EP2150636A1 - Polymerbasierte keramikbeschichtungen zum schutz von oberflächen vor fluoridionen bei einem reinigungsprozess - Google Patents

Polymerbasierte keramikbeschichtungen zum schutz von oberflächen vor fluoridionen bei einem reinigungsprozess

Info

Publication number
EP2150636A1
EP2150636A1 EP08718280A EP08718280A EP2150636A1 EP 2150636 A1 EP2150636 A1 EP 2150636A1 EP 08718280 A EP08718280 A EP 08718280A EP 08718280 A EP08718280 A EP 08718280A EP 2150636 A1 EP2150636 A1 EP 2150636A1
Authority
EP
European Patent Office
Prior art keywords
polymer
precursor
based ceramic
cleaning
fluoride ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08718280A
Other languages
English (en)
French (fr)
Inventor
Michael Ott
Jan Steinbach
Steffen Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08718280A priority Critical patent/EP2150636A1/de
Publication of EP2150636A1 publication Critical patent/EP2150636A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/206Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • F05D2300/2261Carbides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to the gentle cleaning of partially corroded or oxidized surfaces with fluoride ions.
  • the invention relates to a use of polymer-based ceramic coatings.
  • the components of a hot gas duct are exposed to corrosive hot gases and extreme mechanical stresses during their operation. Therefore, corrosion, oxidation and cracking of the surfaces of these components regularly occur.
  • the affected surfaces and cracks must be cleaned of oxide or corrosion debris. This purification is typically done with the help of fluoride ions. However, this also attacks the unoxidized parts of the surfaces of the aggressive fluoride ions. The wear caused thereby leads, in particular in the case of nickel-based superalloys, to a considerable deterioration in the material properties of the components concerned as a result of the fluoride ion cleaning. The wear of the components by the fluoride ions therefore adversely affects the service life of the same.
  • turbine blades are therefore coated with a continuous oxidation-resistant thermal barrier coating in order to delay reprocessing.
  • the material used is inevitably micro-cracked as a result of mechanical stresses, so that oxidations are merely delayed but not avoided.
  • EP 0 550 305 B1 In order to improve the oxidation protection of components made of composite material, these are coated in EP 0 550 305 B1 with a mixture of a refractory ceramic material and a healing compound.
  • the coating is carried out by applying a polymer precursor and then transforming the precursor into the ceramic. But even such a thermal barrier coating would not make a reprocessing using fluoride ions for cleaning turbine components superfluous.
  • US 6,645,926 B2 describes a masking system for use in fluoride cleaning.
  • a multi-layer release component is first applied to the parts of the surface to be protected.
  • a chromium-containing masking layer is then applied to the release component.
  • the masking layer serves to protect the surface from the influence of the fluoride ions.
  • the release component should allow easy removal of the masking layer after fluoride ion cleaning.
  • the release component contains colloidal silica, deionized water, grainy fused clay and alumina powder.
  • the masking layer contains chromium powder mixed with a binder, a wetting agent, a thickening agent and water.
  • the present invention provides a method for material-sparing fluoride ion cleaning of partially corroded or oxidized surfaces according to claim 1 and the use of polymer-based ceramic material according to claim 15.
  • the dependent claims contain advantageous embodiments of the invention.
  • Material class which can be used at room temperature as ordinary polymers (or possibly as monomers, which are subjected to polymerization before the ceramification), in particular for surface coating.
  • Another typical application is the use as amorphous high temperature fibers, as these materials remain amorphous up to 1500 ° C.
  • the polymer-based ceramic provides a highly effective protection against the attack of fluoride ions.
  • it can also be easily and defined applied to the surface areas to be protected.
  • the coating of the surfaces to be protected can be carried out by applying a monomeric or polymeric precursor of the polymer-based ceramic to the surface, followed by a ceramization of the precursor.
  • fluoride ion cleaning it is above all silicon-containing precursors, and in particular those which form SiC and Si 3 N 4 , which are suitable.
  • the precursor may contain nitrogen. If the precursor contains no nitrogen, the subsequent ceramization can be brought about by pyrolysis in nitrogen.
  • the following precursors are suitable for carrying out the coating: polysilane [amorphous phase: Si-C- (O), crystalline phase: SiC and Si 3 N 4 (pyrolysis in N 2 ), C], polycarbosilane [amorphous phase : Si-C- (O), crystalline phase: SiC and Si3N 4 (pyrolysis in N 2 ), C], polysilazane [amorphous phase: Si-C-N, crystalline phase: SiC and Si 3 N 4 ], polyborosilazane [ amorphous phase: Si-BCN, crystalline phase: SiC and Si 3 N 4 ] or polycarbosilazane [amorphous phase: Si-CN- (O), crystalline phase: SiC and Si 3 N 4 ].
  • the precursor which is initially liquid or spreadable, is applied to the unoxidized parts of the surface to be cleaned. This can be done, in particular, by painting, dropping or spraying the liquid or brushable precursor onto the surface to be cleaned or by dipping the surface to be cleaned into the liquid precursor.
  • a monomeric precursor can first be crosslinked or partially crosslinked by a heat treatment.
  • the crystallized ceramic protective layer is produced by pyrolysis (ceramization).
  • the pyrolysis can be carried out in particular in a nitrogen atmosphere.
  • the organic elements burn and the material crystallizes.
  • the Fluoridionengraphy can be carried out, on the one hand, the corrosion and oxide residues of the non-coated surfaces are effectively removed, on the other hand, the coated surfaces are not exposed to the aggressive Fluori- dionen.
  • the polymer-based ceramic protective layer can be removed in an alkaline bath or in an alkaline ultrasonic bath by, for example, a blast cleaning process.
  • polymer-based ceramic materials are provided for use in protecting surface areas that are not to be cleaned from fluoride ions in the cleaning of surfaces with fluoride ions.
  • the polymer-based ceramic material is a silicon-containing polymer-based ceramic material.
  • the polymer-based ceramic material it is possible for the polymer-based ceramic material to comprise SiC and / or Si 3 N 4- forming precursors.
  • the polymer-based ceramic material may comprise polysilane, polycarbosilane, polysilazane, polyborosilazane or polycarbosilazane as precursor.
  • Fig. 1 shows a gas turbine in a longitudinal partial section.
  • Fig. 2 shows a combustion chamber of a gas turbine.
  • Fig. 3 shows a perspective view of a blade or vane of a turbomachine.
  • Fig. 4 shows schematically the cross section through a
  • Fig. 5 shows the cross-section of Fig. 4, wherein the non-corroded parts of the surface were coated with a polymer-based ceramic.
  • Fig. 6 shows the cross section of Fig. 4, wherein the surface is cleaned with fluoride ions.
  • FIG. 7 shows the cross-section from FIG. 4, wherein the uncoated parts of the surface show signs of wear as a result of the fluoride ion cleaning.
  • FIG. 8 shows the cross section of FIG. 4 after the polymer-based ceramic protective layer has been removed and the crack has been repaired.
  • FIG. 1 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • a compressor 105 for example, a torus-like
