EP2145371B1 - Centrale électrique pour transmission d'énergie vers une charge éloignée - Google Patents

Centrale électrique pour transmission d'énergie vers une charge éloignée Download PDF

Info

Publication number
EP2145371B1
EP2145371B1 EP07748464A EP07748464A EP2145371B1 EP 2145371 B1 EP2145371 B1 EP 2145371B1 EP 07748464 A EP07748464 A EP 07748464A EP 07748464 A EP07748464 A EP 07748464A EP 2145371 B1 EP2145371 B1 EP 2145371B1
Authority
EP
European Patent Office
Prior art keywords
current
power
high voltage
cable
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07748464A
Other languages
German (de)
English (en)
Other versions
EP2145371A1 (fr
Inventor
Lars Efraimsson
Henric Magnusson
Ulf Johnsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of EP2145371A1 publication Critical patent/EP2145371A1/fr
Application granted granted Critical
Publication of EP2145371B1 publication Critical patent/EP2145371B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to distribution of power. In more detail it relates to distribution of electrical power, supervision and security.
  • the purpose of the inventions is to overcome the disadvantages described above.
  • the invention relates to distribution of electrical power, supervision and security.
  • the invention comprises a power feeding station PFS for delivering electrical power according to claim 1.
  • the PFS comprises a low voltage side LVS, a high voltage side HVS and a transformer TF which is configured to deliver high voltage single phase alternating current on the high voltage side,
  • the power can be distributed, via a cable, to one or more power receiving stations PRS.
  • the cable is configured to distribute current-symmetrical single phase current delivered by the power feeding station.
  • the cable can preferable be a coaxial cable with the shield as current return path.
  • the invention also comprises a current sensor unit CSU which comprises means CL, 105 for measuring characteristics of the current CD, means 106 to receive characteristics of the current and means 101 to deliver the characteristics of the current to a control function CF.
  • the current sensor is situated on the high voltage side.
  • the means for measuring characteristics of the current CD can comprise a coil without galvanic contact with the high voltage side.
  • a circuit break unit CBU suitable for breaking the current is situated on the low voltage side.
  • the control function CF is configured to activate the circuit break unit based on the safety rules and the characteristics of the current CD.
  • the control function CF comprises means for receiving characteristics of the current and means for activate the circuit break unit.
  • the means for measuring characteristics of the current can also comprise means 105 for measuring a value of the earth leakage current from the power cable shield to a surrounding material and means CL for measuring the cable shield current.
  • the supervision system can then measure characteristics of the current consisting of the phase angle between the earth leakage current and the cable shield current and take said phase angle into consideration for activation of the circuit breaker unit.
  • Characteristics of the current and other system information SI can also be delivered to an information unit IU.
  • Remote power RPS is a power solution providing an easy, safe and cost effective way to take care of the power supply to power consumers, e.g. telecom units, which are located at long distances from existing electrical supply network and spread over a wide geographical area.
  • the system works properly even at distances up to 100 km.
  • the power can preferably be between 1-1000 kW.
  • the system is less prone to pick up outer disturbances like magnetic interference, has a sensible supervision system and provides a high degree of personnel safety.
  • Central reserve power can be used and the need for reserve power and batteries back up for the power consumer is minimal. It is a robust and reliable system with little electrical equipment on the high voltage side.
  • FIG 1 illustrates a remote power system RPS comprising a power feeding station PFS which has a low voltage side LVS and a high voltage side HVS and a transformer TF, a high voltage distribution cable CC for transporting power between the PFS and the PRS, a power receiving station PRS, a current sensor unit CSU for measuring characteristics of the current CD on the high voltage side and a control function CF which can activate a circuit break unit CBU based on a set of safety rules (SR).
  • SR safety rules
  • the system comprises a central power feeding station PFS comprising a low voltage side for input of electrical power.
  • the PFS typically gets is electrical power from a central power station or is connected to the existing electrical infrastructure.
  • Input is typically two phase 230-400 volts AC, i.e. low voltage.
