EP2146154A1 - Device for controlling a fixed-capacity compressor - Google Patents

Device for controlling a fixed-capacity compressor Download PDF

Info

Publication number
EP2146154A1
EP2146154A1 EP09165149A EP09165149A EP2146154A1 EP 2146154 A1 EP2146154 A1 EP 2146154A1 EP 09165149 A EP09165149 A EP 09165149A EP 09165149 A EP09165149 A EP 09165149A EP 2146154 A1 EP2146154 A1 EP 2146154A1
Authority
EP
European Patent Office
Prior art keywords
air
installation
flow
characteristic
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09165149A
Other languages
German (de)
French (fr)
Other versions
EP2146154B1 (en
Inventor
Jin-ming LIU
Regine Haller
Stefan Karl
Eng Kuach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP2146154A1 publication Critical patent/EP2146154A1/en
Application granted granted Critical
Publication of EP2146154B1 publication Critical patent/EP2146154B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Definitions

  • the present invention is in the field of ventilation, heating and / or air conditioning of a motor vehicle. It relates to a device for controlling the start of a fixed capacity compressor. It also relates to an air conditioning loop comprising such a compressor. Finally, it relates to a ventilation installation, heating and / or air conditioning comprising such a loop and a method of implementation of said device.
  • a motor vehicle is commonly equipped with a ventilation, heating and / or air conditioning system to modify the aerothermal parameters of the air contained inside the passenger compartment of the vehicle.
  • a ventilation, heating and / or air conditioning system to modify the aerothermal parameters of the air contained inside the passenger compartment of the vehicle.
  • Such an installation comprises an air conditioning loop inside which circulates a cooling fluid, such as a subcritical fluid, R134a in particular or the like, or such as a supercritical fluid, especially R744 or the like.
  • the air conditioning loop comprises at least one compressor, a condenser or a gas cooler, an expansion member and an evaporator.
  • the air conditioning loop also optionally includes an internal heat exchanger. An air flow passes through the evaporator to be cooled before it is delivered inside the passenger compartment.
  • the compressor is a fixed capacity compressor for which the swept volume is constant.
  • Control means control the start of the compressor from a measurement of the temperature of the air flow at the outlet of the evaporator and a comparison of said measured temperature with two set temperatures. More particularly, the compressor is put in operates when the temperature of the air flow measured at the outlet of the evaporator is greater than a first setpoint temperature and the starting of the compressor is stopped when the temperature of the air flow measured at the outlet of the evaporator is lower than at a second setpoint temperature, the latter being lower than the first setpoint temperature.
  • a general problem posed by such an installation lies in the fact that the start-up of the compressor, and conversely the shutdown of the latter, are conditioned by said setpoint temperatures which are fixed and independent of any variations in the conditions of the compressor. use of said loop.
  • the object of the present invention is to provide a device for controlling the start-up of a fixed capacity compressor which is simple and inexpensive to produce, robust, compact, easily integrable inside a ventilation system. , heating and / or air conditioning of a motor vehicle, such a device to achieve a saving of energy necessary for the implementation of the compressor.
  • Another object of the present invention is to provide an air conditioning loop equipped with such a device, said loop providing a thermal comfort quickly optimized compared to a thermal state of the air contained inside the cabin.
  • Another object of the present invention is to propose a ventilation, heating and / or air-conditioning system for a vehicle which comprises such a loop and which is simple and inexpensive to implement, said installation being little consumer of energy.
  • a last goal of the present invention is to provide a method of using such an air conditioning loop that is easy to implement.
  • the control device of the present invention is a device for controlling a fixed capacity compressor associated with an evaporator traversed by an air flow in a direction of flow of the air flow.
  • Said compressor and said evaporator constitute an air conditioning loop of a ventilation, heating and / or air conditioning of a motor vehicle.
  • Said device comprises a sensor for measuring a measured value VM of a characteristic C of a fluid FR, A and means for comparing the measured value VM of the characteristic C of the fluid FR, A with at least two threshold values VSmin, VSmax of said characteristic C.
  • said device comprises an upstream temperature sensor intended to be arranged upstream of said evaporator in said direction of flow to measure an upstream temperature T2 of the air flow and to deliver information which is taken into account by said device to determine the threshold values VSmin, VSmax of said characteristic C.
  • the threshold values VSmin, VSmax are determined from information relating to the upstream temperature T2 of said air flow measured upstream of the evaporator and are likely to vary according to said information. It follows that the threshold values VSmin, VSmax are determined according to the nature of a thermal load affecting the evaporator.
  • Said device is advantageously an autonomous device equipped with connection means to a power source for the implementation of the sensor of said measured value VM and the upstream temperature sensor.
  • said device is independent of any other control device which gives it the advantage of being able to be installed in a relatively arbitrary location of said installation. More particularly, the device can be housed inside an elementary housing which is easily reportable on a housing constituting said installation and inside which housing circulates the air flow.
  • the comparison means are preferably constituted by an operational amplifier.
  • the comparison means are preferably associated with means for determining the two threshold values VSmin, VSmax of said characteristic C from the information relating to the upstream temperature T2 of the airflow.
  • An air conditioning circuit of a ventilation, heating and / or air conditioning system of a motor vehicle according to the present invention is mainly recognizable in that said loop comprises such a control device.
  • the fluid FR, A is for example constituted by air A forming the air flow, the characteristic C consisting of a downstream temperature T1 of the air flow measured downstream of the evaporator in the direction of flow of the air. air flow therethrough and in that the threshold values VSmin, VSmax consist of respective minimum values T1 min and maximum T1 max of said downstream temperature T1.
  • the fluid FR, A is for example still constituted by a refrigerant fluid FR flowing inside said loop, the characteristic C being constituted by a pressure P of said refrigerating fluid FR inside the evaporator and in that that the threshold values VSmin, VSmax consist of respective minimum values Pmin and maximum Pmax of said pressure P.
  • a ventilation, heating and / or air conditioning system of the present invention is mainly recognizable in that said installation comprises such an air conditioning loop.
  • Said installation comprises in particular an admission flap of the air flow inside a housing constituting the installation.
  • the upstream temperature sensor is for example disposed downstream of said flap in the direction of flow of the air flow inside said installation.
  • the upstream temperature sensor is for example still disposed upstream of said flap in the direction of flow of the air flow inside said installation.
  • An implementation method according to the present invention of such a control device is characterized in that said method comprises a step of determining said threshold values VSmin, VSmax as a function of said information relating to the upstream temperature T2 of the flow. air taken upstream of the evaporator.
  • the installation 1 comprises a housing 2 inside which circulates a flow of air 3 prior to its delivery to the interior of the passenger compartment. More particularly, the housing 2 is equipped with an air inlet 4 through which the air flow 3 is admitted inside the housing 2 and an air outlet 5 through which the air flow 3 is delivered inside the cabin. The air flow 3 flows inside the housing 2 from the air inlet 4 to the air outlet 5 in a flow direction 6 of the air flow 3.
  • the inlet of air 4 is provided with an air intake flap 7.
  • the latter 7 is operable between an open position in which it allows an intake of air inside the casing 2 and a closed position in which he forbids such admission.
  • said installation 1 comprises an air conditioning loop 8 inside which circulates a refrigerant fluid FR, indifferently subcritical or supercritical .
  • the air conditioning loop 8 comprises a compressor 9 for compressing the refrigerant, a condenser 10 or a gas cooler 10 inside which the coolant transfers heat to its environment, an expansion member 11 inside which the refrigerant is subjected to an expansion and an evaporator 12 for cooling said air flow 3 which passes through the latter 12.
  • the air conditioning loop may also include an internal heat exchanger , not shown on the fig.1 , which more particularly describes an air conditioning loop 8 inside which circulates a subcritical refrigerant FR.
  • the refrigerant fluid FR flows from the compressor 9, to the condenser 10, then to the expansion device 11, then to the evaporator 12 to finally return to the compressor 9.
  • the present invention also applies to an air conditioning loop 8 inside which circulates a supercritical refrigerant FR.
  • the compressor 9 is a fixed capacity compressor for which the swept volume is constant.
  • the compressor 9 is equipped with a control device 13 to determine a starting and / or a shutdown of the compressor 9.
  • the control device 13 comprises comparison means 14 between a measured value VM of a characteristic C of a fluid FR, A and two threshold values VSmin, VSmax of the characteristic C of the fluid FR, A.
  • Said threshold values VSmin, VSmax are respectively a minimum threshold value VSmin of the characteristic C of the fluid FR, A and a maximum threshold value VSmax of the characteristic of the fluid FR, A, the latter VSmax being greater than the value.
  • minimum threshold VSmin The compressor 9 is started when the measured value VM of said characteristic C is greater than said maximum threshold value VSmax.
  • the compressor 9 is stopped when the measured value VM of said characteristic C is less than said minimum threshold value VSmin.
  • said fluid FR, A consists of air A forming the air flow 3 which passes through the evaporator 12, said characteristic C consisting of a downstream temperature T1 of the air flow 3 measured in downstream of the evaporator 12 in the direction of flow 6 of the air stream 3 through the evaporator 12, and both Threshold values VSmin, VSmax consist of a minimum downstream temperature T1min and a maximum downstream temperature T1max of the air stream 3.
  • said downstream temperature T1 is measured via a downstream sensor 15 temperature, such as a negative temperature coefficient resistance, commonly referred to by the acronym "CTN" or such as a thermomechanical control device.
  • said fluid FR, A consists of the refrigerant fluid FR which circulates inside the air conditioning loop 8
  • the said characteristic C consists of a pressure P of the refrigerant fluid FR measured inside the the evaporator 12
  • the two threshold values VSmin, VSmax consist of a minimum pressure Pmin and a maximum pressure Pmax of the refrigerant FR.
  • the pressure P of the refrigerant is measured either by means of a pressure sensor 16, such as a transducer or by means of a pressure switch.
  • the threshold values VSmin, VSmax are fixed and remain constant whatever the conditions of use of the air conditioning loop 8, in particular whatever the nature of a thermal load affecting the evaporator 12.
  • control means 13 comprise determining means 17 able to vary the values thresholds VSmin, VSmax as a function of information 18 received by the determination means 17.
  • Said information 18 is information relating to an upstream temperature T2 of the air flow 3 measured upstream of the evaporator 12 in the direction of flow 6 of the air flow 3 through the evaporator 12.
  • Said upstream temperature T2 is measured by an upstream temperature sensor 20, such as a resistance to Negative temperature coefficient "CTN".
  • the upstream temperature sensor 20 is disposed downstream of said air intake flap 7 while according to a second embodiment, the upstream temperature sensor 20 is disposed upstream of said intake flap.
  • the latter option has the advantage of offering the possibility of using as an upstream temperature sensor 20 an external temperature sensor which is commonly equipped with the motor vehicle, which generates no additional cost.
  • T1max and T1min are proposed as a function of said information 18 relating to the upstream temperature T2 of the air stream 3 measured upstream of the evaporator 12: T2 > 30 ° C 25 ° C 20 ° C 15 ° C ⁇ 10 ° C T1max 5 ° C 7 ° C 9 ° C 11 ° C 5 ° C T1min 2 ° C 4 ° C 6 ° C 8 ° C 2 ° C
  • control device 13 On the fig.4 is shown an advantageous embodiment of said control device 13.
  • the designers of the present invention have chosen to provide a simple and inexpensive embodiment of the control device 13.
  • the latter 13 is particularly likely to be housed inside an elementary housing 21 which is adapted to be installed in a relatively arbitrary location of said installation 1.
  • the control device 13 proposed by the The present invention is an autonomous device that is independent of other means of control and / or control that may comprise said installation. It follows a strong convenience of use and implementation of the control device 13 which is accordingly free from disturbances and malfunctions generated by other control means and / or control. This independence and simplicity give the control device 13 a significant advantage over other existing control devices, more complex, incorporating many features and likely to malfunction.
  • the downstream temperature sensor 15 and the upstream temperature sensor 20 are interposed between a battery terminal 22 and a ground terminal 23 of a power supply source.
  • a potential difference Ubatt is applied between the battery terminal 22 and the ground terminal 23.
  • a first resistor R1 is interposed between the downstream temperature sensor 15 and the battery terminal 22 while a resistor R2 is interposed between the sensor temperature upstream 20 and the battery terminal 22.
  • the upstream temperature sensor 20 is able to deliver an upstream voltage UT2 which is transmitted to the determination means 17 to adapt the threshold values VSmin, VSmax, which are respectively constituted in this example the minimum downstream temperature T1min and the maximum downstream temperature T1max of the airflow 3.
  • the determination means 17 transmit via a third resistor R3 to a first input terminal 24 of an operational amplifier 14 the reference voltage values Umin and Umax respectively corresponding to the threshold values VSmin, VSmax. Via a second input terminal 25 of the operational amplifier 14, the latter receives a voltage Um corresponding to said measured value VM to compare the voltage Um with the voltages Umin and Umax and supply an instruction voltage Ui to a control interface 26 of the compressor 9.
  • the interface is capable of delivering a compressor voltage Uc which determines the nature of the starting or stopping of the compressor 9.
  • Such a control device 13 is of the simplest possible structure which gives it reliability and robustness optimized for a reliable and lasting control of the start and / or stop of the compressor 9, from the information 18 relating to an upstream temperature T2 of the air flow 3 measured upstream of the evaporator 12, said information 18 being representative of a thermal load affecting the evaporator 12, so that the thermal comfort provided by the said installation 1 is in correlation with a real, precise and iteratively updated nature of aerothermal parameters of the airflow 3 and / or relative parameters refrigerant FR and / or operating conditions of the evaporator 12.

