteln zu können. Bei den Markervorrichtungen handelt es sich üblicherweise um eine oder mehrere diffus reflektierende Kugeln, die das von einer Lichtquelle ausgesendete Licht reflektierten. Das reflektierte Licht wird von einem Sensor, beispielsweise einer 3D-Kamera, erfasst. In einer Recheneinheit wird der Mittelpunkt jeder Reflektion ermittelt und für die nachfolgende Lageberechnung als Mittelpunkt einer Kugel angesehen. Ein Problem tritt auf, wenn eine Kugel teilweise verdeckt wird und der Sensor daher die Reflektion nur teilweise erfassen kann. Auch in diesem Fall wird der Mittelpunkt der Reflektion als Mittelpunkt der Kugel angenommen, der jedoch nicht dem tatsächlichen Mittelpunkt der Kugel entspricht. Dies hat üblicherweise einen Fehler in der Berechnung der Lage des Objekts zur Folge.In image-based surgery systems, objects, for example medical instruments or bones, are provided with a marker device in order to be able to determine the position, ie the position and / or orientation, of the object. The marker devices are typically one or more diffusely reflecting spheres which reflect the light emitted by a light source. The reflected light is detected by a sensor, for example a 3D camera. In an arithmetic unit, the center of each reflection is determined and considered as the center of a sphere for the subsequent position calculation. A problem arises when a ball is partially obscured and therefore the sensor can only partially detect the reflection. Also in this case, the center of the reflection is assumed to be the center of the sphere, which, however, does not correspond to the actual center of the sphere. This usually results in an error in the calculation of the position of the object.
Dies wird vermieden durch den Einsatz eines Retroreflektors in der Markervorrichtung. Ein Retroreflektor reflektiert einfallende Strahlung, beispielsweise Licht, parallel zur Einfallsrichtung zurück. Dies geschieht aufgrund mehrfacher Reflektion im Retroreflektor, wobei jeder einfallende Strahl eine Parallelverschiebung erfährt. Aufgrund dieser Parallelverschiebung ist der komplette Strahlengang unterbrochen, sobald der Retroreflektor zu großflächig verdeckt ist. Der Retroreflektor kann demnach nur dann vom Sensor erfasst werden, wenn er ausreichend sichtbar und damit korrekt lokalisierbar ist.This is avoided by the use of a retroreflector in the marker device. A retroreflector reflects incident radiation, such as light, back parallel to the direction of incidence. This is due to multiple reflection in the retroreflector, with each incident beam undergoing a parallel shift. Due to this parallel displacement, the entire beam path is interrupted as soon as the retroreflector is covered over a large area. The retroreflector can therefore only be detected by the sensor if it is sufficiently visible and thus can be localized correctly.
Bei einem bildgestützten Operationssystem ist es oftmals notwendig, dass der Retroreflektor rundum, also in alle Raumrichtungen, retroreflektierende Eigenschaften besitzt. Ein solcher Retroreflektor ist beispielsweise offenbart in der Offenlegungsschrift
Es ist die Aufgabe der vorliegenden Erfindung, einen Retroreflektor bereitzustellen, der sich für bildgestützte Operationssysteme eignet und robust aufgebaut ist.It is the object of the present invention to provide a retroreflector which is suitable for image-based surgical systems and has a robust construction.
Diese Aufgabe wird gelöst durch einen Retroreflektor gemäß Patentanspruch 1. Herstellungsverfahren für einen derartigen Retroreflektor sind in den Patentansprüchen 8 und 11 angegeben. Der Patentanspruch 14 betrifft ein bildgestütztes Operationssystem mit einem erfindungsgcmäßen Retroreflektor und der Patentanspruch 15 die Verwendung eines Retroreflektors aus acht Würfelecken in einem bildgestützten Operationssystem.This object is achieved by a retroreflector according to
Der Retroreflektor für bildgestützte Operationssysteme umfasst acht Würfelecken und umfasst insbesondere nur genau acht Würfelecken, wobei die Spitzen der Würfelecken aneinander angrenzen und jede Würfelecke aus drei reflektierenden Flächen gebildet wird. Die Spitzen der Würfelecken berühren sich demnach in einen Mittelpunkt des Retroreflektors. Der Mittelpunkt des Retroreflektors ist der Punkt, in dem sich die Ebenen, in denen die reflektierenden Flächen des Retroreflektors liegen, schneiden. Die Spitze einer Würfelecke ist derjenige Punkt, an dem die drei reflektierenden Flächen zusammentreffen.The Retroreflector for Image Assisted Operating Systems includes eight cube corners and, in particular, includes only eight cube corners, with the cube corner tips adjacent to each other and each cube corner formed of three reflective surfaces. The tips of the cube corners therefore touch in a center of the retroreflector. The center of the retroreflector is the point at which the planes in which the reflective surfaces of the retroreflector lie intersect. The top of a cube corner is the point where the three reflective surfaces meet.
