EP2142283A2 - Process for enriching a gaseous effluent with acid gases - Google Patents
Process for enriching a gaseous effluent with acid gasesInfo
- Publication number
- EP2142283A2 EP2142283A2 EP08787896A EP08787896A EP2142283A2 EP 2142283 A2 EP2142283 A2 EP 2142283A2 EP 08787896 A EP08787896 A EP 08787896A EP 08787896 A EP08787896 A EP 08787896A EP 2142283 A2 EP2142283 A2 EP 2142283A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- derivatives
- gas
- hydrates
- compounds
- amphiphilic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000008569 process Effects 0.000 title claims abstract description 27
- 239000002253 acid Substances 0.000 title claims abstract description 22
- 239000007789 gas Substances 0.000 title description 52
- 150000001875 compounds Chemical class 0.000 claims abstract description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 150000004677 hydrates Chemical class 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 24
- 239000012071 phase Substances 0.000 claims abstract description 19
- 239000008346 aqueous phase Substances 0.000 claims abstract description 15
- 238000010494 dissociation reaction Methods 0.000 claims abstract description 13
- 230000005593 dissociations Effects 0.000 claims abstract description 13
- 239000006185 dispersion Substances 0.000 claims abstract description 7
- 239000007791 liquid phase Substances 0.000 claims abstract description 6
- 238000005086 pumping Methods 0.000 claims abstract description 4
- 239000002904 solvent Substances 0.000 claims description 39
- -1 polydimethylsiloxane Polymers 0.000 claims description 32
- 150000007513 acids Chemical class 0.000 claims description 22
- 150000002430 hydrocarbons Chemical class 0.000 claims description 16
- 229920001296 polysiloxane Polymers 0.000 claims description 14
- 125000000129 anionic group Chemical group 0.000 claims description 13
- 125000002091 cationic group Chemical group 0.000 claims description 12
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 12
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 12
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 10
- 230000002209 hydrophobic effect Effects 0.000 claims description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 9
- 239000010702 perfluoropolyether Substances 0.000 claims description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- 239000000344 soap Substances 0.000 claims description 6
- 238000005054 agglomeration Methods 0.000 claims description 5
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 235000021317 phosphate Nutrition 0.000 claims description 4
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 claims description 3
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 150000007942 carboxylates Chemical class 0.000 claims description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000000178 monomer Substances 0.000 claims description 3
- 239000011877 solvent mixture Substances 0.000 claims description 3
- 229940117986 sulfobetaine Drugs 0.000 claims description 3
- 150000003871 sulfonates Chemical class 0.000 claims description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 claims description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 claims description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical class C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-O Piperidinium(1+) Chemical compound C1CC[NH2+]CC1 NQRYJNQNLNOLGT-UHFFFAOYSA-O 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 2
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 150000001413 amino acids Chemical class 0.000 claims description 2
- 125000006294 amino alkylene group Chemical group 0.000 claims description 2
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 2
- 238000009835 boiling Methods 0.000 claims description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 claims description 2
- 230000008025 crystallization Effects 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- 150000001924 cycloalkanes Chemical class 0.000 claims description 2
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 claims description 2
- 150000002170 ethers Chemical class 0.000 claims description 2
- 150000002191 fatty alcohols Chemical class 0.000 claims description 2
- 125000000623 heterocyclic group Chemical group 0.000 claims description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-O hydron;quinoline Chemical compound [NH+]1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-O 0.000 claims description 2
- 150000004714 phosphonium salts Chemical class 0.000 claims description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 229920005862 polyol Polymers 0.000 claims description 2
- 229920000098 polyolefin Polymers 0.000 claims description 2
- 229920001184 polypeptide Polymers 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 claims description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- 150000003460 sulfonic acids Chemical class 0.000 claims description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 claims description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 2
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims description 2
- 125000005497 tetraalkylphosphonium group Chemical group 0.000 claims description 2
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 230000008929 regeneration Effects 0.000 description 7
- 238000011069 regeneration method Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000006163 transport media Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000001836 Dioctyl sodium sulphosuccinate Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical group [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000005055 alkyl alkoxy group Chemical group 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- ABDBNWQRPYOPDF-UHFFFAOYSA-N carbonofluoridic acid Chemical class OC(F)=O ABDBNWQRPYOPDF-UHFFFAOYSA-N 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical group FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical class OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 125000003563 glycoside group Chemical group 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000003295 industrial effluent Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical class C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical class FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1493—Selection of liquid materials for use as absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
Definitions
- the present invention relates to the field of the separation of acidic compounds such as hydrogen sulfide (H 2 S) or carbon dioxide (CO 2 ) contained in a gas flow, for example hydrocarbon natural gas, fumes, or other industrial effluent.