Abstract

The device (13) has a comparing unit (14) constituted of an operational amplifier to compare measured values of characteristics such as downstream temperature (T1) and pressure (P), of fluid such as air (A) or refrigerant (FR), with corresponding minimum and maximum threshold values of the characteristics. An upstream temperature sensor (20) is arranged in upstream of an evaporator (12) along a flow direction (6) for measuring upstream temperature (T2) of an air flow (3) and delivering information (18) that is considered by the device for determining the threshold values. Independent claims are also included for the following: (1) a heating, ventilation and/or air conditioning system comprising an air conditioning loop (2) a method for controlling a fixed capacity compressor.

Description

Domaine technique de l'invention.Technical Field of the Invention

La présente invention est du domaine des installations de ventilation, de chauffage et/ou de climatisation d'un véhicule automobile. Elle a pour objet un dispositif de commande de la mise en marche d'un compresseur à capacité fixe. Elle a aussi pour objet une boucle de climatisation comprenant un tel compresseur. Elle a enfin pour objet une installation de ventilation, de chauffage et/ou de climatisation comprenant une telle boucle ainsi qu'une méthode de mise en oeuvre dudit dispositif.The present invention is in the field of ventilation, heating and / or air conditioning of a motor vehicle. It relates to a device for controlling the start of a fixed capacity compressor. It also relates to an air conditioning loop comprising such a compressor. Finally, it relates to a ventilation installation, heating and / or air conditioning comprising such a loop and a method of implementation of said device.

Etat de la technique.State of the art

Un véhicule automobile est couramment équipé d'une installation de ventilation, de chauffage et/ou de climatisation pour modifier les paramètres aérothermiques de l'air contenu à l'intérieur de l'habitacle du véhicule. Une telle installation comporte une boucle de climatisation à l'intérieur de laquelle circule un fluide réfrigérant, tel qu'un fluide sous-critique, R134a notamment ou analogue ou tel qu'un fluide supercritique, R744 notamment ou analogue. La boucle de climatisation comprend au moins un compresseur, un condenseur ou un refroidisseur de gaz, un organe de détente et un évaporateur. La boucle de climatisation comprend aussi éventuellement un échangeur de chaleur interne. Un flux d'air traverse l'évaporateur pour être refroidi préalablement à sa délivrance à l'intérieur de l'habitacle.A motor vehicle is commonly equipped with a ventilation, heating and / or air conditioning system to modify the aerothermal parameters of the air contained inside the passenger compartment of the vehicle. Such an installation comprises an air conditioning loop inside which circulates a cooling fluid, such as a subcritical fluid, R134a in particular or the like, or such as a supercritical fluid, especially R744 or the like. The air conditioning loop comprises at least one compressor, a condenser or a gas cooler, an expansion member and an evaporator. The air conditioning loop also optionally includes an internal heat exchanger. An air flow passes through the evaporator to be cooled before it is delivered inside the passenger compartment.

