EP2149688B1 - Motor vehicle cooling assembly - Google Patents

Motor vehicle cooling assembly Download PDF

Info

Publication number
EP2149688B1
EP2149688B1 EP09165605.8A EP09165605A EP2149688B1 EP 2149688 B1 EP2149688 B1 EP 2149688B1 EP 09165605 A EP09165605 A EP 09165605A EP 2149688 B1 EP2149688 B1 EP 2149688B1
Authority
EP
European Patent Office
Prior art keywords
heat transfer
exhaust gas
cooling
coolant
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09165605.8A
Other languages
German (de)
French (fr)
Other versions
EP2149688A2 (en
EP2149688A3 (en
Inventor
Georg Feldhaus
Eike Willers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Mahle Behr Kornwestheim GmbH
Original Assignee
Mahle Behr GmbH and Co KG
Mahle Behr Kornwestheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG, Mahle Behr Kornwestheim GmbH filed Critical Mahle Behr GmbH and Co KG
Publication of EP2149688A2 publication Critical patent/EP2149688A2/en
Publication of EP2149688A3 publication Critical patent/EP2149688A3/en
Application granted granted Critical
Publication of EP2149688B1 publication Critical patent/EP2149688B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/12Turbo charger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps

Definitions

  • the invention relates to a cooling arrangement of a motor vehicle, comprising a coolant circuit for guiding a coolant flow, a switched into the coolant circuit and integrated into an internal combustion engine first heat transfer device for cooling the internal combustion engine of the motor vehicle, a connected in the coolant circuit second heat transfer device for cooling an exhaust gas turbocharger of the motor vehicle and a in the coolant circuit connected third heat transfer device for cooling an exhaust gas recirculation of the motor vehicle.
  • Cooling arrangements for motor vehicles are known and generally serve to dissipate waste heat from various units of the motor vehicle, for example an internal combustion engine.
  • a coolant flow can be generated by means of a pump.
  • the DE 10 2004 021 551 A1 discloses a generic cooling system for a motor vehicle.
  • the object of the invention is to provide an improved cooling arrangement for a motor vehicle with an internal combustion engine, with an exhaust gas turbocharger and an exhaust gas recirculation, in particular to allow the fastest possible reaching an operating temperature of the internal combustion engine during a warm-up phase.
  • the object is with a cooling arrangement of a motor vehicle, with a coolant circuit for guiding a coolant flow, a switched into the coolant circuit and integrated into an internal combustion engine first heat transfer device for cooling the internal combustion engine of the motor vehicle, a second heat transfer device connected to the coolant circuit for cooling an exhaust gas turbocharger of the motor vehicle and a third heat transfer device connected to the coolant circuit for cooling an exhaust gas recirculation of the motor vehicle, characterized in that the first heat transfer device can be acted upon by a first partial flow of the coolant flow, independently of this the second and third heat transfer device can be acted upon by a second and third partial flow of the coolant circuit and wherein the first heat transfer device is connected in a first partial circuit of the coolant circuit, the second and third heat transfer device are connected in a second partial circuit of the coolant circuit and atieriffenstilistand in the first heat transfer device a Cooling of the exhaust gas recirculation and the exhaust gas turbocharger Wegba r is.
  • both the exhaust gas recirculation and the exhaust gas turbocharger can be acted upon independently of the first partial flow for cooling with the second and third partial flow of the coolant flow. It is for example possible to reduce the first partial flow, so that the fastest possible heating of the internal combustion engine to an operating temperature is possible and thereby the comparatively smaller temperature time constant and / or higher temperature differences components of the exhaust gas turbocharger and / or the exhaust gas recirculation for demand cooling with the second and to apply to the third partial flow of the coolant flow.
  • a cooling arrangement according to the invention is characterized in that the first heat transfer device is connected in a first partial circuit of the coolant circuit.
  • the first partial circuit can be operated and / or regulated independently of the remaining partial circuit.
  • An inventive cooling arrangement of the motor vehicle is also characterized in that the second and third heat transfer device connected in a second partial circuit of the coolant circuit are.
  • the first and second partial circuits of the coolant circuit can be operated, controlled and / or regulated independently of each other. It is thus possible to independently or more slowly cool the internal combustion engine depending on the accumulated waste heat than the exhaust gas turbocharger and the exhaust gas recirculation.
  • Another embodiment of the cooling arrangement of the motor vehicle is characterized in that the first heat transfer device is connected in parallel to the second and third heat transfer device.
  • the first partial flow and in the parallel branch of the second and third heat transfer device the second and the third partial flow of the coolant flow can be performed independently.
  • Another embodiment of the cooling arrangement of the motor vehicle is characterized in that the second heat transfer device is connected in parallel to the third heat transfer device.
  • apart from the first coolant flow not flowing through the engine share can be divided into the second and third partial flow.
  • Another embodiment of the cooling arrangement of the motor vehicle is characterized in that the second heat transfer device is connected in series with the third heat transfer device. In this interconnection, the second and the third partial flow are identical and are guided successively through the second and third heat transfer device.
  • a further embodiment of the cooling arrangement of the motor vehicle is characterized in that the first heat transfer device is switchable in series with a radiator for heating the motor vehicle.
  • the heating of the motor vehicle can advantageously be operated by means of the first partial flow of the coolant flow heated by the internal combustion engine of the motor vehicle. It is advantageous to control the heating independent of the second and third partial flow of the coolant flow possible.
  • a further exemplary embodiment of the cooling arrangement of the motor vehicle is characterized in that the first partial flow can be reduced to zero. In the internal combustion engine so a coolant cessation can be generated for rapid heating.
  • the object is also achieved with a motor vehicle having a cooling arrangement described above.
  • FIG. 1 shows a cooling arrangement 1 of a motor vehicle 3, not shown, with a coolant circuit 5 for guiding a coolant flow 7.
  • the coolant flow 7 is symbolized by means of drawn and marked with arrows lines.
  • a pump 9 For generating the coolant flow 7, a pump 9 is provided.
  • the pump 9 may be, for example, a mechanically and / or electrically driven pump. Downstream of the pump 9, the coolant circuit 5 branches into a first partial circuit 11 and a second Subcircuit 13. The coolant circuit 5 branches at a branch 15 into the first and second subcircuits 11, 13, which are brought together again at a junction 17.
  • the first part circuit 11 Downstream of the branch 15, the first part circuit 11 has a first heat transfer device 19, which is assigned to an internal combustion engine 21 of the motor vehicle 3 for cooling.
  • the first heat transfer device 19 is integrated into the internal combustion engine 21 so that the first partial circuit 11 is passed through the internal combustion engine 21.
  • the first subcircuit 11 Downstream of the first heat transfer device 19, the first subcircuit 11 has a map thermostat 23, which divides the first subcircuit 11 into a large cooling circuit 29 and a small cooling circuit 73 depending on the temperature and / or other parameters.
  • the heating circuit 25 has a not shown in detail, indicated by the reference numeral 31 radiator for heating an interior of the motor vehicle 3.
  • the engine oil cooling circuit 27 has an engine oil cooler 33 for cooling an engine oil of the internal combustion engine 21.
