EP2161511A1 - Energy saving electric heating fan and the making method of its electric heating element - Google Patents
Energy saving electric heating fan and the making method of its electric heating element Download PDFInfo
- Publication number
- EP2161511A1 EP2161511A1 EP07816436A EP07816436A EP2161511A1 EP 2161511 A1 EP2161511 A1 EP 2161511A1 EP 07816436 A EP07816436 A EP 07816436A EP 07816436 A EP07816436 A EP 07816436A EP 2161511 A1 EP2161511 A1 EP 2161511A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrothermal
- energy
- saving
- slurry
- blower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/02—Air heaters with forced circulation
- F24H3/04—Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
- F24H3/0405—Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
- F24H3/0423—Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between hand-held air guns
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45D—HAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
- A45D20/00—Hair drying devices; Accessories therefor
- A45D20/22—Helmets with hot air supply or ventilating means, e.g. electrically heated air current
- A45D20/30—Electric circuitry specially adapted for hair drying devices
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45D—HAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
- A45D20/00—Hair drying devices; Accessories therefor
- A45D20/04—Hot-air producers
- A45D20/08—Hot-air producers heated electrically
- A45D20/10—Hand-held drying devices, e.g. air douches
- A45D20/12—Details thereof or accessories therefor, e.g. nozzles, stands
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49083—Heater type
Definitions
- the present invention relates to the field of electrothermal blowers, in particular to an electrothermal blower in which mica lamination is used as a basic material of the heater.
- An electrothermal blower in accordance with the present invention can be used as an electric blower in hairdressing and as an air heater used for household warming.
- the electrothermal blower is one of the electrical appliances used widely, and the technical research on the heating element which is one of the key parts thereof is being developed.
- the heating element used at present is usually various resistance wires or electric heating tubes (See Figure 1 ).
- the traditional resistance wire is used as the electrothermal element of the electrothermal blower it has the following disadvantages: the resistance wire is wound on the insulating plate in the blower, hence the resistance of the air is high; to reach the temperature needed for the air on the outlet, the power of the motor must be high, resulting in high energy consumption, high air speed, high noise and uneven heating; the use of a high motor speed leads to a faster wear of the motor. Therefore it has the following defects: a low heating efficiency, a short life and it can not be operated at a low voltage (for example 12V), etc.
- the technical problem the invention aims to settle is to overcome the defects existing in the prior art and to provide an electrothermal blower, wherein the heating element thereof is made by use of a heating film adhering to a mica lamination as basic material.
- Another object of the invention is to provide a method for manufacturing the heating element of the electrothermal blower mentioned above.
- An energy-saving electrothermal blower is composed of: a shell with an outlet and inlet, a fan and a motor for driving it fixed in the shell; an insulating plate with an electrothermal element in the shell, a connecting circuit for connection of the electrothermal element with a power supply, characterized in that mica is used as the basic material of the electrothermal element and coated or screen printed with a thin layer of high temperature resistant strong glue as a connection layer, and then coated or screen printed with a layer of heating film and an electrode to form the heating element.
- the main raw material of the slurry of the heating film of the heating element consists of one or more of silicon oxide, alumina, silicon carbide, calcium, and potassium.
- the slurry is made by said main raw material, which is sintered at a high temperature and then broken into pieces and screened to powder and then mixed with a high temperature resistant organic glue slurry having the same expansion coefficient as the mica.
- the wire of said electrothermal element is fixed on the electrode film by a conducting clip.
- One end of the electrode film is connected with a temperature controller, a fuse and a power switch in series; and the wire of the other end thereof is fixed on the other pole of the power switch by a conducting clip to form an electrical circuit.
- the arrangement of the electrothermal elements is a grid, a cross or star, a triangle or a diamond in shape.
- the outlet of said blower is a square, a rectangle, an ellipse, a circle, a taper or a triangle in shape.
- the total thickness of the heating film of the heating element and the mica lamination is less than 1 mm.
