EP2148155A1 - Cooling device - Google Patents
Cooling device Download PDFInfo
- Publication number
- EP2148155A1 EP2148155A1 EP09405117A EP09405117A EP2148155A1 EP 2148155 A1 EP2148155 A1 EP 2148155A1 EP 09405117 A EP09405117 A EP 09405117A EP 09405117 A EP09405117 A EP 09405117A EP 2148155 A1 EP2148155 A1 EP 2148155A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- cooling
- heat
- medium
- cooling device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 89
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000012530 fluid Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000002826 coolant Substances 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 abstract description 6
- 239000012080 ambient air Substances 0.000 abstract 1
- 239000007921 spray Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00Â -Â F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00Â -Â F25B23/00 using primary and secondary systems
Definitions
- the invention relates to a cooling device and a method for cooling a first medium according to the preamble of claims 1 and 7.
- Cooling devices are widely used for cooling room air and / or water in buildings. Heat or waste heat generating processes, components or machines can also be maintained by means of cooling devices at or below a predetermined temperature level.
- cooling devices typically include one or more chillers or heat pumps operating on the principle of reversing the Carnot process.
- free-cooling devices instead of chillers at sufficiently low outside temperatures to cool a medium.
- Switching from free-cooling to cooling by means of a chiller and vice versa can be automatic when exceeding or falling below a temperature limit of the outside air detected by a temperature sensor respectively.
- a disadvantage of such solutions is that the potential of cost-effective and energy-efficient cooling by outside air is only insufficiently exhausted.
- the medium to be cooled releases heat to a fluid heat carrier, eg water, in a first heat exchanger.
- a fluid heat carrier eg water
- the fluid heat carrier is exclusively recooled by a preferably designed as a hybrid recooler outdoor heat exchanger - ie by free-cooling - and returned to the first heat exchanger. With increasing outside temperature, this is no longer sufficient to extract sufficient heat from the heat transfer medium.
- the heat transfer medium or coolant is additionally deprived of heat by means of a chiller if the sole direct heat removal by free-cooling is no longer sufficient to cool the medium to the desired temperature.
- the proportion of the chiller provided Cooling capacity is continuously regulated according to the respective requirements.
- the flow rate of the coolant to the chiller can be controlled or regulated by means of a continuously or continuously adjustable actuator (eg a modulatable multi-way valve) depending on the outside temperature and the load of a controller.
- a continuously or continuously adjustable actuator eg a modulatable multi-way valve
- the setting of the actuator is continuously, continuously or stepwise adapted to the particular circumstances in accordance with a predetermined function of the controller.
- the proportion of cooling power provided by the chiller is thus increased based on this function.
- a plurality of actuators may also be provided, in particular also further continuously adjustable or adjustable actuators in order to control or regulate the cooling device in the manner according to the invention.
- the proportion of cooled by the chiller heat transfer stream can be adapted to the respective conditions, for example by one or more funding or pumps with controllable or variable flow rate, so that the cooling potential of the outside air is optimally utilized.
- the outer heat exchanger or hybrid Recooler not only used for heat dissipation during direct free-cooling, but also for discharging the heat given off by the chiller to the environment or to the outside air. This is a particularly space-saving, cost-effective and energy-efficient variant.
- a hybrid recooler which dissipates heat to the outside air
- other heat exchangers could be provided which release heat to another medium such as surface water or to the soil. In a system with the inventive cooling device energy consumption and operating costs are small compared to conventional solutions.
- the Figures 1a, 1b and 1c schematically show a part of a first embodiment of the inventive cooling device for cooling a first medium at different temperatures of a heat receiving additional medium such as outside air.
- the first medium can be, for example, room air or outside air, which is supplied to a room, for example a computer or server room of a data center.
- the first medium may also be, for example, water or another cooling fluid or generally a fluid heat carrier which is used, for example, for cooling equipment, machines or components.
- active Connecting lines, through which a coolant or a fluid heat carrier flows, are each highlighted by bold, broken lines.
- the simple cooling device in the Figures 1a, 1b and 1c comprises a first heat exchanger 1, in which the first medium emits heat to a fluid heat carrier, said heat carrier is conveyed by a pump or a conveyor 9 in a cooling network and circulated in lines of this cooling network.
- the first heat exchanger 1 is, for example, a fin heat exchanger and the first medium is, for example, room air.
- the first heat exchanger 1 and a second heat exchanger 3 are connected on the primary side via a first connecting line 5 and a second connecting line 7 with each other to a pitch circle of the cooling network.
- a pump is designed as conveying means 9 for the fluid heat carrier (for example water or another coolant) in this cooling network.
- the first medium 1 heat is removed in the first heat exchanger.
- the heat carrier or the coolant releases heat to a second medium.
- the recooled coolant is fed back to the first heat exchanger 1 via a continuously or continuously adjustable actuator 11.
- This actuator 11 is a modulating multi-way valve, wherein the supplying portion of the first connection line 5 with one of two inputs of this multi-way valve and the diverting Section of the first connecting line 5 is connected to the output of this multi-way valve.