  • Combustion chamber 110 in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • An annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings. In the flow direction of a working medium
  • a row 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is guided to the burners 107 and mixed there with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium flows 113 along the hot gas channel 111 past the guide vanes 130 and the blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and this drives the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloys.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium.
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with respect to the chemical composition.
  • MCrAlX may still be present a thermal barrier coating, and consists for example of Zr ⁇ 2, Y2Ü3-Zr ⁇ 2, i. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the guide blade 130 has a guide blade root facing the inner housing 138 of the turbine 108 (not shown here) and a guide blade foot opposite
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 2 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 107 arranged in the circumferential direction around a rotation axis 102 open into a common combustion chamber space 154, which generate flames 156.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C. to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed of heat shield elements 155.
  • Each heat shield element 155 made of an alloy is equipped on the working fluid side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • MCrAlX may still be present, for example, a ceramic thermal barrier coating and consists for example of ZrC> 2, Y2Ü3-Zr ⁇ 2, i. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that heat shield elements 155 may have to be freed of protective layers after use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, cracks in the heat shield element 155 are also repaired. Thereafter, a recoating of the heat shield element takes place. 155 and a renewed use of the heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • FIG. 3 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine that extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as fir tree or Schissebwschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloy.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, for general language use, referred to as directionally solidified) or a monocrystalline structure, ie the whole workpiece consists of a single crystal.
  • directionally solidified columnar grain structure
  • monocrystalline structure ie the whole workpiece consists of a single crystal.
  • the transition to the globulitic (polycrystalline) Avoid stiffening, as formed by undirected growth necessarily transverse and longitudinal grain boundaries, which negate the good properties of the directionally solidified or monocrystalline component.
  • directionally solidified structures generally refers to single crystals that have no grain boundaries or at most small angle grain boundaries, as well as stem crystal structures that have grain boundaries running in the longitudinal direction but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • cobalt-based protective coatings are also preferred nickel-based protective layers used such as Ni-10Cr-12Al-0,6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-O, 4Y-1, 5Re.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of Zr ⁇ 2, Y2Ü3-Zr ⁇ 2, ie it is not, partially ⁇ or fully stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • suitable coating methods e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may need to be stripped of protective layers after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid.
  • the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • the process of the invention for the gentle cleaning of partially corroded or oxidized surfaces with fluoride ions is explained in more detail below with reference to FIGS. 4-8.
  • the starting point is a partially cracked and corroded surface 1 of a blade in a gas turbine, as sketched in FIG.
  • FIG. 4 shows in a greatly simplified and schematic way the cross-section through the wall of a running shoe, as shown in FIG.
  • liquid polycarbosilazane Si-CN- (O)
  • the polycarbosilazane may also be applied by spraying or by dipping the component in the liquid polycarbosilazane.
  • penetrating into the crack 3 Polycarbosilazan can be removed again from the crack 3 before the later ceramification.
  • the coated surface is heated to about 150 to 250 0 C, in particular to about 200 0 C, wherein the polycarbosilazane crosslinks.
  • the crosslinking hardens the previously liquid polycarbosilazane, thereby ensuring that it is fixed on the surface during the subsequent process steps.
  • the use of polycarbosilazane is advantageous because this material remains amorphous in the crosslinked state up to 1100 0 C. In the crosslinked state, for example, the removal of the polycarbosilazane can also take place from the crack.
  • the polycarbosilazane is subjected to pyrolysis during which it crystallizes to a ceramic protective layer of SiC and SisN 4 .
  • the pyrolysis takes place at Temperatures above 1100 0 C, in particular at temperatures in the range of 1100 0 C to 1500 0 C and preferably at temperatures of about 1300 0 C.
  • the applied to the component surface ceramic protective layer 4 is outlined in Figure 5.
  • FIG. 5 shows the cross-sectional area 1 from FIG. 4, wherein the component surface 8 is now coated with SiC and Si 3N 4 .
  • FIG. 7 shows the cross-sectional area 1 from FIG. 5 after completion of the cleaning of the crack surface with fluoride ions.
  • the crack surface which is not covered with the ceramic protective layer 4 has wear phenomena 6 due to the fluoride ion cleaning. However, this is not a problem since the crack is subsequently subjected to a soldering or welding process to remove it.
  • the component surface 8, on which no repairs are necessary, however, has no degradation of the material properties due to the protection by the ceramic protective layer 4.
  • FIG. 8 shows the cross-sectional view of FIG. 7 after the polymer-based ceramic protective layer has been removed.
  • the crack 3 and the parts 6 attacked by the fluoride ions cleaned crack surface were repaired by welding.
  • the weld seam 7 is visible here. In the repaired component, the entire surface ultimately shows no signs of wear caused by the fluoride ion cleaning.
  • polycarbosilazane was used as a precursor in the present exemplary embodiment, other precursors are also suitable. Some suitable precursor and the resulting resultie ⁇ Governing ceramics are summarized in the table below. If the precursor contains no nitrogen, it follows ⁇ pyrolysis in a nitrogen atmosphere if the formation of Si 3 N 4 is desired. The various precursors can also be used in combination as a mixture.
  • the method according to the invention can also be used for cleaning corroded or oxidized surface sections which have no cracks.
  • Suchrapnab ⁇ sections are in the context of reprocessing by material application by soldering or welding process again ⁇ works.
  • those areas on which such a material application is to take place are cleaned with fluoride ions, while those areas in which a material application should not take place are protected according to the invention with the polymer-based ceramic protective layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Zur materialschonenden Reinigung von teilweise korrodierten bzw. oxidierten Oberflächen (9) mit Fluoridionen werden die nicht korrodierten bzw. nicht oxidierten Teile der Oberfläche (8) mit polymerbasierten Keramiken (Polymer Derived Ceramics) (4) vor Beginn der Reinigung beschichtet.