- the technical scheme used by the inventor also includes the method for manufacturing the electrothermal element of the energy-saving electrothermal blower, and the method includes the following steps:
- the main raw material of the slurry of the heating film consists of one or more of silicon oxide, alumina, silicon carbide, calcium, and potassium.
- the slurry is made by said main raw material, which is sintered at a high temperature and then broken into pieces and screened to powder and then mixed with a high temperature resistant organic glue slurry having the same expansion coefficient as the mica;
- the drying process in steps a, b and c is carried out at 300°C.
- said heating element can be formed and then stored in a sealed plastic bag.
- Figure 1 is a partial structural schematic drawing of an electrothermal blower of the prior art.
- Figure 2 is a sectional view of a heating element of a energy-saving electrothermal blower in accordance with the present invention.
- Figure 3 is a circuit connection drawing of a heating element of the energy-saving electrothermal blower in accordance with the present invention.
- Figure 4 is a partial sectional view of an energy-saving electrothermal blower in accordance with the present invention.
- Figure 5 is a partial sectional view of an energy-saving electrothermal blower in accordance with the present invention.
- Figures 6, 7 and 8 are structural schematic drawings of three arrangements in the shape of a grid of a heating element of the energy-saving electrothermal blower in accordance with the present invention respectively.
- Figures 9, 10 and 11 are structural schematic drawings of three arrangements in the shape of a cross or star of a heating element of the energy-saving electrothermal blower in accordance with the present invention respectively.
- Figures 12, 13 and 14 are schematic drawings of three arrangements in the shape of a triangle or diamond of a heating element of the energy-saving electrothermal blower in accordance with the present invention respectively.
- an energy-saving electrothermal blower is composed of: a shell 1 with an outlet and inlet 4, a fan and a motor for driving it fixed in the shell 1; an insulating plate with an electrothermal element in the shell, a connecting circuit for connection of the electrothermal element with a power supply, and a handle with a switch fixed on one side of the shell 1.
- the key technological features in accordance with the present invention are characterized in that mica is used as the basic material of the electrothermal element and coated or screen printed with a thin layer of high temperature resistant strong glue as a connection layer, and then coated or screen printed with a layer of heating film and an electrode to form the heating element.
- the main raw material of the slurry of the heating film for the heating element consists of one or more of silicon oxide, alumina, silicon carbide, calcium, potassium.
- the slurry is made by said main raw material, which is sintered at a high temperature and then broken into pieces and screened to powder and then mixed with a high temperature resistant organic glue slurry having the same expansion coefficient with the mica.
- the heating film contains many elements such as germanium, silicon and semiconductor ceramic resistant slurry.
- the resistant slurry does not contain any harmful substances such as lead, mercury, high valence chromium, polybenzoether and acidic benzene.
- the expansion coefficient of it is the same as the ceramic body.
- the resistant slurry is coated on the surface of the mica basic material and then is dried at 300°C to form the heating film adhering to the surface of the mica, and the heating film can produce heat energy and heat energy of far infrared rays when switched on.
- the wire of said electrothermal element is fixed on the electrode film 3 by a conducting clip 7.
- One end of the electrode film is connected with a temperature controller 8, a fuse 6 and the power switch in series; and the wire of the other end thereof is fixed on the other pole of the power switch by a conducting clip 7 to form an electrical circuit.
- the total thickness of the heating film of the heating element and the mica lamination is not more than 0.8 mm.
- the arrangement of the said electrothermal element may be any of several varieties.
- the arrangement of the electrothermal elements may be a grid in shape. As shown in the drawings 9, 10 and 11, the arrangement of the electrothermal elements can be a cross or star in shape. As shown in the drawings 12, 13 and 14, the arrangement of the electrothermal elements can be a triangle or a diamond in shape.