  • the valves 64 may be designed as shut-off valves, for example, only with an open-close functionality in a simple design.
  • the large cooling circuit 29 has a radiator for cooling the coolant flow 7 or a cooling partial flow 36 of the coolant flow 7 set by means of the map-controlled thermostat 23.
  • the cooler 35 can be acted upon with cooling air, which is indicated by arrows 37.
  • the radiator 35 may be assigned a fan 39.
  • the second partial circuit 13 Downstream of the branch 15, the second partial circuit 13 has a second heat transfer device 41, which is assigned to an exhaust gas turbocharger 43 for cooling.
  • the second partial circuit 13 downstream of the branch 15 has a third heat transfer device 45, which is assigned to cool an exhaust gas recirculation 47.
  • the second partial circuit 13 Upstream of the exhaust gas turbocharger 43, the second partial circuit 13 may have a follower pump 49, which can maintain a coolant flow even when the internal combustion engine and / or stationary pump 9, advantageously boiling, caused by stored in the components of the exhaust gas turbocharger 43, be reliably prevented can.
  • the second heat transfer device 41 is connected in parallel to the third heat transfer device 45, wherein the second heat transfer device 41 with a second partial flow 51 and the third heat transfer device 45 with a third partial flow 53 of the coolant flow 7 are acted upon.
  • the turbocharger 43 is connected to a charge air cooling 57 for cooling the compressed charge air.
  • the charge air flow generated by means of the exhaust gas turbocharger 43 is in FIG. 1 symbolized by square dotted lines.
  • the charge air cooler 57 can also be traversed by the symbolized by the arrows 37 cooling air flow for cooling the charge air.
  • the intercooler 57 may be connected upstream of the radiator 35.
  • An exhaust gas stream 61 leaving the internal combustion engine 21 is in FIG. 1 symbolized by circular dotted lines.
  • a first partial flow 71 of the exhaust gas stream 61 is fed into the exhaust gas turbocharger 43.
  • a second partial stream 72 of the exhaust gas stream 61 is supplied to the exhaust gas recirculation 47 for cooling the third heat transfer device 45 and admixed therefrom via an optionally recyclable exhaust gas recirculation valve 63 to the charge air stream 59.
  • the exhaust gas recirculation valve 63 regulates the exhaust gas mass flow, which is recycled.
  • the exhaust gas recirculation valve 63 is part of a valve arrangement 66 for controlling and / or controlling all partial flows of the coolant flow 7, the charge air flow 59 and the exhaust gas flow 61.
  • the charge air flow 59 is preferably set by a throttle flap 62.
  • the second and optionally the third partial flow 51 and 53 of the second and third heat transfer device 41 and 45 can be adjusted independently of a first partial flow 67 of the coolant flow 7 of the first heat transfer device 19. It is possible, for example, to reduce the first partial flow 67 to zero, during a warm-up phase of the internal combustion engine 21 this can be brought to an operating temperature as quickly as possible, at the same time a necessary cooling of the exhaust gas turbocharger 43 and the exhaust gas recirculation 47 by means of the second and third heat transfer device 41 and 45 is possible.
  • FIG. 2 essentially shows the in FIG. 1 shown cooling arrangement 1 of the motor vehicle 3.
  • the second heat transfer device 41 and the third heat transfer device 45 are connected in series, so that the second partial flow 51 and the third partial flow 53 of the refrigerant flow 7 are identical.
  • the control valve 65 of the valve arrangement 66 is connected in the second partial circuit 13.
  • the third heat transfer device 45 and a possible cooling 55 for the exhaust gas recirculation valve 63 are connected.
  • the follower pump 49 is connected in the second partial circuit 13.
  • the second heat transfer device 41 is connected, which in turn is associated downstream of the junction 17.
  • the fuel consumption of the internal combustion engine 21 can be reduced, wherein a comparatively large internal friction can be prevented by the fastest possible heating of the internal combustion engine 21, while still the exhaust gas recirculation 47 and the exhaust gas turbocharger 43 regardless of a possibly established coolant cessation in the first Heat transfer device 19 can be cooled.
  • the corresponding components of the exhaust gas turbocharger 43 and the exhaust gas recirculation 47 can be cooled constantly, wherein a Simmering of the coolant in the second and third heat transfer devices 41 and 45 is reliably avoidable.
  • the heating circuit 25 can be operated, since this is the first heat transfer device 19 downstream.
  • the exhaust gas turbocharger 43 and the exhaust gas recirculation 47 can be avoided.
  • the exhaust gas recirculation 47 and the exhaust gas turbocharger 43 independently of the sub-streams 51 and 53 of the coolant flow 7 acted upon. This ensures safe exhaust gas cooling.
  • the second partial circuit 13, which has the third heat transfer device for cooling the exhaust gas recirculation 47, is advantageously removed from the heating circuit 25.
  • the second partial circuit 13, regardless of the heating circuit 25, are flowed through by the coolant.
  • the branch between a pressure side of the pump 9 and an input in the first heat transfer device 19 is connected, where there is advantageously the greatest pressure.
  • the boiling limit within the third heat transfer device 45 can be shifted upward by the high pressure.
  • the junction 17 is located directly upstream of the pump 9.
  • the second heat transfer device 41 a cooling of the exhaust gas turbocharger 43, which also requires a constant admission to the coolant to ensure.
  • the exhaust gas recirculation valve 63 for controlling the recirculated exhaust gas stream 61 can also be cooled by means of the third partial flow 53 of the coolant flow 7, which can take place by means of a bypass.
  • the exhaust gas recirculation valve 63 for controlling the recirculated exhaust gas stream 61 may alternatively be upstream or downstream of the third heat transfer device 45.
  • the cooling of the exhaust gas recirculation 47 and / or the exhaust gas turbocharger 43 can be ensured even after a shutdown of the internal combustion engine 21 by means of the follower pump 49.
  • the follow-up pump 49 prevents boiling of the standing coolant by the heat stored in the components.
  • the pump 9 conveys the entire coolant volume flow 7 through the second partial circuit 13, in which the third heat transfer device 45 and optionally the second heat transfer device 41 are arranged. It is conceivable to provide only the third heat transfer device 45 for cooling the exhaust gas recirculation 47 and to dispense with cooling of the exhaust gas turbocharger 43. Since the second and / or third partial volume flow 51 and / or 53 of the coolant flow 7 can be too large, the control valve 65 of the valve arrangement 66 can optionally be switched downstream of the branch 15 into the second partial circuit 13 in order to reduce the coolant volume flow of the second partial circuit 13. By means of this control valve 65, the second partial circuit 13 can be throttled and, correspondingly, the second and third partial volume flows 51 and 53 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

Die Erfindung betrifft eine Kühlanordnung eines Kraftfahrzeuges, mit einem Kühlmittelkreislauf zum Führen eines Kühlmittelstromes, einer in den Kühlmittelkreislauf geschalteten und in einen Verbrennungsmotor integrierten ersten Wärmeübertragungsvorrichtung zum Kühlen des Verbrennungsmotors des Kraftfahrzeuges, einer in den Kühlmittelkreislauf geschalteten zweiten Wärmeübertragungsvorrichtung zum Kühlen eines Abgasturboladers des Kraftfahrzeuges und einer in den Kühlmittelkreislauf geschalteten dritten Wärmeübertragungsvorrichtung zum Kühlen einer Abgasrückführung des Kraftfahrzeuges.The invention relates to a cooling arrangement of a motor vehicle, comprising a coolant circuit for guiding a coolant flow, a switched into the coolant circuit and integrated into an internal combustion engine first heat transfer device for cooling the internal combustion engine of the motor vehicle, a connected in the coolant circuit second heat transfer device for cooling an exhaust gas turbocharger of the motor vehicle and a in the coolant circuit connected third heat transfer device for cooling an exhaust gas recirculation of the motor vehicle.