Description

Polymerbasierte Keramikbeschichtungen zum Schutz von Oberflächen vor Fluoridionen bei einem Reinigungsprozess
Die vorliegende Erfindung betrifft die materialschonende Reinigung von teilweise korrodierten bzw. oxidierten Oberflächen mit Fluoridionen. Daneben betrifft die Erfindung eine Verwendung von polymerbasierten Keramikbeschichtungen.
Die Komponenten eines Heißgaskanals, insbesondere die Turbinenschaufeln einer Gasturbine, sind während ihres Betriebes korrosiven Heißgasen und extremen mechanischen Belastungen ausgesetzt. Daher treten regelmäßig Korrosionen, Oxidationen und Risse an den Oberflächen dieser Komponenten auf. Vor einer Reparatur der Risse durch Löten oder Schweißen müssen die betroffenen Oberflächen und die Risse von Oxid- bzw. Korrosionsrückständen gereinigt werden. Diese Reinigung erfolgt typischerweise mit Hilfe von Fluoridionen. Allerdings werden dadurch auch die nicht oxidierten Teile der Oberflächen von den aggressiven Fluoridionen angegriffen. Die hierdurch verursachte Abnutzung führt insbesondere im Fall von Superlegie- rungen auf Nickelbasis zu einer erheblichen Verschlechterung der Materialeigenschaften der betroffenen Komponenten infolge der Fluoridionenreinigung . Die Abnutzung der Komponenten durch die Fluoridionen wirkt sich daher nachteilig auf die Betriebsdauer derselben aus.
Aufgrund der drohenden Materialverschlechterung kann die Wiederaufarbeitung rissiger Komponenten unter vorheriger Verwen- düng der Fluoridionenreinigung insbesondere nicht an rotierenden Komponenten durchgeführt werden, die im Betrieb einer Gasturbine besonders hohen mechanischen Belastungen ausgesetzt sind und daher hohen Anforderungen an die Festigkeit genügen müssen. Eine Verschlechterung der Materialeigenschaf- ten der Legierung aufgrund der Reinigung führt daher in der
Regel dazu, dass die entsprechende Turbinenschaufel vollständig ersetzt werden muss. Die daraus resultierende geringere Betriebsdauer rotierender Komponenten stellt einen erheblichen wirtschaftlichen Nachteil dar.
Zur Unterdrückung von Oxidation und Korrosion werden Turbi- nenschaufeln daher mit einer kontinuierlichen oxidationsfes- ten Wärmedämmbeschichtung überzogen, um eine Wiederaufarbeitung hinaus zu zögern. Das verwendete Material ist infolge von mechanischen Spannungen jedoch unvermeidbar einer Mikro- rissbildung unterworfen, sodass dadurch Oxidationen lediglich verzögert, nicht aber vermieden werden.
Um den Oxidationsschutz von Bauteilen aus Verbundwerkstoff zu verbessern werden diese in EP 0 550 305 Bl mit einem Gemisch aus einem feuerfesten Keramikmaterial und einer heilenden Verbindung beschichtet. Die Beschichtung erfolgt durch Aufbringen eines Polymerprecursors und anschließendes Transformieren des Precursors in die Keramik. Aber auch eine derartige Wärmedämmschicht würde ein Wiederaufarbeiten unter Verwendung von Fluoridionen zum Reinigen für Turbinenbauteile nicht überflüssig machen.
In US 6,645,926 B2 wird ein Maskierungssystem zur Verwendung bei einer Fluoridreinigung beschrieben. Dabei wird auf die zu schützenden Teile der Oberfläche zunächst eine mehrlagige Trennkomponente aufgetragen. Auf die Trennkomponente wird dann eine chromhaltige Maskierungsschicht aufgebracht. Hierbei dient die Maskierungsschicht zum Schutz der Oberfläche vor dem Einfluss der Fluoridionen. Die Trennkomponente soll ein leichtes Entfernen der Maskierungsschicht nach der Fluo- ridionenreinigung ermöglichen.
Die Trennkomponente enthält Kolloid-Kieselerde, entionisiertes Wasser, körnige Schmelztonerde und Aluminiumoxidpulver. Die Maskierungsschicht enthält Chrompulver, gemischt mit einem Bindemittel, einem Benetzungsmittel, einem Dickungsmittel und Wasser. Aufgabe der vorliegenden Erfindung ist es, ein alternatives Verfahren, welches die durch Fluoridionen verursachte Abnutzung von nicht oxidierten Teilen der Oberfläche zu vermeiden hilft, zur Verfügung zu stellen.
Es ist eine weitere Aufgabe der Erfindung, eine vorteilhafte Verwendung von polymerbasiertem Keramikmaterial zur Verfügung zu stellen.
Zur Lösung der genannten Aufgabe stellt die vorliegende Erfindung ein Verfahren zur materialschonenden Fluoridionenrei- nigung von teilweise korrodierten bzw. oxidierten Oberflächen nach Anspruch 1 sowie die Verwendung von polymerbasiertem Keramikmaterial nach Anspruch 15 zur Verfügung. Die abhängi- gen Ansprüche enthalten vorteilhafte Ausgestaltungen der Erfindung .
Im erfindungsgemäßen Verfahren zur materialschonenden Reinigung von teilweise korrodierten bzw. oxidierten Oberflächen mit Fluoridionen wird ein Schutz der nicht korrodierten bzw. oxidierten Teile der mit Fluoridionen zu reinigenden Oberfläche dadurch erreicht, dass die nicht korrodierten bzw. oxidierten Teile der Oberfläche vor Beginn der Reinigung mit einer polymerbasierten Keramik beschichtet werden. Polymerba- sierte Keramiken (Polymer Derived Ceramics) stellen eine