- the outlet of the blower manufactured correspondingly according to the shape of the arrangement of the electrothermal element, may be a square, a rectangle, an ellipse, a circle, a taper or a triangle in shape.
- the method for manufacturing the electrothermal elements of the electrothermal blower in accordance with the present invention includes the following steps:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Resistance Heating (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
An energy-saving electrothermal blower and a method for manufacturing the electrothermal element of the energy-saving electrothermal blower. The energy-saving electrothermal blower is composed of: a fan and a motor for driving it fixed in the shell (1); an insulating plate with the electrothermal element in the shell, and a connecting circuit for connection of the electrothermal element with a power supply. Mica is used as the basic material of the said electrothermal element (2) and is coated or screen printed with a thin layer of high temperature resistant strong glue and heating film and electrode. The main raw material of the slurry of the heating film is one or more of silicon oxide, alumina, silicon carbide, calcium, and potassium; the slurry is made by said main raw material, which is sintered at a high temperature and then broken into pieces and screened to powder and then mixed with a high temperature resistant organic glue slurry having the same expansion coefficient as the mica. The energy-saving electrothermal blower has some advantages such as: high exothermic efficiency, low noise and energy-saving and the like, and can be used as an electric blower in hairdressing and as an air heater used for household warming.
Description
- The present invention relates to the field of electrothermal blowers, in particular to an electrothermal blower in which mica lamination is used as a basic material of the heater. An electrothermal blower in accordance with the present invention can be used as an electric blower in hairdressing and as an air heater used for household warming.
- The electrothermal blower is one of the electrical appliances used widely, and the technical research on the heating element which is one of the key parts thereof is being developed. The heating element used at present is usually various resistance wires or electric heating tubes (See
Figure 1 ). When the traditional resistance wire is used as the electrothermal element of the electrothermal blower it has the following disadvantages: the resistance wire is wound on the insulating plate in the blower, hence the resistance of the air is high; to reach the temperature needed for the air on the outlet, the power of the motor must be high, resulting in high energy consumption, high air speed, high noise and uneven heating; the use of a high motor speed leads to a faster wear of the motor. Therefore it has the following defects: a low heating efficiency, a short life and it can not be operated at a low voltage (for example 12V), etc. - The technical problem the invention aims to settle is to overcome the defects existing in the prior art and to provide an electrothermal blower, wherein the heating element thereof is made by use of a heating film adhering to a mica lamination as basic material.
- Another object of the invention is to provide a method for manufacturing the heating element of the electrothermal blower mentioned above.
- The technical scheme used by the inventor to solve the problem mentioned above is as follows:
- An energy-saving electrothermal blower is composed of: a shell with an outlet and inlet, a fan and a motor for driving it fixed in the shell; an insulating plate with an electrothermal element in the shell, a connecting circuit for connection of the electrothermal element with a power supply, characterized in that mica is used as the basic material of the electrothermal element and coated or screen printed with a thin layer of high temperature resistant strong glue as a connection layer, and then coated or screen printed with a layer of heating film and an electrode to form the heating element.
- The main raw material of the slurry of the heating film of the heating element consists of one or more of silicon oxide, alumina, silicon carbide, calcium, and potassium. The slurry is made by said main raw material, which is sintered at a high temperature and then broken into pieces and screened to powder and then mixed with a high temperature resistant organic glue slurry having the same expansion coefficient as the mica.
- The wire of said electrothermal element is fixed on the electrode film by a conducting clip. One end of the electrode film is connected with a temperature controller, a fuse and a power switch in series; and the wire of the other end thereof is fixed on the other pole of the power switch by a conducting clip to form an electrical circuit.
- The arrangement of the electrothermal elements is a grid, a cross or star, a triangle or a diamond in shape.
- The outlet of said blower is a square, a rectangle, an ellipse, a circle, a taper or a triangle in shape. The total thickness of the heating film of the heating element and the mica lamination is less than 1 mm.
