EP2153899A1 - Lab-on-a-chip comprising a coplanar microfluidic network and electrospray nozzle - Google Patents
Lab-on-a-chip comprising a coplanar microfluidic network and electrospray nozzle Download PDFInfo
- Publication number
- EP2153899A1 EP2153899A1 EP09165545A EP09165545A EP2153899A1 EP 2153899 A1 EP2153899 A1 EP 2153899A1 EP 09165545 A EP09165545 A EP 09165545A EP 09165545 A EP09165545 A EP 09165545A EP 2153899 A1 EP2153899 A1 EP 2153899A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plate
- fluidic
- chip
- electrospray
- support plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/165—Electrospray ionisation
- H01J49/167—Capillaries and nozzles specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0864—Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0867—Multiple inlets and one sample wells, e.g. mixing, dilution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/02—Burettes; Pipettes
- B01L3/0241—Drop counters; Drop formers
- B01L3/0268—Drop counters; Drop formers using pulse dispensing or spraying, eg. inkjet type, piezo actuated ejection of droplets from capillaries
Definitions
- the invention relates to a lab on a chip comprising a micro-fluidic network and a coplanar electrospray nose. It relates in particular to the coupling of a lab on a chip with a mass spectrometer.
- optical detection methods such as spectrophotometry or fluorescence are not suitable for the detection of biomolecules such as proteins or peptides, a detection of particular interest in the field of proteomics.
- the limits are either the sensitivity or the need to prepare the sample (fluorescent labeling), which, in the case of the identification of proteins after enzymatic digestion for example, presents a problem since the peptides obtained are not a priori known.
- Mass spectrometry is therefore often used since it gives information on the nature of the samples analyzed (intensity spectrum according to the mass / charge ratio) with a very good sensitivity (femtomole / ⁇ l), and that it allows analyze complex mixtures of molecules.
- a pre-treatment of the sample is carried out before the analysis.
- this pre-treatment consists of a separation of the chemical and / or biological compounds, preceded and / or followed by a concentration of the species.
- micro-fluidic devices for enzymatic digestion Lian Ji Jin, "A microchip-based proteolytic digestion system driven by electroosmotic pumping," Lab Chip, 2003, 3, 11-18
- capillary electrophoresis B. Zhang et al., "Microfabricated Devices for Capillary Electrophoresis-Electrospray Mass Spectrometry", Anal. Chem., Vol. 71, No.
- the microfluidic coupling / mass spectrometry may be based on an electrospray or electrospray (or ESI for ElectroSpray Ionization) sample ionization technique.
- electrospray or electrospray or ESI for ElectroSpray Ionization
- MS mass spectrometer
- the volume of this cone is a dead volume for the outgoing liquid (geometric space in which the chemical compounds can mix), which is not desirable, especially when the last stage of the pre-treatment consists precisely of a separation of the compounds chemical samples. This is why we always try to minimize the size of this cone, and this is inter alia by reducing the internal and external dimensions of the output channel of the micro-fluidic chip.
- the sample is pre-treated "off ESI device” and then placed manually (by pipette) in a hollow needle whose end is electrically conductive ("PicoTip emitter”). New Objective for example). An electric field is imposed between the conductive part of the PicoTip and the inlet of the MS, which allows the formation of a Taylor cone at the exit of the PicoTip and the nebulization of the sample.
- the cylindrical "pointed" geometry of the PicoTip is ideal for the formation of a small Taylor cone, but the limits on the minimization of their size (classically of external diameter 360 ⁇ m and internal diameter 10 ⁇ m), those on obtaining good reproducibility by the manufacturing techniques used (stretching) and their fragility in use are the main reasons for seek to make other types of nebulizer devices.
- micro-technologies can make ESI interfaces possible by defining peak type structures (like PicoTips) but smaller ones (to limit the volume of the Taylor cone), more reproducible and less fragile, which interest in itself (see document WO-A-00/30167 ).
- the micro-technologies can make it possible to realize devices integrating a fluidic network making it possible to ensure the pre-treatment of the sample and an interface of the ESI type.
- we benefit from those linked to an integrated pre-treatment device continuous pre-treatment protocol with the analysis, decrease overall time of analysis, minimization of reagent volumes).
- the cover plate can be electrically conductive.
- This on-chip laboratory comprises a support, at least one fluidic network, at least one fluid inlet orifice connected to the fluidic network and at least one fluid outlet orifice connected to the fluidic network. It comprises a thin layer secured to the support and in which are formed the fluidic network and an electrospray nose.
- the electrospray nose is overhanging with respect to the support and comprises a channel whose one end is connected to the fluidic network and whose other end constitutes said fluid outlet orifice, the channel being equipped with electrical conduction means forming at least an electrode.
- the device described in the document WO-A-2005 / 076,311 has a flow rate of the electrospray source limited to 0.3 ⁇ l / min. Indeed, at this rate, there is overflow at the base of the source, that is to say at the beginning of the outlet channel which is in the open air.
- the inventor of the present invention has studied what could be the causes of this flow limitation and the possibilities of remedying it. He discovered that by modifying the source part (or nose) of electrospray of the different variants of the device described in the document WO-A-2005 / 076,311 it is possible to obtain higher flows. This modification of the source or nose of electrospray is to "close” the source, either by covering it with a “ceiling” or by providing both a "ceiling” and a "floor".
- the subject of the invention is therefore a laboratory on a chip comprising a support plate, at least one fluidic network formed in a plate called a fluidic plate fixed on the support plate, and a plate, called a cover plate, fixed on the fluidic plate and covering the fluidic network, the fluidic network being connected, at a first end, to an inlet for the introduction of a fluid to be sprayed and at a second end to a first end of a fluid outlet channel to nebuliser, formed in the fluidic plate which is extended by a tip-shaped electrospray nose where the second end of the outlet channel constitutes the electro-evaporation output of the on-chip laboratory, the cover plate having a tip-shaped extension forming ceiling for the part of the channel located in the nose of electrospray.
- the support plate has a tip-shaped extension forming a floor for the portion of the channel located in the electrospray nose.
- the second end of the outlet channel, constituting the electrospray outlet is set back relative to the peak-shaped extensions forming ceiling and floor.
- the inlet port may be a hole formed in the cover plate or the support plate.
- the cover plate can be made of silicon.
- the support plate may comprise, on the fluidic plate side, a protective layer able to protect the rest of the support plate during the formation of the fluidic network in the fluidic plate.
- the fluidic plate may be silicon.
- the fluidic plate, the protective layer and the rest of the support plate come respectively from the thin layer, the buried oxide layer and the support of the same silicon-on substrate. -insulating.
- the cover plate can be electrically conductive.
- the figure 1 is a diagram of a lab-on-a-chip 1 to which the present invention applies. This device can have 18 mm long and 5 mm wide.
- the fluidic network for preparing a complex biological sample is first described in order to identify the protein content.
- This fluidic network consists of a set of reservoirs and channels, an enzymatic digestion reactor, a pre-concentration reactor and a liquid electro-chromatography separation reactor.
- the basic structure of all these reactors is a deep cavity provided with a large number of square or hexagonal studs ...
- This type of structure is known by the name of COMOSS (for "Collocated MOnolith Support Structures").
- COMOSS for "Collocated MOnolith Support Structures”
- R2, R3 and R4 contain a water / acetonitrile ACN / formic acid TFA mixture (95%, 5%; 0.1%)
- R5 contains a water / acetonitrile / formic acid mixture (20%, 80%, 0.1%).
- the digest recovered in the tank R2 must be concentrated before separation. For this, it is pumped electro-osmosis to the tank R3 (trash). All the peptides resulting from the enzymatic digestion are then "captured” by the pre-concentration reactor 3 of small volume, hence the concentration.
- An acetonitrile gradient made by mixing the buffer of R4 and that of R5 in the Structure 4 of the "serpentine" type (2 cm in length), is then selectively stopping the peptides according to their affinity with the stationary phase (C18 for example) of the pre-concentration reactor 3. These are “captured” again by the chromatography column 5, denser than the pre-concentration reactor 3.