Materialklasse dar, die bei Raumtemperatur als gewöhnliche Polymere verwendet werden können (oder ggf. als Monomere, die vor der Keramisierung einer Polymerisation unterzogen werden) , insbesondere zur Oberflächenbeschichtung. Eine weitere typische Anwendung stellt die Benutzung als amorphe Hochtemperaturfasern dar, da diese Materialien bis hin zu 15000C amorph bleiben. Die polymerbasierte Keramik stellt einen hochwirksamen Schutz gegen den Angriff von Fluoridionen dar. In Form eines Polymerprecursors kann sie zudem einfach und definiert auf die zu schützenden Oberflächenbereiche aufgebracht werden. Das Beschichten der zu schützenden Oberflächen kann dadurch erfolgen, dass ein monomerer oder polymerer Precursor der polymerbasierten Keramik auf die Oberfläche aufgebracht wird und anschließend eine Keramisierung des Precursors erfolgt. Im Rahmen der Fluoridionenreinigung sind vor allem silizium- haltige Precursor und insbesondere solche, die SiC und Si3N4 bilden, geeignet.
Der Precursor kann Stickstoff enthalten. Sofern der Precursor keinen Stickstoff enthält, kann die spätere Keramisierung durch Pyrolyse in Stickstoff herbeigeführt werden.
Insbesondere sind folgende Precursor zum Durchführen der Be- schichtung geeignet: Polysilan [amorphe Phase: Si-C-(O), kri- stalline Phase: SiC und Si3N4 (Pyrolyse in N2), C], Polycarbo- silan [amorphe Phase: Si-C-(O), kristalline Phase: SiC und Si3N4 (Pyrolyse in N2), C], Polysilazan [amorphe Phase: Si-C- N, kristalline Phase: SiC und Si3N4] , Polyborosilazan [amorphe Phase: Si-B-C-N, kristalline Phase: SiC und Si3N4] oder Polycarbosilazan [amorphe Phase: Si-C-N-(O), kristalline Phase: SiC und Si3N4]. Besonders vielversprechend ist hier die Verwendung von Polycarbosilazan mit einem geringen Sauer- stoffanteil. Dieses Material bleibt bis 11000C amorph und kristallisiert in die fluoridionenresistenten Komponenten SiC und Si3N4.
Vor Beginn der Fluoridionenreinigung wird der zunächst flüssige oder streichfähige Precursor auf die nicht oxidierten Teile der zu reinigenden Oberfläche aufgetragen. Dies kann insbesondere dadurch erfolgen, dass der flüssige oder streichfähige Precursor auf die zu reinigende Oberfläche gestrichen, getropft oder gesprüht wird oder dass die zu reinigende Oberfläche in den flüssigen Precursor eingetaucht wird. Danach kann insbesondere ein monomerer Precursor zunächst durch eine Wärmebehandlung vernetzt oder teilvernetzt werden. Anschließend wird durch Pyrolyse die kristallisierte keramische Schutzschicht erzeugt (Keramisierung) . Die Pyrolyse kann insbesondere in einer Stickstoffatmosphäre durchgeführt werden. Im Rahmen des Pyrolyseprozesses verbrennen die organischen Elemente und das Material kristallisiert. Danach kann die Fluoridionenreinigung durchgeführt werden, wobei einerseits die Korrosions- und Oxidrückstände der nicht beschichteten Flächen effektiv entfernt werden, andererseits aber die beschichteten Flächen nicht den aggressiven Fluori- dionen ausgesetzt werden.
Nach Abschluss der Reinigung kann die polymerbasierte keramische Schutzschicht in einem alkalischen Bad oder in einem alkalischen Ultraschallbad durch zum Beispiel einen Strahlputz- prozess entfernt werden.
Gemäß der Erfindung werden also polymerbasierte Keramikmaterialien zur Verwendung zum Schutz von nicht zu reinigenden Oberflächenabschnitten vor Fluoridionen bei der Reinigung von Oberflächen mit Fluoridionen zur Verfügung gestellt. Diese können sich insbesondere dadurch auszeichnen, dass das poly- merbasierte Keramikmaterial ein siliziumhaltiges polymerbasiertes Keramikmaterial ist. Hierbei besteht die Möglichkeit, dass das polymerbasierte Keramikmaterial SiC und/oder Si3N4 bildende Precursor umfasst. Ferner kann das polymerbasierte Keramikmaterial Polysilan, Polycarbosilan, Polysilazan, PoIy- borosilazan oder Polycarbosilazan als Precursor umfassen.
Das hier vorgestellte Verfahren und die hier vorgeschlagene Verwendung verlängern die Betriebsdauer der betroffenen Komponenten erheblich und führen daher zu einer wesentlichen Kostenersparnis. Insbesondere können nun auch rotierende Komponenten eines Heißgaskanals ohne Verschlechterung des Ausgangsmaterials repariert werden.
Gegenüber dem in US 6,645,926 offenbarten Verfahren ist bei dem hier beschriebenen Verfahren lediglich eine Schutzschicht erforderlich. Es entfällt insbesondere das Auftragen einer mehrlagigen Trennschicht. Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beiliegenden Figuren.
Fig. 1 zeigt eine Gasturbine in einem Längsteilschnitt.
Fig. 2 zeigt eine Brennkammer einer Gasturbine.
Fig. 3 zeigt in perspektivischer Ansicht eine Laufschaufel oder Leitschaufel einer Strömungsmaschine.
Fig. 4 zeigt schematisch den Querschnitt durch eine
Oberfläche, die einen Riss aufweist und teilweise mit Korrosionsrückständen bedeckt ist.
Fig. 5 zeigt den Querschnitt aus Fig. 4, wobei die nicht korrodierten Teile der Oberfläche mit einer polymerbasierten Keramik beschichtet wurden.
Fig. 6 zeigt den Querschnitt aus Fig. 4, wobei die Oberfläche mit Fluoridionen gereinigt wird.
Fig. 7 zeigt den Querschnitt aus Fig. 4, wobei die unbe- schichteten Teile der Oberfläche infolge der Fluo- ridionenreinigung Abnutzungserscheinungen aufweisen .
Fig. 8 zeigt den Querschnitt aus Fig. 4 nachdem die polymerbasierten Keramikschutzschicht entfernt und der Riss repariert wurde.
Im folgenden werden die Figuren 1-8 detailliert beschrieben und das erfindungsgemäße Verfahren zur materialschonenden