Le compresseur est un compresseur à capacité fixe pour lequel le volume balayé est constant. Des moyens de commande contrôlent la mise en marche du compresseur à partir d'une mesure de la température du flux d'air en sortie de l'évaporateur et d'une comparaison de ladite température mesurée avec deux températures de consigne. Plus particulièrement, le compresseur est mis en marche lorsque la température du flux d'air mesurée en sortie de l'évaporateur est supérieure à une première température de consigne et la mise en marche du compresseur est arrêtée lorsque la température du flux d'air mesurée en sortie de l'évaporateur est inférieure à une deuxième température de consigne, cette dernière étant inférieure à la première température de consigne.The compressor is a fixed capacity compressor for which the swept volume is constant. Control means control the start of the compressor from a measurement of the temperature of the air flow at the outlet of the evaporator and a comparison of said measured temperature with two set temperatures. More particularly, the compressor is put in operates when the temperature of the air flow measured at the outlet of the evaporator is greater than a first setpoint temperature and the starting of the compressor is stopped when the temperature of the air flow measured at the outlet of the evaporator is lower than at a second setpoint temperature, the latter being lower than the first setpoint temperature.

Un problème général posé par une telle installation réside dans le fait que la mise en marche du compresseur, et inversement la mise à l'arrêt de ce dernier, sont conditionnées par lesdites températures de consigne qui sont fixes et indépendantes de toutes variations de conditions d'utilisation de la dite boucle. Or, dans certaines circonstances, il peut être souhaitable de rendre plus flexibles les modalités de mise en marche et/ou à l'arrêt du compresseur, en vue notamment d'améliorer rapidement le confort thermique désiré par l'utilisateur du véhicule, et/ou d'effectuer des économies d'énergie à partir d'une utilisation du compresseur uniquement dans le cas où elle est nécessaire.A general problem posed by such an installation lies in the fact that the start-up of the compressor, and conversely the shutdown of the latter, are conditioned by said setpoint temperatures which are fixed and independent of any variations in the conditions of the compressor. use of said loop. However, in certain circumstances, it may be desirable to make more flexible the modalities for starting and / or stopping the compressor, in particular with a view to rapidly improving the thermal comfort desired by the user of the vehicle, and or to save energy from using the compressor only if it is needed.

Objet de l'invention.Object of the invention

Le but de la présente invention est de proposer un dispositif de commande de la mise en marche d'un compresseur à capacité fixe qui soit simple et peu couteux à réaliser, robuste, compact, facilement intégrable à l'intérieur d'une installation de ventilation, de chauffage et/ou de climatisation d'un véhicule automobile, un tel dispositif permettant de réaliser une économie de l'énergie nécessaire à la mise en oeuvre du compresseur. Un autre but de la présente invention est de proposer une boucle de climatisation équipée d'un tel dispositif, ladite boucle offrant un confort thermique rapidement optimisé par rapport à un état thermique de l'air contenu à l'intérieur de l'habitacle. Un autre but de la présente invention est de proposer une installation de ventilation, de chauffage et/ou de climatisation d'un véhicule qui comporte une telle boucle et qui soit simple et peu couteuse à mettre en oeuvre, ladite installation étant peu consommatrice d'énergie. Un dernier but de la présente invention est de proposer une méthode d'utilisation d'une telle boucle de climatisation qui soit aisée à mettre en oeuvre.The object of the present invention is to provide a device for controlling the start-up of a fixed capacity compressor which is simple and inexpensive to produce, robust, compact, easily integrable inside a ventilation system. , heating and / or air conditioning of a motor vehicle, such a device to achieve a saving of energy necessary for the implementation of the compressor. Another object of the present invention is to provide an air conditioning loop equipped with such a device, said loop providing a thermal comfort quickly optimized compared to a thermal state of the air contained inside the cabin. Another object of the present invention is to propose a ventilation, heating and / or air-conditioning system for a vehicle which comprises such a loop and which is simple and inexpensive to implement, said installation being little consumer of energy. A last goal of the present invention is to provide a method of using such an air conditioning loop that is easy to implement.

Le dispositif de commande de la présente invention est un dispositif de commande d'un compresseur à capacité fixe associé à un évaporateur traversé par un flux d'air selon un sens d'écoulement du flux d'air. Ledit compresseur et ledit évaporateur sont constitutifs d'une boucle de climatisation d'une installation de ventilation, de chauffage et/ou de climatisation d'un véhicule automobile. Ledit dispositif comprend un capteur destiné à mesurer une valeur mesurée VM d'une caractéristique C d'un fluide FR,A et des moyens de comparaison de la valeur mesurée VM de la caractéristique C du fluide FR,A avec au moins deux valeurs-seuils VSmin, VSmax de ladite caractéristique C.The control device of the present invention is a device for controlling a fixed capacity compressor associated with an evaporator traversed by an air flow in a direction of flow of the air flow. Said compressor and said evaporator constitute an air conditioning loop of a ventilation, heating and / or air conditioning of a motor vehicle. Said device comprises a sensor for measuring a measured value VM of a characteristic C of a fluid FR, A and means for comparing the measured value VM of the characteristic C of the fluid FR, A with at least two threshold values VSmin, VSmax of said characteristic C.

Selon la présente invention, ledit dispositif comprend un capteur amont de température destiné à être disposé en amont dudit évaporateur selon ledit sens d'écoulement pour mesurer une température amont T2 du flux d'air et délivrer une information qui est prise en compte par ledit dispositif pour déterminer les valeurs-seuils VSmin, VSmax de ladite caractéristique C.According to the present invention, said device comprises an upstream temperature sensor intended to be arranged upstream of said evaporator in said direction of flow to measure an upstream temperature T2 of the air flow and to deliver information which is taken into account by said device to determine the threshold values VSmin, VSmax of said characteristic C.

Ces dispositions sont telles que les valeurs-seuils VSmin, VSmax sont déterminées à partir d'une information relative à la température amont T2 dudit flux d'air mesurée en amont de l'évaporateur et sont susceptibles de varier en fonction de la dite information. Il en découle que les valeurs-seuils VSmin, VSmax sont déterminées en fonction de la nature d'une charge thermique affectant l'évaporateur.These provisions are such that the threshold values VSmin, VSmax are determined from information relating to the upstream temperature T2 of said air flow measured upstream of the evaporator and are likely to vary according to said information. It follows that the threshold values VSmin, VSmax are determined according to the nature of a thermal load affecting the evaporator.

Ledit dispositif est avantageusement un dispositif autonome équipé de moyens de connexion à une source d'alimentation électrique pour la mise en oeuvre du capteur de ladite valeur mesurée VM et du capteur amont de température.Said device is advantageously an autonomous device equipped with connection means to a power source for the implementation of the sensor of said measured value VM and the upstream temperature sensor.

Ces dispositions sont telles que ledit dispositif est indépendant de tout autre dispositif de commande ce qui lui confère l'avantage de pouvoir être installé en un endroit relativement quelconque de ladite installation. Plus particulièrement, le dispositif est susceptible d'être logé à l'intérieur d'un boîtier élémentaire qui est facilement rapportable sur un boîtier constitutif de ladite installation et à l'intérieur duquel boîtier circule le flux d'air.These arrangements are such that said device is independent of any other control device which gives it the advantage of being able to be installed in a relatively arbitrary location of said installation. More particularly, the device can be housed inside an elementary housing which is easily reportable on a housing constituting said installation and inside which housing circulates the air flow.

Les moyens de comparaison sont préférentiellement constitués d'un amplificateur-opérationnel.The comparison means are preferably constituted by an operational amplifier.

Les moyens de comparaison sont de préférence associés à des moyens de détermination des deux valeurs-seuils VSmin, VSmax de ladite caractéristique C à partir de l'information relative à la température amont T2 du flux d'air.The comparison means are preferably associated with means for determining the two threshold values VSmin, VSmax of said characteristic C from the information relating to the upstream temperature T2 of the airflow.