- the enrichment of the ACN mixture again makes it possible to selectively unhook these peptides from the chromatography column 5, and to take them, separated, to the outlet 6 of chip 1 where the liquid is nebulized to the input of a mass spectrometer not shown.
- a reactor of affinity to a given protein can be used to capture it in a mutli-protein mixture conveyed through this reactor.
- the affinity reactor can be functionalized with antibodies and the elution buffer can consist of competing proteins (vis-à-vis the antibody) to the one desired to "capture" in the multi-protein complex.
- COMOSS structure it is intended to specifically capture a protein, a family of proteins, or a multi-protein complex in the complex biological sample.
- the tools used for this step can be antibodies, but also for example, small molecules that have a specificity of interaction with the desired protein (s).
- the COMOSS structure of the enzymatic digestion reactor is made from a set of 10 ⁇ m hexagonal studs to define a network of channels of about 5 microns. Its useful width a is constant (640 ⁇ m), but its actual width b is 892 ⁇ m. The length c of the active part of the reactor is 15 mm.
- This structure possibly makes it possible to organize silica "beads” of a few micrometers (eg Bangs Laboratories distributed by Serotec France) functionalized (Trypsin for example) in order to bring to the reactor its enzymatic properties or to increase them.
- silica "beads” of a few micrometers (eg Bangs Laboratories distributed by Serotec France) functionalized (Trypsin for example) in order to bring to the reactor its enzymatic properties or to increase them.
- the enzyme grafted on the pads may be trypsin.
- the protocol used is that described in the document FR-A-2,818,662 .
- the Figure 2A shows a detail of the reactor zone referenced 11 on the figure 2 .
- Holes 12 of hexagonal section are identified making it possible to define the network of channels 13.
- Reference 14 designates silica beads that may be used.
- the COMOSS structure of the pre-concentration reactor is made from a set of 10 ⁇ m square section pads to define a network of channels of about 2 microns. Its useful width d is constant (160 ⁇ m), but its real width is 310 ⁇ m. The length f of the active part of the reactor is 170 ⁇ m. Its other geometric characteristics, to be read in parallel with the figure 3 , are described in the following table: Entity Width of the channels ( ⁇ m) Walls of separation ( ⁇ m) Link channel 160 0 Stage 1 2 * 80 1 * 80 Floor 2 4 * 40 3 * 40 Floor 3 8 * 20 7 * 20 Floor 4 16 * 10 15 * 10
- This structure optionally makes it possible to organize functionalized silica beads in order to supply the reactor or to increase its affinity properties (grafting C18 for example).
- the figure 3A shows a detail of the reactor zone referenced 21 on the figure 3 . It is recognized the pads 22 of square section to define the network of channels 23.
- the COMOSS structure of the separation reactor is made from a set of 10 ⁇ m square section pads to define a network of channels of about 2 microns. Its useful width g is constant (160 ⁇ m), but its actual width h is 310 ⁇ m. The length i of the active part of the reactor is 12 mm. Its other geometric characteristics, to be read in parallel with the figure 4 , are described in the following table: Entity Width of the channels ( ⁇ m) Walls of separation ( ⁇ m) Link channel 160 0 Stage 1 2 * 80 1 * 80 Floor 2 4 * 40 3 * 40 Floor 3 8 * 20 7 * 20 Floor 4 16 * 10 15 * 10
- the reactor can be made in three parts of 12 mm length each as shown in FIG. figure 1 .
- This structure optionally makes it possible to organize functionalized silica beads in order to supply the reactor or to increase its affinity properties (grafting C18 for example).
- the Figure 4A shows a detail of the reactor zone referenced 31 on the figure 4 .
- a preferred configuration is based on the movement of liquids to nebulize by hydrodynamics through high pressure pumps, not by electroosmosis. This results in omission of some of the electrodes necessary for the device disclosed by the document WO-A-2005 / 076,311 .
- the electrode required for a given potential of the liquid to be nebulized is for example constituted by the selected cover of electrically conductive material.
- An alternative is to choose an electrically insulating cover, as well as the fluidic plate and the support plate. This can be obtained by thermal oxidation in the case where these plates are made of silicon.
- the electric potential can be imposed by means of a liquid junction available commercially, disposed at the input of the device, at its connection with the input capillary.
- An advantageous embodiment of the present invention is based on the structuring and assembly of three silicon wafers (a support plate, a fluidic plate and a cover plate), and their thinning by chemico-physical polishing and by DRIE etching (for "Dry Reactive Ion Etching”).
- the assembly of the plates can advantageously be achieved by direct sealing, also called molecular sealing (or "wafer bonding" in English).
- the fluidic network in the fluidic plate will not be detailed in the following description. We can refer for its realization to the document WO-A-2005 / 076,311 .
- the fluidic network is coplanar with the channel of the source ESI, allowing a coupling without dead volume (no turning, no restriction of section, ).
- the fluidic network may consist mainly of square section channels and dimensions of 15 ⁇ m x 15 ⁇ m.
- the technological branch used uses silicon wafers 200 mm in diameter to produce a plurality of devices.
- the dimensions of these plates are given by way of example as well as their thickness and their properties.
- FIGS. 5A to 5D are cross-sectional views of a bonnet plate during manufacture, the section being made along the longitudinal axis of the plate.
- the figure 5D ' is a view in perspective of the hood plate at this stage of the realization.
- the Figure 5A shows a fraction (corresponding to a cover of the device) of a silicon plate 41 of 200 mm in diameter, polished on one side and with an electrical conductivity of between 0.01 and 0.02 ⁇ .cm.
- the polished face of the plate 41 is covered with a 2.5 ⁇ m thick silicon oxide layer 42 formed by PECVD (for "Physical Enhanced Chemical Vapor Deposition"). This oxide layer will serve as an etching mask.
- the etching mask is then structured by photo-lithography.
- a layer of resin 43 is deposited which is then photo-lithographed (see Figure 5B ).
- the lithography defines a pattern in the resin layer 43 revealing the oxide layer 42.
- the resin is then removed.
- a blind hole 44 intended to constitute the inlet of the device, is formed in the plate 41 by DRIE etching.
- the same mask and the same etching cause the definition and etching of the right part of the cover plate to create, in the upper part of the cover plate 41, and in its longitudinal axis, a prolongation in the form of a point 45.
- the depth etching is for example 170 microns.
- the figure 5D ' is a perspective view corresponding to the cross-sectional view of the figure 5D and which makes it possible to better see the extension in the form of a point 45.
- FIGS. 5E to 5G are cross-sectional views of a support plate being manufactured, the section being made along the longitudinal axis of the plate.
- the Figure 5F ' is a perspective view of the support plate.
- the figure 5E shows a fraction (corresponding to a support of the device) of a silicon plate 46 of 200 mm diameter, polished on both sides and 550 microns thick.
- a silicon plate 46 of 200 mm diameter, polished on both sides and 550 microns thick.
- One of the faces of the plate 46 is covered with a 2.5 ⁇ m thick layer of silicon oxide 47 formed by PECVD. This oxide layer will serve as an etching mask.
- the etching mask is then structured by photo-lithography. For this, we deposit a layer of resin which is then photo-lithographed.
- the lithography defines, after removal of the resin and etching DRIE of the right part of the support plate 46, and in its longitudinal axis, an extension in the form of a point 48. This extension is better visible on the Figure 5F ' .
- the plate 46 is then thermally oxidized to provide oxide layers 49 and 50 on each face of the plate 46.
- the oxide layer 49 of course also forms on the etched portions of the plate 46, located below the extension in the form of a point 48 (see Figure 5F ' ).
- the thickness of these oxide layers 49 and 50 may be 1.5 ⁇ m. These oxide layers will serve as etch stop layers for a subsequent step of etching the fluidic plate (see figure 5G ).
- the figure 5H is a cross-sectional view of the assembly of the support plate and the fluidic plate (in fact the plate intended to form the fluidic plate), the section being made along the longitudinal axis of these plates.
- This figure shows a fraction of the assembled plates (corresponding to a device).