  • the PFS also comprises a high voltage side for distribution of power to a power Receiving Station PRS.
  • a transformer TF in the PFS handles the transformation from low to high voltage. Output can be a few kilo volts, 2-20 kilo volts is most appropriate for this embodiment.
  • the transformer In the case input current is not single phase, the transformer also transforms the current to single phase.
  • a supervision system for breaking the current in case of malfunctions in the system is connected to the PFS.
  • Supervision and signal equipment can also be connected to the PFS as well as different types of back ups, i.e. a battery back up system.
  • a battery back up system i.e. a battery back up system.
  • Using high voltage in the distribution phase gives the results of low currents. This makes the system more cost effective and the supervision system more reliable.
  • the current is distributed through a high voltage distribution power cable, which is adapted for transmitting current-symmetrical single phase current.
  • It can be a cable of co-axial type where the shield (SH) in used as current return path.
  • the cable can preferably be a XLPE insulated cable with coaxial construction with an outer diameter of about 10-30 mm and can be placed in ground, in water or hung in air. The system will work up to at least distances of 100 km. If a coaxial design is used, the magnetic field is negliable and the cable can be placed close to other sensitive equipment, i.e. telecom cables, without risk of magnetic interference.
  • a coaxial design also makes the cable more or less immune to electro magnetic impulses from the outside, like thunder and lightning over-voltages. This is also important to be able to have a sensible and reliable supervision system. A fault detection system will be less affected by outer electro magnetic disturbances.
  • PRS the voltage can be transformed down to low voltage, typically 230 volt AC.
  • PRS can be serial connected and there is only need for one backup system and one safety and supervision system, normally situated close to the Power Feeding Station.
  • a ring configuration can also be used. For better performance it is also possible to have several Power Feeding Station connected to a system.
  • the Current Sensor Unit CSU is placed on the high voltage side in the PFS or on the high voltage single phase coaxial cable CC.
  • the CSU does not have to be a central unit but could also be distributed, with different measuring points.
  • the CSU can comprise a coil, CL in figure 1 , with no galvanic contact with the high voltage side for measuring magnitudes of currents. In the case of a coaxial cable the induced current in the coil is normally quite low. This is because of the symmetrical co-axial construction of the cable. This makes it possible to get the current sensor very sensible.
  • the supervision system can also comprise means for measuring the phase angle between the total cable current, measured by a coil, and the capacitive leakage current. This is to get a sensitive supervision system which can detect the mainly resistive fault currents when the capacitive earth leakage current is large.
  • the current sensor unit CSU has means for detecting and deliver characteristics of the current CD to a Control Function CF. Characteristics of the current are differences in magnitudes of in- and out going current. The difference in phase of in- and out going current as well as phase angle between current and voltage are examples of further characteristics of the current.
  • a circuit break unit CBU is placed on the low voltage side of the Power feeding station PFS.
  • the control function CF can order the CBU to cut the current according to certain safety rules SR and on what Characteristics of the current CD the CSU delivers.
  • the CF can also deliver system information, SI in figure 1 , to an Information Unit, IU in figure 1 .
  • the systeminformation can e.g. be information on characteristics of the current (CD) or that the circuit break unit (CBU) has been activated.
  • the IU can be a screen with readable data of the status of the system or different alarm functions. Every kind of defect in the system does not have to result in a cut of the current. If for example the difference in magnitude between in- and outgoing current is bigger than a reference value D2 this could be sent as a signalling message to the information unit. In this case it can be due to the fact that the outer sheath of the coaxial cable is deficient. It is however possible to operate the system with a deficient outer sheath, but it should be repaired before corrosion of the cable shield proceeds.
  • Other examples of information which can be sent to the information unit are examples of information which can be sent to the information unit:
  • a power cable of coaxial type is normally used and the cable shield is then used as the return path for the currents.
  • the inductive part of the shield impedance is here neglected.