Une boucle de climatisation d'une installation de ventilation, de chauffage et/ou de climatisation d'un véhicule automobile selon la présente invention est principalement reconnaissable en ce que la dite boucle comprend un tel dispositif de commande.An air conditioning circuit of a ventilation, heating and / or air conditioning system of a motor vehicle according to the present invention is mainly recognizable in that said loop comprises such a control device.

Le fluide FR,A est par exemple constitué d'air A formant le flux d'air, la caractéristique C étant constituée d'une température aval T1 du flux d'air mesurée en aval de l'évaporateur selon le sens d'écoulement du flux d'air à travers ce dernier et en ce que les valeurs-seuils VSmin, VSmax sont constituées de valeurs respectives minimale T1 min et maximale T1 max de ladite température aval T1.The fluid FR, A is for example constituted by air A forming the air flow, the characteristic C consisting of a downstream temperature T1 of the air flow measured downstream of the evaporator in the direction of flow of the air. air flow therethrough and in that the threshold values VSmin, VSmax consist of respective minimum values T1 min and maximum T1 max of said downstream temperature T1.

Le fluide FR,A est par exemple encore constitué d'un fluide réfrigérant FR circulant à l'intérieur de ladite boucle, la caractéristique C étant constituée d'une pression P dudit fluide réfrigérant FR à l'intérieur de l'évaporateur et en ce que les valeurs-seuils VSmin, VSmax sont constituées de valeurs respectives minimale Pmin et maximale Pmax de ladite pression P.The fluid FR, A is for example still constituted by a refrigerant fluid FR flowing inside said loop, the characteristic C being constituted by a pressure P of said refrigerating fluid FR inside the evaporator and in that that the threshold values VSmin, VSmax consist of respective minimum values Pmin and maximum Pmax of said pressure P.

Une installation de ventilation, de chauffage et/ou de climatisation de la présente invention est principalement reconnaissable en ce que la dite installation comprend une telle boucle de climatisation.A ventilation, heating and / or air conditioning system of the present invention is mainly recognizable in that said installation comprises such an air conditioning loop.

Ladite installation comprend notamment un volet d'admission du flux d'air à l'intérieur d'un boîtier constitutif de l'installation.Said installation comprises in particular an admission flap of the air flow inside a housing constituting the installation.

Le capteur amont de température est par exemple disposé en aval dudit volet selon le sens d'écoulement du flux d'air à l'intérieur de ladite installation.The upstream temperature sensor is for example disposed downstream of said flap in the direction of flow of the air flow inside said installation.

Le capteur amont de température est par exemple encore disposé en amont dudit volet selon le sens d'écoulement du flux d'air à l'intérieur de ladite installation.The upstream temperature sensor is for example still disposed upstream of said flap in the direction of flow of the air flow inside said installation.

Une méthode de mise en oeuvre selon la présente invention d'un tel dispositif de commande est caractérisée en ce que ladite méthode comporte une étape de détermination desdites valeurs-seuils VSmin, VSmax en fonction de ladite information relative à la température amont T2 du flux d'air prise en amont de l'évaporateur.An implementation method according to the present invention of such a control device is characterized in that said method comprises a step of determining said threshold values VSmin, VSmax as a function of said information relating to the upstream temperature T2 of the flow. air taken upstream of the evaporator.

Ladite étape de détermination est avantageusement suivie :

  • d'une étape de mise en marche du compresseur, si la valeur mesurée VM de la caractéristique C est supérieure à la valeur-seuil maximale Vmax, ou
  • d'une étape d'arrêt de la mise en marche du compresseur, si la valeur mesurée VM de la caractéristique C est inférieure à la valeur-seuil minimale Vmin.
Said determination step is advantageously followed:
  • a step of starting the compressor, if the measured value VM of the characteristic C is greater than the maximum threshold value Vmax, or
  • a step of stopping the start of the compressor, if the measured value VM of the characteristic C is lower than the minimum threshold value Vmin.

Description des figures.Description of the figures.

La présente invention sera mieux comprise, et des détails en relevant apparaîtront, à la lecture de la description qui va être faite de variantes de réalisation en relation avec les figures des planches annexées, dans lesquelles :

  • La fig.1 est une illustration schématique d'une installation de ventilation, de chauffage et/ou de climatisation comprenant une boucle de climatisation selon la présente invention.
  • La fig.2 est une illustration schématique d'une méthode d'utilisation de la boucle de climatisation représentée sur la figure précédente.
  • La fig.3 est une illustration schématique du résultat de la mise en oeuvre de la méthode illustrée sur la figure précédente.
  • La fig.4 est une illustration schématique d'une variante de réalisation de moyens de commande d'un compresseur participant de la boucle de climatisation représentée sur la fig.1.
The present invention will be better understood, and details will arise from reading the description which will be made of variants in connection with the figures of the attached plates, in which:
  • The fig.1 is a schematic illustration of a ventilation, heating and / or air conditioning installation comprising an air conditioning loop according to the present invention.
  • The fig.2 is a schematic illustration of a method of using the air conditioning loop shown in the previous figure.
  • The fig.3 is a schematic illustration of the result of the implementation of the method illustrated in the previous figure.
  • The fig.4 is a schematic illustration of an alternative embodiment of control means of a compressor participating in the air conditioning loop shown on the fig.1 .

Sur la fig.1, un véhicule automobile est équipé d'une installation 1 de ventilation, de chauffage et/ou de climatisation pour modifier les paramètres aérothermiques de l'air contenu à l'intérieur de l'habitacle du véhicule. Dans sa généralité, l'installation 1 comprend un boîtier 2 à l'intérieur duquel circule un flux d'air 3 préalablement à sa délivrance à l'intérieur de l'habitacle. Plus particulièrement, le boîtier 2 est équipé d'une entrée d'air 4 à travers laquelle le flux d'air 3 est admis à l'intérieur du boîtier 2 et une sortie d'air 5 à travers laquelle le flux d'air 3 est délivré à l'intérieur de l'habitacle. Le flux d'air 3 s'écoule à l'intérieur du boîtier 2 depuis l'entrée d'air 4 vers la sortie d'air 5 selon un sens 6 d'écoulement du flux d'air 3. L'entrée d'air 4 est pourvue d'un volet d'admission d'air 7. Ce dernier 7 est manoeuvrable entre une position d'ouverture dans laquelle il autorise une admission d'air à l'intérieur du boîtier 2 et une position de fermeture dans laquelle il interdit une telle admission.On the fig.1 a motor vehicle is equipped with a ventilation, heating and / or air conditioning installation 1 for modifying the aerothermal parameters of the air contained inside the passenger compartment of the vehicle. In general, the installation 1 comprises a housing 2 inside which circulates a flow of air 3 prior to its delivery to the interior of the passenger compartment. More particularly, the housing 2 is equipped with an air inlet 4 through which the air flow 3 is admitted inside the housing 2 and an air outlet 5 through which the air flow 3 is delivered inside the cabin. The air flow 3 flows inside the housing 2 from the air inlet 4 to the air outlet 5 in a flow direction 6 of the air flow 3. The inlet of air 4 is provided with an air intake flap 7. The latter 7 is operable between an open position in which it allows an intake of air inside the casing 2 and a closed position in which he forbids such admission.