- The technical scheme used by the inventor also includes the method for manufacturing the electrothermal element of the energy-saving electrothermal blower, and the method includes the following steps:
- A. A thin layer of high temperature resistant strong glue is screen printed or coated on each surface of the mica lamination under the condition with a drying system, and then it is dried;
- B. The slurry of the heating film, which is prepared according to the desirable power and temperature, is screen printed or coated on the surface of the mica lamination with a layer of high temperature resistant strong glue, and then it is dried;
- C. The silver electrode film with a regulated ratio is screen printed on both ends of the heating film, and then it is dried to form the heating element.
- The main raw material of the slurry of the heating film consists of one or more of silicon oxide, alumina, silicon carbide, calcium, and potassium. The slurry is made by said main raw material, which is sintered at a high temperature and then broken into pieces and screened to powder and then mixed with a high temperature resistant organic glue slurry having the same expansion coefficient as the mica; The drying process in steps a, b and c is carried out at 300°C.
- After the mica lamination is adhered to the heating film, said heating element can be formed and then stored in a sealed plastic bag.
- Comparing with the blower in the prior art, the application of the energy-saving electrothermal blower according to the present invention has following advantages:
- 1. In view of the air strength and energy consumption
- A. Many heating coils should be wound around the insulating plate in the traditional blower, so the motor should overcome the resistance resulting in high rotational speed, high temperature and high energy consumption.
- B. The total thickness of the heating plate and the mica lamination of the energy-saving electrothermal blower according to the present invention is only 0.7mm, so it has large space, low resistance and a desirable air volume can be reached under low rotational speed.
- 2. In view of noise
- A. The motor of the traditional blower will produce a noise of more than 80 db under a high rotational speed and resistance.
- B. The energy-saving electrothermal blower in accordance with the present invention blows in the axial direction; the motor is running almost without resistance and at 30% of the air volume and rotational speed, so the noise is less than 74 db.
- 3. Energy-saving: the energy-saving electrothermal blower in accordance with the present invention can transmit a far infrared ray and the motor is running at low speed and low resistance, thus the consumption of energy can be saved by more than 30%.
- 4. The mica heating plate is arranged in the same direction as the air outlet of the motor, thus the average exothermic efficiency is high, the radial radiation is less and the temperature is extraordinarily uniform.
- 5. The electrothermal element of the energy-saving electrothermal blower in accordance with the present invention can transmit a far infrared ray which can be absorbed by the human body without any side effect. Furthermore it can promote hypodermic blood circulation so that hypodermic cells can absorb more nutrition, which has certain effect in view of cosmetology and health.
-
Figure 1 is a partial structural schematic drawing of an electrothermal blower of the prior art. -
Figure 2 is a sectional view of a heating element of a energy-saving electrothermal blower in accordance with the present invention. -
Figure 3 is a circuit connection drawing of a heating element of the energy-saving electrothermal blower in accordance with the present invention. -
Figure 4 is a partial sectional view of an energy-saving electrothermal blower in accordance with the present invention. -
Figure 5 is a partial sectional view of an energy-saving electrothermal blower in accordance with the present invention. -
Figures 6, 7 and 8 are structural schematic drawings of three arrangements in the shape of a grid of a heating element of the energy-saving electrothermal blower in accordance with the present invention respectively. -
Figures 9, 10 and 11 are structural schematic drawings of three arrangements in the shape of a cross or star of a heating element of the energy-saving electrothermal blower in accordance with the present invention respectively. -
Figures 12, 13 and 14 are schematic drawings of three arrangements in the shape of a triangle or diamond of a heating element of the energy-saving electrothermal blower in accordance with the present invention respectively. - The technical scheme of the present invention will be described using an electrothermal blower as an example combined with the drawings.