- the cooling network additionally comprises a third heat exchanger 13, which is assigned to a recooler 15, and in which heat can be withdrawn from the fluid heat carrier and released to a third medium.
- the recooler 15 is formed as a hybrid recooler 15, wherein the third heat exchanger 13 is sprayed with water to allow improved heat dissipation to the outside air.
- the third heat exchanger 13 could also be designed for heat dissipation to the ground or to surface water.
- the third heat exchanger 13 is coupled to the pitch circle of the cooling network, with a third connecting line 17 connected to a second input of the multiway valve and a fourth connecting line 19 to the second connecting line 7 between the first heat exchanger 1 and the second heat exchanger 3.
- the third connecting line 17 is also connected via a fifth connecting line 21 to the second connecting line 7, wherein the mouth of this fifth connecting line 21 is closer to the second heat exchanger 3 as the confluence of the fourth connecting line 19, and wherein between these two mouths a further actuator 23 for Breaking and releasing the second connection line 7 is arranged.
- the actuators 11 and 23 and the conveyor 9 and any other actuators and / or funding are controlled by a (not shown) control or controllable.
- the controller detects the measurement quantities required for operation, eg the outside temperature and the room temperature to be cooled by means of suitable sensors (not shown) and preferably has an interface for prescribing operating parameters such as a lower limit temperature T1 for the outside air, below that a cooling of the first Medium exclusively by heat to the outside air with the third heat exchanger 13 is possible, and an upper limit temperature T2 for the outside temperature above which cooling of the first medium by direct heat to the outside air or by pure free-cooling is no longer possible.
- T1 for the outside air
- T2 an upper limit temperature
- the control valve 23 is open. This situation corresponds to summer operation, the outside temperature being above the upper limit temperature T2. According to the situation FIG. 1b the outside temperature is below the lower limit temperature T1. This corresponds to winter operation. The recooling of the coolant is 100% by the third Heat exchanger 13.
- the control valve 23 is closed. According to the situation Figure 1c the outside temperature is between the lower limit temperature T1 and the upper limit temperature T2. This corresponds to the mixed operation.
- the re-cooling of the coolant takes place both through the second heat exchanger 3 and through the third heat exchanger 13, wherein the percentage of the heat transfer medium flowing through the second heat exchanger 3 on the entire heat transfer flow flowing through the first heat exchanger 1, or an equivalent size in each case by the Position of the multi-way valve 11 is determined.
- Both the first input and the second input of the multi-way valve 11 are connected to the output thereof, wherein the free opening cross-sections are each given complementary to each other by the respective working position of the multi-way valve 11.
- the control valve 23 is closed.
- FIG. 2 shows a further embodiment of the cooling device.
- the second heat exchanger 3 is designed here as an evaporator of a refrigerating machine 25 and connected in a refrigerant circuit via a compressor 27 with a fourth heat exchanger 29 acting as a condenser.
- the condenser in turn is connected to the second heat exchanger 3 via a connecting line with an expansion valve 31.
- the recooler 15 may additionally comprise a fifth heat exchanger 33 arranged in the fourth connecting line 19 in front of the third heat exchanger 13, and a further conveying means 9 and a sixth connecting line 35 with a further actuator 23 between the third connecting line 17 and the fourth connecting line 19 at the beginning of the fifth Heat exchanger 33. Am on the basis of FIGS.
- the fifth heat exchanger 33 in conjunction with the third heat exchanger 13 and the further conveying means 9 and the opened further adjusting means 23, can be a separate cooling device operable independently of the first pitch circle with the first heat exchanger 1 and the second heat exchanger 3.
- an independent heat exchanger is provided for removing heat from the refrigerating machine 25, namely the fourth heat exchanger 29.
- FIG. 3 A preferred further variant of the cooling device is shown in FIG. 3 shown.
- the fourth heat exchanger 29 acting as a condenser is assigned to the recooler 15.
- the fourth heat exchanger 29 is analogous to the fifth heat exchanger 33 in an arrangement according to FIG. 2 arranged in the fourth connecting line 19 between the third heat exchanger 13 and the first heat exchanger 1.
- the chiller 25 can deliver heat to the heat carrier in the cooling network, which can then be dissipated in the third heat exchanger 13 to the environment.
- the third heat exchanger 13 can thus be used depending on the position of the actuator 11 for the direct removal of heat by means of free-cooling and / or for the indirect removal of heat which is discharged from the chiller 25 at a higher temperature level, the proportion of the chiller 25 recooled heat transfer stream continuously on the entire flowing through the first heat exchanger 1 heat transfer stream between 0% and 100% is adjustable.
- the fourth heat exchanger 29 absorbs no heat from the chiller 25 and thus serves only as a flow line.
- Compared to an embodiment according to FIG. 2 can save the space and the cost of a separate heat exchanger of the chiller 25.
- FIG. 4 shows a schematic representation of another cooling device in which the chiller 25, and the conveying and adjusting means of the hydraulic system are combined to form a unit 26.