Reinigung von teilweise korrodierten bzw. oxidierten Oberflächen mit Fluoridionen anhand der Figuren 4-8 näher erläutert. Die Figur 1 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt .
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige
Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108. Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufel- ringen gebildet. In Strömungsrichtung eines Arbeitsmediums
113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt) .
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 be- reitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet .
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden. Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur) .
Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superle- gierungen verwendet.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 Al, WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen Zusammensetzung der Legierungen Teil der Offenbarung.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium, Scandium (Sc) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 Al, die bzgl. der chemischen Zusammensetzung Teil dieser Offenbarung sein sollen.
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus Zrθ2, Y2Ü3-Zrθ2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht darge- stellt) und einen dem Leitschaufelfuß gegenüberliegenden
Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt .
Die Figur 2 zeigt eine Brennkammer 110 einer Gasturbine. Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Um- fangsrichtung um eine Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 10000C bis 16000C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermög- liehen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen. Jedes Hitzeschildelement 155 aus einer Legierung ist arbeits- mediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrAlX-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt.
Diese Schutzschichten können ähnlich der Turbinenschaufeln sein, also bedeutet beispielsweise MCrAlX: M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder
Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 Al, die bzgl. der chemischen Zusammensetzung der Legie- rung Teil dieser Offenbarung sein sollen.
Auf der MCrAlX kann noch eine beispielsweise keramische Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrC>2, Y2Ü3-Zrθ2, d.h. sie ist nicht, teilweise oder vollstän- dig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Kör- ner zur besseren Thermoschockbeständigkeit aufweisen.
Wiederaufarbeitung (Refurbishment) bedeutet, dass Hitzeschildelemente 155 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrah- len) . Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Hitzeschildele- mente 155 und ein erneuter Einsatz der Hitzeschildelemente 155.
Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.
Die Figur 3 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.
Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt) .
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt) .
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwal- benschwanzfuß sind möglich. Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.
Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet .
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 Al, WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen Zusammensetzung der Legierung Teil der Offenbarung.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprach- gebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Er- starrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Rich- tung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures) .
Solche Verfahren sind aus der US-PS 6,024,792 und der EP
0 892 090 Al bekannt; diese Schriften sind bzgl. des Erstarrungsverfahrens Teil der Offenbarung.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 Al, die bzgl. der chemischen Zusammensetzung der Legierung Teil dieser Offenbarung sein sollen.
Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer) .
Vorzugsweise weist die Schichtzusammensetzung Co-30Ni-28Cr- 8A1-0, 6Y-0, 7Si oder Co-28Ni-24Cr-10Al-0, 6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al- 0,6Y-3Re oder Ni-12Co-21Cr-llAl-0, 4Y-2Re oder Ni-25Co-17Cr- 10A1-0, 4Y-1, 5Re.
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus Zrθ2, Y2Ü3-Zrθ2, d.h. sie ist nicht, teil¬ weise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht . Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.
Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschich- ten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidations- schichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wie- derbeschichtung des Bauteils 120, 130 und ein erneuter Ein- satz des Bauteils 120, 130.
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein.
Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf. Im Folgenden wird das erfindungsgemäße Verfahren zur materialschonenden Reinigung von teilweise korrodierten bzw. oxi- dierten Oberflächen mit Fluoridionen anhand der Figuren 4-8 näher erläutert.