Erfindungsgemäß weist der Retroreflektor einen Verschmutzungsschutz auf, der eine Ablagerung von Schmutz in den Würfelecken verhindert. Dadurch lässt sich der Retroreflektor nach einem Einsatz, beispielsweise einer Operation, einfach reinigen, insbesondere desinfizieren. Insbesondere ist der Verschmutzungsschutz ausgebildet, einen (haftenden) Kontakt von Schmutz, insbesondere Staub oder Flüssigkeit, auf den reflektierenden Flächen zu verhindern.According to the invention, the retroreflector on a pollution protection, which prevents deposition of dirt in the cube corners. As a result, the retroreflector can be easily cleaned after a use, for example an operation, in particular disinfected. In particular, the pollution protection is designed, a (adhesive) contact of dirt, especially dust or liquid, on the reflective surfaces to prevent.
In einer Ausgestaltung der Erfindung handelt es sich bei dem Verschmutzungsschutz um eine schmutzabweisende Beschichtung der reflektierenden Flächen, insbesondere eine Nanobeschichtung. In einer anderen Ausgestaltungsform der Erfindung handelt es sich bei dem Verschmutzungsschutz um eine den Spitzen der Würfelecke vorgelagerte Oberfläche. Diese Oberfläche weist also einen Abstand von der Spitze einer Würfelecke auf, der beispielsweise größer ist als 1 mm, 2 mm, 5 mm oder 1cm und/oder größer ist als 0,1 oder 0,5 oder 1 mal die Kantenlänge der sich von der Spitze der Würfelecke aus erstreckenden Kante einer reflektierenden Fläche. Die vorgelagerte Oberfläche ist optional mit einer schmutzabweisenden Beschichtung versehen, beispielsweise einer Nanobeschichtung.In one embodiment of the invention, the contamination protection is a dirt-repellent coating of the reflective surfaces, in particular a nano-coating. In another embodiment of the invention, the contamination protection is a surface located upstream of the tips of the cube corner. This surface thus has a distance from the top of a cube corner, for example, greater than 1 mm, 2 mm, 5 mm or 1 cm and / or greater than 0.1 or 0.5 or 1 times the edge length of the Top of the cube corner from the extending edge of a reflective surface. The upstream surface is optionally provided with a dirt-repellent coating, for example a nano-coating.
In einer Ausgestaltungsform der Erfindung umfasst der Verschmutzungsschutz eine transparente Schale, die die Würfelecken umgibt und insbesondere eine glatte Oberfläche aufweist. Die Würfelecken sind demnach vollständig von der transparenten Schale umhüllt. Die Schale hat beispielsweise die Form einer Kugelschale oder eines hohlen Quaders, insbesondere eines hohlen Würfels. Aufgrund des Einflusses der Schale auf den Strahlengang sollte die Schale möglichst dünn ausgebildet sein, beispielsweise dünner als 2mm, dünner als 1mm oder dünner als 0,5mm, und einen Brechungsindex aufweisen, der möglichst nah am Brechungsindex von Luft liegt, beispielsweise kleiner als 2, kleiner als 1,8 oder kleiner als 1,5 ist. Der Brechungsindex ist beispielsweise für eine Wellenlänge von 589nm oder für Infrarotstrahlung bei Raumtemperatur angegeben.In one embodiment of the invention, the contamination protection comprises a transparent shell, which surrounds the cube corners and in particular has a smooth surface. The cube corners are therefore completely enveloped by the transparent shell. The shell has, for example, the shape of a spherical shell or a hollow cuboid, in particular a hollow cube. Due to the influence of the shell on the beam path, the shell should be as thin as possible, for example thinner than 2 mm, thinner than 1 mm or thinner than 0.5 mm, and have a refractive index that is as close as possible to the refractive index of air, for example less than 2, is less than 1.8 or less than 1.5. The refractive index is given for example for a wavelength of 589 nm or for infrared radiation at room temperature.