- As shown in the
figures 2 ,3 ,4 and5 , an energy-saving electrothermal blower according to the present invention is composed of: ashell 1 with an outlet andinlet 4, a fan and a motor for driving it fixed in theshell 1; an insulating plate with an electrothermal element in the shell, a connecting circuit for connection of the electrothermal element with a power supply, and a handle with a switch fixed on one side of theshell 1. The key technological features in accordance with the present invention are characterized in that mica is used as the basic material of the electrothermal element and coated or screen printed with a thin layer of high temperature resistant strong glue as a connection layer, and then coated or screen printed with a layer of heating film and an electrode to form the heating element. - The main raw material of the slurry of the heating film for the heating element consists of one or more of silicon oxide, alumina, silicon carbide, calcium, potassium. The slurry is made by said main raw material, which is sintered at a high temperature and then broken into pieces and screened to powder and then mixed with a high temperature resistant organic glue slurry having the same expansion coefficient with the mica. In particular, the heating film contains many elements such as germanium, silicon and semiconductor ceramic resistant slurry. The resistant slurry does not contain any harmful substances such as lead, mercury, high valence chromium, polybenzoether and acidic benzene. The expansion coefficient of it is the same as the ceramic body. The resistant slurry is coated on the surface of the mica basic material and then is dried at 300°C to form the heating film adhering to the surface of the mica, and the heating film can produce heat energy and heat energy of far infrared rays when switched on.
- The wire of said electrothermal element is fixed on the
electrode film 3 by a conductingclip 7. One end of the electrode film is connected with atemperature controller 8, afuse 6 and the power switch in series; and the wire of the other end thereof is fixed on the other pole of the power switch by a conductingclip 7 to form an electrical circuit. - The total thickness of the heating film of the heating element and the mica lamination is not more than 0.8 mm. The arrangement of the said electrothermal element may be any of several varieties.
- As shown in the
drawings - The outlet of the blower, manufactured correspondingly according to the shape of the arrangement of the electrothermal element, may be a square, a rectangle, an ellipse, a circle, a taper or a triangle in shape.
- The method for manufacturing the electrothermal elements of the electrothermal blower in accordance with the present invention includes the following steps:
- a. A thin layer of high temperature resistant strong glue is screen printed on each surface of the mica lamination under the condition with a drying system, and then it is dried at 300°C;
- b. The slurry of the heating film, which is prepared according to the desirable power and temperature, is screen printed on the surface of the mica lamination and then it is dried at 300°C;
- c. A silver electrode film with a regulated ratio is screen printed on both ends of the heating film and then it is dried at 300°C;
- d. After the mica lamination is adhered to the heating film, said heating element can be formed and then stored in a sealed plastic bag.
Claims (10)
- An energy-saving electrothermal blower including a shell (1) with an inlet and outlet (4), a fan and a motor for driving it fixed in the shell (1); an insulating plate with an electrothermal element in the shell; and a connecting circuit for connection of the electrothermal element with a power supply, characterized in that mica is used as a base material of the electrothermal element (2) and is coated or screen printed with a thin layer of high temperature resistant strong glue as a connection layer, and then coated or screen printed with a layer of heating film and an electrode.
- The energy-saving electrothermal blower according to claim 1, characterized in that the main raw material of a slurry of the heating film includes one or more of silicon oxide, alumina, silicon carbide, calcium, and potassium; and the slurry is made by said main raw material, which is sintered at a high temperature and then broken into pieces and screened to powder and then mixed with a high temperature resistant organic glue slurry having an expansion coefficient which is the same as an expansion coefficient as the mica.
- The energy-saving electrothermal blower according to claim 1 or claim 2, characterized in that wire of said electrothermal element is fixed on an electrode film (3) by a first conducting clip (7); one end of the electrode film is connected with a temperature controller (8), a fuse (9) and a power switch in series; and another end thereof is fixed on another pole of the power switch by a second conducting clip (7) to form an electrical circuit.
- The energy-saving electrothermal blower according to any of claims 1, 2 or 3, characterized in that the electrothermal element (2) is a cross or star in shape.