Pour modifier la température du flux d'air 3 préalablement à sa délivrance à l'intérieur de l'habitacle, ladite installation 1 comprend une boucle de climatisation 8 à l'intérieur de laquelle circule un fluide réfrigérant FR, indifféremment sous-critique ou supercritique. La boucle de climatisation 8 comprend un compresseur 9 pour comprimer le fluide réfrigérant, un condenseur 10 ou un refroidisseur de gaz 10 à l'intérieur duquel le fluide réfrigérant cède de la chaleur à son environnement, un organe de détente 11 à l'intérieur duquel le fluide réfrigérant subit une détente et un évaporateur 12 pour refroidir ledit flux d'air 3 qui traverse ce dernier 12. La boucle de climatisation est susceptible de comporter aussi un échangeur de chaleur interne, non représenté sur la fig.1, qui décrit plus particulièrement une boucle de climatisation 8 à l'intérieur de laquelle circule un fluide réfrigérant FR sous-critique. A l'intérieur d'une telle boucle de climatisation 8, le fluide réfrigérant FR circule depuis le compresseur 9, vers le condenseur 10, puis vers l'organe de détente 11, puis vers l'évaporateur 12 pour retourner finalement au compresseur 9. Toutefois, la présente invention s'applique également à une boucle de climatisation 8 à l'intérieur de laquelle circule un fluide réfrigérant FR super-critique.To modify the temperature of the air flow 3 prior to its delivery inside the passenger compartment, said installation 1 comprises an air conditioning loop 8 inside which circulates a refrigerant fluid FR, indifferently subcritical or supercritical . The air conditioning loop 8 comprises a compressor 9 for compressing the refrigerant, a condenser 10 or a gas cooler 10 inside which the coolant transfers heat to its environment, an expansion member 11 inside which the refrigerant is subjected to an expansion and an evaporator 12 for cooling said air flow 3 which passes through the latter 12. The air conditioning loop may also include an internal heat exchanger , not shown on the fig.1 , which more particularly describes an air conditioning loop 8 inside which circulates a subcritical refrigerant FR. Inside such an air conditioning loop 8, the refrigerant fluid FR flows from the compressor 9, to the condenser 10, then to the expansion device 11, then to the evaporator 12 to finally return to the compressor 9. However, the present invention also applies to an air conditioning loop 8 inside which circulates a supercritical refrigerant FR.

Le compresseur 9 est un compresseur à capacité fixe pour lequel le volume balayé est constant. Le compresseur 9 est équipé d'un dispositif de commande 13 pour déterminer une mise en marche et/ou une mise à l'arrêt du compresseur 9. A cette fin, et en se reportant par ailleurs sur la fig.2, le dispositif de commande 13 comprend des moyens de comparaison 14 entre une valeur mesurée VM d'une caractéristique C d'un fluide FR,A et deux valeurs-seuils VSmin, VSmax de la caractéristique C du fluide FR,A. Les dites valeurs-seuils VSmin, VSmax sont respectivement une valeur-seuil minimale VSmin de la caractéristique C du fluide FR,A et une valeur-seuil maximale VSmax de la caractéristique du fluide FR,A, cette dernière VSmax étant supérieure à la valeur-seuil minimale VSmin. Le compresseur 9 est mis en marche lorsque la valeur mesurée VM de ladite caractéristique C est supérieure à la dite valeur-seuil maximale VSmax. Le compresseur 9 est arrêté lorsque la valeur mesurée VM de ladite caractéristique C est inférieure à la dite valeur-seuil minimale VSmin.The compressor 9 is a fixed capacity compressor for which the swept volume is constant. The compressor 9 is equipped with a control device 13 to determine a starting and / or a shutdown of the compressor 9. For this purpose, and referring also to the fig.2 , the control device 13 comprises comparison means 14 between a measured value VM of a characteristic C of a fluid FR, A and two threshold values VSmin, VSmax of the characteristic C of the fluid FR, A. Said threshold values VSmin, VSmax are respectively a minimum threshold value VSmin of the characteristic C of the fluid FR, A and a maximum threshold value VSmax of the characteristic of the fluid FR, A, the latter VSmax being greater than the value. minimum threshold VSmin. The compressor 9 is started when the measured value VM of said characteristic C is greater than said maximum threshold value VSmax. The compressor 9 is stopped when the measured value VM of said characteristic C is less than said minimum threshold value VSmin.

Selon une première variante, ledit fluide FR,A est constitué d'air A formant le flux d'air 3 qui traverse l'évaporateur 12, la dite caractéristique C étant constituée d'une température aval T1 du flux d'air 3 mesurée en aval de l'évaporateur 12 selon le sens d'écoulement 6 du flux d'air 3 à travers l'évaporateur 12, et les deux valeurs-seuils VSmin, VSmax sont constituées d'une température aval minimale T1min et d'une température aval maximale T1max du flux d'air 3. Dans ce cas, ladite température aval T1 est mesurée par l'intermédiaire d'un capteur aval 15 de température, tel qu'une résistance à coefficient de température négatif, couramment dénommé selon l'acronyme anglais « CTN » ou tel qu'un dispositif de contrôle thermomécanique.According to a first variant, said fluid FR, A consists of air A forming the air flow 3 which passes through the evaporator 12, said characteristic C consisting of a downstream temperature T1 of the air flow 3 measured in downstream of the evaporator 12 in the direction of flow 6 of the air stream 3 through the evaporator 12, and both Threshold values VSmin, VSmax consist of a minimum downstream temperature T1min and a maximum downstream temperature T1max of the air stream 3. In this case, said downstream temperature T1 is measured via a downstream sensor 15 temperature, such as a negative temperature coefficient resistance, commonly referred to by the acronym "CTN" or such as a thermomechanical control device.

Selon une deuxième variante, ledit fluide FR,A est constitué du fluide réfrigérant FR qui circule à l'intérieur de la boucle de climatisation 8, la dite caractéristique C est constituée d'une pression P du fluide réfrigérant FR mesurée à l'intérieur de l'évaporateur 12, et les deux valeurs-seuils VSmin, VSmax sont constituées d'une pression minimale Pmin et d'une pression maximale Pmax du fluide réfrigérant FR. Dans ce cas, la pression P du fluide réfrigérant est mesurée soit par l'intermédiaire d'un capteur de pression 16, tel qu'un transducteur, soit par l'intermédiaire d'un pressostat.According to a second variant, said fluid FR, A consists of the refrigerant fluid FR which circulates inside the air conditioning loop 8, the said characteristic C consists of a pressure P of the refrigerant fluid FR measured inside the the evaporator 12, and the two threshold values VSmin, VSmax consist of a minimum pressure Pmin and a maximum pressure Pmax of the refrigerant FR. In this case, the pressure P of the refrigerant is measured either by means of a pressure sensor 16, such as a transducer or by means of a pressure switch.

Selon l'art antérieur connu, les valeurs-seuils VSmin, VSmax sont fixes et demeurent constantes quelques soient les conditions d'utilisation de la boucle de climatisation 8, notamment quelque soit la nature d'une charge thermique affectant l'évaporateur 12.According to the known prior art, the threshold values VSmin, VSmax are fixed and remain constant whatever the conditions of use of the air conditioning loop 8, in particular whatever the nature of a thermal load affecting the evaporator 12.

Pour remédier à cet inconvénient, notamment en vue d'économiser une énergie nécessaire à la mise en oeuvre du compresseur 9, il est proposé par la présente invention que les moyens de commande 13 comprennent des moyens de détermination 17 apte à faire varier les valeurs-seuils VSmin, VSmax en fonction d'une information 18 reçue par les moyens de détermination 17.In order to overcome this disadvantage, especially with a view to saving energy necessary for the implementation of the compressor 9, it is proposed by the present invention that the control means 13 comprise determining means 17 able to vary the values thresholds VSmin, VSmax as a function of information 18 received by the determination means 17.

Ladite information 18 est une information relative à une température amont T2 du flux d'air 3 mesurée en amont de l'évaporateur 12 selon le sens d'écoulement 6 du flux d'air 3 à travers l'évaporateur 12. Ladite température amont T2 est mesurée par un capteur amont de température 20, tel qu'une résistance à coefficient de température négatif « CTN ». Selon une première option de réalisation, le capteur amont de température 20 est disposé en aval dudit volet d'admission d'air 7 tandis que selon une deuxième option de réalisation, le capteur amont de température 20 est disposé en amont dudit volet d'admission d'air 7. Cette dernière option présente l'avantage d'offrir la possibilité d'utiliser en tant que capteur amont de température 20 un capteur de température extérieure dont est couramment équipé le véhicule automobile, ce qui ne génère aucun surcoût.Said information 18 is information relating to an upstream temperature T2 of the air flow 3 measured upstream of the evaporator 12 in the direction of flow 6 of the air flow 3 through the evaporator 12. Said upstream temperature T2 is measured by an upstream temperature sensor 20, such as a resistance to Negative temperature coefficient "CTN". According to a first embodiment, the upstream temperature sensor 20 is disposed downstream of said air intake flap 7 while according to a second embodiment, the upstream temperature sensor 20 is disposed upstream of said intake flap The latter option has the advantage of offering the possibility of using as an upstream temperature sensor 20 an external temperature sensor which is commonly equipped with the motor vehicle, which generates no additional cost.