Kühlanordnungen für Kraftfahrzeuge sind bekannt und dienen im Allgemeinen zum Abführen von Abwärme verschiedener Aggregate des Kraftfahrzeuges, beispielsweise eines Verbrennungsmotors, Hierzu kann mittels einer Pumpe ein Kühlmittelstrom erzeugt werden. Ferner ist es bekannt, beispielsweise während einer Warmlaufphase des Verbrennungsmotors des Kraftfahrzeuges einen Durchfluss eines Kühlmittels durch einen Motorblock des Verbrennungsmotors zu verhindern, um ein rascheres Erreichen einer entsprechenden Betriebstemperatur zu ermöglichen.Cooling arrangements for motor vehicles are known and generally serve to dissipate waste heat from various units of the motor vehicle, for example an internal combustion engine. For this purpose, a coolant flow can be generated by means of a pump. Furthermore, it is known, for example during a warm-up phase of the internal combustion engine of the motor vehicle, to prevent a flow of a coolant through an engine block of the internal combustion engine, in order to enable a more rapid reaching of a corresponding operating temperature.

Die DE 10 2004 021 551 A1 offenbart ein gattungsgemäßes Kühlsystem für ein Kraftfahrzeug.The DE 10 2004 021 551 A1 discloses a generic cooling system for a motor vehicle.

Aufgabe der Erfindung ist es, eine verbesserte Kühlanordnung für ein Kraftfahrzeug mit einem Verbrennungsmotor, mit einem Abgasturbolader und einer Abgasrückführung, bereitzustellen, insbesondere ein schnellstmögliches Erreichen einer Betriebstemperatur des Verbrennungsmotors während einer Warmlaufphase zu ermöglichen.The object of the invention is to provide an improved cooling arrangement for a motor vehicle with an internal combustion engine, with an exhaust gas turbocharger and an exhaust gas recirculation, in particular to allow the fastest possible reaching an operating temperature of the internal combustion engine during a warm-up phase.

Die Aufgabe ist bei einer Kühlanordnung eines Kraftfahrzeuges, mit einem Kühlmittelkreislauf zum Führen eines Kühlmittelstromes, einer in den Kühlmittelkreislauf geschalteten und in einen Verbrennungsmotor integrierten ersten Wärmeübertragungsvorrichtung zum Kühlen des Verbrennungsmotors des Kraftfahrzeuges, einer in den Kühlmittelkreislauf geschalteten zweiten Wärmeübertragungsvorrichtung zum Kühlen eines Abgasturboladers des Kraftfahrzeuges und einer in den Kühlmittelkreislauf geschalteten dritten Wärmeübertragungsvorrichtung zum Kühlen einer Abgasrückführung des Kraftfahrzeuges, dadurch gelöst, dass die erste Wärmeübertragungsvorrichtung mit einem ersten Teilstrom des Kühlmittelstroms beaufschlagbar ist, wobei unabhängig davon die zweite und dritte Wärmeübertragungsvorrichtung mit einem zweiten und dritten Teilstrom des Kühlmitteistroms beaufschlagbar sind und wobei die erste Wärmeübertragungsvorrichtung in einen ersten Teilkreislauf des Kühlmittelkreislaufs geschaltet ist, die zweite und dritte Wärmeübertragungsvorrichtung in einen zweiten Teilkreislauf des Kühlmittelkreislaufes geschaltet sind und bei Kühlmittelstilistand in der ersten Wärmeübertragungsvorrichtung eine Kühlung der Abgasrückführung und des Abgasturboladers durchführbar ist.The object is with a cooling arrangement of a motor vehicle, with a coolant circuit for guiding a coolant flow, a switched into the coolant circuit and integrated into an internal combustion engine first heat transfer device for cooling the internal combustion engine of the motor vehicle, a second heat transfer device connected to the coolant circuit for cooling an exhaust gas turbocharger of the motor vehicle and a third heat transfer device connected to the coolant circuit for cooling an exhaust gas recirculation of the motor vehicle, characterized in that the first heat transfer device can be acted upon by a first partial flow of the coolant flow, independently of this the second and third heat transfer device can be acted upon by a second and third partial flow of the coolant circuit and wherein the first heat transfer device is connected in a first partial circuit of the coolant circuit, the second and third heat transfer device are connected in a second partial circuit of the coolant circuit and at Kühlmittelstilistand in the first heat transfer device a Cooling of the exhaust gas recirculation and the exhaust gas turbocharger durchba r is.

Vorteilhaft können sowohl die Abgasrückführung wie auch der Abgasturbolader unabhängig von dem ersten Teilstrom zur Kühlung mit dem zweiten und dritten Teilstrom des Kühlmittelstroms beaufschlagt werden. Es ist beispielsweise möglich, den ersten Teilstrom zu reduzieren, so dass eine möglichst schnelle Erwärmung des Verbrennungsmotors auf eine Betriebstemperatur möglich ist und dabei die vergleichsweise kleineren Temperaturzeitkonstanten und/oder höhere Temperaturdifferenzen aufweisenden Bauteile des Abgasturboladers und/oder der Abgasrückführung zur bedarfsgerechten Kühlung mit dem zweiten und dritten Teilstrom des Kühlmittelstroms zu beaufschlagen.Advantageously, both the exhaust gas recirculation and the exhaust gas turbocharger can be acted upon independently of the first partial flow for cooling with the second and third partial flow of the coolant flow. It is for example possible to reduce the first partial flow, so that the fastest possible heating of the internal combustion engine to an operating temperature is possible and thereby the comparatively smaller temperature time constant and / or higher temperature differences components of the exhaust gas turbocharger and / or the exhaust gas recirculation for demand cooling with the second and to apply to the third partial flow of the coolant flow.

Eine erfindungsgemäße Kühlanordnung ist dadurch gekennzeichnet, dass die erste Wärmeübertragungsvorrichtung in einen ersten Teilkreislauf des Kühlmittelkreislaufs geschaltet ist. Vorteilhaft kann der erste Teilkreislauf unabhängig von dem übrigen Teilkreislauf betrieben und/oder geregelt werden.A cooling arrangement according to the invention is characterized in that the first heat transfer device is connected in a first partial circuit of the coolant circuit. Advantageously, the first partial circuit can be operated and / or regulated independently of the remaining partial circuit.