Ausgangspunkt ist eine teilweise rissige und korrodierte Oberfläche 1 einer Laufschaufel in einer Gasturbine, wie sie in Figur 4 skizziert ist. Die Figur 4 zeigt stark vereinfacht und schematisch den Querschnitt durch die Wand einer Lauf- schaufei, wie sie in Figur 3 gezeigt wurde. Man erkennt das Basismaterial 1 der Turbinenschaufel, die Oberfläche 8 nach dem Entfernen einer ursprünglich eventuell vorhandenen Wärme- dämmbeschichtung sowie einen Riss 3 mit einer Rissoberfläche 9, die Korrosions- und Oxidationsrückstände 2 aufweist.
Vor der Wiederaufarbeitung sind zunächst die Korrosions- und Oxidationsrückstände 2 zu entfernen. Zum Schutz der nicht korrodierten Bauteiloberfläche 8 wird diese mit flüssigem Polycarbosilazan (Si-C-N- (O) ) als Precursor für eine Keramik- beschichtung bestrichen. Alternativ kann das Polycarbosilazan auch durch Besprühen oder durch Eintauchen des Bauteils in das flüssige Polycarbosilazan aufgebracht werden. Dabei in den Riss 3 eindringendes Polycarbosilazan kann vor der späteren Keramisierung wieder aus dem Riss 3 entfernt werden. Anschließend wird die bestrichene Oberfläche auf ca. 150 bis 2500C, insbesondere auf ca. 2000C, erwärmt, wobei sich das Polycarbosilazan vernetzt. Durch die Vernetzung härtet das zuvor flüssige Polycarbosilazan aus, wodurch sichergestellt wird, dass dieses während der nachfolgenden Prozessschritte auf der Oberfläche fixiert ist. Die Verwendung von Polycarbosilazan ist vorteilhaft, da dieses Material im vernetzten Zustand bis hin zu 11000C amorph bleibt. Im vernetzten Zustand kann beispielsweise auch das Entfernen des Polycarbosilazans aus dem Riss erfolgen.
Nach der Vernetzung wird das Polycarbosilazan einer Pyrolyse unterzogen, während der es zu einer keramischen Schutzschicht aus SiC und SisN4 kristallisiert. Die Pyrolyse erfolgt bei Temperaturen über 11000C, insbesondere bei Temperaturen im Bereich von 11000C bis 1500 0C und vorzugsweise bei Temperaturen um ca. 13000C. Die auf die Bauteiloberfläche aufgebrachte keramische Schutzschicht 4 ist in Figur 5 skizziert. Die Figur 5 zeigt die Querschnittsfläche 1 aus Figur 4, wobei die Bauteiloberfläche 8 nun mit SiC und Si3N4 beschichtet ist .
Bei der anschließenden Reinigung der Rissoberfläche 9 mit Fluoridionen 5 werden die Korrosions- und Oxidrückstände 2 entfernt (siehe Figur 6) . Die nicht korrodierte Bauteiloberfläche ist während der Reinigung durch die Keramikschutzschicht 4 geschützt.
Während die Rissoberfläche 9 beim Reinigen durch den Einfluss der Fluoridionen angegriffen wurde, reagiert die keramischen Schutzschicht aus SiC und Si3N4 nicht mit den Fluoridionen, wodurch die Schutzwirkung für die Bauteiloberfläche 8 gegeben ist. Dies ist in Figur 7 skizziert. Die Figur 7 zeigt die Querschnittsfläche 1 aus Figur 5 nach Beendigung der Reinigung der Rissoberfläche mit Fluoridionen. Die Rissoberfläche, die nicht mit der Keramikschutzschicht 4 bedeckt ist, weist infolge der Fluoridionenreinigung Abnutzungserscheinungen 6 auf. Dies ist jedoch nicht weiter problematisch, da der Riss anschließend einem Löt- oder Schweißprozess unterzogen wird, um ihn zu beseitigen. Die Bauteiloberfläche 8, an der keine Reparaturen nötig sind, weist hingegen aufgrund des Schutzes durch die keramische Schutzschicht 4 keine Degradierung der Materialeigenschaften auf.
Nach der Fluoridionenreinigung wird die keramische Schutzschicht 4 in einem alkalischen Ultraschallbad durch einen Strahlputzprozess entfernt. Anschließend kann beim gereinigten Bauteil der Riss 3 durch Löten oder Schweißen 7 repariert werden. Das Ergebnis ist in Figur 8 skizziert. Die Figur 8 zeigt die Querschnittsansicht aus Figur 7, nachdem die polymerbasierte Keramikschutzschicht entfernt wurde. Der Riss 3 und die durch die Fluoridionen angegriffenen Teile 6 der ge- reinigten Rissoberfläche wurden durch Schweißen repariert. Man sieht hier die Schweißnaht 7. Im reparierten Bauteil zeigt die gesamte Oberfläche letztendlich keine durch die Fluoridionenreinigung verursachten Abnutzungserscheinungen.
Obwohl im vorliegenden Ausführungsbeispiel Polycarbosilazan als Precursor Verwendung fand, eignen sich auch andere Pre- cursor. Einige geeignete Precursor und die daraus resultie¬ renden Keramiken sind in der nachfolgenden Tabelle zusammengestellt. Falls der Precursor keinen Stickstoff enthält, er¬ folgt die Pyrolyse in einer Stickstoffatmosphäre, falls die Bildung von Si3N4 erwünscht ist. Die verschiedenen Precursor können auch kombiniert als Gemisch verwendet werden.
polymerbasierte amorphe kristalline Phase
Keramik Phase
Polysilan Si-C- (O) SiC, Si3N4, ( Pyrolyse in N2) , C
Polycarbosilan Si-C- (O) SiC, Si3N4, ( Pyrolyse in N2) , C
Polysilazan Si-C-N SiC, Si3N4
Polyborosilazan Si-B-C-N SiC, Si3N4
Polycarbosilazan Si-C-N- (O) SiC, Si3N4
Das erfindungsgemäße Verfahren kann auch zum Reinigen von korrodierten oder oxidierten Oberflächenabschnitten Verwendung finden, die keine Risse aufweisen. Solche Oberflächenab¬ schnitte werden im Rahmen der Wiederaufarbeitung durch Materialauftrag mittels Löt- oder Schweißverfahren wieder aufge¬ arbeitet. In einem solchen Fall werden diejenigen Bereiche, auf denen ein solcher Materialauftrag erfolgen soll, mit FIu- oridionen gereinigt, während diejenigen Bereiche, in denen ein Materialauftrag nicht erfolgen soll, erfindungsgemäß mit der polymerbasierten Keramikschutzschicht geschützt werden.