- the first heat exchanger 1 is connected via two main lines 37a, 37b to the heat exchanger 13 of the hybrid recooler 15, wherein in the one main line 37a two circulation pumps 9a, 9b are arranged as conveying means 9.
- the main lines 37a, 37b are connected to each other via two transverse lines 39a, 39b, each with a control valve 41a, 41b, wherein the transverse lines 39a, 39b between the two circulation pumps 9a, 9b open into the main line 37a.
- the first transverse line 39a is connected via two connecting lines 43a, 43b to the cooling heat exchanger 3 of the chiller 25, wherein in the connecting line 43a, a pump 9c is arranged with a continuously variable flow rate.
- the second transverse line 39b is connected via two connecting lines 43c, 43d to the heat-emitting heat exchanger 29 of the chiller 25, wherein in the connecting line 43c, a pump 9d is arranged with continuously variable flow rate.
- Spray unit 45 for spraying the fins of the heat exchanger 13 with water
- a catch basin 47 below the inclined heat exchanger 13 for collecting the dripping spray water
- a pump 49 for conveying the spray water from the catch basin 47 to the spray unit 45.
- a fan 51 for conveying Outside air through the slats of the heat exchanger 13 (shown by the arrow P). The air flow (supported by evaporating water spray) cools the circulating heat transfer medium in the pipe network.
- FIGS. 1a, 1b, 1c Analogous to the continuously adjustable multiway valve in the embodiments of the invention according to the FIGS. 1a, 1b, 1c .
- the heat carrier can be additionally cooled by the chiller 25 with insufficient cooling capacity of the external heat exchanger 13 by the flow rates from the first main line 37a via the cooling heat exchanger 3 of the refrigerator 25 to the second main line 37b and from the second main line 37b via the heat-emitting heat exchanger 29 of the Cooling machine 25 to the first main line 37a of the (not shown) control means of the pumps 9c, 9d controlled or regulated.
- FIG. 5 shows in principle the proportions of the discharged from the chiller 25 cooling load (curve A) and from the outdoor heat exchanger 13 by pure free-cooling directly discharged cooling load (curve B) on the total discharged cooling load as a function of Ambient or outside temperature T EXT , below the lower limit temperature T1 only the outer heat exchanger 13 is used (chiller not active), and wherein above the second limit temperature T2, the entire heat load is dissipated via the heat exchanger 3 of the chiller.
- the characteristic curves A and B do not necessarily have to be linear with the outside temperature. They are generally stored as continuous functions of the outside temperature and possibly other parameters in the controller.
- the control of the heat dissipation by the chiller 25 can be done, for example, solely on the basis of the outside temperature: If the outside temperature is below a lower limit temperature T1, it is ensured by the position of continuously adjustable actuators 11 and / or the respective delivery rate of conveying means 9 with continuously variable delivery rate the first medium - eg room air - is cooled only by free-cooling or by cooling the heat carrier by direct heat dissipation in the outer heat exchanger 13 only.
- the controller changes the manipulated variables for the continuously adjustable actuators 11 and / or conveying means 9 continuously or continuously or in general according to a predetermined function in the control, whereby an increasing proportion of the coolant through the refrigerating machine 25 and a decreasing proportion of the coolant can be cooled only by pure free-cooling in the outer heat exchanger 13. If the outside temperature reaches an upper limit value, the actuators 11 or conveying means 9 are adjusted so that the total heat load in the heat exchanger 3 of the refrigerating machine 25 is released.
- the control can also take into account other measured variables in order to calculate the suitable control variables for the actuators 11 or conveying means 9.
- temperatures and / or volume flows of the coolant can be detected and processed at one or more points in the cooling network.
- the temperature of the first medium to be cooled that is, for example, the room temperature of a data center to be cooled, belongs to the measured variables processed by the control.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
Description
Gegenstand der Erfindung ist eine Kühlvorrichtung und ein Verfahren zum Kühlen eines ersten Mediums gemäss dem Oberbegriff der Patentansprüche 1 und 7.The invention relates to a cooling device and a method for cooling a first medium according to the preamble of
Kühlvorrichtungen werden verbreitet zur Kühlung von Raumluft und/oder Wasser in Gebäuden eingesetzt. Wärme bzw. Abwärme erzeugende Prozesse, Bauteile oder Maschinen können ebenfalls mittels Kühlvorrichtungen auf oder unter einem vorgebbaren Temperaturniveau gehalten werden. Insbesondere ist es bekannt, Computerarbeitsplätze und/oder Serverräume bzw. Einrichtungen für die elektronische Datenverarbeitung (EDV) durch Zufuhr kühler Luft und durch Abfuhr warmer Luft oder alternativ durch Abgabe von Wärme an ein fluides Kühlmittel zu kühlen. Solche Kühlvorrichtungen umfassen in der Regel eine oder mehrere Kältemaschinen bzw. Wärmepumpen, die nach dem Wirkprinzip der Umkehr des Carnot-Prozesses arbeiten.