  • the surrounding earth of the power cable works as a conductor for currents, therefore the cable shield conductor and the earth “conductor” will act as a capacitor.
  • the earth fault relay can be used.
  • the relay takes the capacitive leakage current under consideration to increase the sensitivity to the mainly resistive earth fault current.
  • the phase angle sensitive fault detection unit measures the zero sequence voltage over impedance between the transformer neutral and earth. The voltage is dependent on the total current floating in ground. The voltage is used by the relay as a reference value to measure the phase angle of the current in the cable. In case of an earth fault a mainly resistive current will occur in the shield which will change the angle between the zero sequence voltage and the total cable current.
  • the phase angle is used as trip value to give signal to e.g. the IU or the CF.
  • the capacitive currents must be measured or calculated to be able to make the proper adjustments for the relay.
  • the cable shield and the surrounding earth can be approximated as a cylindrical capacitor, where the inner conductor is the shield and the outer conductor is the earth where the earth current flows. Between the conductors we have two isolation medium, the cable jacket and the earth.
  • the refractive indexes for the mediums are ⁇ jacket depending on the material, e.g. ethylene jacket has the value 2.3.
  • ⁇ earth is dependent of the moisture condition in ground and is therefore a function of the path along the cable.
  • ⁇ earth ⁇ 80 represent water and ⁇ earth ⁇ 10 could be very dry moisture.
  • a normal average value can typically be 20 for the surrounding ground refractive index.
  • Figure 2 shows a cross section of a cable, the area between a and b is the cable jacket (CJ) and the area between b and c is the ground, air and water.
  • the values a, b are cable dimension but the distance c is not exact and must normally be estimated, the earth currents normally floats at a distance of 20-40 meter from the cable. In the calculations a value of 20 meter is normally used.
  • the voltage drop in the shield is determined by the shield resistance and the total current floating the cable.
  • the shield resistance, R is a fixed value dependent on the area of the shield conductor.
  • the total current is dependent on the active loads in the system, the system voltage and the reactive power produced in the cable. Let's assume that the system has PFS station and one PRS. From the receiving station the total current, I, produced in the network is carried back in the shield to the feeding station. The current has a resistive part and a reactive part caused by capacitive power generation between the cable phase and shield.
  • the shield resistance R is fixed for the actual cable used.
  • the total earth current between two stations can now be calculated to get the asymmetry current, capacitive leakage current, between the PFS and the first PRS I earth ⁇ ⁇ * P / U phase 2 + ⁇ * C phase - screen * U phase 2 * R screen * L 2 * ⁇ 2 * ⁇ 0 1 ⁇ earth ⁇ ln b a + 1 ⁇ jacket ⁇ ln c b ⁇ dL
  • the concept can of course be used to systems with more than one PRS.
  • the shield voltage will increase along the cable relative to the feeding station but the voltage raise will be smaller and smaller since the active load and reactor power seen from a station further out is smaller, hence less current is carried in the shield further out in the system.
  • the capacitive leakage current will be relatively small, say 50 mA.
  • the leakage currents are large and the asymmetry current trip value used by the fault detection unit must be set to a large value for not tripping in a normal state mode.
  • the sensitivity to high impedance earth faults is relatively bad.
  • the phase angle between the capacitive leakage current and the asymmetry current in the cable is used as a trip value.
  • the signal is sent to the IU or the CF.
  • the capacitive current is of the approximate size of the current in the cable.
  • the material of the cable, the voltage and the frequency of the AC will therefore be adapted to make the capacitive current as small as possible.
  • a lower frequency, i.e. 16 2/3 Hz, will reduce the capacitive current to 1/3 of the capacitive current at 50 Hz.
  • the capacitive current will be taken into consideration on determination of a trip value D1. If the cable is damaged or another fault occurs this will cause an additional current that will exceed the trip value D1, and the CBU will be activated.
  • the values of the capacitive current could be either calculated or measured directly at a remote power system.
  • phase adjusting device can be connected between the shield and the earth of the PRS.
  • the phase adjusting device is preferable a reactor.
  • the phase adjusting device compensates the capacitive currents, shield to ground, and stabilizes the shield voltage with an impedance to ground.