Eine erfindungsgemäße Kühlanordnung des Kraftfahrzeuges ist auch dadurch gekennzeichnet, dass die zweite und dritte Wärmeübertragungsvorrichtung in einen zweiten Teilkreislauf des Kühlmittelkreislaufes geschaltet sind. Vorteilhaft können der erste und zweite Teilkreislauf des Kühlmittelkreislaufes unabhängig voneinander betrieben, gesteuert und/oder geregelt werden. Es ist also möglich, abhängig von der anfallenden Abwärme den Verbrennungsmotor unabhängig stärker oder schwächer zu kühlen als den Abgasturbolader und die Abgasrückführung.An inventive cooling arrangement of the motor vehicle is also characterized in that the second and third heat transfer device connected in a second partial circuit of the coolant circuit are. Advantageously, the first and second partial circuits of the coolant circuit can be operated, controlled and / or regulated independently of each other. It is thus possible to independently or more slowly cool the internal combustion engine depending on the accumulated waste heat than the exhaust gas turbocharger and the exhaust gas recirculation.

Ein weiteres Ausführungsbeispiel der Kühlanordnung des Kraftfahrzeuges ist dadurch gekennzeichnet, dass die erste Wärmeübertragungsvorrichtung parallel zu der zweiten und dritten Wärmeübertragungsvorrichtung geschaltet ist. In dem Parallelzweig der ersten Wärmeübertragungsvorrichtung kann der erste Teilstrom und in dem Parallelzweig der zweiten und dritten Wärmeübertragungsvorrichtung können der zweite und der dritte Teilstrom des Kühlmittelstroms unabhängig voneinander geführt werden.Another embodiment of the cooling arrangement of the motor vehicle is characterized in that the first heat transfer device is connected in parallel to the second and third heat transfer device. In the parallel branch of the first heat transfer device, the first partial flow and in the parallel branch of the second and third heat transfer device, the second and the third partial flow of the coolant flow can be performed independently.

Ein weiteres Ausführungsbeispiel der Kühlanordnung des Kraftfahrzeuges ist dadurch gekennzeichnet, dass die zweite Wärmeübertragungsvorrichtung parallel zu der dritten Wärmeübertragungsvorrichtung geschaltet ist. Vorteilhaft kann der abgesehen vom ersten Kühlmittelstrom nicht durch den Verbrennungsmotor strömende Anteil in den zweiten und dritten Teilstrom aufgeteilt werden.Another embodiment of the cooling arrangement of the motor vehicle is characterized in that the second heat transfer device is connected in parallel to the third heat transfer device. Advantageously, apart from the first coolant flow not flowing through the engine share can be divided into the second and third partial flow.

Ein weiteres Ausführungsbeispiel der Kühlanordnung des Kraftfahrzeuges ist dadurch gekennzeichnet, dass die zweite Wärmeübertragungsvorrichtung in Serie zu der dritten Wärmeübertragungsvorrichtung geschaltet ist. Bei dieser Verschaltung sind der zweite und der dritte Teilstrom identisch und werden nacheinander durch die zweite und dritte Wärmeübertragungsvorrichtung geführt.Another embodiment of the cooling arrangement of the motor vehicle is characterized in that the second heat transfer device is connected in series with the third heat transfer device. In this interconnection, the second and the third partial flow are identical and are guided successively through the second and third heat transfer device.

Ein weiteres Ausführungsbeispiel der Kühlanordnung des Kraftfahrzeuges ist dadurch gekennzeichnet, dass die erste Wärmeübertragungsvorrichtung in Serie mit einem Heizkörper zur Beheizung des Kraftfahrzeuges schaltbar ist. Die Heizung des Kraftfahrzeuges kann vorteilhaft mittels des von dem Verbrennungsmotor des Kraftfahrzeuges erwärmten ersten Teilstroms des Kühlmittelstroms betrieben werden. Vorteilhaft ist ein Ansteuern der Heizung unabhängig von dem zweiten und dritten Teilstrom des Kühlmittelstroms möglich.A further embodiment of the cooling arrangement of the motor vehicle is characterized in that the first heat transfer device is switchable in series with a radiator for heating the motor vehicle. The heating of the motor vehicle can advantageously be operated by means of the first partial flow of the coolant flow heated by the internal combustion engine of the motor vehicle. It is advantageous to control the heating independent of the second and third partial flow of the coolant flow possible.

Ein weiteres Ausführungsbeispiel der Kühlanordnung des Kraftfahrzeuges ist dadurch gekennzeichnet, dass der erste Teilstrom auf Null reduzierbar ist. Im Verbrennungsmotor kann also ein Kühlmittelstillstand zur raschen Erwärmung erzeugt werden.A further exemplary embodiment of the cooling arrangement of the motor vehicle is characterized in that the first partial flow can be reduced to zero. In the internal combustion engine so a coolant cessation can be generated for rapid heating.

Die Aufgabe ist außerdem mit einem Kraftfahrzeug mit einer vorab beschriebenen Kühlanordnung gelöst.The object is also achieved with a motor vehicle having a cooling arrangement described above.

Weitere Vorteile, Merkmale und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung ein Ausführungsbeispiel im Einzelnen beschrieben ist. Gleiche, ähnliche und/oder funktionsgleiche Teile sind mit gleichen Bezugszeichen versehen. Es zeigen:

Figur 1
eine Kühlanordnung eines Kraftfahrzeuges mit einem Verbrennungsmotor, einem Abgasturbolader und einer Abgasrückführung, wobei zur Kühlung des Abgasturbotaders und der Abgasrückführung ein zweiter und dritter Teilstrom parallel geführt sind und
Figur 2
im Wesentlichen die in Figur 1 gezeigte Kühleranordnung, wobei im Unterschied zur Kühlung der Abgasturbolader und die Abgasrückführung in Serie geschaltet und mit einem gemeinsamen Teilstrom beaufschlagt sind.
Further advantages, features and details will become apparent from the following description in which an embodiment is described in detail with reference to the drawings. The same, similar and / or functionally identical parts are provided with the same reference numerals. Show it:
FIG. 1
a cooling arrangement of a motor vehicle with an internal combustion engine, an exhaust gas turbocharger and an exhaust gas recirculation, wherein for cooling the exhaust gas turbocharger and the exhaust gas recirculation, a second and third partial flow are guided in parallel and
FIG. 2
essentially the in FIG. 1 shown cooler arrangement, wherein, in contrast to the cooling of the exhaust gas turbocharger and the exhaust gas recirculation connected in series and acted upon by a common partial flow.

Figur 1 zeigt eine Kühlanordnung 1 eines nicht näher dargestellten Kraftfahrzeuges 3 mit einem Kühlmittelkreislauf 5 zum Führen eines Kühlmittelstroms 7. Der Kühlmittelstrom 7 ist mittels durchgezeichneter und mit Pfeilen versehenen Linien symbolisiert. FIG. 1 shows a cooling arrangement 1 of a motor vehicle 3, not shown, with a coolant circuit 5 for guiding a coolant flow 7. The coolant flow 7 is symbolized by means of drawn and marked with arrows lines.

Zum Erzeugen des Kühlmittelstroms 7 ist eine Pumpe 9 vorgesehen. Bei der Pumpe 9 kann es sich beispielsweise um eine mechanisch und/oder elektrisch angetriebene Pumpe handeln. Stromabwärts der Pumpe 9 verzweigt sich der Kühlmittelkreislauf 5 in einen ersten Teilkreislauf 11 und einen zweiten Teilkreislauf 13. Der Kühimittelkreislauf 5 verzweigt sich an einer Verzweigung 15 in den ersten und zweiten Teilkreislauf 11, 13, die an einer Einmündung 17 wieder zusammengeführt werden.For generating the coolant flow 7, a pump 9 is provided. The pump 9 may be, for example, a mechanically and / or electrically driven pump. Downstream of the pump 9, the coolant circuit 5 branches into a first partial circuit 11 and a second Subcircuit 13. The coolant circuit 5 branches at a branch 15 into the first and second subcircuits 11, 13, which are brought together again at a junction 17.