Des Weiteren ist es bekannt, bei genügend tiefen Aussentemperaturen anstelle von Kältemaschinen Free-cooling-Vorrichtungen zu nutzen, um ein Medium zu kühlen. Die Umschaltung von Free-cooling zur Kühlung mittels Kältemaschine und umgekehrt kann automatisch beim Überschreiten bzw. Unterschreiten einer von einem Temperaturfühler erfassten Grenztemperatur der Aussenluft erfolgen. Ein Nachteil solcher Lösungen liegt darin, dass das Potential der kostengünstigen und energieeffizienten Kühlung durch Aussenluft nur ungenügend ausgeschöpft wird.Cooling devices are widely used for cooling room air and / or water in buildings. Heat or waste heat generating processes, components or machines can also be maintained by means of cooling devices at or below a predetermined temperature level. In particular, it is known to cool computer workstations and / or server rooms or facilities for electronic data processing (EDP) by supplying cool air and by removing warm air or alternatively by releasing heat to a fluid coolant. Such cooling devices typically include one or more chillers or heat pumps operating on the principle of reversing the Carnot process.
Furthermore, it is known to use free-cooling devices instead of chillers at sufficiently low outside temperatures to cool a medium. Switching from free-cooling to cooling by means of a chiller and vice versa can be automatic when exceeding or falling below a temperature limit of the outside air detected by a temperature sensor respectively. A disadvantage of such solutions is that the potential of cost-effective and energy-efficient cooling by outside air is only insufficiently exhausted.
Es ist deshalb Aufgabe der vorliegenden Erfindung, eine Kühlvorrichtung und ein Verfahren zum Kühlen eines Mediums zu schaffen, mit denen eine verbesserte Nutzung des Kühlpotentials der Aussenluft möglich ist.It is therefore an object of the present invention to provide a cooling device and a method for cooling a medium, with which an improved use of the cooling potential of the outside air is possible.
Diese Aufgabe wird gelöst durch eine Kühlvorrichtung und durch ein Verfahren zum Kühlen eines ersten Mediums gemäss den Merkmalen der Patentansprüche 1 und 7.This object is achieved by a cooling device and by a method for cooling a first medium according to the features of
Das zu kühlende Medium gibt in einem ersten Wärmetauscher Wärme an einen fluiden Wärmeträger, z.B. Wasser, ab. Ist die Aussentemperatur ausreichend tief, wird der fluide Wärmeträger ausschliesslich von einem vorzugsweise als hybrider Rückkühler ausgebildeten Aussenwärmetauscher - also durch Free-cooling - rückgekühlt und wieder zum ersten Wärmetauscher zurückgeführt. Mit zunehmender Aussentemperatur genügt dies nicht mehr, um dem Wärmeträger genügend Wärme zu entziehen. Erfindungsgemäss wird dem Wärmeträger bzw. Kühlmittel zusätzlich Wärme mittels einer Kältemaschine entzogen, wenn die alleinige direkte Wärmeabfuhr durch Free-cooling nicht mehr ausreicht, um das Medium auf die gewünschte Temperatur zu kühlen. Der Anteil der von der Kältemaschine erbrachten Kühlleistung wird entsprechend des jeweiligen Bedarfs stetig geregelt. So kann beispielsweise die Durchflussmenge des Kühlmittels zur Kältemaschine mittels eines stetig bzw. kontinuierlich einstellbaren Stellgliedes (z.B. eines modulierbaren Mehrwegventils) in Abhängigkeit der Aussentemperatur und der Last von einer Steuerung gesteuert oder geregelt werden. Dabei wird die Einstellung des Stellgliedes gemäss einer der Steuerung vorgegebenen Funktion kontinuierlich, stetig oder stufenweise an die jeweiligen Gegebenheiten angepasst. Mit zunehmender Aussentemperatur bzw. mit abnehmender direkter Free-cooling-Leistung wird somit der Anteil der von der Kältemaschine erbrachten Kühlleistung basierend auf dieser Funktion erhöht. Selbstverständlich können je nach Ausbildung der jeweiligen Kühleinrichtung auch mehrere Stellglieder vorgesehen sein, insbesondere auch weitere kontinuierlich ein- oder verstellbare Stellglieder, um die Kühleinrichtung in der erfindungsgemässen Weise zu steuern oder zu regeln. Alternativ oder zusätzlich kann der Anteil des von der Kältemaschine gekühlten Wärmeträgerstroms am gesamten Wärmeträgerstrom z.B. auch durch ein oder mehrere Fördermittel bzw. Pumpen mit steuer- oder regelbarer Fördermenge an die jeweiligen Bedingungen angepasst werden, so, dass das Kühlpotential der Aussenluft optimal ausgeschöpft wird.
Bei einer besonders vorteilhaften Ausgestaltung der Erfindung wird der Aussenwärmetauscher bzw. hybride Rückkühler nicht nur zur Wärmeabfuhr beim direkten Free-cooling benutzt, sondern auch zum Abführen der von der Kältemaschine abgegebenen Wärme an die Umwelt bzw. an die Aussenluft. Dies ist eine besonders Platz sparende, kostengünstige und energieeffiziente Variante.