  • the phase adjusting device is dimensioned to at least compensate the capacitive currents, which depends on the surrounding soil and the shield voltage. Preferable is to place one phase adjusting device in the every PRS.
  • the fault detection unit now measures the inductive currents in earth as reference value for the phase sensitive fault detection.
  • the phase angle between the capacitive earth current and the total current over the power cable can be used by the control function as a value for fault detection.
  • an impedance is connected between the PFS earth and the power cable shield.
  • the supervision system comprises means for measuring the voltage over the impedance which is used as a reference value when measuring the phase angle between the capacitive leakage earth current and the total cable current measured by the coil.
  • T1 time delay
  • Incoming power to the power feeding station is of 2-phase (phase to phase) 400 Volts AC, at 50 Hz, typically from a 3-phase generator source.
  • a transformer in the PFS transforms the low voltage to single phase 4 kV AC.
  • the electric energy is transmitted between the PFS and the PRS via a high voltage coaxial cable.
  • the distance between the PFS and the PRS is 40 km.
  • the PRS transforms the high voltage to low voltage, normally 230 Volts AC.
  • the PRS supplies an active load of 10 kW; e.g. the transformer can be rated to 15 kVA.
  • the voltage and capacitance between the conductor and shield will cause capacitive currents in the cable.
  • the current causes active losses, voltage rise at low load, and requires a transformer that can handle a large amount of reactive power.
  • a compensating reactor that consumes reactive power is connected, in the PRS, between the phase and shield.
  • the magnitude of the current in the power cable is approximately between 2.5-5 ampere dependent on the load and the degree of compensation of the conductor-shield capacitive current, say a total of 4 A for the example.
  • the cable is a XLPE insulated power cable of co-axial type with an outer diameter of 20 mm. The cable can be placed in both ground, water and in air.
  • the circuit breaker unit CBU will be activated. This device will also detect other faults in the system that causes large currents. The safety rules are set to activate the circuit break unit if the current is bigger than C1.
  • the magnetic configuration of the transformer in the PFS can cause large currents. This current can be limited by a reactor connected in series with the low voltage feeding point. The start up current is damped in a few periods. The reactor is automatically disconnected when the current is stabilized.
  • the shield in the coaxial cable is used as return path for the currents, but this current will be counteracted by a current in the ground driven by the voltage in the shield.
  • the shield has a resistance of approximately 2 ohm/km which give rise to a voltage drop in the shield of about 300 Volts. In longer lines the shield voltage will increase further. High voltage can be a risk for personal safety, to decrease the shield voltage a phase adjusting impedance is connected between the cable shield and the PRS earth.
  • the impedance is dimensioned to reduce the shield voltage to a secure level and to decrease the capacitive leakage current.
  • the capacitance between the shield and the surrounding media is dependent on the water content in the soil.
  • a typical value of the capacitance shield to earth is 0.15 ⁇ F/km but the value can vary along the cable but also over seasons. If no phase adjusting device between shield and earth is used the total earth current is approximately 0.4 A, for the given example. If an phase adjusting device is used the earth currents will decrease.
  • the supervision system measures the total current in the power cable, with the current sensor CSU.
  • the symmetry of the coaxial cable implies that the ingoing and outgoing current is equal, but due to capacitive leakage currents the total current will not be zero.
  • the capacitive earth current determine the trip value D1 for the relay, a typical value for the given example can be 0.4 A. If the cable is damaged or another fault occurs this will cause an additional current that will exceed the trip value D1 which activate the circuit break unit CBU.
  • the supervision system can have an adjustable time delay, to not be affected by current transients, caused by e.g. lightning.
  • the CSU comprises means for measuring the phase angle between cable current and zero sequence voltage.
  • the zero sequence voltage is measured over an impedance between the PFS neutral and earth.
  • the voltage is determined by the capacitive leakage currents to earth and the impedance.
  • the circuit break unit CBU is activated when the phase angle between the zero sequence voltage and the cable current exceed a given value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Keying Circuit Devices (AREA)