Selon cette première forme de réalisation, il est par exemple proposé les valeurs suivantes de T1max et T1min en fonction de ladite information 18 relative à la température amont T2 du flux d'air 3 mesurée en amont de l'évaporateur 12 : T2 > 30°C 25°C 20°C 15°C <10°C T1max 5°C 7°C 9°C 11°C 5°C T1min 2°C 4°C 6°C 8°C 2°C According to this first embodiment, for example, the following values of T1max and T1min are proposed as a function of said information 18 relating to the upstream temperature T2 of the air stream 3 measured upstream of the evaporator 12: T2 > 30 ° C 25 ° C 20 ° C 15 ° C <10 ° C T1max 5 ° C 7 ° C 9 ° C 11 ° C 5 ° C T1min 2 ° C 4 ° C 6 ° C 8 ° C 2 ° C

Dans cet exemple, il est remarquable que les valeurs T1max et T1min vérifient la relation R : T 1 max - T 1 min = 3 °C R

Figure imgb0001
In this example, it is remarkable that the values T1max and T1min satisfy the relation R: T 1 max - T 1 min = 3 ° C R
Figure imgb0001

Sur la fig.3, est illustré le résultat d'une mise en oeuvre d'une telle boucle de climatisation 8 selon la méthode de la présente invention dans laquelle différentes valeurs de T1max et de T1min sont obtenus en fonction de la valeur mesurée de la température amont T2 du flux d'air 3 mesurée en amont de l'évaporateur 12.On the fig.3 , is illustrated the result of an implementation of such an air conditioning loop 8 according to the method of the present invention in which different values of T1max and T1min are obtained as a function of the measured value of the upstream temperature T2 of the flow of air 3 measured upstream of the evaporator 12.

Sur la fig.4, est représentée une forme de réalisation avantageuse dudit dispositif de commande 13. Les concepteurs de la présente invention ont fait le choix de proposer une forme de réalisation simple et peu couteuse du dispositif de commande 13. Ce dernier 13 est notamment susceptible d'être logé à l'intérieur d'un boîtier élémentaire 21 qui est apte à être installé en un endroit relativement quelconque de la dite installation 1. Le dispositif de commande 13 proposé par la présente invention est un dispositif autonome qui est indépendant d'autres moyens de contrôle et/ou de commande qu'est susceptible de comporter ladite installation. Il en découle une forte commodité d'utilisation et d'implantation du dispositif de commande 13 qui est en conséquence exempt de perturbations et de dysfonctionnements générés par d'autres moyens de contrôle et/ou de commande. Cette indépendance et cette simplicité confèrent au dispositif de commande 13 un avantage conséquent par rapport à d'autres dispositifs de commande existants, plus complexes, intégrant de nombreuses fonctionnalités et susceptibles de connaître des dysfonctionnements.On the fig.4 is shown an advantageous embodiment of said control device 13. The designers of the present invention have chosen to provide a simple and inexpensive embodiment of the control device 13. The latter 13 is particularly likely to be housed inside an elementary housing 21 which is adapted to be installed in a relatively arbitrary location of said installation 1. The control device 13 proposed by the The present invention is an autonomous device that is independent of other means of control and / or control that may comprise said installation. It follows a strong convenience of use and implementation of the control device 13 which is accordingly free from disturbances and malfunctions generated by other control means and / or control. This independence and simplicity give the control device 13 a significant advantage over other existing control devices, more complex, incorporating many features and likely to malfunction.

Le capteur aval de température 15 et le capteur amont de température 20 sont interposés entre une borne de batterie 22 et une borne de masse 23 d'une source d'alimentation électrique. Une différence de potentiel Ubatt est appliquée entre la borne de batterie 22 et la borne de masse 23. Une première résistance R1 est interposée entre le capteur aval de température 15 et la borne de batterie 22 tandis qu'une résistance R2 est interposée entre le capteur amont de température 20 et la borne de batterie 22. Le capteur amont de température 20 est apte à délivrer une tension amont UT2 qui est transmise aux moyens de détermination 17 pour adapter les valeurs-seuils VSmin, VSmax, qui sont respectivement constituées dans cet exemple de la température aval minimale T1min et de la température aval maximale T1max du flux d'air 3.The downstream temperature sensor 15 and the upstream temperature sensor 20 are interposed between a battery terminal 22 and a ground terminal 23 of a power supply source. A potential difference Ubatt is applied between the battery terminal 22 and the ground terminal 23. A first resistor R1 is interposed between the downstream temperature sensor 15 and the battery terminal 22 while a resistor R2 is interposed between the sensor temperature upstream 20 and the battery terminal 22. The upstream temperature sensor 20 is able to deliver an upstream voltage UT2 which is transmitted to the determination means 17 to adapt the threshold values VSmin, VSmax, which are respectively constituted in this example the minimum downstream temperature T1min and the maximum downstream temperature T1max of the airflow 3.

Les moyens de détermination 17 transmettent par l'intermédiaire d'une troisième résistance R3 à une première borne d'entrée 24 d'un amplificateur opérationnel 14 les valeurs de tension de référence Umin et Umax respectivement correspondantes aux valeurs-seuils VSmin, VSmax. Par l'intermédiaire d'une deuxième borne d'entrée 25 de l'amplificateur opérationnel 14, ce dernier reçoit une tension Um correspondante à ladite valeur mesurée VM pour comparer la tension Um aux tensions Umin et Umax et fournir une tension d'instruction Ui à une interface de contrôle 26 du compresseur 9. L'interface est apte à délivrer une tension de compresseur Uc qui détermine la nature de la mise en marche ou de la mise à l'arrêt du compresseur 9.The determination means 17 transmit via a third resistor R3 to a first input terminal 24 of an operational amplifier 14 the reference voltage values Umin and Umax respectively corresponding to the threshold values VSmin, VSmax. Via a second input terminal 25 of the operational amplifier 14, the latter receives a voltage Um corresponding to said measured value VM to compare the voltage Um with the voltages Umin and Umax and supply an instruction voltage Ui to a control interface 26 of the compressor 9. The interface is capable of delivering a compressor voltage Uc which determines the nature of the starting or stopping of the compressor 9.

Un tel dispositif de commande 13 est d'une structure la plus simple possible ce qui lui confère une fiabilité et une robustesse optimisées pour un contrôle fiable et pérenne de la mise marche et/ou à l'arrêt du compresseur 9, à partir de l'information 18 relative à une température amont T2 du flux d'air 3 mesurée en amont de l'évaporateur 12, ladite information 18 étant représentative d'une charge thermique affectant l'évaporateur 12, de telle sorte que le confort thermique procurée par la dite installation 1 soit en corrélation avec une nature réelle, précise et itérativement actualisée de paramètres aérothermiques du flux d'air 3 et/ou de paramètres relatifs fluide réfrigérant FR et/ou des conditions de fonctionnement de l'évaporateur 12.Such a control device 13 is of the simplest possible structure which gives it reliability and robustness optimized for a reliable and lasting control of the start and / or stop of the compressor 9, from the information 18 relating to an upstream temperature T2 of the air flow 3 measured upstream of the evaporator 12, said information 18 being representative of a thermal load affecting the evaporator 12, so that the thermal comfort provided by the said installation 1 is in correlation with a real, precise and iteratively updated nature of aerothermal parameters of the airflow 3 and / or relative parameters refrigerant FR and / or operating conditions of the evaporator 12.