Anstelle eines hybriden Rückkühlers, der Wärme an die Aussenluft abführt, könnten alternativ auch andere Wärmetauscher vorgesehen sein, welche Wärme an ein anderes Medium wie z.B. an Oberflächenwasser oder an das Erdreich abgegeben. Bei einer Anlage mit der erfindungsgemässen Kühlvorrichtung sind Energieverbrauch und Betriebskosten im Vergleich zu herkömmlichen Lösungen klein.The medium to be cooled releases heat to a fluid heat carrier, eg water, in a first heat exchanger. If the outside temperature is sufficiently low, the fluid heat carrier is exclusively recooled by a preferably designed as a hybrid recooler outdoor heat exchanger - ie by free-cooling - and returned to the first heat exchanger. With increasing outside temperature, this is no longer sufficient to extract sufficient heat from the heat transfer medium. According to the invention, the heat transfer medium or coolant is additionally deprived of heat by means of a chiller if the sole direct heat removal by free-cooling is no longer sufficient to cool the medium to the desired temperature. The proportion of the chiller provided Cooling capacity is continuously regulated according to the respective requirements. Thus, for example, the flow rate of the coolant to the chiller can be controlled or regulated by means of a continuously or continuously adjustable actuator (eg a modulatable multi-way valve) depending on the outside temperature and the load of a controller. In this case, the setting of the actuator is continuously, continuously or stepwise adapted to the particular circumstances in accordance with a predetermined function of the controller. With increasing outside temperature or with decreasing direct free-cooling power, the proportion of cooling power provided by the chiller is thus increased based on this function. Of course, depending on the design of the respective cooling device, a plurality of actuators may also be provided, in particular also further continuously adjustable or adjustable actuators in order to control or regulate the cooling device in the manner according to the invention. Alternatively or additionally, the proportion of cooled by the chiller heat transfer stream can be adapted to the respective conditions, for example by one or more funding or pumps with controllable or variable flow rate, so that the cooling potential of the outside air is optimally utilized.
In a particularly advantageous embodiment of the invention, the outer heat exchanger or hybrid Recooler not only used for heat dissipation during direct free-cooling, but also for discharging the heat given off by the chiller to the environment or to the outside air. This is a particularly space-saving, cost-effective and energy-efficient variant.
Instead of a hybrid recooler, which dissipates heat to the outside air, alternatively, other heat exchangers could be provided which release heat to another medium such as surface water or to the soil. In a system with the inventive cooling device energy consumption and operating costs are small compared to conventional solutions.
Durch geeignete Anordnung von Stellgliedern und Verbindungsleitungen sowie durch steuerungsseitige Anpassungen können bestehende Kühleinrichtungen mit herkömmlichen Free-cooling-Einheiten ergänzt und zu erfindungsgemässen Kühleinrichtungen umgewandelt werden.By suitable arrangement of actuators and connecting lines and by adjustments on the control side existing cooling devices can be supplemented with conventional free-cooling units and converted to cooling devices according to the invention.
Anhand einiger Figuren wird die Erfindung im Folgenden näher beschrieben. Dabei zeigen
- Figur 1a
- eine schematische Darstellung einer ersten Kühlvorrichtung bei Sommerbetrieb (hohe Aussentemperatur),
- Figur 1b
- die Kühlvorrichtung aus
Figur 1a bei Winterbetrieb (tiefe Aussentemperatur), - Figur 1c
- die Kühlvorrichtung aus
Figur 1a bei Mischbetrieb (mittlere Aussentemperatur), - Figur 2
- eine schematische Darstellung einer zweiten Kühlvorrichtung,
Figur 3- eine schematische Darstellung einer dritten Kühlvorrichtung,
- Figur 4
- eine schematische Darstellung einer weiteren Kühlvorrichtung mit Fördermitteln, deren Förderleistung kontinuierlich veränderbar ist,
Figur 5- ein Diagramm zur Darstellung der prozentualen Anteile der Wärmeabfuhr über den Wärmetauscher der Kältemaschine und durch reines Free-cooling über den Wärmetauscher des hybriden Rückkühlers.
- FIG. 1a
- a schematic representation of a first cooling device during summer operation (high outside temperature),
- FIG. 1b
- the cooling device off
FIG. 1a during winter operation (low outside temperature), - Figure 1c
- the cooling device off
FIG. 1a in mixed operation (average outside temperature), - FIG. 2
- a schematic representation of a second cooling device,
- FIG. 3
- a schematic representation of a third cooling device,
- FIG. 4
- a schematic representation of another cooling device with funding, the flow rate is continuously variable,
- FIG. 5
- a diagram showing the percentage of heat removal via the heat exchanger of the refrigerator and by pure free-cooling through the heat exchanger of the hybrid recooler.