- acidic compounds such as hydrogen sulfide (H 2 S) or carbon dioxide (CO 2 ) contained in a gas flow, for example hydrocarbon natural gas, fumes, or other industrial effluent.
- the present invention proposes to use the formation of gas hydrates in order to remove the most acidic compounds from the gas stream to enrich in acidic compounds another gaseous effluent while having the possibility of increasing the delivery pressure.
- a process for the deacidification of a gas which comprises a step of extracting the acidic compounds contained in the gas to be treated by contacting this gas with the regenerated solvent in an absorber operating at the pressure of the gas to be treated, is followed.
- a thermal regeneration step of the solvent generally operating at a pressure slightly above atmospheric pressure. This thermal regeneration is generally carried out in a column equipped with a bottom reboiler and an overhead condenser for cooling the acidic compounds released by the regeneration and to recycle the condensates at the top of the regenerator as reflux.
- Document US-7128777 discloses a process for separating hydrate formation from acid gases contained in a gas stream. This patent uses water both as a hydrate component and as a transport medium from the hydrate phase to a separator and then to compressors. The dual function of water as a component and transport medium is likely to limit the conversion of water into hydrate and lead to the formation of hydrate blocks that may clog pipes.
- the present invention proposes to use a water-immiscible phase as a water dispersion medium and a hydrate phase transport medium, making it possible at the same time to avoid the risks of clogging during the transport of the hydrate slurry. to improve the transfer of the acidic gas to an aqueous phase, and to increase the rate of conversion of water into hydrates.
- one or more amphiphilic additives optionally having the property of lowering the hydrate formation temperature and / or modifying the formation and agglomeration mechanisms are used.
- the present invention relates to a process for enriching acid compounds with a gaseous effluent that comprises the following steps:
- a charge gas and a mixture of at least two liquid phases which are immiscible with one another, including an aqueous phase, said feed gas containing at least acid compounds, are introduced into a contactor;
- said hydrates are transported in dispersion in the immiscible phase in the aqueous phase by pumping to a hydrate dissociation tank,
- the conditions for dissociation of the hydrates are established in the said flask; the gas resulting from the dissociation is discharged, the said gas being enriched in acidic compounds with respect to the charge gas,
- the pressure of the hydrate dispersion can be increased by a factor between 2 and 200 times the pressure of the feed gas.
- the amphiphilic compound may comprise a hydrophilic part and a part having a high affinity with the phase immiscible with the aqueous phase.
- FIG. 1 shows schematically the method according to the invention
- FIG. 2 shows the test device.
- the acid gas enrichment process of a gaseous effluent using gas hydrates as an enriching agent comprises three main steps illustrated with the aid of FIG.
- a first treatment step for contacting the feed gas containing acidic compounds with a mixture of at least two immiscible liquid phases, at least one of which consists of water, and preferably of amphiphilic molecules .
- the gas and the liquid phases are brought into contact under conditions of pressure and temperature compatible with the formation of a hydrate phase consisting of acidic compounds and water. This formation can be aided by the addition of one or more suitable additives.
- This first step allows the sequestration of a large proportion of acid gas in the hydrate phase.