Claims (13)

Dispositif de commande (13) d'un compresseur à capacité fixe (9) associé à un évaporateur (12) traversé par un flux d'air (3) selon un sens d'écoulement (6) du flux d'air (3), ledit compresseur (9) et ledit évaporateur (12) étant constitutifs d'une boucle de climatisation (8) d'une installation (1) de ventilation, de chauffage et/ou de climatisation d'un véhicule automobile, ledit dispositif (13) comprenant un capteur (15,16) destiné à mesurer une valeur mesurée VM d'une caractéristique C d'un fluide FR,A et des moyens de comparaison (14) de la valeur mesurée VM de la caractéristique C du fluide FR,A avec au moins deux valeurs-seuils VSmin, VSmax de ladite caractéristique C, caractérisé en ce que ledit dispositif (13) comprend un capteur amont de température (20) destiné à être disposé en amont dudit évaporateur (12) selon ledit sens d'écoulement (6) pour mesurer une température amont T2 du flux d'air (3) et délivrer une information (18) qui est prise en compte par ledit dispositif (13) pour déterminer les valeurs-seuils VSmin, VSmax de ladite caractéristique C.Control device (13) for a fixed capacity compressor (9) associated with an evaporator (12) traversed by an air flow (3) in a direction of flow (6) of the air flow (3) , said compressor (9) and said evaporator (12) constituting an air conditioning loop (8) of a ventilation, heating and / or air-conditioning installation (1) of a motor vehicle, said device (13) ) comprising a sensor (15, 16) for measuring a measured value VM of a characteristic C of a fluid FR, A and means for comparing (14) the measured value VM of the characteristic C of the fluid FR, A with at least two threshold values VSmin, VSmax of said characteristic C, characterized in that said device (13) comprises an upstream temperature sensor (20) intended to be arranged upstream of said evaporator (12) in said direction of flow (6) for measuring an upstream temperature T2 of the air flow (3) and delivering an information (18) which is taken into account by said device (13) for determining the threshold values VSmin, VSmax of said characteristic C. Dispositif de commande (13) selon la revendication précédente, caractérisé en ce que ledit dispositif (13) est un dispositif autonome équipé de moyens de connexion (22,23) à une source d'alimentation électrique pour la mise en oeuvre du capteur (15,16) de ladite valeur mesurée VM et du capteur amont de température (20).Control device (13) according to the preceding claim, characterized in that said device (13) is an autonomous device equipped with connection means (22, 23) to a power supply source for the implementation of the sensor (15). 16) of said measured value VM and the upstream temperature sensor (20). Dispositif de commande (13) selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de comparaison (14) sont constitués d'un amplificateur-opérationnel.Control device (13) according to any one of the preceding claims, characterized in that the comparison means (14) consist of an operational amplifier. Dispositif de commande (13) selon l'une quelconque des revendications précédentes en ce que les moyens de comparaison (14) sont associés à des moyens de détermination (17) des deux valeurs-seuils VSmin, VSmax de ladite caractéristique C à partir de l'information (18) relative à la température amont T2 du flux d'air (3).Control device (13) according to any one of the preceding claims, in that the comparison means (14) are associated with means for determining (17) the two threshold values VSmin, VSmax of said characteristic C from the information (18) relating to the upstream temperature T2 of the air flow (3). Boucle de climatisation (8) d'une installation (1) de ventilation, de chauffage et/ou de climatisation d'un véhicule automobile, caractérisée en ce que la dite boucle (8) comprend un dispositif de commande (13) selon l'une quelconque des revendications précédentes.Air conditioning loop (8) of an installation (1) for ventilation, heating and / or air conditioning of a motor vehicle, characterized in that said loop (8) comprises a control device (13) according to the any of the preceding claims. Boucle de climatisation (8) selon la revendication 5, caractérisée en ce que le fluide FR,A est constitué d'air A formant le flux d'air (3), la caractéristique C étant constituée d'une température aval T1 du flux d'air (3) mesurée en aval de l'évaporateur (12) selon le sens d'écoulement (6) du flux d'air (3) à travers ce dernier (12) et en ce que les valeurs-seuils VSmin, VSmax sont constituées de valeurs respectives minimale T1 min et maximale T1 max de ladite température aval T1.Air conditioning loop (8) according to claim 5, characterized in that the fluid FR, A consists of air A forming the air flow (3), the characteristic C consisting of a downstream temperature T1 of the flow of air air (3) measured downstream of the evaporator (12) in the direction of flow (6) of the air stream (3) through the latter (12) and in that the threshold values VSmin, VSmax are constituted by respective minimum values T1 min and maximum T1 max of said downstream temperature T1. Boucle de climatisation (8) selon la revendication 5, caractérisée en ce que le fluide FR,A est constitué d'un fluide réfrigérant FR circulant à l'intérieur de ladite boucle (8), la caractéristique C étant constituée d'une pression P dudit fluide réfrigérant (FR) à l'intérieur de l'évaporateur (12) et en ce que les valeurs-seuils VSmin, VSmax sont constituées de valeurs respectives minimale Pmin et maximale Pmax de ladite pression P.Air conditioning loop (8) according to claim 5, characterized in that the fluid FR, A consists of a refrigerant fluid FR flowing inside said loop (8), the characteristic C being constituted by a pressure P said refrigerant fluid (FR) inside the evaporator (12) and in that the threshold values VSmin, VSmax consist of respective minimum values Pmin and maximum Pmax of said pressure P. Installation (1) de ventilation, de chauffage et/ou de climatisation comprenant une boucle de climatisation (8) selon l'une quelconque des revendications 5 à 7.Installation (1) ventilation, heating and / or air conditioning comprising an air conditioning loop (8) according to any one of claims 5 to 7. Installation (1) selon la revendication 8, caractérisée en ce que ladite installation (1) comprend un volet d'admission (7) du flux d'air (3) à l'intérieur d'un boîtier (2) constitutif de l'installation (1).Installation (1) according to claim 8, characterized in that said installation (1) comprises an intake flap (7) of the air flow (3) inside a housing (2) constituting the installation (1). Installation (1) selon la revendication 9, caractérisée en ce que le capteur amont de température (20) est disposé en aval dudit volet (7) selon le sens d'écoulement (6) du flux d'air (3) à l'intérieur de ladite installation (1).Installation (1) according to claim 9, characterized in that the upstream temperature sensor (20) is disposed downstream of said flap (7) in the direction of flow (6) of the air flow (3) to the interior of said installation (1). Installation (1) selon la revendication 9, caractérisée en ce que le capteur amont de température (20) est disposé en amont dudit volet (7) selon le sens d'écoulement (6) du flux d'air (3) à l'intérieur de ladite installation (1).Installation (1) according to claim 9, characterized in that the upstream temperature sensor (20) is arranged upstream of said flap (7) in the direction of flow (6) of the air flow (3) to the interior of said installation (1). Méthode de mise en oeuvre d'un dispositif de commande (13) selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ladite méthode comporte une étape de détermination desdites valeurs-seuils VSmin, VSmax en fonction de ladite information (18) relative à la température amont T2 du flux d'air (3) prise en amont de l'évaporateur (12).Method of implementing a control device (13) according to any one of claims 1 to 4, characterized in that said method comprises a step of determining said threshold values VSmin, VSmax according to said information (18 ) relating to the upstream temperature T2 of the air flow (3) taken upstream of the evaporator (12). Méthode selon la revendication 12, caractérisée en ce que ladite étape de détermination est suivie : - d'une étape de mise en marche du compresseur (9), si la valeur mesurée VM de la caractéristique C est supérieure à la valeur-seuil maximale Vmax, ou - d'une étape de mise à l'arrêt du compresseur (9), si la valeur mesurée VM de la caractéristique C est inférieure à la valeur-seuil minimale Vmin. Method according to claim 12, characterized in that said determining step is followed: a step of starting the compressor (9), if the measured value VM of the characteristic C is greater than the maximum threshold value Vmax, or - A step of stopping the compressor (9), if the measured value VM of the characteristic C is lower than the minimum threshold value Vmin.
EP09165149.7A 2008-07-18 2009-07-10 Device for controlling a fixed-capacity compressor Active EP2146154B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0804083A FR2934018B1 (en) 2008-07-18 2008-07-18 DEVICE FOR CONTROLLING A COMPRESSOR WITH FIXED CAPABILITY

Publications (2)