Die
Die einfache Kühlvorrichtung in den
Der erste Wärmetauscher 1 und ein zweiter Wärmetauscher 3 sind primärseitig über eine erste Verbindungsleitung 5 und eine zweite Verbindungsleitung 7 miteinander zu einem Teilkreis des Kühlnetzes verbunden. In der zweiten Verbindungsleitung 7 ist eine Pumpe als Fördermittel 9 für den fluiden Wärmeträger (z.B. Wasser oder ein anderes Kühlmittel) in diesem Kühlnetz ausgebildet. Dem ersten Medium wird im ersten Wärmetauscher 1 Wärme entzogen. Im zweiten Wärmetauscher 3 gibt der Wärmeträger bzw. das Kühlmittel Wärme an ein zweites Medium ab. Das rückgekühlte Kühlmittel wird über ein kontinuierlich bzw. stetig verstellbares Stellglied 11 wieder dem ersten Wärmetauscher 1 zugeführt. Dieses Stellglied 11 ist ein modulierendes Mehrwegeventil, wobei der zuleitende Abschnitt der ersten Verbindungsleitung 5 mit einem von zwei Eingängen dieses Mehrwegeventils und der fortleitende Abschnitt der ersten Verbindungsleitung 5 mit dem Ausgang dieses Mehrwegeventils verbunden ist.
Das Kühlnetz umfasst zusätzlich einen dritten Wärmetauscher 13, der einem Rückkühler 15 zugeordnet ist, und in welchem dem fluiden Wärmeträger Wärme entzogen und an ein drittes Medium abgegeben werden kann. In einer bevorzugten Ausgestaltung ist der Rückkühler 15 als hybrider Rückkühler 15 ausgebildet, wobei der dritte Wärmetauscher 13 mit Wasser besprüht wird, um eine verbesserte Wärmeabfuhr an die Aussenluft zu ermöglichen. Alternativ könnte der dritte Wärmetauscher 13 aber auch zur Wärmeabgabe an das Erdreich oder an Oberflächenwasser ausgebildet sein. Der dritte Wärmetauscher 13 ist mit dem Teilkreis des Kühlnetzes gekoppelt, wobei eine dritte Verbindungsleitung 17 mit einem zweiten Eingang des Mehrwegeventils und eine vierte Verbindungsleitung 19 mit der zweiten Verbindungsleitung 7 zwischen dem ersten Wärmetauscher 1 und dem zweiten Wärmetauscher 3 verbunden sind. Die dritte Verbindungsleitung 17 ist über eine fünfte Verbindungsleitung 21 ebenfalls mit der zweiten Verbindungsleitung 7 verbunden, wobei die Mündungsstelle dieser fünften Verbindungsleitung 21 näher beim zweiten Wärmetauscher 3 liegt als die Mündungsstelle der vierten Verbindungsleitung 19, und wobei zwischen diesen beiden Mündungsstellen ein weiteres Stellglied 23 zum Unterbrechen und Freigeben der zweiten Verbindungsleitung 7 angeordnet ist.The
The simple cooling device in the
The
The cooling network additionally comprises a
Die Stellglieder 11 und 23 und das Fördermittel 9 sowie allfällige weitere Stellglieder und/oder Fördermittel sind von einer (nicht dargestellten) Steuerung regel- oder steuerbar. Die Steuerung erfasst die zum Betrieb erforderlichen Messgrössen, also z.B. die Aussentemperatur und die zu kühlende Raumtemperatur mittels geeigneter Sensoren (nicht dargestellt) und hat vorzugsweise eine Schnittstelle zum Vorgeben von Betriebsparametern wie z.B. einer unteren Grenztemperatur T1 für die Aussenluft, unterhalb der eine Kühlung des ersten Mediums ausschliesslich durch Wärmeabgabe an die Aussenluft mit dem dritten Wärmetauscher 13 möglich ist, und einer oberen Grenztemperatur T2 für die Aussentemperatur, oberhalb der eine Kühlung des ersten Mediums durch direkte Wärmeabgabe an die Aussenluft bzw. durch reines Free-cooling nicht mehr möglich ist.
Bei der in
Bei der Situation gemäss
Bei der Situation gemäss
At the in
According to the situation
According to the situation
Der Rückkühler 15 kann zusätzlich einen in der vierten Verbindungsleitung 19 vor dem dritten Wärmetauscher 13 angeordneten fünften Wärmetauscher 33 umfassen, sowie ein weiteres Fördermittel 9 und eine sechste Verbindungsleitung 35 mit einem weiteren Stellglied 23 zwischen der dritten Verbindungsleitung 17 und der vierten Verbindungsleitung 19 eingangs des fünften Wärmetauschers 33.
Am anhand der
The
Am on the basis of
Bei der in
Bei reinem Free-cooling-Betrieb nimmt der vierte Wärmetauscher 29 keine Wärme von der Kältemaschine 25 auf und dient somit lediglich als Durchflussleitung.At the in
In pure free-cooling operation, the
Im Vergleich zu einer Ausführungsform gemäss
Die Kennlinien A und B müssen nicht zwingend linear mit der Aussentemperatur verlaufen. Sie sind allgemein als stetige Funktionen der Aussentemperatur und gegebenenfalls weiterer Parameter in der Steuerung gespeichert.