Es sei angemerkt, sich die Begriffe "reflektierend" und "transparent" im Rahmen dieses Dokuments auf Strahlung einer Wellenlänge beziehen, die von dem Retroreflektor reflektiert werden soll. Dabei handelt es sich beispielsweise um sichtbares Licht oder insbesondere Infrarotstrahlung.It should be noted that the terms "reflective" and "transparent" in the context of this document refer to radiation of a wavelength that is to be reflected by the retroreflector. These are, for example, visible light or, in particular, infrared radiation.
In einer alternativen Ausgestaltungsform der Erfindung umfasst der Verschmutzungsschutz eine Füllung der Würfelecken mit transparentem Material. Dadurch wird ebenfalls verhindert, dass sich Verschmutzungen in den Kanten und besonders der Spitze der Würfelecken ablagern. Bevorzugt ist die Füllung so ausgestaltet, dass sie eine glatte Oberfläche des Retroreflektors erzeugt. Eine solche Oberfläche ist beispielsweise die einer Kugel oder eines Quaders, insbesondere eines Würfels.In an alternative embodiment of the invention, the soil protection comprises a filling of the cube corners with transparent material. This will also prevent dirt from getting in the edges and especially the top of the cube corners deposit. Preferably, the filling is designed so that it produces a smooth surface of the retroreflector. Such a surface is for example that of a sphere or a cuboid, in particular a cube.
Die reflektierenden Flächen der Würfelecken werden beispielsweise durch reflektierend beschichtete Wände gebildet. Eine Wand kann auch beidseitig reflektierend beschichtet sein und somit zwei reflektierende Flächen zweier benachbarter Würfelecken bilden. In einer anderen Ausgestaltungsform der Erfindung werden die reflektierenden Flächen durch Wände aus reflektierendem Material gebildet. Auch in diesem Fall kann eine Wand zwei reflektierende Flächen zweier benachbarter Würfelecken bilden.The reflective surfaces of the cube corners are formed, for example, by reflective coated walls. A wall can also be reflective coated on both sides and thus form two reflective surfaces of two adjacent cube corners. In another embodiment of the invention, the reflective surfaces are formed by walls of reflective material. Also in this case, one wall may form two reflective surfaces of two adjacent cube corners.
Bei einer Füllung der Würfelecke mit transparentem Material besteht insbesondere die Möglichkeit, dass die reflektierenden Flächen der Würfelecken durch eine teilweise Beschichtung der Füllung gebildet werden. Die Füllung wird beispielsweise mit Hilfe einer Form gegossen, so dass eine Achtelkugel, eine gleichseitige Pyramide mit dreieckiger Grundfläche oder ein Quader entsteht. Anschließend werden die drei geraden Flächen der Achtelkugel, die drei Seitenflächen der Pyramide oder drei Seitenflächen des Quaders mit einer reflektierenden Beschichtung versehen und anschließend zusammengefügt, um den Retroreflektor zu bilden. Dabei berühren sich jeweils zwei beschichtete Flächen. Alternativ wird von den beiden Flächen, die sich beim Zusammenfügen berühren, nur eine mit einer reflektierenden Beschichtung versehen.In the case of a filling of the cube corner with transparent material, it is possible, in particular, for the reflective surfaces of the cube corners to be formed by a partial coating of the filling. The filling is poured, for example, using a mold, so that an eighth ball, an equilateral pyramid with a triangular base or a cuboid arises. Subsequently, the three straight surfaces of the eighth sphere, the three side surfaces of the pyramid or three side surfaces of the cuboid are provided with a reflective coating and then joined together to form the retroreflector. In each case two coated surfaces touch each other. Alternatively, of the two surfaces that touch each other during assembly, only one is provided with a reflective coating.