Stromabwärts der Verzweigung 15 weist der erste Teilkreislauf 11 eine erste Wärmeübertragungsvorrichtung 19 auf, die zur Kühlung einem Verbrennungsmotor 21 des Kraftfahrzeuges 3 zugeordnet ist. Vorzugsweise ist die erste Wärmeübertragungsvorrichtung 19 so in den Verbrennungsmotor 21 integriert, dass der erste Teilkreislauf 11 durch den Verbrennungsmotor 21 hindurch geführt wird. Stromabwärts der ersten Wärmeübertragungsvorrichtung 19 weist der erste Teilkreislauf 11 einen Kennfeldthermostat 23 auf, der den ersten Teilkreislauf 11 abhängig von der Temperatur und/oder anderen Parametern in einen großen Kühlkreislauf 29 und einen kleinen Kühlkreislauf 73 aufteilt. Außerdem zweigen ein Motorölkühlkreislauf 27 und ein Heizkreislatrf 25 ungeregelt aus dem Kennfeldthermostat 23 ab. Der Heizkreislauf 25 weist einen nicht näher dargestellten, mit dem Bezugszeichen 31 angedeuteten Heizkörper zur Erwärmung eines Innenraums des Kraftfahrzeuges 3 auf. Der Motorölkühlkreislauf 27 weist einen Motorölkühler 33 zur Kühlung eines Motoröls des Verbrennungsmotors 21 auf. Zur Regelung und/oder Steuerung eines Kühlmittelstandes beziehungsweise jeweiliger Teilströme des Heizkreislaufs 25, des Matorölkühlkreislaufs 27 und/oder des kleinen Kühlkreislaufs 73 weisen diese jeweils ein Ventil 64 auf. Die Ventile 64 können bei einer einfachen Auslegung als Absperrventile, beispielsweise lediglich mit einer Auf-Zu-Funktionalität, ausgestaltet sein.Downstream of the branch 15, the first part circuit 11 has a first heat transfer device 19, which is assigned to an internal combustion engine 21 of the motor vehicle 3 for cooling. Preferably, the first heat transfer device 19 is integrated into the internal combustion engine 21 so that the first partial circuit 11 is passed through the internal combustion engine 21. Downstream of the first heat transfer device 19, the first subcircuit 11 has a map thermostat 23, which divides the first subcircuit 11 into a large cooling circuit 29 and a small cooling circuit 73 depending on the temperature and / or other parameters. In addition, an engine oil cooling circuit 27 and a Heizkreislatrf 25 unregulated branch off from the map thermostat 23. The heating circuit 25 has a not shown in detail, indicated by the reference numeral 31 radiator for heating an interior of the motor vehicle 3. The engine oil cooling circuit 27 has an engine oil cooler 33 for cooling an engine oil of the internal combustion engine 21. For controlling and / or controlling a coolant level or respective partial flows of the heating circuit 25, the Matorölkühlkreislaufs 27 and / or the small cooling circuit 73, these each have a valve 64. The valves 64 may be designed as shut-off valves, for example, only with an open-close functionality in a simple design.

Der große Kühlkreislauf 29 weist einen Kühler zum Kühlen des Kühlmittelstroms 7 beziehungsweise eines mittels des Kennfeldthermostats 23 eingestellten Kühlerteilstroms 36 des Kühlmittelstroms 7 auf. Der Kühler 35 ist mit Kühlluft beaufschlagbar, was mittels Pfeilen 37 angedeutet ist. Zur Erhöhung des Kühlluftstroms kann dem Kühler 35 ein Lüfter 39 zugeordnet sein.The large cooling circuit 29 has a radiator for cooling the coolant flow 7 or a cooling partial flow 36 of the coolant flow 7 set by means of the map-controlled thermostat 23. The cooler 35 can be acted upon with cooling air, which is indicated by arrows 37. To increase the cooling air flow, the radiator 35 may be assigned a fan 39.

Stromabwärts der Verzweigung 15 weist der zweite Teilkreislauf 13 eine zweite Wärmeübertragungsvorrichtung 41, die zur Kühlung einem Abgasturbolader 43 zugeordnet ist, auf. Außerdem weist der zweite Teilkreislauf 13 stromabwärts der Verzweigung 15 eine dritte Wärmeübertragungsvorrichtung 45 auf, die zur Kühlung einer Abgasrückführung 47 zugeordnet ist. Stromaufwärts des Abgasturboladers 43 kann der zweite Teilkreislauf 13 eine Nachlaufpumpe 49 aufweisen, die auch bei stehendem Verbrennungsmotor und/oder stillstehender Pumpe 9 einen Kühlmittelstrom aufrecht erhalten kann, wobei vorteilhaft ein Sieden, hervorgerufen von in den Bauteilen des Abgasturboladers 43 gespeicherter Wärme, sicher verhindert werden kann.Downstream of the branch 15, the second partial circuit 13 has a second heat transfer device 41, which is assigned to an exhaust gas turbocharger 43 for cooling. In addition, the second partial circuit 13 downstream of the branch 15 has a third heat transfer device 45, which is assigned to cool an exhaust gas recirculation 47. Upstream of the exhaust gas turbocharger 43, the second partial circuit 13 may have a follower pump 49, which can maintain a coolant flow even when the internal combustion engine and / or stationary pump 9, advantageously boiling, caused by stored in the components of the exhaust gas turbocharger 43, be reliably prevented can.

Die zweite Wärmeübertragungsvorrichtung 41 ist parallel geschaltet zu der dritten Wärmeübertragungsvorrichtung 45, wobei die zweite Wärmeübertragungsvorrichtung 41 mit einem zweiten Teilstrom 51 und die dritte Wärmeübertragungsvorrichtung 45 mit einem dritten Teilstrom 53 des Kühlmittelstroms 7 beaufschlagbar sind.The second heat transfer device 41 is connected in parallel to the third heat transfer device 45, wherein the second heat transfer device 41 with a second partial flow 51 and the third heat transfer device 45 with a third partial flow 53 of the coolant flow 7 are acted upon.

Der Abgasturbolader 43 ist mit einer Ladeluftkühlung 57 zur Kühlung der komprimierten Ladeluft verschaltet Der mittels des Abgasturboladers 43 erzeugte Ladeluftstrom ist in Figur 1 mittels quadratisch gepunkteten Linien symbolisiert. Der Ladeluftkühler 57 kann zur Kühlung der Ladeluft ebenfalls von dem mittels der Pfeile 37 symbolisierten Kühlluftstrom durchströmt werden. Dazu kann der Ladeluftkühler 57 dem Kühler 35 vorgeschaltet sein.The turbocharger 43 is connected to a charge air cooling 57 for cooling the compressed charge air. The charge air flow generated by means of the exhaust gas turbocharger 43 is in FIG. 1 symbolized by square dotted lines. The charge air cooler 57 can also be traversed by the symbolized by the arrows 37 cooling air flow for cooling the charge air. For this purpose, the intercooler 57 may be connected upstream of the radiator 35.