- The energy-saving electrothermal blower according to any of claims 1, 2 or 3, characterized in that the electrothermal element (2) is a grid in shape.
- The energy-saving electrothermal blower according to any of claims 1, 2 or 3, characterized in that the electrothermal element (2) is a triangle or a diamond in shape.
- The energy-saving electrothermal blower according to any one of the preceding claims, characterized in that the outlet of the blower is one of a square, a rectangle, an ellipse, a circle, a taper or a triangle in shape.
- The energy-saving electrothermal blower according to any one of the preceding claims, characterized in that a total thickness of the heating film and mica is less than 1 mm.
- A method for manufacturing an electrothermal element of an energy-saving electrothermal blower, comprising:a. screen printing or coating on each surface of a mica lamination a thin layer of high temperature resistant strong glue and then drying same;b. screen printing or coating on a surface of the mica lamination a slurry of heating film prepared according to desirable power and temperature with a layer of high temperature resistant strong glue and then drying same;c. screen printing on both ends of the heating film a silver electrode film with a regulated ratio and then drying same to form the heating element.
- The method for manufacturing the electrothermal element of the energy-saving electrothermal blower according to claim 9, characterized in that: a main raw material of the slurry of the heating film includes one or more of silicon oxide, alumina, silicon carbide, calcium, and potassium; the slurry being made by said main raw material, which is sintered at a high temperature and then broken into pieces and screened to powder and then mixed with a high temperature resistant organic glue slurry having an expansion coefficient which is the same as an expansion coefficient as the mica; and the drying in steps a, b and c is carried out at 300°C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710123365.3A CN101334214A (en) | 2007-06-25 | 2007-06-25 | Energy-saving electric heating fan and its electrothermal element manufacture method |
PCT/CN2007/002820 WO2009000114A1 (en) | 2007-06-25 | 2007-09-26 | Energy saving electric heating fan and the making method of its electric heating element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2161511A1 true EP2161511A1 (en) | 2010-03-10 |
EP2161511A4 EP2161511A4 (en) | 2010-12-15 |
Family
ID=40185158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07816436A Withdrawn EP2161511A4 (en) | 2007-06-25 | 2007-09-26 | Energy saving electric heating fan and the making method of its electric heating element |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100111510A1 (en) |
EP (1) | EP2161511A4 (en) |
CN (1) | CN101334214A (en) |
WO (1) | WO2009000114A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2543538A (en) * | 2015-10-21 | 2017-04-26 | Dyson Technology Ltd | A haircare appliance |
US10021951B2 (en) | 2015-10-21 | 2018-07-17 | Dyson Technology Limited | Hand held appliance |
US10085538B2 (en) | 2015-10-21 | 2018-10-02 | Dyson Technology Limited | Hand held appliance |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103251197B (en) * | 2013-05-13 | 2016-05-18 | 罗业丽 | A kind of energy-saving electric hair drying blower |
CN105992405B (en) * | 2015-03-04 | 2020-01-10 | 佛山市顺德区美的电热电器制造有限公司 | Method for manufacturing far infrared heating film and electric heating device |
JP2020513933A (en) | 2017-01-12 | 2020-05-21 | ダイソン テクノロジー リミテッド | Handheld equipment |