Bevorzugt weist der Retroreflektor einen Haltestab auf, mittels dessen der Retroreflektor an einem Objekt befestigt werden kann. In einer Ausgestaltungsform der Erfindung stimmt die Mittelachse des Haltestabs mit der Schnittlinie zweier reflektierender Flächen einer der Würfelecken überein. In diesem Fall verläuft oder endet der Haltestab in einer Kante einer Würfelecke oder mehrerer benachbarter Würfelecken. Der Haltestab bildet damit zumindest teilweise die Verlängerung einer Kante, die von zwei reflektierenden Flächen einer Würfelecke gebildet wird. Diese Anordnung hat den Vorteil, dass der Haltestab die Reflektionseigenschaften keine der Würfelecken beeinträchtigt.Preferably, the retroreflector on a holding bar, by means of which the retroreflector can be attached to an object. In one embodiment of the invention, the center axis of the holding bar coincides with the intersection of two reflecting surfaces of one of the cube corners. In this case, the support bar extends or terminates in one edge of a cube corner or several adjacent cube corners. The retaining bar thus at least partially forms the extension of an edge, which is formed by two reflective surfaces of a cube corner. This arrangement has the advantage that the retaining bar does not affect the reflection properties of any of the cube corners.
In einer alternativen Ausgestaltungsform ist der Haltestab mittig in einer der Würfelecken angeordnet und fest mit der Spitze dieser Würfelecke verbunden. Eine mittige Anordnung bedeutet, dass ein Punkt auf der Mittelachse des Haltestabs von jeder der drei reflektierenden Flächen der Würfelecke den gleichen Abstand aufweist. Anders ausgedrückt bildet die Projektion der Mittelachse des Haltestabs in eine der reflektierenden Flächen die Winkelhalbierende zwischen den beiden anderen reflektierenden Flächen. Diese Anordnung behindert zwar die Retroreflektion in der entsprechenden Würfelecke, diese ist jedoch dem markierten Objekt zugewandt und somit bei der Lageerfassung ohnehin von diesem Objekt verdeckt.In an alternative embodiment, the retaining rod is centrally located in one of the cube corners and firmly connected to the top of this cube corner. A central arrangement means that a point on the central axis of the support bar of each of the three reflective surfaces of the cube corner has the same distance. In other words, the projection of the center axis of the support rod into one of the reflective surfaces forms the bisecting line between the other two reflective surfaces. Although this arrangement hinders the retroreflection in the corresponding cube corner, but this is facing the marked object and thus obscured anyway in this situation detection of this object.
Bei einem Herstellungsverfahren für einen Retroreflektor werden zunächst acht aus jeweils drei reflektierenden Flächen bestehende Würfelecken derart angeordnet, dass ihre Spitzen aneinander angrenzen. Anschließend werden die Würfelecken mit einem Verschmutzungsschutz versehen. Die reflektierenden Flächen werden beispielsweise aus einem Trägermaterial gebildet, das mit einer reflektierenden Schicht versehen ist, oder die reflektierenden Flächen werden aus Wänden gebildet, die aus reflektierendem Material bestehen.In a manufacturing method for a retroreflector, eight cube corners, each consisting of three reflecting surfaces, are first of all arranged in such a way that their tips adjoin one another. Then the cube corners are provided with a dirt protection. The reflective surfaces are formed, for example, of a substrate provided with a reflective layer, or the reflective surfaces are formed of walls made of reflective material.
In einer Ausgestaltungsform des Herstellungsverfahrens wird der Verschmutzungsschutz dadurch erzeugt, dass die Würfelecken mit einem transparenten Material gefüllt werden. Dabei werden die Würfelecken beispielsweise ausgegossen. Durch die Gestaltung der Füllung lassen sich verschiedene Oberflächenformen des Retroreflektors erzeugen.In one embodiment of the manufacturing process, the soil protection is created by filling the cube corners with a transparent material. The cube corners are poured, for example. The design of the filling can produce different surface shapes of the retroreflector.
In einer alternativen Ausgestaltungsform des Herstellungsverfahrens wird der Verschmutzungsschutz dadurch erzeugt, dass die Würfelecken mit einer transparenten Schale umhüllt werden. Die transparente Schale wird beispielsweise mittels Spritzguss erzeugt. Eine Möglichkeit besteht darin, zwei Halbschalen zu erzeugen, die um die Würfelecken gelegt und miteinander verbunden werden. Dabei fällt die Verbindungslinie zwischen den beiden Halbschalen bevorzugt mit den Rändern reflektierender Flächen zusammen. Somit befindet sich die Verbindungslinie nicht im Strahlengang einfallenden oder reflektierten Lichts.In an alternative embodiment of the manufacturing method, the contamination protection is produced by enveloping the cube corners with a transparent shell. The transparent shell is produced for example by means of injection molding. One possibility is to create two half shells that are placed around the cube corners and joined together. In this case, the connecting line between the two half-shells preferably coincides with the edges of reflective surfaces. Thus, the connecting line is not in the beam path incident or reflected light.