Ein den Verbrennungsmotor 21 verlassender Abgasstrom 61 ist in Figur 1 mittels kreisförmig gepunkteten Linien symbolisiert.An exhaust gas stream 61 leaving the internal combustion engine 21 is in FIG. 1 symbolized by circular dotted lines.

Ein erster Teilstrom 71 des Abgasstroms 61 wird in den Abgasturbolader 43 zugeführt. Ein zweiter Teilstrom 72 des Abgasstroms 61 wird zur Kühlung der dritten Wärmeübertragungsvorrichtung 45 der Abgasrückführung 47 zugeführt und von dort über ein gegebenenfalls kühlbares Abgasrückführventil 63 dem Ladeluftstrom 59 beigemischt. Das Abgasrückführventil 63 regelt den Abgasmassenstrom, der rückgeführt wird. Das Abgasrückführventil 63 ist Teil einer Ventilanordnung 66zur Regelung und/oder Steuerung sämtlicher Teilströme des Kühlmittelstroms 7, des Ladeluftstroms 59 sowie des Abgasstroms 61. Der Ladeluftstrom 59 wird vorzugsweise durch eine Drosselklappe 62 eingestellt.A first partial flow 71 of the exhaust gas stream 61 is fed into the exhaust gas turbocharger 43. A second partial stream 72 of the exhaust gas stream 61 is supplied to the exhaust gas recirculation 47 for cooling the third heat transfer device 45 and admixed therefrom via an optionally recyclable exhaust gas recirculation valve 63 to the charge air stream 59. The exhaust gas recirculation valve 63 regulates the exhaust gas mass flow, which is recycled. The exhaust gas recirculation valve 63 is part of a valve arrangement 66 for controlling and / or controlling all partial flows of the coolant flow 7, the charge air flow 59 and the exhaust gas flow 61. The charge air flow 59 is preferably set by a throttle flap 62.

Mittels eines Regelventils 65 der Ventilanordnung 66 können der zweite und gegebenenfalls der dritte Teilstrom 51 und 53 der zweiten und dritten Wärmeübertragungsvorrichtung 41 und 45 unabhängig von einem ersten Teilstrom 67 des Kühlmittelstroms 7 der ersten Wärmeübertragungsvorrichtung 19 eingestellt werden. Dabei ist es beispielsweise möglich, den ersten Teilstrom 67 auf Null zu reduzieren, wobei während einer Warmlaufphase des Verbrennungsmotors 21 dieser möglichst schnell auf eine Betriebstemperatur gebracht werden kann, wobei gleichzeitig eine notwendige Kühlung des Abgasturboladers 43 und der Abgasrückführung 47 mittels der zweiten und dritten Wärmeübertragungsvorrichtung 41 und 45 möglich ist.By means of a control valve 65 of the valve arrangement 66, the second and optionally the third partial flow 51 and 53 of the second and third heat transfer device 41 and 45 can be adjusted independently of a first partial flow 67 of the coolant flow 7 of the first heat transfer device 19. It is possible, for example, to reduce the first partial flow 67 to zero, during a warm-up phase of the internal combustion engine 21 this can be brought to an operating temperature as quickly as possible, at the same time a necessary cooling of the exhaust gas turbocharger 43 and the exhaust gas recirculation 47 by means of the second and third heat transfer device 41 and 45 is possible.

Figur 2 zeigt im Wesentlichen die in Figur 1 gezeigte Kühlanordnung 1 des Kraftfahrzeuges 3. Im Folgenden wird lediglich auf die Unterschiede eingegangen. Im Unterschied sind die zweite Wärmeübertragungsvorrichtung 41 und die dritte Wärmeübertragungsvorrichtung 45 in Serie geschaltet, so dass der zweite Teilstrom 51 und der dritte Teilstrom 53 des Kühlmittelstroms 7 identisch sind. Stromabwärts der Verzweigung 15 ist das Regelventil 65 der Ventilanordnung 66 in den zweiten Teilkreislauf 13 geschaltet. Weiter stromabwärts sind die dritte Wärmeübertragungsvorrichtung 45 sowie eine mögliche Kühlung 55 für das Abgasrückführventil 63 geschaltet. Stromabwärts der dritten Wärmeübertragungsvorrichtung 45 ist die Nachlaufpumpe 49 in den zweiten Teilkreislauf 13 geschaltet. Stromabwärts der Nachlaufpumpe 49 ist die zweite Wärmeübertragungsvorrichtung 41 geschaltet, die ihrerseits stromabwärts der Einmündung 17 zugeordnet ist. FIG. 2 essentially shows the in FIG. 1 shown cooling arrangement 1 of the motor vehicle 3. In the following, only the differences are discussed. In contrast, the second heat transfer device 41 and the third heat transfer device 45 are connected in series, so that the second partial flow 51 and the third partial flow 53 of the refrigerant flow 7 are identical. Downstream of the branch 15, the control valve 65 of the valve arrangement 66 is connected in the second partial circuit 13. Further downstream, the third heat transfer device 45 and a possible cooling 55 for the exhaust gas recirculation valve 63 are connected. Downstream of the third heat transfer device 45, the follower pump 49 is connected in the second partial circuit 13. Downstream of the follower pump 49, the second heat transfer device 41 is connected, which in turn is associated downstream of the junction 17.

Vorteilhaft kann mittels der Kühlanordnung 1 der Kraftstoffverbrauch des Verbrennungsmotors 21 gesenkt werden, wobei eine vergleichsweise große innere Reibung durch eine möglichst schnelle Erwärmung des Verbrennungsmotors 21 unterbunden werden kann, wobei dennoch die Abgasrückführung 47 und der Abgasturbolader 43 unabhängig von einem möglicherweise hergestellten Kühlmittelstillstand in der ersten Wärmeübertragungsvorrichtung 19 gekühlt werden können. Trotz der hohen Abgastemperaturen des Abgasstroms 61 können die entsprechenden Bauteile des Abgasturboladers 43 und der Abgasrückführung 47 konstant gekühlt werden, wobei ein Sieden des Kühlmittels in den zweiten und dritten Wärmeübertragungsvorrichtungen 41 und 45 sicher vermeidbar ist.Advantageously, by means of the cooling arrangement 1, the fuel consumption of the internal combustion engine 21 can be reduced, wherein a comparatively large internal friction can be prevented by the fastest possible heating of the internal combustion engine 21, while still the exhaust gas recirculation 47 and the exhaust gas turbocharger 43 regardless of a possibly established coolant cessation in the first Heat transfer device 19 can be cooled. Despite the high exhaust gas temperatures of the exhaust gas stream 61, the corresponding components of the exhaust gas turbocharger 43 and the exhaust gas recirculation 47 can be cooled constantly, wherein a Simmering of the coolant in the second and third heat transfer devices 41 and 45 is reliably avoidable.