Die Steuerung der Wärmeabfuhr durch die Kältemaschine 25 kann z.B. allein aufgrund der Aussentemperatur erfolgen: Liegt die Aussentemperatur unterhalb einer unteren Grenztemperatur T1, wird durch die Stellung von kontinuierlich einstellbaren Stellgliedern 11 und/oder die jeweilige Förderleistung von Fördermitteln 9 mit kontinuierlich veränderbarer Förderleistung sichergestellt, dass das erste Medium - z.B. Raumluft - nur durch Free-cooling bzw. durch nur durch Kühlung des Wärmeträgers durch direkte Wärmeabgabe im Aussenwärmetauscher 13 gekühlt wird.
Mit weiter zunehmender Aussentemperatur ändert die Steuerung die Stellgrössen für das bzw. die kontinuierlich einstellbaren Stellglieder 11 und/oder Fördermittel 9 stetig bzw. kontinuierlich oder allgemein entsprechend einer in der Steuerung vorgegebenen Funktion, wobei ein zunehmender Anteil des Kühlmittels durch die Kältemaschine 25 und ein abnehmender Anteil des Kühlmittels nur durch reines Free-cooling im Aussenwärmetauscher 13 gekühlt werden. Erreicht die Aussentemperatur einen oberen Grenzwert, werden die Stellglieder 11 bzw. Fördermittel 9 so eingestellt, dass die gesamte Wärmelast im Wärmetauscher 3 der Kältemaschine 25 abgegeben wird. Selbstverständlich kann die Steuerung zusätzlich oder alternativ zur Aussentemperatur auch andere Messgrössen berücksichtigen, um die geeigneten Stellgrössen für die Stellglieder 11 bzw. Fördermittel 9 zu berechnen. Insbesondere können an einer oder mehreren Stellen im Kühlnetz Temperaturen und/oder Volumenströme des Kühlmittels erfasst und verarbeitet werden. Selbstverständlich gehört auch die Temperatur des zu kühlenden ersten Mediums, also z.B. die Raumtemperatur eines zu kühlenden Datencenters, zu den von der Steuerung verarbeiteten Messgrössen.
The characteristic curves A and B do not necessarily have to be linear with the outside temperature. They are generally stored as continuous functions of the outside temperature and possibly other parameters in the controller.
The control of the heat dissipation by the
As the outside temperature continues to increase, the controller changes the manipulated variables for the continuously
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01149/08A CH699233A2 (en) | 2008-07-21 | 2008-07-21 | Cooling device for cooling e.g. ambient air, has adjustable control unit continuously changing part of heat carrier flow flowing through heat exchanger to entire heat exchanger flow flowing through another heat exchanger |
CH01443/08A CH699225A1 (en) | 2008-07-21 | 2008-09-10 | Cooling device. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2148155A1 true EP2148155A1 (en) | 2010-01-27 |
EP2148155B1 EP2148155B1 (en) | 2017-09-06 |
Family
ID=41327312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09405117.4A Active EP2148155B1 (en) | 2008-07-21 | 2009-07-20 | Cooling device |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2148155B1 (en) |
CH (1) | CH699225A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012122150A3 (en) * | 2011-03-10 | 2012-11-01 | Parker Hannifin Corporation | Cooling system |
US20170077970A1 (en) * | 2014-04-03 | 2017-03-16 | Redline Communications Inc. | Systems and methods for increasing the effectiveness of digital pre-distortion in electronic communications |
US9807908B2 (en) | 2011-06-30 | 2017-10-31 | Parker-Hannifin Corporation | Pumped liquid cooling system using a phase change fluid with additional subambient cooling |
EP3757481A4 (en) * | 2018-02-22 | 2021-02-17 | Mitsubishi Electric Corporation | Air conditioning device and air handling unit |
US11022349B2 (en) | 2015-07-22 | 2021-06-01 | Carrier Corporation | Hydronic system for combining free cooling and mechanical cooling |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4406138A (en) * | 1981-11-18 | 1983-09-27 | Honeywell Inc. | Load management control air conditioning system |
EP0584733A1 (en) * | 1992-08-22 | 1994-03-02 | DaimlerChrysler Aerospace Airbus Gesellschaft mit beschränkter Haftung | Cooling device for aircraft |
US6293106B1 (en) * | 2000-05-18 | 2001-09-25 | Praxair Technology, Inc. | Magnetic refrigeration system with multicomponent refrigerant fluid forecooling |
EP1164338A1 (en) * | 1999-02-24 | 2001-12-19 | Hachiyo Engineering Co., Ltd. | Heat pump system of combination of ammonia cycle and carbon dioxide cycle |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4238364A1 (en) * | 1992-11-13 | 1994-05-26 | Behr Gmbh & Co | Device for cooling drive components and for heating a passenger compartment of an electric vehicle |
FR2740397B1 (en) * | 1995-10-26 | 1997-12-05 | Valeo Climatisation | DEVICE FOR HEATING AND AIR CONDITIONING THE INTERIOR OF A MOTOR VEHICLE WITH ELECTRIC MOTOR |
US6321552B1 (en) * | 1998-06-22 | 2001-11-27 | Silentor Holding A/S | Waste heat recovery system |
EP1515098A1 (en) * | 2003-09-12 | 2005-03-16 | Ingenjörsfirma Kontrollelektronik Hjärtström & Kalén Aktiebolag | Method and device for environment conditioning |
-
2008
- 2008-09-10 CH CH01443/08A patent/CH699225A1/en not_active Application Discontinuation
-
2009
- 2009-07-20 EP EP09405117.4A patent/EP2148155B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4406138A (en) * | 1981-11-18 | 1983-09-27 | Honeywell Inc. | Load management control air conditioning system |