- the gas hydrate particles thus enriched in acidic compounds are dispersed in the water immiscible liquid and transported in the form of a suspension of solids. The non-hydrated gas is thus depleted of acidic compounds.
- the formation of hydrate is done in the contactor R1 in which the charge gas enters via the pipe 2, after compression of the inlet gas through the pipe 1 with the aid of the compressor K1.
- the conduit 7 supplies the fluid mixture contactor with two immiscible liquid phases, one of which is water, and preferably with at least one amphiphilic compound.
- the depleted gas is discharged through line 9, while the hydrate slurry exits the bottom of the contactor via line 3.
- the gas stream thus obtained has a content and a partial pressure of acid gas from two to one hundred times greater than that of the feed gas.
- the pump P1 pressurises the slurry through line 4 into the dissociation tank R2.
- the gas enriched in acidic compounds is evacuated via line 5, and optionally compressed by compressor K2 to be injected, for example into an underground reservoir via line 8.
- step (3) the mixture of liquids resulting from step (2), and comprising predominantly the two immiscible liquids, the amphiphilic compound (s), and / or possibly other additives which can help to formation of a suspension of hydrates in the form of dispersed particles, is expanded / cooled to be returned by the conduits 6 and 7 in the contactor Rl of step 1.
- At least one amphiphilic compound which has the property of lowering the formation temperature of the hydrates and / or modify the mechanisms of formation and agglomeration. These modifications can be used particularly for the transport of the hydrate dispersion.
- the proportions of the water / solvent mixture may be between 0.5 / 99.5% and 60% by volume, and preferably between 10/90 and 50/50%, and more particularly between 20/80 and 40% by weight. 60% in volume.
- amphiphilic compounds are chemical compounds (monomer or polymer) having at least one hydrophilic or polar chemical group, having a high affinity with the aqueous phase and at least one chemical group having high affinity with the solvent
- hydrophobic (commonly referred to as hydrophobic).
- non-aggregated hydrate particles are obtained in the solvent.
- the hydrate block formation is thus avoided and the dispersion of the hydrate particles remains pumpable, the use of a water-immiscible solvent optionally makes it possible to limit the residual water content of the enriched acid compounds released during dissociation of hydrates.
- the amphiphilic compound may be added to said mixture in a proportion of between 0.1 and 10% by weight, and preferably between 0.1 and 5% by weight, relative to the immiscible phase in the aqueous phase. i.e. the solvent.
- the solvent used for the process can be chosen from several families: hydrocarbon solvents, silicone type solvents, halogenated or perhalogenated solvents. In the case of hydrocarbon solvents.
- the solvent may be selected from
- aliphatic cuts for example isoparaffinic sections having a flash point sufficiently high to be compatible with the process according to the invention
- organic solvents such as aromatic cuts or naphthenic cuts may also be used with the same flash point conditions,
- the hydrocarbon solvent for the process is characterized in that its flash point is greater than 40 ° C., and preferably greater than 75 ° C. and more precisely greater than 100 ° C. Its crystallization point is less than -5 ° C.
- Solvents of silicone type are chosen for example from:
- PDMS linear polydimethylsiloxane
- the unit D represents the dimethylsiloxane monomer unit, poly (trifluoropropyl methyl siloxane).
- the halogenated or perhalogenated solvents for the process are chosen from perfluorocarbons (PFCs), hydrofluoroethers (HFE) and perfluoropolyethers (PFPE).
- PFCs perfluorocarbons
- HFE hydrofluoroethers
- PFPE perfluoropolyethers
- the halogenated or perhalogenated solvent for the process is characterized in that its boiling point is greater than or equal to 70 ° C. under pressure atmospheric and that its viscosity is less than 1 Pa. s at ambient temperature and at atmospheric pressure.
- amphiphilic compounds include a hydrophilic moiety which can be either neutral, anionic, cationic, or even zwitterionic.
- the part having a high affinity with the solvent (designated as hydrophobic) can be either hydrocarbon-based, or silicone or fluoro-silicone, or still halogenated or perhalogenated.