Abstract

Cette invention concerne la distribution de courant électrique, ainsi que cette distribution en termes de gestion et de sécurité. L'invention porte sur une station de fourniture d'énergie (PFS). La station PFS comprend un côté basse tension (LVS) et un côté haute tension (HVS) ainsi qu'un transformateur (TF) conçu pour fournir du courant alternatif monophasé haute tension au côté haute tension. L'énergie peut être distribuée via un câble à un pu plusieurs postes récepteur (PRS). Le câble est conçu pour distribuer le courant symétrique monophasé fourni par la station de fourniture d'énergie. Ce câble est de préférence du type coaxial avec un blindage comme chemin pour le courant de retour. L'invention concerne également une unité détectrice de courant (CSU) située sur le côté haute tension. Les moyens de mesures des caractéristiques du courant (CD) peuvent inclure une bobine à contact galvanique avec le côté haute tension. Une unité de coupe-circuit (CBU) appropriée est située sur le côté basse tension. Une fonction de commande CF est conçue pour actionner l'unité de coupe circuit en fonction de règles de sécurité et des caractéristiques du courant (CD). Les caractéristiques du courant et autres informations système (SI) peuvent également être transmises à une unité d'information (IU).

Claims (10)

  1. Station de fourniture d'énergie PFS permettant de délivrer de l'énergie électrique comprenant :
    - un côté basse tension (LVS) approprié pour être connecté à une source d'énergie électrique,
    - un côté haute tension (HVS) approprié pour être connecté à un câble d'alimentation de distribution de haute tension (CC),
    - un transformateur (TF) permettant de transformer la basse tension du côté basse tension en haute tension du côté haute tension, et un système de supervision comprenant :
    - une fonction de commande (CF)
    - une unité de capteur de courant (CSU) située du côté haute tension (HVS, CC), qui comprend un moyen (CL, 105) permettant de mesurer des caractéristiques du courant (CD), un moyen (106) permettant de recevoir les caractéristiques du courant et un moyen (101) permettant de délivrer des caractéristiques du courant à la fonction de commande (CF),
    - des règles de sécurité (SR) appropriées pour gouverner la fonction de la fonction de commande (CF),
    - une unité coupe-circuit (CBU) appropriée pour couper le courant,
    la fonction de commande (CF) comprend un moyen (102) permettant de recevoir des caractéristiques du courant (CD) et un moyen (103) pour activer l'unité coupe-circuit (CBU) et ladite fonction de commande (CF) est configurée pour activer l'unité coupe-circuit (CBU) d'après les règles de sécurité (SR) et les caractéristiques du courant (CD), le transformateur (TF) est configuré pour délivrer un courant alternatif monophasé haute tension du côté haute tension (HVS), et en ce que le câble d'alimentation de distribution de haute tension est adapté pour distribuer un courant monophasé symétrique en courant et approprié pour être connecté à au moins une station de réception d'énergie (PRS) permettant de recevoir de l'énergie électrique, caractérisée en ce que l'unité coupe-circuit (CBU) est située du côté basse tension et les caractéristiques du courant (CD) comprennent la différence de grandeur entre le courant entrant et le courant sortant du côté haute tension et le système de supervision est configuré pour prendre cette valeur en considération pour l'activation de l'unité coupe-circuit.
  2. Station de fourniture d'énergie selon la revendication 1, dans laquelle le câble d'alimentation de distribution de haute tension est un câble coaxial avec le blindage (SH) comme chemin de retour de courant.