EP0584733A1 (en) * | 1992-08-22 | 1994-03-02 | DaimlerChrysler Aerospace Airbus Gesellschaft mit beschränkter Haftung | Cooling device for aircraft |
EP1164338A1 (en) * | 1999-02-24 | 2001-12-19 | Hachiyo Engineering Co., Ltd. | Heat pump system of combination of ammonia cycle and carbon dioxide cycle |
US6293106B1 (en) * | 2000-05-18 | 2001-09-25 | Praxair Technology, Inc. | Magnetic refrigeration system with multicomponent refrigerant fluid forecooling |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012122150A3 (en) * | 2011-03-10 | 2012-11-01 | Parker Hannifin Corporation | Cooling system |
US9807908B2 (en) | 2011-06-30 | 2017-10-31 | Parker-Hannifin Corporation | Pumped liquid cooling system using a phase change fluid with additional subambient cooling |
US20170077970A1 (en) * | 2014-04-03 | 2017-03-16 | Redline Communications Inc. | Systems and methods for increasing the effectiveness of digital pre-distortion in electronic communications |
US9819373B2 (en) | 2014-04-03 | 2017-11-14 | Redline Communications Inc. | Systems and methods for increasing the effectiveness of digital pre-distortion in electronic communications |
US11022349B2 (en) | 2015-07-22 | 2021-06-01 | Carrier Corporation | Hydronic system for combining free cooling and mechanical cooling |
EP3757481A4 (en) * | 2018-02-22 | 2021-02-17 | Mitsubishi Electric Corporation | Air conditioning device and air handling unit |
Also Published As
Publication number | Publication date |
---|---|
CH699225A1 (en) | 2010-01-29 |
EP2148155B1 (en) | 2017-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006005035B3 (en) | cooling system | |
DE102020112360A1 (en) | Vehicle mounted temperature control device | |
DE102019207993A1 (en) | Thermal management system for a vehicle | |
WO2017067831A1 (en) | Heating system for an electric or hybrid vehicle, and method for operating such a heating system | |
DE102017201202A1 (en) | Waste heat utilization device for an electric vehicle | |
DE112008003700B4 (en) | Device for increasing the heating and cooling capacity of a heat pump in heat recovery in ventilation units | |
WO2019096696A1 (en) | Cooling system for a motor vehicle and motor vehicle having such a cooling system | |
DE102020117471B4 (en) | Heat pump arrangement with indirect battery heating for battery-operated motor vehicles and method for operating a heat pump arrangement | |
EP2148155B1 (en) | Cooling device | |
EP2199706B1 (en) | A switching device air conditioner and operation method thereof | |
DE112007002526T5 (en) | Temperature control system with heat exchanger modules with indirect expansion cooling and internal electrical heating | |
WO2014032654A1 (en) | Heat exchanger for cooling a switch cabinet and corresponding cooling arrangement | |
EP1698837A2 (en) | Heat recovery system with cold recovery during night time | |
DE102015212726A1 (en) | Heating system for a vehicle and method for air conditioning a vehicle | |
DE19937949C2 (en) | Device and method for heating and / or cooling a vehicle interior | |
EP2527147B1 (en) | Tempering system for printers with multiple temperature levels | |
EP1792126B1 (en) | Device for supplying heat to at least one consumer and/or carrying heat away from the same | |
DE102018113687B4 (en) | Device and method for cooling battery cell modules | |
DE102016112784A1 (en) | Collector array, energy supply system with a collector array and method for operating a power supply system | |
EP2445769B1 (en) | Energy-optimized climate control system for locomotives having two control consoles | |
EP3515733B1 (en) | Air-conditioning device for a motor vehicle and method for the operation thereof | |
EP2861400B1 (en) | Process to change the temperature of an object | |
EP2837275B1 (en) | Cooling device for a switch cabinet and a corresponding method | |
EP1980803B1 (en) | Method for operating a heat pump | |
DE102018116609A1 (en) | Process for operating an integral heating / air conditioning and cooling system as well as integral heating / air conditioning and cooling system with primary and secondary cooling circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20100318 |
|
17Q | First examination report despatched |
Effective date: 20100414 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170320 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: GACHNANG AG PATENTANWAELTE, CH Ref country code: AT Ref legal event code: REF Ref document number: 926320 Country of ref document: AT Kind code of ref document: T Effective date: 20170915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009014325 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170906 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171207 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180106 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009014325 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
26N | No opposition filed |
Effective date: 20180607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230802 Year of fee payment: 15 Ref country code: AT Payment date: 20230718 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502009014325 Country of ref document: DE Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: BERICHTIGUNGEN |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240722 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 16 |