- a so-called fluidic plate 51 of silicon 200 mm in diameter and 550 ⁇ m in thickness is fixed, by one of its faces which is polished, on the support plate 46.
- the fixing is done by molecular sealing, the fixing is making the side of the extension in the form of a point 48.
- the fluidic plate 51 fixed on the support plate 46, is then thinned, by chemical-chemical polishing, until its expected thickness (for example 15 ⁇ m) is obtained. This is what the figure 5I .
- the thinned fluidic plate is then structured. This step is represented at figure 5J .
- a resin mask thickness 1.5 ⁇ m
- the fluidic network 52 and the channel 53 of the source ESI are then simultaneously produced in the fluidic plate 51 by means of a DRIE etching.
- the oxide layer 49 of the support serves as a stop layer for etching. The same etching makes it possible to obtain, in the right part of the fluidic plate 51 and in its longitudinal axis, a tip-shaped extension 54, for example superposable to the point-shaped extension 48 of the support plate 46, as well as the outlet channel 53.
- a layer 55 of silicon oxide is formed on the structured fluidic plate 51 (see FIG. figure 5K ).
- the oxide thickness thus formed may be between 0.1 and a few ⁇ m.
- FIGS. 5L and 5M illustrate the assembly of the cover plate on the fluidic plate.
- the cover plate 41 see figure 5D
- the fluidic plate 51 which is already sealed to the support plate 46, are aligned one above the other as shown in FIG. figure 5L .
- the tip-shaped extension 45 of the cover plate 41 is then aligned with the extensions 54 of the fluidic plate and 48 of the support plate.
- the cover plate 41 is then fixed on the fluidic plate 51 by molecular sealing (see FIG. figure 5M ).
- the point-like extensions 48, 54 and 45 are therefore superimposed.
- the support plate 46 is then thinned by chemico-physical polishing to release the extension in the form of a peak 48. This is shown by the figure 5N .
- the separation of the individual chip devices can be achieved by cutting, cleaving or breaking.
- the figure 6 is a partial view in perspective of a lab on a chip according to the invention and obtained by the process just described.
- the tip-like extensions 45 of the cover plate 41, 54 of the fluidic plate 51 and 48 of the support plate 46 have the same shape.
- the channel 53 of the source ESI is thus provided, until the exit of the source, a floor consisting of the extension 48 and a ceiling formed by the extension 45.
- the figure 7 is a partial view in perspective of another on-chip laboratory according to the invention and obtained by the method described.
- the end of the tip-shaped extension 54 of the fluidic plate 51 is truncated and recessed from the ends of the tip-shaped extensions 45 of the cover plate 41 and 48 of the support plate 46.
- This electrospray nose geometry may allow for better stability of the Taylor cone.
- the tip extension of the cover plate continues to provide a ceiling for the outlet channel.
- the end of the tip-shaped extension of the support plate may be withdrawal relative to the end of the tip-shaped extension of the fluidic plate, which may itself be recessed relative to the end of the tip-shaped extension of the cover plate.
- the figure 8A is a cross-sectional view of an SOI substrate.
- the treatment of this plate will be limited to the case of a single lab on a chip for the sake of simplification.
- the SOI substrate 60 comprises a silicon support 61 successively supporting a buried silicon oxide layer 62 and a thin layer of silicon 63.
- the substrate 60 may have a diameter of 200 mm.
- the thin layer 63 may have a thickness of between a few ⁇ m and a few tens of ⁇ m. His free face is polished.
- the thickness of the oxide layer may be between 0.1 ⁇ m and 3 ⁇ m.
- the thickness of the support 61 may be several hundred microns, for example 670 microns.
- the silicon surface layer 63 will be used as a fluidic plate.
- the Figure 8B represents the step of structuring the fluidic plate.
- a resin mask (for example with a thickness of 1.5 ⁇ m) is deposited on the thin layer 63 and photo-lithographed according to the desired fluidic network pattern.
- the fluidic network 64 and the channel 65 of the ESI source are then simultaneously produced in the thin film 63 by means of a DRIE etching.
- the buried oxide layer 62 serves as a stop layer for etching. The same etching makes it possible to obtain, in the right part of the thin layer 63 and in its longitudinal axis, a tip-shaped extension 66.
- a layer 67 of silicon oxide is formed on the structured thin film 63 (see FIG. Figure 8C ).
- the oxide thickness thus formed may be between 0.1 and a few ⁇ m.
- the cover plate is made as for the previously described embodiment (see Figures 5A to 5D ). It is then sealed on the element shown in Figure 8C , by covering the fluidic network. This is what the figure 8D wherein the structured cover plate is referenced 68.
- the cover plate 68 comprises the blind hole 70, intended to constitute the inlet of the device, and the tip-shaped extension 71. Then, a layer of SiO 2 is deposited on the underside of the support.
- Photolithography is then carried out from the underside of the support plate.
- the oxide layer deposited on the underside of the support is etched to serve as a mask and the resin layer used for this photo-lithography is removed. This is followed by a DRIE etching of the silicon of the support plate 61 to define the lower point of the source ESI. Then, the carrier plate 61 is thinned by chemical-physical polishing.
- the figure 8E illustrates the result obtained. It shows the point-like extension 72 of the support plate 61.
- the oxide layer 62 is then etched at the the source ESI to give the underside of the source its final appearance.
- the cover plate 68 is then thinned to obtain the release of the tip-shaped extension 71 and to obtain access to the hole 70.
- This step can be performed by chemical-physical polishing from the free face of the cover plate 68, possibly followed by a DRIE engraving for the finishing.
- the device obtained is then similar to that illustrated by the figure 50 .
- an SOI substrate provides the advantage that the support and fluidic plates are delivered sealed. A patternless full plate seal guarantees a better seal performance. Another advantage is constituted by the fact that the pair of lithography / etching DRIE steps, which is the most difficult to implement for the etching of the fluidic network, occurs at the beginning of manufacture. This makes it possible to discard the defective plates as soon as possible and thus to increase the final yield.
- the use of an SOI substrate also implies a reduction in gravity reduction of the DRIE.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
L'invention se rapporte à un laboratoire sur puce comprenant un réseau micro-fluidique et un nez d'électronébulisation coplanaires. Elle concerne en particulier le couplage d'un laboratoire sur puce avec un spectromètre de masse.The invention relates to a lab on a chip comprising a micro-fluidic network and a coplanar electrospray nose. It relates in particular to the coupling of a lab on a chip with a mass spectrometer.
Depuis une dizaine d'années, de nombreuses voies ont été explorées pour coupler différents dispositifs micro-fluidiques aux spectromètres de masse. En effet, les méthodes de détection optiques comme la spectrophotométrie ou la fluorescence ne sont pas adaptées à la détection de biomolécules comme les protéines ou les peptides, détection qui intéresse particulièrement le domaine de la protéomique. Les limites sont soit la sensibilité, soit la nécessité de préparer l'échantillon (marquage fluorescent), ce qui, dans le cas de l'identification de protéines après digestion enzymatique par exemple, présente un problème puisque les peptides obtenus ne sont a priori pas connus. La spectrométrie de masse est donc souvent retenue puisqu'elle donne des informations sur la nature des échantillons analysés (spectre d'intensité selon le rapport masse/charge) avec une très bonne sensibilité (femtomole/µl), et qu'elle permet d'analyser des mélanges complexes de molécules. Pour cela, il est souvent nécessaire qu'un pré-traitement de l'échantillon soit réalisé en amont de l'analyse. Par exemple, ce pré-traitement consiste en une séparation des composés chimiques et/ou biologique, précédée et/ou suivie d'une concentration des espèces.Over the past decade, many paths have been explored to couple different micro-fluidic devices to mass spectrometers. Indeed, optical detection methods such as spectrophotometry or fluorescence are not suitable for the detection of biomolecules such as proteins or peptides, a detection of particular interest in the field of proteomics. The limits are either the sensitivity or the need to prepare the sample (fluorescent labeling), which, in the case of the identification of proteins after enzymatic digestion for example, presents a problem since the peptides obtained are not a priori known. Mass spectrometry is therefore often used since it gives information on the nature of the samples analyzed (intensity spectrum according to the mass / charge ratio) with a very good sensitivity (femtomole / μl), and that it allows analyze complex mixtures of molecules. For this, it is often necessary that a pre-treatment of the sample is carried out before the analysis. By for example, this pre-treatment consists of a separation of the chemical and / or biological compounds, preceded and / or followed by a concentration of the species.