In einem weiteren alternativen Herstellungsverfahren werden acht Teilkörper aus transparentem Material erzeugt. Anschließend werden Seitenflächen der Teilkörper mit einem reflektierenden Material beschichtet und die beschichteten Teilkörper zu dem Retroreflektor zusammengesetzt. Eine Beschichtung kann durch jede geeignete Beschichtungstechnik erfolgen, beispielsweise durch Abscheiden, Besprühen oder Bekleben. Entweder werden alle drei Seitenflächen jedes Teilkörpers beschichtet, die im zusammengesetzten Retroreflektor eine Seitenfläche eines anderen Teilkörpers berühren, oder von zwei sich berührenden Seitenflächen benachbarter Teilkörper wird nur eine beschichtet.In a further alternative manufacturing process, eight partial bodies of transparent material are produced. Subsequently, side surfaces of the partial bodies are coated with a reflective material and the coated partial bodies are assembled to form the retroreflector. A coating can be made by any suitable coating technique, such as by deposition, spraying or sticking. Either all three side surfaces of each partial body are coated, which touch a side surface of another partial body in the composite retroreflector, or only one of two contacting side surfaces of adjacent partial bodies is coated.
Bevorzugt werden die acht Teilkörper durch drei Schnitte aus einem transparenten Vollkörper erzeugt, der Vollkörper wird also geachtelt. Dabei sind die drei Schnitte bevorzugt zueinander senkrecht. Geht beim Durchführen der Schnitte Material verloren, beispielsweise bei einem spanenden Verfahren, werden die Schichten bevorzugt so dick ausgebildet, dass sie das entfernte Material des Vollkörpers kompensieren. Der Vollkörper hat demnach nach dem Zusammensetzen wieder exakt seine Ursprungsform.Preferably, the eight body parts are generated by three sections of a transparent solid body, the solid body is thus geachtelt. The three sections are preferably perpendicular to each other. If material is lost when performing the cuts, for example during a cutting process, the layers are preferably made thick enough to compensate for the removed material of the solid body. The solid body has therefore after assembly again exactly its original form.
Die Erfindung betrifft ebenfalls ein bildgestütztes Operationssystem mit einer Lichtquelle, mindestens einem vorstehend beschriebenen Retroreflektor zur Reflektion des Lichts der Lichtquelle, mindestens einen Detektor zur Erfassung des reflektierten Lichts und eine Recheneinheit zur Berechnung der Position des Retroreflektors aus dem Ausgangssignal des Detektors. Bei dem Detektor handelt es sich beispielsweise um eine Kamera, insbesondere eine 3D-Kamera. Die Lichtquelle befindet sich bevorzugt in unmittelbarer Nähe des Detektors. Aus der Lage des Retroreflektors ergibt sich die Lage des mit dem Retroreflektor markierten Objekts.The invention also relates to an image-based operating system with a light source, at least one retroreflector described above for reflecting the light of the light source, at least one detector for detecting the reflected light and a computing unit for calculating the position of the retroreflector from the output signal of the detector. The detector is, for example, a camera, in particular a 3D camera. The light source is preferably located in the immediate vicinity of the detector. The position of the retroreflector results in the position of the object marked with the retroreflector.
Weiterhin betrifft die Erfindung die Verwendung eines Retroreflektors aus acht Würfelecken, wobei die Spitzen der Würfelecken aneinander angrenzen und jede Würfelecke aus drei reflektierenden Flächen gebildet wird, in einem bildgestützten Operationssystem.Furthermore, the invention relates to the use of a retroreflector of eight cube corners, wherein the tips of the cube corners abut each other and each cube corner is formed of three reflective surfaces, in an image-based operating system.
Die vorliegende Erfindung soll anhand von Ausführungsbeispielen näher erläutert werden. Dabei zeigt:
Figur 1- eine Würfelecke,
Figur 2- eine erste Anordnung aus acht Würfelecken,
Figur 3- die
Anordnung aus Figur 2 umgeben von einer Schale, Figur 4- eine zweite Anordnung aus acht Würfelecken,
Figur 5- eine Schnittdarstellung eines Retroreflektors,
Figur 6- ein bildgesteuertes Operationssystem und
Figur 7- eine Frontansicht einer 3D-Kamera.