Vorteilhaft kann bei Bedarf, unabhängig von der zweiten und dritten Wärmeübertragungsvorrichtung 41, 45, der Heizkreislauf 25 betrieben werden, da dieser der ersten Wärmeübertragungsvorrichtung 19 nachgeschaltet ist. Vorteilhaft kann mittels der Parallelschaltung des ersten Teilkreislaufes 11 und des zweiten Teilkreislaufes 13 eine Zwangskoppelung der Kühlmittelströme durch den Verbrennungsmotor 21, den Abgasturbolader 43 und die Abgasrückführung 47 vermieden werden. Vorteilhaft sind die Abgasrückführung 47 und der Abgasturbolader 43, unabhängig davon mit den Teilströmen 51 und 53 des Kühlmittelstroms 7 beaufschlagbar. Dadurch wird eine sichere Abgaskühlung gewährleistet. Vorteilhaft ist der zweite Teilkreislauf 13, der die dritte Wärmeübertragungsvorrichtung zur Kühlung der Abgasrückführung 47 aufweist, aus dem Heizkreislauf 25 herausgelöst. Vorteilhaft kann der zweite Teilkreislauf 13, unabhängig von dem Heizkreislauf 25, mit dem Kühlmittel durchströmt werden. Vorteilhaft ist die Verzweigung zwischen einer Druckseite der Pumpe 9 und einem Eingang in die erste Wärmeübertragungsvorrichtung 19 geschaltet, wobei dort vorteilhaft der größte Druck herrscht. Vorteilhaft kann durch den hohen Druck die Siedegrenze innerhalb der dritten Wärmeübertragungsvorrichtung 45 nach oben verschoben werden. Die Einmündung 17 befindet sich direkt stromaufwärts der Pumpe 9.Advantageously, if required, independently of the second and third heat transfer device 41, 45, the heating circuit 25 can be operated, since this is the first heat transfer device 19 downstream. Advantageously, by means of the parallel connection of the first subcircuit 11 and the second subcircuit 13, a forced coupling of the coolant flows through the internal combustion engine 21, the exhaust gas turbocharger 43 and the exhaust gas recirculation 47 can be avoided. Advantageously, the exhaust gas recirculation 47 and the exhaust gas turbocharger 43, independently of the sub-streams 51 and 53 of the coolant flow 7 acted upon. This ensures safe exhaust gas cooling. The second partial circuit 13, which has the third heat transfer device for cooling the exhaust gas recirculation 47, is advantageously removed from the heating circuit 25. Advantageously, the second partial circuit 13, regardless of the heating circuit 25, are flowed through by the coolant. Advantageously, the branch between a pressure side of the pump 9 and an input in the first heat transfer device 19 is connected, where there is advantageously the greatest pressure. Advantageously, the boiling limit within the third heat transfer device 45 can be shifted upward by the high pressure. The junction 17 is located directly upstream of the pump 9.

Vorteilhaft kann auch die zweite Wärmeübertragungsvorrichtung 41 eine Kühlung des Abgasturboladers 43, der ebenfalls eine ständige Beaufschlagung mit dem Kühlmittel benötigt, gewährleisten.Advantageously, the second heat transfer device 41, a cooling of the exhaust gas turbocharger 43, which also requires a constant admission to the coolant to ensure.

Vorteilhaft kann das Abgasrückführventil 63 zur Regelung des rückgeführten Abgasstroms 61 ebenfalls mittels des dritten Teilstroms 53 des Kühlmittelstroms 7 gekühlt werden, was mittels eines Bypasses erfolgen kann. Das Abgasrückführventil 63 zur Regelung des rückgeführten Abgasstroms 61 kann alternativ der dritten Wärmeübertragungsvorrichtung 45 vor- oder nachgeschaltet sein. Vorteilhaft kann die Kühlung der Abgasrückführung 47 und/oder des Abgasturboladers 43 auch nach einem Abstellen des Verbrennungsmotors 21 mittels der Nachlaufpumpe 49 gewährleistet werden. Die Nachlaufpumpe 49 verhindert ein Sieden des stehenden Kühlmittel durch die in den Komponenten gespeicherte Wärme. Bei einem Kühlmittelstillstand in dem Verbrennungsmotor 21 fördert die Pumpe 9 den gesamten Kühlmittelvolumenstrom 7 durch den zweiten Teilkreislauf 13, in dem die dritte Wärmeübertragungsvorrichtung 45 und optional die zweite Wärmeübertragungsvorrichtung 41 angeordnet sind. Es ist denkbar, nur die dritte Wärmeübertragungsvorrichtung 45 zur Kühlung der Abgasrückführung 47 vorzusehen und auf eine Kühlung des Abgasturboladers 43 zu verzichten. Da der zweite und/oder dritte Teilvolumenstrom 51 und/oder 53 des Kühlmittelstroms 7 zu groß sein können, kann optional das Regelventil 65 der Ventilanordnung 66 zur Reduzierung des Kühlmittelvolumenstroms des zweiten Teilkreislaufes 13 stromabwärts der Verzweigung 15 in den zweiten Teilkreislauf 13 geschaltet werden. Durch dieses Regelventil 65 kann der zweite Teilkreislauf 13 angedrosselt und entsprechend der zweite und dritte Teilvolumenstrom 51 und 53 reduziert werden.Advantageously, the exhaust gas recirculation valve 63 for controlling the recirculated exhaust gas stream 61 can also be cooled by means of the third partial flow 53 of the coolant flow 7, which can take place by means of a bypass. The exhaust gas recirculation valve 63 for controlling the recirculated exhaust gas stream 61 may alternatively be upstream or downstream of the third heat transfer device 45. Advantageously, the cooling of the exhaust gas recirculation 47 and / or the exhaust gas turbocharger 43 can be ensured even after a shutdown of the internal combustion engine 21 by means of the follower pump 49. The Follow-up pump 49 prevents boiling of the standing coolant by the heat stored in the components. In the event of a coolant standstill in the internal combustion engine 21, the pump 9 conveys the entire coolant volume flow 7 through the second partial circuit 13, in which the third heat transfer device 45 and optionally the second heat transfer device 41 are arranged. It is conceivable to provide only the third heat transfer device 45 for cooling the exhaust gas recirculation 47 and to dispense with cooling of the exhaust gas turbocharger 43. Since the second and / or third partial volume flow 51 and / or 53 of the coolant flow 7 can be too large, the control valve 65 of the valve arrangement 66 can optionally be switched downstream of the branch 15 into the second partial circuit 13 in order to reduce the coolant volume flow of the second partial circuit 13. By means of this control valve 65, the second partial circuit 13 can be throttled and, correspondingly, the second and third partial volume flows 51 and 53 can be reduced.

Zusammenfassend ist es möglich, eine gekühlte Abgasrückführung 47 bei gleichzeitigem Kühlmittelstillstand in der ersten Wärmeübertragungsvorrichtung zur Kühlung des Verbrennungsmotors 21 vorzusehen. Vorteilhaft können dadurch die Potenziale zur Kraftstoffverbrauchsreduzierung durch Kühlmittelstillstand und zur Kraftstoffverbrauchsreduzierung und Emissionsminderung durch die gekühlte Abgasrückführung 47 unabhängig voneinander genutzt werden.In summary, it is possible to provide a cooled exhaust gas recirculation 47 with simultaneous coolant standstill in the first heat transfer device for cooling the internal combustion engine 21. Advantageously, the potentials for fuel consumption reduction due to coolant standstill and for fuel consumption reduction and emission reduction by the cooled exhaust gas recirculation 47 can be used independently of each other.