Pour réaliser ce pré-traitement en continu avec l'analyse en un temps minimum et en minimisant les volumes de réactifs utilisés, les progrès récemment réalisés dans le domaine de la micro-fluidique peuvent être mis à profit. A titre d'exemples, des dispositifs micro-fluidiques de digestion enzymatique (
Le couplage microfluidique / spectrométrie de masse peut reposer sur une technique d'ionisation de l'échantillon par électronébulisation ou électrospray (ou ESI pour ElectroSpray Ionization). A pression atmosphérique et plongé dans un champ électrique intense, l'échantillon liquide pré-traité sortant de la puce micro-fluidique est nébulisé en un gaz d'ions ou en une multitudes de gouttelettes chargées pouvant entrer dans le spectromètre de masse (MS) pour analyse. Cette nébulisation passe par la déformation de l'interface formée entre le liquide sortant et le gaz environnant (ménisque liquide/gaz) et la « goutte » de liquide prend une forme conique appelée « cône de Taylor ». Le volume de ce cône constitue un volume mort pour le liquide sortant (espace géométrique dans lequel les composés chimiques peuvent se mélanger), ce qui n'est pas souhaitable, surtout quand la dernière étape du pré-traitement consiste justement en une séparation des composés chimiques de l'échantillon. C'est pourquoi on cherche toujours à minimiser la taille de ce cône, et cela passe entre autres par la réduction des dimensions intérieures et extérieures du canal de sortie de la puce micro-fluidique.The microfluidic coupling / mass spectrometry may be based on an electrospray or electrospray (or ESI for ElectroSpray Ionization) sample ionization technique. At atmospheric pressure and immersed in an intense electric field, the pre-treated liquid sample leaving the microfluidic chip is nebulized into an ion gas or into a multitude of charged droplets that can enter the mass spectrometer (MS). for analysis. This nebulization passes through the deformation of the interface formed between the outgoing liquid and the surrounding gas (liquid meniscus / gas) and the "drop" of liquid takes a conical shape called "Taylor cone". The volume of this cone is a dead volume for the outgoing liquid (geometric space in which the chemical compounds can mix), which is not desirable, especially when the last stage of the pre-treatment consists precisely of a separation of the compounds chemical samples. This is why we always try to minimize the size of this cone, and this is inter alia by reducing the internal and external dimensions of the output channel of the micro-fluidic chip.
Classiquement, au cours d'une analyse par spectrométrie de masse, l'échantillon est pré-traité « hors dispositif ESI » puis placé manuellement (à la pipette) dans une aiguille creuse dont l'extrémité est électriquement conductrice (« PicoTip emitter » de New Objective par exemple). Un champ électrique est imposé entre la partie conductrice du PicoTip et l'entrée du MS, ce qui permet la formation d'un cône de Taylor à la sortie du PicoTip et la nébulisation de l'échantillon. La géométrie cylindrique « pointue » des PicoTip est idéale pour la formation d'un petit cône de Taylor, mais les limites sur la minimisation de leur taille (classiquement de diamètre extérieur 360 µm et de diamètre intérieur 10 µm), celles sur l'obtention d'une bonne reproductibilité par les techniques de fabrication utilisées (étirement) et leur fragilité à l'utilisation sont les principales raisons pour chercher à réaliser d'autres types de dispositifs de nébulisation.Classically, during a mass spectrometry analysis, the sample is pre-treated "off ESI device" and then placed manually (by pipette) in a hollow needle whose end is electrically conductive ("PicoTip emitter"). New Objective for example). An electric field is imposed between the conductive part of the PicoTip and the inlet of the MS, which allows the formation of a Taylor cone at the exit of the PicoTip and the nebulization of the sample. The cylindrical "pointed" geometry of the PicoTip is ideal for the formation of a small Taylor cone, but the limits on the minimization of their size (classically of external diameter 360 μm and internal diameter 10 μm), those on obtaining good reproducibility by the manufacturing techniques used (stretching) and their fragility in use are the main reasons for seek to make other types of nebulizer devices.
Dans la littérature, lorsque ces dispositifs sont élaborés par des micro-technologies comme les technologies planes du silicium par exemple (gravure, usinages, dépôts en couches minces et photo-lithographie de matériaux divers sur des substrats présentant des dimensions latérales très grandes devant leur épaisseur), on parle souvent de « nez électrospray » (Tai et al., "MEMS electrospray nozzle for mass spectroscopy",
D'une part, les micro-technologies peuvent permettre de réaliser des interfaces ESI en définissant des structures de type pointe (comme les PicoTips) mais plus petites (pour limiter le volume du cône de Taylor), plus reproductibles et moins fragiles, ce qui présente un intérêt en soi (voir le document
D'autre part, les micro-technologies peuvent permettre de réaliser des dispositifs intégrant un réseau fluidique permettant d'assurer le pré-traitement de l'échantillon et une interface de type ESI. Outre les avantages précédemment cités (diminution des volumes morts de sortie, reproductibilité, robustesse de l'interface ESI), on bénéficie de ceux liés à un dispositif de pré-traitement intégré (protocole de pré-traitement en continu avec l'analyse, diminution des temps globaux d'analyse, minimisation des volumes de réactifs).On the other hand, the micro-technologies can make it possible to realize devices integrating a fluidic network making it possible to ensure the pre-treatment of the sample and an interface of the ESI type. In addition to the advantages mentioned above (decrease of the output dead volumes, reproducibility, robustness of the ESI interface), we benefit from those linked to an integrated pre-treatment device (continuous pre-treatment protocol with the analysis, decrease overall time of analysis, minimization of reagent volumes).
Néanmoins, une telle intégration pose trois problèmes majeurs de conception technologique :
- Premièrement, la technologie de réalisation du dispositif doit être compatible avec celle d'un réseau fluidique de pré-traitement (réservoirs, micro-canaux, réacteurs...) et d'une interface ESI (géométrie en pointes, dimensions de sortie minimales...), et ce, pour permettre de réaliser le dispositif complet sur un même support ou un même ensemble de supports voyant un enchaînement technologique commun aux deux entités intégrées.
- En second lieu, elle doit être pensée pour ne pas rajouter de volume mort supplémentaire à ceux qui pourraient exister dans le réseau fluidique de pré-traitement et dans l'interface ESI pris séparément.
- Enfin, elle doit fournir à l'interface ESI une électrode de nébulisation sans ajouter de volume mort au système. Cette électrode de nébulisation peut être localisée soit à l'extérieur de la structure en pointe (
M.Svederberg et al., "Sheathless Electrospray from Polymer Microchips", Anal. Chem., 2003, 75, 3934-3940 R.B. Cole, "Electrospray ionization mass spectrometry : fundamentals, instrumention and applications", John Wiley & Sons : New York, 1997
- First, the device realization technology must be compatible with that of a pre-treatment fluidic network (tanks, micro-channels, reactors ...) and an ESI interface (peak geometry, minimum output dimensions. ..), and this, to allow the realization of the complete device on the same support or the same set of media seeing a common technological sequence to the two integrated entities.
- Secondly, it must be thought not to add additional dead volume to those that might exist in the pre-treatment fluidic network and in the ESI interface taken separately.
- Finally, it must provide the ESI interface with a nebulization electrode without adding dead volume to the system. This nebulization electrode can be located either outside the peak structure (
M.Svederberg et al., "Sheathless Electrospray from Polymer Microchips", Anal. Chem., 2003, 75, 3934-3940 RB Cole, "Electrospray ionization mass spectrometry: fundamentals, instrumentation and applications", John Wiley & Sons: New York, 1997
La plaque capot peut être électriquement conductrice.The cover plate can be electrically conductive.