- FIG. 1
- a cube corner,
- FIG. 2
- a first arrangement of eight cube corners,
- FIG. 3
- the arrangement
FIG. 2 surrounded by a shell, - FIG. 4
- a second arrangement of eight cube corners,
- FIG. 5
- a sectional view of a retroreflector,
- FIG. 6
- an image-guided operation system and
- FIG. 7
- a front view of a 3D camera.
Dargestellt in der
Dargestellt in der
Die reflektierenden Flächen haben jeweils die Form eines Rechtecks, insbesondere eines Quadrats, sodass auch die Kanten 6 der Anordnung aus acht Würfelecken 2 jeweils die Form eines Rechtecks bzw. eines Quadrates aufweisen. Die Kanten 6 der Anordnung setzen sich aus denjenigen Kanten der reflektierenden Flächen zusammen, die nicht an andere reflektierende Flächen angrenzen. Jede der Kanten 6 besteht aus den Kanten derjenigen reflektierenden Flächen, die in der gleichen Ebene liegen.The reflective surfaces each have the shape of a rectangle, in particular a square, so that the
Die
Die
Weiterhin ist ein Haltestab 14 vorgesehen, der sich vom Mittelpunkt der Anordnung aus den acht Würfelecken 12 aus entlang der Schnittlinie zweier Seitenflächen einer der Würfelecken 12 erstreckt. Der Haltestab 14 liegt somit genau in der Kante, an der sich zwei Wände einer Würfelecke 12 berühren. Dadurch werden die Reflektionseigenschaften dieser Würfelecke nicht beeinträchtigt. Der Haltestab 14 dient der Befestigung des Retroreflektors 11 an einem Objekt, dessen Lage zu bestimmen ist.Furthermore, a holding
Die
Der Außendurchmesser des Retroreflektors 11 liegt bevorzugt zwischen 1cm und 2cm inklusive der Intervallränder. Die Wandstärke der Wände der Würfelecken 12 sowie der Kugelschale 15 ist bevorzugt kleiner als ein Zwanzigstel des Durchmessers des Retroreflektors 11.The outer diameter of the
Alternativ zu einer Kapselung der Anordnungen aus acht Würfelecken 2 beziehungsweise 12 in einem hohlen Quader bzw. Würfel 7 oder einer Kugelschale 15 werden die Würfelecken 2, 12 mit einem transparenten Material aufgefüllt. Im Falle der Anordnung aus
Die
Das bildgestützte Operationssystem 21 ist dazu eingerichtet, die Lage eines Objekts 26 zu bestimmen. Dazu ist das Objekt 26 fest mit einem Retroreflektor 11 verbunden. Die feste Verbindung zwischen Objekt 26 und Retroreflektor 11 hat zur Folge, dass deren Lagen zueinander eine feste Beziehung haben. Ist die Lage des Retroreflektors 11 bekannt, so kann daraus unmittelbar die Lage des Objekts 26 bestimmt werden.The image-based
Wie aus der schematischen Frontansicht der 3D-Kamera in
Im Rahmen der Patentansprüche ist es möglich, einzelne Merkmale der verschiedenen Ausführungsbeispiele miteinander zu kombinieren.Within the scope of the claims, it is possible to combine individual features of the various embodiments with each other.