Claims

Patentansprüche
1. Verfahren zur materialschonenden Reinigung von teilweise korrodierten bzw. oxidierten Oberflächen (9) mit Fluoridio- nen,
gekennzeichnet durch
das Beschichten der nicht korrodierten bzw. nicht oxidierten Teile (8) der Oberfläche mit einer polymerbasierten Keramik (4) vor Beginn der Reinigung, wobei das Beschichten erfolgt, indem ein Precursor der polymerbasierten Keramik (4) aufgebracht wird und anschließend eine Keramisierung des Precursors erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
ein siliziumhaltiger Precursor verwendet wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass
eine SiC und/oder Si3N4 bildende polymerbasierte Keramik verwendet wird.
4. Verfahren nach einem der Ansprüche 2 - 3, dadurch gekennzeichnet, dass
der verwendete Precursor Stickstoff enthält.
5. Verfahren nach einem der Ansprüche 2 - 3, dadurch gekennzeichnet, dass
der verwendete Precursor keinen Stickstoff enthält und die Keramisierung durch Pyrolyse in Stickstoff herbeigeführt wird.
6. Verfahren nach einem der Ansprüche 2 - 5, dadurch gekennzeichnet, dass
Polysilan, Polycarbosilan, Polysilazan, Polyborosilazan oder Polycarbosilazan als Precursor verwendet wird.
7. Verfahren nach einem der Ansprüche 2 - 6, dadurch gekennzeichnet, dass
das Beschichten des Bauteils mit dem Precursor erfolgt, indem dieser in einer flüssigen oder streichfähigen Phase auf die zu schützenden Teile der Oberfläche (8) gestrichen, getropft oder gesprüht wird.
8. Verfahren nach einem der Ansprüche 2 - 6, dadurch gekennzeichnet, dass
die zu schützenden Teile der Oberfläche in den Precursor in seiner flüssigen Phase eingetaucht wird.
9. Verfahren nach einem der Ansprüche 2 - 8, dadurch gekennzeichnet, dass
der auf die zu schützenden Teile der Oberfläche aufge¬ brachte Precursor durch eine Wärmebehandlung vernetzt oder teilvernetzt wird.
10. Verfahren nach einem der Ansprüche 5 - 9, dadurch gekennzeichnet, dass
eine Pyrolyse zur Keramisierung angewendet wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass
die Pyrolyse in einer Stickstoffatmosphäre durchgeführt wird.
12. Verfahren nach einem der Ansprüche 1 - 11, dadurch gekennzeichnet, dass
nach Abschluss der Reinigung mit Fluoridionen (5) die poly- merbasierte keramische Schutzschicht (4) in einem alkalischen Bad entfernt wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass
nach Abschluss der Reinigung mit Fluoridionen (5) die polymerbasierte keramische Schutzschicht in einem alkalischen Ultraschallbad entfernt wird.
14. Verwendung von polymerbasierten Keramikmaterialien zum Schutz von nicht zu reinigenden Oberflächenabschnitten (8) vor Fluoridionen bei einem Reinigungsprozess für Oberflä- chen.
15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, dass
ein siliziumhaltiges polymerbasiertes Keramikmaterial als Beschichtungsmaterial benutzt wird.
16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass
das polymerbasierte Keramikmaterial SiC und/oder Si3N4 bildende Precursor umfasst.
17. Verwendung nach Anspruch 16, dadurch gekennzeichnet, dass
das polymerbasierte Keramikmaterial Polysilan, Polycarbosi- lan, Polysilazan, Polyborosilazan oder Polycarbosilazan als Precursor umfasst.
EP08718280A 2007-04-20 2008-03-27 Polymerbasierte keramikbeschichtungen zum schutz von oberflächen vor fluoridionen bei einem reinigungsprozess Withdrawn EP2150636A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08718280A EP2150636A1 (de) 2007-04-20 2008-03-27 Polymerbasierte keramikbeschichtungen zum schutz von oberflächen vor fluoridionen bei einem reinigungsprozess

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07008141A EP1983075A1 (de) 2007-04-20 2007-04-20 Polymerbasierte Keramikbeschichtungen zum Schutz von Oberflächen vor Fluoridionen bei einem Reinigungsprozess
EP08718280A EP2150636A1 (de) 2007-04-20 2008-03-27 Polymerbasierte keramikbeschichtungen zum schutz von oberflächen vor fluoridionen bei einem reinigungsprozess
PCT/EP2008/053654 WO2008128848A1 (de) 2007-04-20 2008-03-27 Polymerbasierte keramikbeschichtungen zum schutz von oberflächen vor fluoridionen bei einem reinigungsprozess

Publications (1)

Publication Number Publication Date
EP2150636A1 true EP2150636A1 (de) 2010-02-10

Family

ID=38515518

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07008141A Withdrawn EP1983075A1 (de) 2007-04-20 2007-04-20 Polymerbasierte Keramikbeschichtungen zum Schutz von Oberflächen vor Fluoridionen bei einem Reinigungsprozess
EP08718280A Withdrawn EP2150636A1 (de) 2007-04-20 2008-03-27 Polymerbasierte keramikbeschichtungen zum schutz von oberflächen vor fluoridionen bei einem reinigungsprozess

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07008141A Withdrawn EP1983075A1 (de) 2007-04-20 2007-04-20 Polymerbasierte Keramikbeschichtungen zum Schutz von Oberflächen vor Fluoridionen bei einem Reinigungsprozess

Country Status (3)

Country Link
US (1) US20100129544A1 (de)
EP (2) EP1983075A1 (de)
WO (1) WO2008128848A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG161130A1 (en) 2008-11-06 2010-05-27 Turbine Overhaul Services Pte Methods for repairing gas turbine engine components
DE102009010440B4 (de) 2009-02-26 2012-11-29 Henkel Ag & Co. Kgaa Baugruppe bestehend aus einer Außenschale und einem mit der Außenschale verbundenen Strukturbauteil und Verfahren zur Herstellung einer derartigen Baugruppe
US20150056394A1 (en) * 2013-08-21 2015-02-26 Nd Industries, Inc. Coating Composition and Anti-Spatter Coating Formed Therefrom
US9926517B2 (en) 2013-12-09 2018-03-27 General Electric Company Cleaning solution and methods of cleaning a turbine engine
US9957066B2 (en) 2015-02-13 2018-05-01 General Electric Company Detergent delivery methods and systems for turbine engines
BR102016021259B1 (pt) 2015-10-05 2022-06-14 General Electric Company Método e soluções de limpeza de um motor de turbina e composição de reagente