Une avancée majeure dans ce domaine a été proposée dans le document
- Une technologie de réalisation compatible avec celle d'un réseau fluidique de pré-traitement (réservoirs, micro-canaux, réacteurs...) et d'une interface ESI en sortie (géométrie en pointes, dimensions de sortie minimales...), et ce, pour permettre de réaliser le dispositif complet sur un même support ou un même ensemble de supports voyant un enchaînement technologique commun aux deux entités intégrées.
- Une conception d'intégration sans volumes morts.
- L'intégration d'une électrode de nébulisation à l'intérieur du canal de sortie et en proximité de la sortie du dispositif.
- A production technology compatible with that of a pre-treatment fluidic network (tanks, micro-channels, reactors, etc.) and an output ESI interface (peak geometry, minimum output dimensions, etc.) and this, to allow to realize the complete device on the same support or the same set of media seeing a common technological sequence to the two integrated entities.
- An integration design without dead volumes.
- The integration of a nebulization electrode inside the outlet channel and in proximity to the output of the device.
Ce laboratoire sur puce comprend un support, au moins un réseau fluidique, au moins un orifice d'entrée de fluide relié au réseau fluidique et au moins un orifice de sortie de fluide relié au réseau fluidique. Il comprend une couche mince solidaire du support et dans laquelle sont réalisés le réseau fluidique et un nez d'électronébulisation. Le nez d'électronébulisation est en surplomb par rapport au support et comprend un canal dont une extrémité est reliée au réseau fluidique et dont l'autre extrémité constitue ledit orifice de sortie de fluide, le canal étant équipé de moyens de conduction électrique formant au moins une électrode.This on-chip laboratory comprises a support, at least one fluidic network, at least one fluid inlet orifice connected to the fluidic network and at least one fluid outlet orifice connected to the fluidic network. It comprises a thin layer secured to the support and in which are formed the fluidic network and an electrospray nose. The electrospray nose is overhanging with respect to the support and comprises a channel whose one end is connected to the fluidic network and whose other end constitutes said fluid outlet orifice, the channel being equipped with electrical conduction means forming at least an electrode.
Cependant, il a été constaté que le dispositif décrit dans le document
L'inventeur de la présente invention a étudié quelles pouvaient être les causes de cette limitation de débit et les possibilités d'y remédier. Il a découvert qu'en modifiant la partie source (ou nez) d'électronébulisation des différentes variantes du dispositif décrit dans le document
L'invention a donc pour objet un laboratoire sur puce comprenant une plaque support, au moins un réseau fluidique formé dans une plaque dite plaque fluidique fixée sur la plaque support, et une plaque, dite plaque capot, fixée sur la plaque fluidique et recouvrant le réseau fluidique, le réseau fluidique étant connecté, à une première extrémité, à un orifice d'entrée permettant l'introduction d'un fluide à nébuliser et, à une deuxième extrémité, à une première extrémité d'un canal de sortie du fluide à nébuliser, formé dans la plaque fluidique qui se prolonge par un nez d'électronébulisation en forme de pointe où la deuxième extrémité du canal de sortie constitue la sortie d'électronébulisation du laboratoire sur puce, la plaque capot possédant un prolongement en forme de pointe formant plafond pour la partie du canal située dans le nez d'électronébulisation.The subject of the invention is therefore a laboratory on a chip comprising a support plate, at least one fluidic network formed in a plate called a fluidic plate fixed on the support plate, and a plate, called a cover plate, fixed on the fluidic plate and covering the fluidic network, the fluidic network being connected, at a first end, to an inlet for the introduction of a fluid to be sprayed and at a second end to a first end of a fluid outlet channel to nebuliser, formed in the fluidic plate which is extended by a tip-shaped electrospray nose where the second end of the outlet channel constitutes the electro-evaporation output of the on-chip laboratory, the cover plate having a tip-shaped extension forming ceiling for the part of the channel located in the nose of electrospray.
Selon un mode particulier de réalisation, la plaque support possède un prolongement en forme de pointe formant plancher pour la partie du canal située dans le nez d'électronébulisation. Selon une variante de mise en oeuvre, la deuxième extrémité du canal de sortie, constituant la sortie d'électronébulisation, est en retrait par rapport aux prolongements en forme de pointe formant plafond et plancher.According to a particular embodiment, the support plate has a tip-shaped extension forming a floor for the portion of the channel located in the electrospray nose. According to an alternative embodiment, the second end of the outlet channel, constituting the electrospray outlet, is set back relative to the peak-shaped extensions forming ceiling and floor.
L'orifice d'entrée peut être un trou formé dans la plaque capot ou la plaque support.The inlet port may be a hole formed in the cover plate or the support plate.
La plaque capot peut être en silicium.The cover plate can be made of silicon.
La plaque support peut comprendre, côté plaque fluidique, une couche de protection apte à protéger le reste de la plaque support lors de la formation du réseau fluidique dans la plaque fluidique. La plaque fluidique peut être en silicium. Dans ce cas, selon une variante de réalisation, la plaque fluidique, la couche de protection et le reste de la plaque support proviennent respectivement de la couche mince, de la couche d'oxyde enterrée et du support d'un même substrat silicium-sur-isolant.The support plate may comprise, on the fluidic plate side, a protective layer able to protect the rest of the support plate during the formation of the fluidic network in the fluidic plate. The fluidic plate may be silicon. In this case, according to an alternative embodiment, the fluidic plate, the protective layer and the rest of the support plate come respectively from the thin layer, the buried oxide layer and the support of the same silicon-on substrate. -insulating.
La plaque de capot peut être électriquement conductrice.The cover plate can be electrically conductive.
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
- la
figure 1 est un schéma d'un laboratoire sur puce selon la présente invention, - la
figure 2 représente la structure COMOSS d'un réacteur de digestion enzymatique utilisé dans le laboratoire sur puce de lafigure 1 , - la
figure 2A montre un détail de lafigure 2 , - la
figure 3 représente la structure COMOSS d'un réacteur de pré-concentration utilisé dans le laboratoire sur puce de lafigure 1 , - la
figure 3A montre un détail de lafigure 3 , - la
figure 4 représente la structure COMOSS d'un réacteur de chromatographie utilisé dans le laboratoire sur puce de lafigure 1 , - la
figure 4A montre un détail de lafigure 4 , - les
figures 5A à 5D sont des vues en coupe transversales d'une plaque capot en cours de fabrication, - la
figure 5D' est une vue en perspective de la plaque capot en cours de fabrication, - les
figures 5E à 5G sont des vues en coupe transversale d'une plaque support en cours de fabrication, - la
figure 5F' est une vue en perspective de la plaque support en cours de fabrication, - la
figure 5H est une vue en coupe transversale de l'assemblage d'une plaque support et d'une plaque fluidique, - les
figures 5I à 5K sont des vues en coupe transversale de l'assemblage d'une plaque support et d'une plaque fluidique, la plaque fluidique étant en cours d'usinage, - les
figures 5L et 5M sont des vues en coupe transversale de l'assemblage de la plaque capot sur l'ensemble constitué par la plaque fluidique sur la plaque support, - les
figures 5N et 5O sont des vues en coupe transversales illustrant les dernières étapes de fabrication d'un laboratoire sur puce selon un mode de réalisation de la présente invention, - la
figure 6 est une vue partielle et en perspective d'un laboratoire sur puce selon une première variante de l'invention, - la
figure 7 est une vue partielle et en perspective d'un laboratoire sur puce selon une deuxième variante de l'invention, - les
figures 8A à 8E illustrent une variante de réalisation d'un laboratoire sur puce selon l'invention, utilisant un substrat SOI.