GB2562276B (en) | 2017-05-10 | 2021-04-28 | Dyson Technology Ltd | A heater |
CN108180631B (en) * | 2018-02-07 | 2023-09-15 | 常州武进长城工具有限公司 | High-performance heat gun heating core |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005051042A1 (en) * | 2003-11-20 | 2005-06-02 | Koninklijke Philips Electronics N.V. | Thin- film heating element |
GB2446412A (en) * | 2007-02-09 | 2008-08-13 | Duna Entpr Sa | Heating structure for hair dryers |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US901871A (en) * | 1908-02-21 | 1908-10-20 | Electric Mfg Co | Electric heater and drier. |
US3668370A (en) * | 1969-11-06 | 1972-06-06 | Electronized Chem Corp | Portable electric heat gun |
US3612824A (en) * | 1969-12-03 | 1971-10-12 | Robert C Berryman | Portable heat gun |
DE2849266C2 (en) * | 1978-11-14 | 1982-02-04 | Fritz Eichenauer GmbH & Co KG, 6744 Kandel | Electric radiator for gaseous media |
US4313049A (en) * | 1979-11-05 | 1982-01-26 | Firma Fritz Eichenauer | Electrical heating element for fluid media |
DE3518426A1 (en) * | 1985-05-22 | 1986-11-27 | Braun Ag, 6000 Frankfurt | WARM AIR BLOWER FOR PORTABLE HAIR CARE DEVICES |
US4667086A (en) * | 1985-10-21 | 1987-05-19 | North American Philips Corp. | Heater element for blow dryers, paint strippers and the like |
US4767914A (en) * | 1986-09-16 | 1988-08-30 | Glucksman Dov Z | Electric hairdryer having a cage-shaped heater element |
GB8715240D0 (en) * | 1987-06-27 | 1988-08-05 | Boardman J | Electrical heating element |
DE3802638C2 (en) * | 1988-01-29 | 1995-11-02 | Krups Fa Robert | Electrically operated hand hair dryer |
DE3807287C2 (en) * | 1988-03-05 | 1997-07-10 | Krups Fa Robert | Electrically operated hand hair dryer |
JPH01131605A (en) * | 1988-09-16 | 1989-05-24 | Kyushu Hitachi Maxell Ltd | Hair dryer |
DE3904860C5 (en) * | 1989-02-17 | 2004-10-07 | Robert Krups Gmbh & Co Kg | Electrically operated hand hair dryer |
US5334818A (en) * | 1992-03-06 | 1994-08-02 | Temro Division, Budd Canada Inc. | Modular high density electric heating element arrangement for an air flow heater |
US5243683A (en) * | 1992-07-09 | 1993-09-07 | Yang Chiung Hsiang | Laminar streamflow-guided hair dryer with finned PTC heating means |
US5507103A (en) * | 1993-11-16 | 1996-04-16 | Merritt; Thomas | Thermoelectric hair dryer |
US5641421A (en) * | 1994-08-18 | 1997-06-24 | Advanced Metal Tech Ltd | Amorphous metallic alloy electrical heater systems |
CN2457832Y (en) * | 2000-12-21 | 2001-10-31 | 徐振青 | Composite electric heating film heating plate |
US7106167B2 (en) * | 2002-06-28 | 2006-09-12 | Heetronix | Stable high temperature sensor system with tungsten on AlN |
CN100521833C (en) * | 2002-11-22 | 2009-07-29 | 皇家飞利浦电子股份有限公司 | Sol-gel based heating element and domestic appliance comprising the same |
US6993252B1 (en) * | 2004-05-18 | 2006-01-31 | Global Fia, Inc. | Self-monitoring flow-through heater |
CN2750243Y (en) * | 2004-08-02 | 2006-01-04 | 合基实业有限公司 | Electric hot air blower |
CN2779303Y (en) * | 2005-02-05 | 2006-05-10 | 合基实业有限公司 | Electric heating fan |
EP1905270B8 (en) * | 2005-07-18 | 2012-04-11 | Datec Coating Corporation | Low temperature fired, lead-free thick film heating element |
US7230215B2 (en) * | 2005-08-26 | 2007-06-12 | Cheng Ping Lin | Heat generating device formed of heat generating diaphragm plates |
CA2678689A1 (en) * | 2007-02-20 | 2008-08-28 | Thermoceramix Inc. | Gas heating apparatus and methods |
US7926198B2 (en) * | 2008-05-29 | 2011-04-19 | Pet Projects | Thermoelectric handheld dryer |
US8306408B2 (en) * | 2008-05-30 | 2012-11-06 | Thermoceramix Inc. | Radiant heating using heater coatings |