  3. Station de fourniture d'énergie selon l'une quelconque des revendications 1 ou 2, dans laquelle le moyen (CL) permettant de mesurer des caractéristiques du courant comprend une bobine sans contact galvanique avec le côté haute tension appropriée pour mesurer des caractéristiques du courant.
  4. Station de fourniture d'énergie selon l'une quelconque des revendications 2 à 3, dans laquelle le moyen permettant de mesurer des caractéristiques du courant comprend un moyen (105) permettant de mesurer une valeur du courant de fuite à la terre depuis le blindage de câble d'alimentation vers un matériau environnant et un moyen (CL) permettant de mesurer le courant de blindage de câble et où le système de supervision comprend un moyen permettant de mesurer des caractéristiques du courant se composant de l'angle de phase entre le courant de fuite à la terre et le courant de blindage de câble et en ce que le système de supervision est configuré pour prendre ledit angle de phase en considération pour l'activation de l'unité coupe-circuit.
  5. Système d'énergie distant selon l'une quelconque des revendications 2 à 4, dans lequel des impédances entre le blindage de câble et la terre de station de réception d'énergie sont utilisées pour réduire la tension de blindage et pour minimiser les courants capacitifs du blindage à la terre.
  6. Station de fourniture d'énergie selon l'une quelconque des revendications 1 à 5, dans laquelle le système de supervision est configuré pour prendre un courant de démarrage de la station de fourniture d'énergie en considération de sorte que le système de supervision n'active pas l'unité coupe-circuit au démarrage.
  7. Station de fourniture d'énergie selon l'une quelconque des revendications 1 à 6, dans laquelle la fonction de commande (CF) comprend un moyen (104) permettant de délivrer des informations de système (SI) à une unité d'informations (IU).
  8. Station de fourniture d'énergie selon l'une quelconque des revendications 1 à 7, dans laquelle les informations de système (SI) comprennent des caractéristiques du courant (CD) provenant de l'unité de capteur de courant.
  9. Système de fourniture distant permettant de délivrer de l'énergie électrique comprenant :
    - une station de fourniture d'énergie (PFS) selon l'une quelconque des revendications 2 à 8,
    - au moins une station de réception d'énergie (PRS) permettant de recevoir de l'énergie électrique, et
    - un câble d'alimentation de distribution coaxial de haute tension (CC) connecté entre le côté haute tension (HVS) et la station de réception d'énergie (PRS) et ledit câble de distribution de haute tension est adapté pour transmettre un courant monophasé symétrique en courant avec le blindage comme chemin de retour de courant.
  10. Système de fourniture distant selon la revendication 9, dans lequel le câble coaxial de distribution de haute tension est configuré pour minimiser un courant de fuite capacitif.
EP07748464A 2007-05-04 2007-05-04 Centrale électrique pour transmission d'énergie vers une charge éloignée Not-in-force EP2145371B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE2007/050303 WO2008136716A1 (fr) 2007-05-04 2007-05-04 Centrale électrique pour transmission d'énergie vers une charge éloignée

Publications (2)

Publication Number Publication Date
EP2145371A1 EP2145371A1 (fr) 2010-01-20
EP2145371B1 true EP2145371B1 (fr) 2011-03-16

Family

ID=38969402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07748464A Not-in-force EP2145371B1 (fr) 2007-05-04 2007-05-04 Centrale électrique pour transmission d'énergie vers une charge éloignée

Country Status (8)