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08163608.6A EP2161597B1 (en) | 2008-09-03 | 2008-09-03 | Image-assisted operation system |
US12/553,115 US8456649B2 (en) | 2008-09-03 | 2009-09-03 | Retro-reflector for image-guided operation systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08163608.6A EP2161597B1 (en) | 2008-09-03 | 2008-09-03 | Image-assisted operation system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2161597A1 true EP2161597A1 (en) | 2010-03-10 |
EP2161597B1 EP2161597B1 (en) | 2014-06-04 |
Family
ID=40239793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08163608.6A Not-in-force EP2161597B1 (en) | 2008-09-03 | 2008-09-03 | Image-assisted operation system |
Country Status (2)
Country | Link |
---|---|
US (1) | US8456649B2 (en) |
EP (1) | EP2161597B1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9230325B2 (en) * | 2011-08-19 | 2016-01-05 | University Of Rochester | Three-dimensional model acquisition using planar mirrors |
US20140169968A1 (en) * | 2012-12-13 | 2014-06-19 | General Electric Company | Collision avoidance system for a wind turbine |
US20150048572A1 (en) * | 2013-03-29 | 2015-02-19 | American Pacific Plastic Fabricators, Inc. | Buoyant target with laser reflectivity |
US9307231B2 (en) * | 2014-04-08 | 2016-04-05 | Lucasfilm Entertainment Company Ltd. | Calibration target for video processing |
US9641830B2 (en) | 2014-04-08 | 2017-05-02 | Lucasfilm Entertainment Company Ltd. | Automated camera calibration methods and systems |
USD751627S1 (en) | 2014-09-30 | 2016-03-15 | Lucasfilm Entertainment Company Ltd. | Camera calibration tool |
CN107132602A (en) * | 2017-06-21 | 2017-09-05 | 湖北三江航天红林探控有限公司 | Luneberg lens reflector |
EP3685785A1 (en) | 2019-01-22 | 2020-07-29 | Stryker European Holdings I, LLC | Tracker for a surgical navigation system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977765A (en) * | 1974-05-17 | 1976-08-31 | Lipkins Morton S | Hollow retroreflector mount |
FR2691129A1 (en) * | 1992-05-18 | 1993-11-19 | Aerospatiale | Low mass geodesic satellite with speed aberration correction retroreflector. |
US5589981A (en) | 1994-03-10 | 1996-12-31 | Aerospatiale Societe Nationale Industrielle | Retroreflector target for laser ranging |
US20060241388A1 (en) | 2005-01-18 | 2006-10-26 | Stephane Lavallee | Method and system of computer assistance for the reduction of a fracture |
US20070035835A1 (en) * | 2005-08-12 | 2007-02-15 | Honeywell International Inc. | Reflective corner cube array |
EP1774922A1 (en) * | 2005-10-12 | 2007-04-18 | BrainLAB AG | Marker for a navigation system and method for detecting a marker |
US20080131115A1 (en) | 2004-12-17 | 2008-06-05 | Hans Habberstad | Device for Optical Remote Monitoring and System Comprising Such a Device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3924929A (en) * | 1966-11-14 | 1975-12-09 | Minnesota Mining & Mfg | Retro-reflective sheet material |
US3922065A (en) * | 1968-05-31 | 1975-11-25 | Minnesota Mining & Mfg | Cube-corner retro-reflective article |
US3684348A (en) * | 1970-09-29 | 1972-08-15 | Rowland Dev Corp | Retroreflective material |
US4066331A (en) * | 1976-06-25 | 1978-01-03 | Beatrice Foods Co. | Cube corner type retroreflectors with improved cube corner unit relationships |
US5834759A (en) * | 1997-05-22 | 1998-11-10 | Glossop; Neil David | Tracking device having emitter groups with different emitting directions |
US6363940B1 (en) * | 1998-05-14 | 2002-04-02 | Calypso Medical Technologies, Inc. | System and method for bracketing and removing tissue |
DE19835700C2 (en) * | 1998-08-07 | 2003-03-06 | Zsp Geodaetische Sys Gmbh | 360 DEG all-round reflector |
US6280822B1 (en) * | 1999-01-11 | 2001-08-28 | 3M Innovative Properties Company | Cube corner cavity based retroeflectors with transparent fill material |
US6935756B2 (en) * | 2002-06-11 | 2005-08-30 | 3M Innovative Properties Company | Retroreflective articles having moire-like pattern |
US7179406B1 (en) * | 2004-03-08 | 2007-02-20 | Attar Adil H | Method and apparatus for making reflective pavement marker |
US7561330B2 (en) * | 2004-11-19 | 2009-07-14 | Olympus Imaging Corp. | Reflection type projecting screen, front projector system, and multi-vision projector system |
WO2007013130A1 (en) * | 2005-07-25 | 2007-02-01 | Hakko Co., Ltd. | Ultrasonic piercing needle |
US20070153297A1 (en) * | 2006-01-04 | 2007-07-05 | Lau Kam C | Photogrammetric Targets |
-
2008
- 2008-09-03 EP EP08163608.6A patent/EP2161597B1/en not_active Not-in-force
-
2009
- 2009-09-03 US US12/553,115 patent/US8456649B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977765A (en) * | 1974-05-17 | 1976-08-31 | Lipkins Morton S | Hollow retroreflector mount |
FR2691129A1 (en) * | 1992-05-18 | 1993-11-19 | Aerospatiale | Low mass geodesic satellite with speed aberration correction retroreflector. |