Claims (7)

  1. A cooling arrangement (1) of a vehicle (3), comprising:
    - a coolant circuit (5) for carrying a coolant flow (7).
    - a first heat transfer system (19) which is connected into the coolant circuit (5) and integrated into a combustion engine (21) for cooling the combustion engine (21) of the vehicle (3),
    - a second heat transfer system (41) which is connected into the coolant circuit (5) for cooling an exhaust gas turbocharger (43) of the vehicle (3), and
    - a third heat transfer system (45) which is connected into the coolant circuit (5) for cooling an exhaust gas recirculation (47) of the vehicle (3),
    characterised in that a first partial flow (67) of the coolant flow (7) can be applied to the first heat transfer system (19), wherein irrespective thereof a second and third partial flow (51, 53) of the coolant flow (7) can be applied to the second and third heat transfer systems (41, 45),
    wherein the first heat transfer system (19) is connected into a first partial circuit (11) of the coolant circuit (5),
    the second and third heat transfer systems (41, 45) are connected into a second partial circuit (13) of the coolant circuit (5) and the exhaust gas recirculation and the exhaust gas turbocharger can be cooled in the case of a coolant standstill in the first heat transfer system.
  2. The cooling arrangement according to one of the preceding claims, characterised in that the first heat transfer system (19) is connected in parallel to the second and third heat transfer systems (41, 45).
  3. The cooling arrangement according to one of the preceding claims, characterised in that the second heat transfer system (41) is connected in parallel to the third heat transfer system (45).
  4. The cooling arrangement according to one of the preceding claims 1 to 3, characterised in that the second heat transfer system (41) is connected in series to the third heat transfer system (45).
  5. The cooling arrangement according to one of the preceding claims, characterised in that the first heat transfer system can be connected in series to a heater (31) for heating the vehicle (3).
  6. The cooling arrangement according to one of the preceding claims, characterised in that the first partial flow (67) can be reduced to zero.
  7. The vehicle (3) with a cooling arrangement (1) according to one of the preceding claims.
EP09165605.8A 2008-08-01 2009-07-15 Motor vehicle cooling assembly Not-in-force EP2149688B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810035880 DE102008035880A1 (en) 2008-08-01 2008-08-01 Cooling arrangement of a motor vehicle

Publications (3)

Publication Number Publication Date
EP2149688A2 EP2149688A2 (en) 2010-02-03
EP2149688A3 EP2149688A3 (en) 2012-02-01
EP2149688B1 true EP2149688B1 (en) 2016-04-27

Family

ID=41403030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09165605.8A Not-in-force EP2149688B1 (en) 2008-08-01 2009-07-15 Motor vehicle cooling assembly

Country Status (2)

Country Link
EP (1) EP2149688B1 (en)
DE (1) DE102008035880A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063265A1 (en) * 2010-12-16 2012-06-21 Mahle International Gmbh Intercooler
US8689555B2 (en) * 2011-04-14 2014-04-08 GM Global Technology Operations LLC System and method for cooling a turbocharger
DE102012217229A1 (en) * 2012-09-25 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Coolant circuit for internal combustion engine mounted in vehicle, has connecting line which connects branch between coolant cooler and shut-off element to secondary coolant radiator
FR3040433A1 (en) * 2015-08-24 2017-03-03 Peugeot Citroen Automobiles Sa TURBO-PRESSURIZED MOTOR VEHICLE ENGINE WITH COOLING SYSTEM DEDICATED TO TURBOCHARGER

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943967A (en) * 1982-09-03 1984-03-12 Nippon Soken Inc Water flow device for operation of heater in internal- combustion engine
DE4104093A1 (en) * 1991-02-11 1992-08-13 Behr Gmbh & Co COOLING SYSTEM FOR A COMBUSTION ENGINE VEHICLE
DE19633190B4 (en) * 1996-08-17 2004-02-26 Daimlerchrysler Ag Cooling system for an internal combustion engine
DE10025500B4 (en) * 2000-05-23 2013-05-29 Bosch Mahle Turbo Systems Gmbh & Co. Kg Internal combustion engine with cooling circuit and a connected to this heat exchanger
DE102004021551A1 (en) * 2004-05-03 2006-02-09 Daimlerchrysler Ag Cooling system especially for vehicle has a main cooling circuit and with several parallel circuits with different performance to cool accessories
DE102006020951A1 (en) * 2005-07-28 2007-02-01 Audi Ag Cooling system for a vehicle and method for operating a cooling system

Also Published As

Publication number Publication date
EP2149688A2 (en) 2010-02-03
DE102008035880A1 (en) 2010-02-04
EP2149688A3 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
EP1948917B1 (en) Circulation system, mixing element
DE102014201678A1 (en) Intercooler system with integrated heating device
DE102015216420B4 (en) Cooling arrangement for charge air cooling
WO2014177513A1 (en) Cooling circuit
DE102013206082A1 (en) Device and method for engine warm-up
DE102011078088A1 (en) cooling system
EP2149688B1 (en) Motor vehicle cooling assembly
DE102018104105A1 (en) Internal combustion engine and motor vehicle
DE102004021551A1 (en) Cooling system especially for vehicle has a main cooling circuit and with several parallel circuits with different performance to cool accessories
EP3530899A1 (en) Cooling system and combustion engine
DE102010015107B4 (en) Coolant circuit for an internal combustion engine of a motor vehicle
EP3853453B1 (en) Cooling system and method for configuring a cooling system
DE102007061495A1 (en) Explosion internal combustion engine for motor vehicle, has cooler arrangement including low temperature cooling circuit with air heat exchanger that cools compressed combustion air and condenser heat exchanger
DE102014018729A1 (en) Cooling device for cooling an internal combustion engine
DE102007027719A1 (en) Internal combustion engine for motor vehicle, has heating circuit with section that runs from point in head region to another point in region, where heating and cooling circuits are connected in communication with each other in region
EP3377740B1 (en) Charge gas cooling circuit and method for controlling the temperature of charge gas
DE102017219988A1 (en) Drive device with a coolant circuit for a motor vehicle
DE202013100932U1 (en) Intercooler system with integrated heating device
DE102007048503A1 (en) Cooling system for a motor
DE102007051659A1 (en) Device and method for the return of exhaust gas of an internal combustion engine
EP1727976B1 (en) Internal combustion engine having a humidifying device and a heat exchanger
DE102010015106B4 (en) Coolant circuit for an internal combustion engine of a motor vehicle
EP3530900B1 (en) Combustion engine and motor vehicle
EP3717758B1 (en) Drive unit for a motor vehicle and method for operating a drive unit
EP3412885B1 (en) Combustion engine with coolant circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 3/20 20060101AFI20111227BHEP

17P Request for examination filed

Effective date: 20120801

17Q First examination report despatched

Effective date: 20150203

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR THERMOT-TRONIK GMBH

Owner name: MAHLE BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150929

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

Owner name: MAHLE BEHR KORNWESTHEIM GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WILLERS, EIKE

Inventor name: FELDHAUS, GEORG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 795074

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009012484

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009012484

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

26N No opposition filed

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160715

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 795074

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180730

Year of fee payment: 10

Ref country code: FR

Payment date: 20180724

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009012484

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731