- the
figure 1 is a diagram of a lab on a chip according to the present invention, - the
figure 2 represents the COMOSS structure of an enzyme digestion reactor used in the laboratory on chip of thefigure 1 , - the
Figure 2A shows a detail of thefigure 2 , - the
figure 3 represents the COMOSS structure of a pre-concentration reactor used in the laboratory-on-chip of thefigure 1 , - the
figure 3A shows a detail of thefigure 3 , - the
figure 4 represents the COMOSS structure of a chromatography reactor used in the laboratory-on-chip of thefigure 1 , - the
Figure 4A shows a detail of thefigure 4 , - the
Figures 5A to 5D are cross-sectional views of a bonnet plate during manufacture, - the
figure 5D ' is a perspective view of the bonnet plate during manufacture, - the
Figures 5E to 5G are cross-sectional views of a support plate being manufactured, - the
Figure 5F ' is a perspective view of the support plate during manufacture, - the
figure 5H is a cross-sectional view of the assembly of a support plate and a fluidic plate, - the
FIGS. 5I to 5K are cross-sectional views of the assembly of a support plate and a fluidic plate, the fluidic plate being machined, - the
Figures 5L and 5M are cross-sectional views of the assembly of the cover plate on the assembly constituted by the fluidic plate on the support plate, - the
FIGS. 5N and 5O are cross-sectional views illustrating the final stages of manufacturing a lab-on-a-chip according to an embodiment of the present invention, - the
figure 6 is a partial view in perspective of a lab on a chip according to a first variant of the invention, - the
figure 7 is a partial view in perspective of a lab-on-a-chip according to a second variant of the invention, - the
Figures 8A to 8E illustrate an alternative embodiment of a lab on a chip according to the invention, using an SOI substrate.
La
On décrit d'abord le réseau fluidique destiné à préparer un échantillon biologique complexe afin d'en identifier le contenu protéique. Ce réseau fluidique est constitué d'un ensemble de réservoirs et de canaux, d'un réacteur de digestion enzymatique, d'un réacteur de pré-concentration et d'un réacteur de séparation par électro-chromatographie liquide. La structure de base de tous ces réacteurs est une cavité profonde munie d'un grand nombre de plots de section carrée ou hexagonale...Ce genre de structure est connue sous le nom de COMOSS (pour "Collocated MOnolith Support Structures"). On peut se référer à ce sujet à l'article de
Après pré-remplissage complet du réseau fluidique par du tampon, l'échantillon biologique (protéine) est déposé dans le réservoir R1, puis pompé en électroosmose du réservoir R1 vers le réservoir R2 à travers le réacteur de digestion enzymatique 2. Des réservoirs de grands volumes sont disposés entre les différents réacteurs du réseau fluidique afin de permettre un changement de tampon entre deux étapes consécutives du protocole. Ainsi, R1 contient du bicarbonate d'ammonium ([NH4HCO3]=25 mM; pH = 7,8), R2, R3 et R4 contiennent un mélange eau/acétonitrile ACN/acide formique TFA (95% ; 5% ; 0,1%), tandis que R5 contient un mélange eau/acétonitrile/acide formique (20% ; 80% ; 0,1%). Le digest récupéré dans le réservoir R2 doit être concentré avant séparation. Pour cela, il est pompé en électro-osmose vers le réservoir R3 (poubelle). L'ensemble des peptides résultant de la digestion enzymatique est alors « capté » par le réacteur de pré-concentration 3 de faible volume, d'où la concentration. Un gradient d'acétonitrile, réalisé par mélange du tampon de R4 et de celui de R5 dans la structure 4 de type « serpentin » (2cm de longueur), vient ensuite décrocher sélectivement les peptides selon leur affinité avec la phase stationnaire (C18 par exemple) du réacteur de pré-concentration 3. Ceux-ci sont « captés » de nouveau par la colonne de chromatographie 5, plus dense que le réacteur de pré-concentration 3. L'enrichissement du mélange en ACN permet de nouveau de décrocher sélectivement ces peptides de la colonne de chromatographie 5, et de les emmener, séparés, vers la sortie 6 de la puce 1 où le liquide est nébulisé vers l'entrée d'un spectromètre de masse non représenté.After complete pre-filling of the fluidic network with buffer, the biological sample (protein) is deposited in the tank R1, then pumped electroosmose from the tank R1 to the tank R2 through the
Un réacteur d'affinité à une protéine donnée (non représenté) peut servir à capter celle-ci dans un mélange mutli-protéique véhiculé à travers ce réacteur. Pour cela, on peut intégrer en amont du réseau fluidique décrit ci-dessus un ensemble réservoirs/réacteur d'affinité/réacteur de concentration fonctionnant selon les mêmes principes fluidiques que précédemment décrit. Le réacteur d'affinité peut être fonctionnalisé d'anticorps et le tampon d'élution peut être constitué de protéines concurrentes (vis-à-vis de l'anticorps) à celle qu'on souhaite « capter » dans le complexe multi-protéique.A reactor of affinity to a given protein (not shown) can be used to capture it in a mutli-protein mixture conveyed through this reactor. For this purpose, it is possible to integrate upstream of the fluidic network described above a set of reservoirs / affinity reactor / concentration reactor operating according to the same fluidic principles as previously described. The affinity reactor can be functionalized with antibodies and the elution buffer can consist of competing proteins (vis-à-vis the antibody) to the one desired to "capture" in the multi-protein complex.
De structure COMOSS, il est destiné à capter de manière spécifique une protéine, une famille de protéines, ou un complexe multi-protéique dans l'échantillon biologique complexe. Les outils utilisés pour cette étape peuvent être des anticorps, mais aussi par exemple des petites molécules qui ont une spécificité d'interaction avec la (les) protéine(s) recherchée(s).COMOSS structure, it is intended to specifically capture a protein, a family of proteins, or a multi-protein complex in the complex biological sample. The tools used for this step can be antibodies, but also for example, small molecules that have a specificity of interaction with the desired protein (s).
La structure COMOSS du réacteur de digestion enzymatique, représenté à la
Cette structure permet éventuellement d'organiser des « billes » de silice de quelques micromètres (Billes Bangs Laboratories distribuées par Serotec France par exemple) fonctionnalisées (Trypsine par exemple) afin d'apporter au réacteur ses propriétés enzymatiques ou de les accroître.This structure possibly makes it possible to organize silica "beads" of a few micrometers (eg Bangs Laboratories distributed by Serotec France) functionalized (Trypsin for example) in order to bring to the reactor its enzymatic properties or to increase them.
A titre d'exemple, l'enzyme greffée sur les plots peut être de la trypsine. Le protocole utilisé est celui décrit dans le document
La
La structure COMOSS du réacteur de pré-concentration, représenté à la
Cette structure permet éventuellement d'organiser des billes de silice fonctionnalisées afin d'apporter au réacteur ou d'en accroître ses propriétés d'affinité (greffage C18 par exemple).This structure optionally makes it possible to organize functionalized silica beads in order to supply the reactor or to increase its affinity properties (grafting C18 for example).
La
La structure COMOSS du réacteur de séparation, représenté à la
Pour un gain de place, le réacteur peut être réalisé en trois parties de 12 mm de longueur chacune comme le montre la
Cette structure permet éventuellement d'organiser des billes de silice fonctionnalisées afin d'apporter au réacteur ou d'en accroître ses propriétés d'affinité (greffage C18 par exemple).This structure optionally makes it possible to organize functionalized silica beads in order to supply the reactor or to increase its affinity properties (grafting C18 for example).
La
On va maintenant décrire en détail un mode de réalisation de la présente invention.An embodiment of the present invention will now be described in detail.
Une configuration privilégiée est basée sur la mise en mouvement des liquides à nébuliser par hydrodynamique grâce à des pompes haute pression, et non par électroosmose. Il en résulte une omission de certaines des électrodes nécessaires au dispositif divulgué par le document
Un mode de réalisation avantageux de la présente invention repose sur la structuration et l'assemblage de trois plaques de silicium (une plaque support, une plaque fluidique et une plaque capot), et leur amincissement par polissage chimico-physique et par gravure DRIE (pour « Dry Reactive Ion Etching »). L'assemblage des plaques peut avantageusement être réalisé par scellement direct, encore appelé scellement moléculaire (ou « wafer bonding » en anglais).An advantageous embodiment of the present invention is based on the structuring and assembly of three silicon wafers (a support plate, a fluidic plate and a cover plate), and their thinning by chemico-physical polishing and by DRIE etching (for "Dry Reactive Ion Etching"). The assembly of the plates can advantageously be achieved by direct sealing, also called molecular sealing (or "wafer bonding" in English).