US5589981A (en) | 1994-03-10 | 1996-12-31 | Aerospatiale Societe Nationale Industrielle | Retroreflector target for laser ranging |
US20080131115A1 (en) | 2004-12-17 | 2008-06-05 | Hans Habberstad | Device for Optical Remote Monitoring and System Comprising Such a Device |
US20060241388A1 (en) | 2005-01-18 | 2006-10-26 | Stephane Lavallee | Method and system of computer assistance for the reduction of a fracture |
US20070035835A1 (en) * | 2005-08-12 | 2007-02-15 | Honeywell International Inc. | Reflective corner cube array |
EP1774922A1 (en) * | 2005-10-12 | 2007-04-18 | BrainLAB AG | Marker for a navigation system and method for detecting a marker |
Also Published As
Publication number | Publication date |
---|---|
US20100053639A1 (en) | 2010-03-04 |
EP2161597B1 (en) | 2014-06-04 |
US8456649B2 (en) | 2013-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2161597B1 (en) | Image-assisted operation system | |
EP1952778B1 (en) | Medical laser target marker and its use | |
EP1244394B1 (en) | Reflector system for determining position | |
EP1774922B1 (en) | Marker for a navigation system and method for detecting a marker | |
DE112012000795B4 (en) | Cube corner retroreflector for measuring six degrees of freedom | |
DE102005010010B4 (en) | System, device and method for determining a position of an object | |
DE69915581T2 (en) | THREE-DIMENSIONAL MEASURING METHOD AND MEASURING INSTRUMENT THAT USES THE METHOD | |
EP1913890B1 (en) | Marker-navigation device in particular for medical use | |
DE60032312T2 (en) | System for determining the spatial position and / or position of one or more objects | |
DE102018102587B3 (en) | Visualization module, endoscope and method for producing a visualization module | |
EP2954798B1 (en) | Measuring method for determining biometric data of human feet | |
DE102018208203B4 (en) | Target body, arrangement with target body and method for determining a position and / or an orientation of a target body | |
DE112012001082T5 (en) | Target device and method | |
DE102010036719A1 (en) | Tracker system for optical medical navigation, passive optical marker device for tracker system and their use | |
DE102021212877B3 (en) | Target device for use in a surgical navigation system, a surgical navigation system and a method for producing such a target device | |
DE102005045706B3 (en) | Surgical marker element for a surgical navigation system comprises a radiation source for producing radiation and an element for producing a luminescent mark detected by a detector | |
EP0229981A1 (en) | Method for controlling the focussing characteristics of an ultrasonic field and device for carrying out said method | |
EP4103979B1 (en) | Light barrier system, comprising at least two reflection light barrier devices | |
DE102011107451B3 (en) | Method and device for determining the position and orientation of a body | |
EP0029611B1 (en) | Retroreflection plate | |
EP3634298B1 (en) | Engraved retro-reflective tracking marker | |
EP1895325B1 (en) | Erasing of a phosphor imaging plate | |
DE102017219862A1 (en) | Laser applicator with an elongated catheter | |
EP3086087B1 (en) | Photo thermal measuring device and method for photo thermal measuring | |
EP1645228B1 (en) | Tracking system using a scattering effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17P | Request for examination filed |
Effective date: 20100520 |
|
17Q | First examination report despatched |
Effective date: 20100616 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BRAINLAB AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140206 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008011824 Country of ref document: DE Effective date: 20140717 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008011824 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150305 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008011824 Country of ref document: DE Effective date: 20150305 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160920 Year of fee payment: 9 Ref country code: DE Payment date: 20160921 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160921 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008011824 Country of ref document: DE Representative=s name: SCHWABE SANDMAIR MARX PATENTANWAELTE RECHTSANW, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008011824 Country of ref document: DE Owner name: BRAINLAB AG, DE Free format text: FORMER OWNER: BRAINLAB AG, 85622 FELDKIRCHEN, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008011824 Country of ref document: DE Representative=s name: SSM SANDMAIR PATENTANWAELTE RECHTSANWALT PARTN, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008011824 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170903 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180404 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171002 |