US20110188838A1 (en) * | 2008-05-30 | 2011-08-04 | Thermoceramix, Inc. | Radiant heating using heater coatings |
-
2007
- 2007-06-25 CN CN200710123365.3A patent/CN101334214A/en active Pending
- 2007-09-26 EP EP07816436A patent/EP2161511A4/en not_active Withdrawn
- 2007-09-26 WO PCT/CN2007/002820 patent/WO2009000114A1/en active Application Filing
- 2007-09-26 US US11/995,633 patent/US20100111510A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005051042A1 (en) * | 2003-11-20 | 2005-06-02 | Koninklijke Philips Electronics N.V. | Thin- film heating element |
GB2446412A (en) * | 2007-02-09 | 2008-08-13 | Duna Entpr Sa | Heating structure for hair dryers |
Non-Patent Citations (1)
Title |
---|
See also references of WO2009000114A1 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2543538A (en) * | 2015-10-21 | 2017-04-26 | Dyson Technology Ltd | A haircare appliance |
GB2543538B (en) * | 2015-10-21 | 2018-05-09 | Dyson Technology Ltd | A haircare appliance |
US9986810B2 (en) | 2015-10-21 | 2018-06-05 | Dyson Technology Limited | Hand held appliance |
US10021951B2 (en) | 2015-10-21 | 2018-07-17 | Dyson Technology Limited | Hand held appliance |
US10085538B2 (en) | 2015-10-21 | 2018-10-02 | Dyson Technology Limited | Hand held appliance |
Also Published As
Publication number | Publication date |
---|---|
US20100111510A1 (en) | 2010-05-06 |
EP2161511A4 (en) | 2010-12-15 |
CN101334214A (en) | 2008-12-31 |
WO2009000114A1 (en) | 2008-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2161511A1 (en) | Energy saving electric heating fan and the making method of its electric heating element | |
CN2856836Y (en) | Electrothermal fan | |
CN201443808U (en) | Electric heating fan | |
CN1588573A (en) | PTC thick film curc uit controllable electric heating element | |
CN102150990A (en) | Piezoelectric type electric heating air blowing comb | |
CN201585154U (en) | Low-temperature radiant electric heating film | |
CN102761994A (en) | Nanometer ceramic electric-heating coating device and manufacturing method thereof | |
CN102172304B (en) | Electric heating dryer comb with integrated functions of combing and drying | |
CN2779303Y (en) | Electric heating fan | |
CN201076138Y (en) | Energy-saving electric heating fan | |
CN2519577Y (en) | PTC ceramic electric auxiliary heating device | |
CN2882184Y (en) | Heating structure of blower | |
CN101787264A (en) | High thermal conductive material and preparation method and device thereof | |
CN200994195Y (en) | Honeycomb ceramic electric heating film element | |
CN106851874A (en) | Ceramic electrothermal element core body and preparation method thereof and ceramic electrothermal element fire-bar and heater | |
CN201869384U (en) | Novel energy-saving porous ceramic electric-heating film heater | |
CN2706186Y (en) | Semiconductive ceramic thick film far infrared dynamic pyretotherapy head for therapeutic instrument | |
CN105813243A (en) | Charged corrugated energy-saving electric heating control system | |
CN212413447U (en) | Non-metallic material plane heating device | |
CN201114804Y (en) | A cellular porcelain heating body and warmer using this body | |
CN202019954U (en) | Piezoelectric type electric heating air comb | |
CN2750243Y (en) | Electric hot air blower | |
CN111649001A (en) | Fan blade, manufacturing process method and cooling and warming fan | |
CN105657879A (en) | Novel energy-saving electric heater and manufacturing technology thereof | |
CN108775783A (en) | A kind of food baking device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080208 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20101117 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110617 |