Publication Number Publication Date
EP2146154A1 true EP2146154A1 (en) 2010-01-20
EP2146154B1 EP2146154B1 (en) 2015-04-08

Family

ID=40364319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09165149.7A Active EP2146154B1 (en) 2008-07-18 2009-07-10 Device for controlling a fixed-capacity compressor

Country Status (4)

Country Link
US (1) US9157672B2 (en)
EP (1) EP2146154B1 (en)
JP (1) JP5634688B2 (en)
FR (1) FR2934018B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080971A (en) * 2019-04-09 2019-08-02 中国石油集团济柴动力有限公司成都压缩机分公司 A kind of gas Qi Fangfa suitable for supercritical carbon dioxide compressibility

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112376A1 (en) 2020-05-07 2021-11-11 Wolf Gmbh Heat pump system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232188A2 (en) * 1986-02-07 1987-08-12 Sanden Corporation Device for controlling the capacity of a compressor
US20010049943A1 (en) * 2000-04-27 2001-12-13 Hiroki Nakamura Air-conditioning system for vehicles
US6330909B1 (en) * 1998-10-23 2001-12-18 Denso Corporation Vehicle air conditioning system
EP1544556A1 (en) * 2003-12-16 2005-06-22 Valeo Climatisation Air conditioning system
EP1702667A2 (en) * 2005-03-14 2006-09-20 Domnick Hunter Hiross S.p.A. Control system for refrigeration-based compressed-gas dryers
EP1717527A1 (en) * 2004-02-16 2006-11-02 Sanden Corporation Air conditioner
US20070256436A1 (en) * 2006-05-08 2007-11-08 Denso Corporation Air-conditioner for vehicle
US20080022704A1 (en) * 2006-07-31 2008-01-31 Denso Corporation Air conditioner and method of controlling air conditioner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152151A (en) * 1992-02-26 1992-10-06 Eaton Corporation Measuring evaporator load in an automotive air conditioning system for compressor clutch control
JPH05345512A (en) * 1992-06-16 1993-12-27 Suzuki Motor Corp Vehicle air conditioner
US5259198A (en) * 1992-11-27 1993-11-09 Thermo King Corporation Air conditioning and refrigeration systems utilizing a cryogen
DE4442000A1 (en) * 1994-11-28 1996-05-30 Behr Gmbh & Co Heating and / or air conditioning
DE19507667A1 (en) * 1995-03-04 1996-09-05 Behr Gmbh & Co Method and circuit arrangement for the on / off control of the compressor of a motor vehicle air conditioning system
JP3329275B2 (en) * 1997-10-07 2002-09-30 株式会社デンソー Vehicle air conditioner
JP2004196160A (en) * 2002-12-19 2004-07-15 Denso Corp Air-conditioner for vehicle, and refrigeration cycle device used for it
JP4143434B2 (en) * 2003-02-03 2008-09-03 カルソニックカンセイ株式会社 Vehicle air conditioner using supercritical refrigerant
CN100390474C (en) * 2004-09-13 2008-05-28 大金工业株式会社 Refrigerating device
ITTO20060203A1 (en) * 2006-03-17 2007-09-18 Fiat Ricerche SYSTEM AND METHOD OF CONTROL OF A CLIMATE CONTROL SYSTEM FOR A VEHICLE WITH REDUCED ENERGY CONSUMPTION

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232188A2 (en) * 1986-02-07 1987-08-12 Sanden Corporation Device for controlling the capacity of a compressor
US6330909B1 (en) * 1998-10-23 2001-12-18 Denso Corporation Vehicle air conditioning system
US20010049943A1 (en) * 2000-04-27 2001-12-13 Hiroki Nakamura Air-conditioning system for vehicles
EP1544556A1 (en) * 2003-12-16 2005-06-22 Valeo Climatisation Air conditioning system
EP1717527A1 (en) * 2004-02-16 2006-11-02 Sanden Corporation Air conditioner
EP1702667A2 (en) * 2005-03-14 2006-09-20 Domnick Hunter Hiross S.p.A. Control system for refrigeration-based compressed-gas dryers
US20070256436A1 (en) * 2006-05-08 2007-11-08 Denso Corporation Air-conditioner for vehicle
US20080022704A1 (en) * 2006-07-31 2008-01-31 Denso Corporation Air conditioner and method of controlling air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080971A (en) * 2019-04-09 2019-08-02 中国石油集团济柴动力有限公司成都压缩机分公司 A kind of gas Qi Fangfa suitable for supercritical carbon dioxide compressibility
CN110080971B (en) * 2019-04-09 2020-07-03 中国石油集团济柴动力有限公司成都压缩机分公司 Gas start method suitable for supercritical carbon dioxide compression system

Also Published As

Publication number Publication date
JP5634688B2 (en) 2014-12-03
FR2934018A1 (en) 2010-01-22
EP2146154B1 (en) 2015-04-08
US9157672B2 (en) 2015-10-13
US20100017038A1 (en) 2010-01-21
FR2934018B1 (en) 2010-08-20
JP2010023828A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
EP2352656B1 (en) Air conditioning thermodynamic loop integrated in a heating, ventilation and/or air conditioning system a vehicle, in particular an electric propulsion vehicle
FR3076342A1 (en) THERMAL CONDITIONING CIRCUIT
WO2014040854A1 (en) Device for thermally conditioning an interior of an electric vehicle
EP3781882B1 (en) Thermal conditioning device for a motor vehicle
FR2976224A1 (en) THERMAL CONDITIONING SYSTEM OF A CABINET AND AN ELECTRIC BATTERY
EP2146154B1 (en) Device for controlling a fixed-capacity compressor
WO2012171601A1 (en) Refrigerant circuit and method of controlling such a circuit
EP0782265A1 (en) Method and device for protecting an adjustable impedance element controlling the supply of an electric motor, particularly of a motor vehicle
EP2748022B1 (en) Device for controlling the flow of a coolant, and circuit including such a device
FR2802474A1 (en) AIR CONDITIONING DEVICE FOR A MOTOR VEHICLE, WITH IMPROVED VENTILATION CONTROL
FR3077377A1 (en) METHOD FOR CONTROLLING A SYSTEM FOR THERMALLY PROCESSING AN ELEMENT OF A VEHICLE ELECTRICAL DRIVE CHAIN
EP3746318A1 (en) Refrigerant fluid circuit
EP2699434B1 (en) Method for controlling an air-conditioning system of the passenger compartment of a vehicle
EP1536193A1 (en) Expansion member with built-in electronic for air-conditioning unit cooling circuit in particular for a motor vehicle
FR2928445A1 (en) Expansion member controlling method for heating, ventilating and/or air conditioning installation of motor vehicle, involves considering information of overheat at evaporator exit for controlling member to calculate value of passage section
EP3747080B1 (en) Method for cooling an electrical storage device equipping a vehicle
EP1493979A1 (en) Car air-conditioner with a supercritical cycle
EP2766206B1 (en) Depressurization device including a depressurization means and a means for bypassing the depressurization means
WO2012079885A1 (en) System and method for controlling an air conditioning system for a motor vehicle
FR3057211A1 (en) METHOD FOR CONTROLLING A HEATING LOOP, VENTILATION AND / OR AIR CONDITIONING
EP2141426A1 (en) Method for the implementation of an AC loop of an heating, ventilating and/or air conditioning installation of a vehicle
WO2014095591A1 (en) System for the electrical regulation of the expansion of a coolant and method for controlling such a system
WO2014095592A1 (en) System for regulating the expansion of a coolant
EP4330607A1 (en) Method for calibrating an electronic expansion valve within a thermal management device for a motor vehicle
FR2999991A1 (en) System for cooling traction battery of e.g. hybrid motor vehicle, has cooling devices utilizing fluid internal and air external to vehicle as internal and external sources, respectively, to cool battery during stopping phase of vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17P Request for examination filed

Effective date: 20100713

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 720888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009030442

Country of ref document: DE

Effective date: 20150521

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 720888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150408

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150808

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150709

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009030442

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20160111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150710

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150710

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160726

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170710

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230727

Year of fee payment: 15

Ref country code: DE

Payment date: 20230712

Year of fee payment: 15