Country Link
US (1) US8139383B2 (fr)
EP (1) EP2145371B1 (fr)
CN (1) CN101682188B (fr)
AR (1) AR066435A1 (fr)
AT (1) ATE502426T1 (fr)
BR (1) BRPI0721568A8 (fr)
DE (1) DE602007013296D1 (fr)
WO (1) WO2008136716A1 (fr)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123272B (zh) * 2011-02-10 2013-03-20 嘉兴电力局 一种远程可视高压试验电源快速切断装置
DE102011050590A1 (de) * 2011-05-24 2012-11-29 Sma Solar Technology Ag Isolationsüberwachung mit einem Prüfsignal variabler Frequenz
US8638087B2 (en) * 2012-01-13 2014-01-28 Elbex Video Ltd. Apparatus for employing low ohmic alloy conductors and method for simplifying current drain data retrieval
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US9840901B2 (en) 2012-11-16 2017-12-12 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US10526882B2 (en) * 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US11959371B2 (en) 2012-11-16 2024-04-16 Us Well Services, Llc Suction and discharge lines for a dual hydraulic fracturing unit
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US9410410B2 (en) 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
RU2572360C2 (ru) * 2013-10-18 2016-01-10 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства"(ФГБНУ ВИЭСХ) Способ и устройство для передачи электрической энергии (варианты)
CN109314542B (zh) * 2016-05-11 2021-11-09 康普技术有限责任公司 用于在蜂窝基站中提供备用电力的方法和装备
US11181107B2 (en) 2016-12-02 2021-11-23 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
MY197833A (en) 2017-04-13 2023-07-20 Lg Electronics Inc Method and apparatus for providing system information
CN107255744A (zh) * 2017-05-28 2017-10-17 西南交通大学 输电线路接地故障地电压分布立体式监测实验系统与方法
US10280724B2 (en) 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
US10411624B2 (en) * 2017-08-31 2019-09-10 Abb Schweiz Ag Switching transient damper method and apparatus
WO2019071086A1 (fr) 2017-10-05 2019-04-11 U.S. Well Services, LLC Système et procédé d'écoulement de boue de fracturation instrumentée
CA3078879A1 (fr) 2017-10-13 2019-04-18 U.S. Well Services, LLC Systeme et procede de fracturation automatique
CA3080317A1 (fr) 2017-10-25 2019-05-02 U.S. Well Services, LLC Systeme et procede de fracturation intelligente
CA3084596A1 (fr) 2017-12-05 2019-06-13 U.S. Well Services, LLC Pompes a pistons multiples et systemes d'entrainement associes
WO2019113153A1 (fr) 2017-12-05 2019-06-13 U.S. Well Services, Inc. Configuration de pompage de puissance élevée pour un système de fracturation hydraulique électrique
WO2019152981A1 (fr) 2018-02-05 2019-08-08 U.S. Well Services, Inc. Gestion de charge électrique de micro-réseau
US11035207B2 (en) 2018-04-16 2021-06-15 U.S. Well Services, LLC Hybrid hydraulic fracturing fleet
CA3103490A1 (fr) 2018-06-15 2019-12-19 U.S. Well Services, LLC Unite d'alimentation mobile integree pour fracturation hydraulique
MX2021001204A (es) * 2018-08-01 2023-01-06 Typhon Tech Solutions Llc Transporte de panel de conmutacion que distribuye energia para operaciones de fracturacion.
WO2020056258A1 (fr) 2018-09-14 2020-03-19 U.S. Well Services, LLC Support de colonne montante pour sites de puits
WO2020076902A1 (fr) 2018-10-09 2020-04-16 U.S. Well Services, LLC Système de commutation modulaire et distribution d'énergie pour équipement électrique de champ pétrolifère
CN109725229B (zh) * 2019-01-04 2023-09-29 中国南方电网有限责任公司超高压输电公司梧州局 一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
WO2020231483A1 (fr) 2019-05-13 2020-11-19 U.S. Well Services, LLC Commande vectorielle sans codeur pour variateur de fréquence dans des applications de fracturation hydraulique
CA3148987A1 (fr) 2019-08-01 2021-02-04 U.S. Well Services, LLC Systeme de stockage d'energie a haute capacite pour fracturation hydraulique electrique
CN110957960B (zh) * 2019-12-10 2022-11-18 阳光新能源开发股份有限公司 一种光伏电站集电线路的确定方法、装置及光伏电站
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
CN111323733B (zh) * 2020-03-23 2021-12-07 贵州电网有限责任公司 一种基于分布式电源机端负序电压的单相断线监测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057736A (en) * 1974-09-13 1977-11-08 Jeppson Morris R Electrical power generation and distribution system
US5550410A (en) * 1994-08-02 1996-08-27 Titus; Charles H. Gas turbine electrical power generation scheme utilizing remotely located fuel sites
AU766871B2 (en) * 1997-11-24 2003-10-23 Plug Power Inc. Anti-islanding method and apparatus for distributed power generation
EP1273091B1 (fr) * 2000-03-18 2009-06-24 Areva T&D Sa Ameliorations apportees a une sous-station electrique
US20040212353A1 (en) * 2003-04-25 2004-10-28 Siemens Westinghouse Power Corporation Use of a closing impedance to minimize the adverse impact of out-of-phase generator synchronization
CN2872700Y (zh) * 2005-10-28 2007-02-21 马国书 一种海事电力供输系统
US7724482B2 (en) * 2007-02-09 2010-05-25 American Superconductor Corporation Parallel HTS transformer device