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB790672A (en) * 1956-03-28 1958-02-12 Norton Grinding Wheel Co Ltd Process of making recrystallized silicon carbide articles
US5128494A (en) * 1985-04-26 1992-07-07 Sri International Hydridosiloxanes as precursors to ceramic products
US5055431A (en) * 1985-04-26 1991-10-08 Sri International Polysilazanes and related compositions, processes and uses
US5198488A (en) * 1988-02-01 1993-03-30 Ethyl Corporation Preceramic compositions and ceramic products with silicon boride
DE4107108A1 (de) * 1991-03-06 1992-09-10 Bayer Ag Siliciumbornitridkeramik und vorlaeuferverbindungen, verfahren zu deren herstellung sowie deren verwendung
US5750643A (en) * 1993-05-18 1998-05-12 Sri International Dehydrocoupling treatment and hydrosilylation of silicon-containing polymers, and compounds and articles produced thereby
EP0662463B1 (de) * 1993-12-17 2001-06-13 Honda Giken Kogyo Kabushiki Kaisha Yttrium-enthaltendes Verbundpulver, gesinterter Verbundwerkstoff, und Verfahren zu dessen Herstellung
US5614054A (en) * 1994-12-22 1997-03-25 General Electric Company Process for removing a thermal barrier coating
EP0861927A1 (de) * 1997-02-24 1998-09-02 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
US6645926B2 (en) * 2001-11-28 2003-11-11 United Technologies Corporation Fluoride cleaning masking system
DE60310168T2 (de) * 2002-08-02 2007-09-13 Alstom Technology Ltd. Verfahren zum Schutz von Teilflächen eines Werkstücks
US6884476B2 (en) * 2002-10-28 2005-04-26 General Electric Company Ceramic masking material and application method for protecting turbine airfoil component surfaces during vapor phase aluminiding
US7575815B2 (en) * 2005-01-24 2009-08-18 Battelle Memorial Institute Aluminide coatings
EP1772594A1 (de) * 2005-10-04 2007-04-11 Siemens Aktiengesellschaft Verfahren zum Schützen von Öffnungen eines Bauteils bei einem Bearbeitungsprozess gegen ein Eindringen von Material und Polysiloxan enthaltende keramische Zusammensetzung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008128848A1 *

Also Published As

Publication number Publication date
US20100129544A1 (en) 2010-05-27
EP1983075A1 (de) 2008-10-22
WO2008128848A1 (de) 2008-10-30

Similar Documents

Publication Publication Date Title
EP1670612B1 (de) Verfahren zur herstellung eines lochs
EP1967312A1 (de) Verfahren zur Lötreparatur eines Bauteils unter Vakuum und einem eingestellten Sauerstoffpartialdruck
EP1707301B1 (de) Verfahren zum Aufbringen von Fasermatten auf die Oberfläche oder in eine Vertiefung eines Bauteiles
WO2008128848A1 (de) Polymerbasierte keramikbeschichtungen zum schutz von oberflächen vor fluoridionen bei einem reinigungsprozess
EP2907888A1 (de) Verdichterschaufel mit erosionsbeständiger Hartstoffbeschichtung
WO2007110277A1 (de) Verfahren zur funkenerosiven bearbeitung eines elektrisch nichtleitenden materials
EP1559485A1 (de) Verfahren zur Entfernung einer Schicht
WO2007048696A1 (de) Fic-reinigungsverfahren von oxidierten oder korrodierten bauteilen
EP1924395A1 (de) Nickelbasis-lotlegierung und verfahren zur reparatur eines bauteils
EP2373824A1 (de) Verfahren zum beschichten eines bauteils mit filmkühllöchern, und bauteil
WO2010086202A2 (de) Beschichtung mit thermischen und nicht-thermischen beschichtungsverfahren
WO2009118313A2 (de) Bauteil mit sich überlappenden schweissnähten und ein verfahren zur herstellung
EP2240293A1 (de) Verfahren zum aufschmelzen von gekrümmten oberflächen und eine vorrichtung
EP2230041B1 (de) Verfahren zur Herstellung eines Lochs
WO2008110454A1 (de) Lotlegierungen und verfahren zur reparatur eines bauteils
EP2583784A1 (de) Vorbereitung einer Schweißstelle vor dem Schweißen und Bauteil
WO2009053154A1 (de) Verfahren zur entfernung einer metallischen schicht mittels fic in einem zwischenschritt
WO2008138385A1 (de) Verfahren zum schweissen von turbinenbauteilen
EP2196555A1 (de) Pulvermischung aus Keramik und Glas, Bauteil mit Maskierung und Verfahren zur Anwendung
EP1811055A1 (de) Verfahren zur Herstellung eines Bauteils mit Löchern
EP1946881A1 (de) Zusatzwerkstoff zum Schweissen von Superlegierungen und Reparaturschweissverfahren mit Zusatzwerkstoff
EP1867749A1 (de) Verfahren zum Aufbringen von Material auf ein Bauteil
WO2007082787A1 (de) Schweissverfahren mit anschliessender diffusionsbehandlung
WO2011057829A1 (de) Verstärkte fluor-ionen-reinigung von verunreinigten rissen
EP1561839A1 (de) Verfahren zur Herstellung einer Schichtstruktur, enthaltend eine kolumnare, keramische Schicht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130719

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131001