La réalisation du réseau fluidique dans la plaque fluidique ne sera pas détaillée dans la suite de la description. On pourra se reporter pour sa réalisation au document
La filière technologique mise en oeuvre utilise des plaques de silicium de 200 mm de diamètre pour réaliser une pluralité de dispositifs. Les dimensions de ces plaques sont données à titre d'exemple de même que leur épaisseur et leurs propriétés.The technological branch used uses silicon wafers 200 mm in diameter to produce a plurality of devices. The dimensions of these plates are given by way of example as well as their thickness and their properties.
Les
La
Le masque de gravure est ensuite structuré par photo-lithographie. Pour cela, on dépose une couche de résine 43 qui est ensuite photo-lithographiée (voir la
Le masque d'oxyde est ensuite retiré. On obtient alors (voir la
La
Les
La
Le masque de gravure est ensuite structuré par photo-lithographie. Pour cela, on dépose une couche de résine qui est ensuite photo-lithographiée. La lithographie définit, après retrait de la résine et gravure DRIE de la partie droite de la plaque support 46, et dans son axe longitudinal, un prolongement en forme de pointe 48. Ce prolongement est mieux visible sur la
La plaque 46 est ensuite oxydée thermiquement pour fournir des couches d'oxyde 49 et 50 sur chaque face de la plaque 46. La couche d'oxyde 49 se forme bien sûr également sur les parties gravées de la plaque 46, situées en contrebas du prolongement en forme de pointe 48 (voir la
La
La plaque fluidique 51, fixée sur la plaque support 46, est ensuite amincie, par polissage chimico-physique, jusqu'à obtenir son épaisseur prévue (par exemple 15 µm). C'est ce que montre la
La plaque fluidique amincie est ensuite structurée. Cette étape est représentée à la
On procède ensuite à la formation d'une couche 55 d'oxyde de silicium sur la plaque fluidique structurée 51 (voir la
Les
La plaque support 46 est alors amincie par polissage chimico-physique pour libérer le prolongement en forme de pointe 48. C'est ce que montre la
C'est ensuite au tour de la plaque capot 41 d'être amincie pour obtenir la libération du prolongement en forme de pointe 45 et pour obtenir l'accès au trou 44. Cette étape peut être réalisée par polissage chimico-physique à partir de la face libre de la plaque capot 41. Une gravure DRIE peut être pratiquée pour obtenir une bonne finition de l'ouverture du trou 44. La
La séparation des dispositifs en puces individuelles peut être obtenue par découpe, par clivage ou par cassure.The separation of the individual chip devices can be achieved by cutting, cleaving or breaking.
La
La
D'autres variantes que celles représentées sur les
On va maintenant décrire un autre mode de réalisation de la présente invention, grâce à l'utilisation d'un substrat SOI disponible commercialement.Another embodiment of the present invention will now be described by the use of a commercially available SOI substrate.
La
La couche superficielle de silicium 63 va être utilisée comme plaque fluidique. La
On procède ensuite à la formation d'une couche 67 d'oxyde de silicium sur la couche mince 63 structurée (voir la
La plaque capot est réalisée comme pour le mode de réalisation précédemment décrit (voir les
On procède ensuite à une photo-lithographie à partir de la face inférieure de la plaque support. La couche d'oxyde déposée sur la face inférieure du support est gravée pour servir de masque et la couche de résine utilisée pour cette photo-lithographie est retirée. On procède alors à une gravure DRIE du silicium de la plaque support 61 pour définir la pointe inférieure de la source ESI. Ensuite, la plaque support 61 est amincie par polissage chimico- physique. La
La plaque capot 68 est alors amincie pour obtenir la libération du prolongement en forme de pointe 71 et pour obtenir l'accès au trou 70. Cette étape peut être réalisée par polissage chimico-physique à partir de la face libre de la plaque capot 68, éventuellement suivi d'une gravure DRIE pour la finition. Le dispositif obtenu est alors similaire à celui illustré par la
L'utilisation d'un substrat SOI apporte comme avantage le fait que les plaques support et fluidique sont livrées scellées. Un scellement pleine plaque sans motifs garantit un meilleur rendement de scellement. Un autre avantage est constitué par le fait que le couple d'étapes lithographie/gravure DRIE, qui est le plus délicat à mettre en oeuvre pour la gravure du réseau fluidique, intervient en début de fabrication. Cela permet d'écarter le plus tôt possible les plaques défectueuses et donc d'augmenter le rendement final. L'utilisation d'un substrat SOI implique aussi un amincissement par gravure DRIE en moins.The use of an SOI substrate provides the advantage that the support and fluidic plates are delivered sealed. A patternless full plate seal guarantees a better seal performance. Another advantage is constituted by the fact that the pair of lithography / etching DRIE steps, which is the most difficult to implement for the etching of the fluidic network, occurs at the beginning of manufacture. This makes it possible to discard the defective plates as soon as possible and thus to increase the final yield. The use of an SOI substrate also implies a reduction in gravity reduction of the DRIE.
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0855077A FR2934179B1 (en) | 2008-07-24 | 2008-07-24 | LABORATORY ON CHIP COMPRISING A MICRO-FLUIDIC NETWORK AND A COPLANAR ELECTRONEBULATING NOSE. |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2153899A1 true EP2153899A1 (en) | 2010-02-17 |
Family
ID=40427810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09165545A Withdrawn EP2153899A1 (en) | 2008-07-24 | 2009-07-15 | Lab-on-a-chip comprising a coplanar microfluidic network and electrospray nozzle |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100018864A1 (en) |
EP (1) | EP2153899A1 (en) |
JP (1) | JP2010044066A (en) |
FR (1) | FR2934179B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012001421A1 (en) * | 2010-07-01 | 2012-01-05 | Cambridge Enterprise Limited | Ionisation mass spectrometry |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011154363A2 (en) * | 2010-06-07 | 2011-12-15 | Commissariat à l'énergie atomique et aux énergies alternatives | Analysis device including a mems and/or nems network |
WO2017095813A1 (en) * | 2015-11-30 | 2017-06-08 | Intabio, Inc. | Devices and methods for sample characterization |
CN107159329A (en) * | 2017-05-22 | 2017-09-15 | 天津微纳芯科技有限公司 | A kind of chip and its method for packing for sample detection |
WO2023034577A2 (en) * | 2021-09-03 | 2023-03-09 | The Regents Of The University Of California | Microfabricated multiemitter electrospray thrusters |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998035376A1 (en) | 1997-01-27 | 1998-08-13 | California Institute Of Technology | Mems electrospray nozzle for mass spectroscopy |
WO2000030167A1 (en) | 1998-11-19 | 2000-05-25 | California Institute Of Technology | Polymer-based electrospray nozzle for mass spectrometry |
FR2818662A1 (en) | 2000-12-22 | 2002-06-28 | Commissariat Energie Atomique | METHOD FOR IMMOBILIZING PROBES, PARTICULARLY FOR PRODUCING BIOLOGICAL CHIPS |
US20050047969A1 (en) * | 2003-08-26 | 2005-03-03 | Predicant Biosciences, Inc. | Microfluidic chip with enhanced tip for stable electrospray ionization |
FR2862007A1 (en) * | 2003-11-12 | 2005-05-13 | Commissariat Energie Atomique | Micro fluid chip for electro-spray ionization, has an electro-vapor structure as a pen nib with a capillary slot to tip and an electrode to apply a voltage to vaporize sample |