Also Published As

Publication number Publication date
US20100141232A1 (en) 2010-06-10
AR066435A1 (es) 2009-08-19
US8139383B2 (en) 2012-03-20
BRPI0721568A2 (pt) 2013-01-22
EP2145371A1 (fr) 2010-01-20
CN101682188B (zh) 2012-12-05
ATE502426T1 (de) 2011-04-15
CN101682188A (zh) 2010-03-24
WO2008136716A1 (fr) 2008-11-13
DE602007013296D1 (de) 2011-04-28
BRPI0721568A8 (pt) 2019-01-15

Similar Documents

Publication Publication Date Title
EP2145371B1 (fr) Centrale électrique pour transmission d'énergie vers une charge éloignée
US10424929B2 (en) Transformers with multi-turn primary windings for dynamic power flow control
EP2128951B1 (fr) Système électronique de mise à la terre active dans des réseaux de distribution à haute tension
CA3163330C (fr) Systeme de detection de defaillance de transformateur
US11506546B2 (en) Systems and methods for measuring internal transformer temperatures
US20110285399A1 (en) Device, system and method for monitoring lines of grounding electrodes
US10903653B2 (en) Voltage agnostic power reactor
CN214412259U (zh) 一种it供电系统漏电保护装置
EP2194628B1 (fr) Système de protection contre les défauts pour une zone de réseau d'un réseau de distribution haute tension
Al-Ghannam et al. Development of open (broken) conductor detection system for high resistivity areas
WO2001082444A1 (fr) Appareil de protection d'un generateur
Benato et al. Application of PLC for the control and the protection of future distribution networks
CN207956004U (zh) 一种用于遥控潜水器动力分配单元
Takehira Submarine system powering
CN214755500U (zh) 一种用于中性点不接地电力系统的保护系统
RU2442258C2 (ru) Электростанция для передачи энергии к удаленно расположенной нагрузке
EP1065510A1 (fr) Emplacement de rallumage et de défauts de terre transitoires
JP3367412B2 (ja) 分散型電源の単独運転防止装置
Benato et al. Protection requirements in distribution systems with high penetration of DG and possibility of intentional islanding
US9977055B2 (en) Isolation interface for an electricity meter and electricity metering system
CN109956014A (zh) 一种用于遥控潜水器动力分配单元
CN205091392U (zh) 一种三相平衡低压计量装置
Ganesan et al. Applications of transmission line theory in power engineering
Ghosh CSIRO Intelligent Grid Research Cluster-Project 7
Fudou et al. Development of a distribution line state monitoring system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20100308

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007013296

Country of ref document: DE

Date of ref document: 20110428

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007013296

Country of ref document: DE

Effective date: 20110428

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110627

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110616

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110718

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110716

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

26N No opposition filed

Effective date: 20111219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007013296

Country of ref document: DE

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130606

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140523

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150505