FR2865806A1 (en) * | 2004-01-30 | 2005-08-05 | Commissariat Energie Atomique | ON-CHIP LABORATORY COMPRISING A MICRO-FLUIDIC NETWORK AND A COPLANAR ELECTRONEBULATING NOSE |
US20060060769A1 (en) * | 2004-09-21 | 2006-03-23 | Predicant Biosciences, Inc. | Electrospray apparatus with an integrated electrode |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468674A (en) * | 1994-06-08 | 1995-11-21 | The United States Of America As Represented By The Secretary Of The Navy | Method for forming low and high minority carrier lifetime layers in a single semiconductor structure |
FR2862006B1 (en) * | 2003-11-12 | 2006-01-27 | Univ Lille Sciences Tech | PLANAR ELECTRONEBULATING SOURCES ON THE MODEL OF A CALLIGRAPHIC FEATHER AND THEIR MANUFACTURE. |
FR2877662B1 (en) * | 2004-11-09 | 2007-03-02 | Commissariat Energie Atomique | PARTICLE NETWORK AND METHOD FOR MAKING SUCH A NETWORK |
US20060171855A1 (en) * | 2005-02-03 | 2006-08-03 | Hongfeng Yin | Devices,systems and methods for multi-dimensional separation |
WO2009111431A2 (en) * | 2008-03-04 | 2009-09-11 | Waters Technologies Corporation | Interfacing with a digital microfluidic device |
-
2008
- 2008-07-24 FR FR0855077A patent/FR2934179B1/en not_active Expired - Fee Related
-
2009
- 2009-07-15 EP EP09165545A patent/EP2153899A1/en not_active Withdrawn
- 2009-07-17 US US12/505,395 patent/US20100018864A1/en not_active Abandoned
- 2009-07-22 JP JP2009171595A patent/JP2010044066A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998035376A1 (en) | 1997-01-27 | 1998-08-13 | California Institute Of Technology | Mems electrospray nozzle for mass spectroscopy |
WO2000030167A1 (en) | 1998-11-19 | 2000-05-25 | California Institute Of Technology | Polymer-based electrospray nozzle for mass spectrometry |
FR2818662A1 (en) | 2000-12-22 | 2002-06-28 | Commissariat Energie Atomique | METHOD FOR IMMOBILIZING PROBES, PARTICULARLY FOR PRODUCING BIOLOGICAL CHIPS |
US20050047969A1 (en) * | 2003-08-26 | 2005-03-03 | Predicant Biosciences, Inc. | Microfluidic chip with enhanced tip for stable electrospray ionization |
FR2862007A1 (en) * | 2003-11-12 | 2005-05-13 | Commissariat Energie Atomique | Micro fluid chip for electro-spray ionization, has an electro-vapor structure as a pen nib with a capillary slot to tip and an electrode to apply a voltage to vaporize sample |
FR2865806A1 (en) * | 2004-01-30 | 2005-08-05 | Commissariat Energie Atomique | ON-CHIP LABORATORY COMPRISING A MICRO-FLUIDIC NETWORK AND A COPLANAR ELECTRONEBULATING NOSE |
WO2005076311A1 (en) | 2004-01-30 | 2005-08-18 | Commissariat A L'energie Atomique | Lab-on-a-chip comprising a coplanar microfluidic system and electrospray nozzle |
US20060060769A1 (en) * | 2004-09-21 | 2006-03-23 | Predicant Biosciences, Inc. | Electrospray apparatus with an integrated electrode |
Non-Patent Citations (10)
Title |
---|
ARSCOTT S ET AL: "Micromachined 2D nanoelectrospray emitter", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 39, no. 24, 27 November 2003 (2003-11-27), pages 1702 - 1703, XP006024462, ISSN: 0013-5194 * |
B. ZHANG ET AL.: "Microfabricated Devices for Capillary Electrophoresis-Electrospray Mass Spectrometry", ANAL. CHEM., vol. 71, no. 15, 1999, pages 3259 - 3264 |
BING HE ET AL.: "Fabrication of nanocolumns for liquid chromatography", ANAL. CHEM., vol. 70, 1998, pages 3790 - 3797 |
J.D. RAMSEY: "High-efficiency Two dimensional Separations of Protein Digests on Microfluidic Devices", ANAL. CHEM., vol. 75, 2003, pages 3758 - 3764 |
LIAN JI JIN: "A microchip-based proteolytic digestion system driven by electroosmotic pumping", LAB CHIP, vol. 3, 2003, pages 11 - 18 |
LICKLIDER L ET AL: "A MICROMACHINED CHIP-BASED ELECTROSPRAY SOURCE FOR MASS SPECTROMETRY", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, vol. 72, no. 2, 15 January 2000 (2000-01-15), pages 367 - 375, XP000954974, ISSN: 0003-2700 * |
M.SVEDERBERG ET AL.: "Sheathless Electrospray from Polymer Microchips", ANAL. CHEM., vol. 75, 2003, pages 3934 - 3940 |
N. GOTTSCHLICH ET AL.: "Two-Dimentional Electrochromatography / Capillary Electrophoresis on a Microchip", ANAL. CHEM., vol. 73, 2001, pages 2669 - 2674 |
R.B. COLE: "Electrospray ionization mass spectrometry : fundamentals, instrumention and applications", 1997, JOHN WILEY & SONS |
XUAN-QI WANG ET AL: "Polymer-based electrospray chips for mass spectrometry", MICRO ELECTRO MECHANICAL SYSTEMS, 1999. MEMS '99. TWELFTH IEEE INTERNA TIONAL CONFERENCE ON ORLANDO, FL, USA 17-21 JAN. 1999, PISCATAWAY, NJ, USA,IEEE, US, 17 January 1999 (1999-01-17), pages 523 - 528, XP010321772, ISBN: 978-0-7803-5194-3 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012001421A1 (en) * | 2010-07-01 | 2012-01-05 | Cambridge Enterprise Limited | Ionisation mass spectrometry |
US9490111B2 (en) | 2010-07-01 | 2016-11-08 | Cambridge Enterprise Limited | Microdroplet ionisation mass spectrometry |
Also Published As
Publication number | Publication date |
---|---|
US20100018864A1 (en) | 2010-01-28 |
JP2010044066A (en) | 2010-02-25 |
FR2934179A1 (en) | 2010-01-29 |
FR2934179B1 (en) | 2010-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005076311A1 (en) | Lab-on-a-chip comprising a coplanar microfluidic system and electrospray nozzle | |
US8022361B2 (en) | Monolithic multinozzle emitters for nanoelectrospray mass spectrometry | |
EP1714300B1 (en) | Microfluidic device comprising an electrospray nose | |
US6627882B2 (en) | Multiple electrospray device, systems and methods | |
US20060192107A1 (en) | Methods and apparatus for porous membrane electrospray and multiplexed coupling of microfluidic systems with mass spectrometry | |
JP4074921B2 (en) | Mass spectrometry system and analysis method | |
US6633031B1 (en) | Integrated monolithic microfabricated dispensing nozzle and liquid chromatography-electrospray system and method | |
US7692141B2 (en) | Polymer based electrospray nozzle for mass spectrometry | |
US6653625B2 (en) | Microfluidic system (MS) | |
FR2887305A1 (en) | DEVICE FOR PUMPING BY ELECTROWETTING AND APPLICATION TO MEASUREMENTS OF ELECTRIC ACTIVITY | |
US20020142481A1 (en) | Microfludic system (EDI) | |
EP2153899A1 (en) | Lab-on-a-chip comprising a coplanar microfluidic network and electrospray nozzle | |
US9543137B2 (en) | Sample droplet generation from segmented fluid flow and related devices and methods | |
CA2545213C (en) | Planar electronebulization sources modeled on a calligraphy pen and the production thereof | |
EP2589064B1 (en) | Oil separated microdroplet ionisation mass spectrometry | |
US20030054645A1 (en) | Method for fabricating a nozzle in silicon | |
WO2020013318A1 (en) | Substrate having modification layer and method for manufacturing same | |
NL2026627B1 (en) | A MEMS device for transmission microscopy, and a method | |
WO2011073206A1 (en) | Device and method for producing a sample from a liquid | |
Grabowska et al. | Cross References► Flow Cytometer Lab-on-Chip Devices► Spectrophotometric Analysis► Capillary Electrochromatography► Spectrofluorometry | |
Weng et al. | Construct the micro fluidic nozzles to electrospray ionizing large biomolecules in mass spectrometry analyzing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES |
|
17P | Request for examination filed |
Effective date: 20100816 |
|
17Q | First examination report despatched |
Effective date: 20100909 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CONSTANTIN, OLIVIER Inventor name: SARRUT, NICOLAS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160301 |