- hydrocarbon amphiphilic compounds used alone, or in mixtures, to facilitate the formation and / or transport of the hydrates according to the present invention are chosen from nonionic, anionic, cationic or zwitterionic amphiphilic compounds.
- the nonionic compounds are characterized in that they contain: a hydrophilic part comprising either alkylene oxide groups, hydroxyl groups or even amino alkylene groups,
- hydrophobic part comprising a hydrocarbon chain derived from an alcohol, a fatty acid, an alkylated derivative of a phenol or a polyolefin, for example derived from isobutene or butene.
- the bond between the hydrophilic part and the hydrophobic part may, for example be an ether, ester or amide function. This bond can also be obtained by a nitrogen or sulfur atom.
- nonionic amphiphilic hydrocarbon compounds mention may be made of oxyethylated fatty alcohols, alkylphenol alkoxylates, oxyethylated and / or oxypropylated derivatives, sugar ethers, polyol esters, such as glycerol, polyethylene glycol, sorbitol and sorbitan, the mono and diethanol amides, carboxylic acid amides, sulfonic acids or amino acids.
- the anionic amphiphilic hydrocarbon compounds are characterized in that they contain one or more functional groups ionizable in the aqueous phase to form negatively charged ions. These anionic groups bringing the surface activity of the molecule.
- Such functional group is an acidic group ionized by a metal or an amine.
- the acid may for example be a carboxylic, sulfonic, sulfuric or phosphoric acid.
- anionic amphiphilic hydrocarbon compounds mention may be made of:
- carboxylates such as metal soaps, alkaline soaps, or organic soaps (such as N-acyl amino acids, N-acyl sarcosinates, N-acyl glutamates and N-acyl polypeptides),
- sulfonates such as alkylbenzenesulphonate (ie alkoxylated alkylbenzene sulphonates), paraffins and olefin sulphonates, ligosulphonates or sulphonuccinic derivatives (such as sulphosuccinates, hemisulfosuccinates, dialkylsulphosuccinates, for example dioctyl sodium sulphosuccinate).
- alkylbenzenesulphonate ie alkoxylated alkylbenzene sulphonates
- paraffins and olefin sulphonates ligosulphonates or sulphonuccinic derivatives (such as sulphosuccinates, hemisulfosuccinates, dialkylsulphosuccinates, for example dioctyl sodium sulphosuccinate).
- sulphates such as alkyl sulphates, alkyl ether sulphates and phosphates.
- the cationic amphiphilic hydrocarbon compounds are characterized in that they contain one or more functional groups ionizable in the aqueous phase to form positively charged ions. These cationic groups bringing the surface activity of the molecule.
- cationic hydrocarbon compounds mention may be made of:
- alkylamine salts such as
- Quaternary ammonium salts such as alkyl trimethylammonium derivatives or tetraalkylammonium derivatives or else alkyl dimethyl benzylammonium derivatives,
- sulfonium or phosphonium derivatives for example tetraalkylphosphonium derivatives.
- heterocyclic derivatives such as pyridinium, imidazolium, quinolinium, piperidinium or morpholinium derivatives.
- the zwitterionic hydrocarbon compounds are characterized in that they possess at least two ionizable groups, such that at least one is positively charged and at least one is negatively charged.
- the groups being chosen from the anionic and cationic groups described above, such as, for example, betaines, alkyl amido betaine derivatives, sulfobetaine, phosphobetaines or even carboxybetaines.
- amphiphilic compounds comprising a neutral, anionic, cationic or zwitterionic hydrophilic part
- a hydrophobic part defined as having a high affinity with the water-immiscible solvent
- silicone, oligomeric or polymeric amphiphilic compounds may also be used for the water / organic solvent or water / halogenated or perhalogenated solvent or water / silicone solvent mixtures.
- the neutral silicone amphiphilic compounds may be oligomers or copolymers of the PDMS type in which the methyl groups are partially replaced by polyalkylene oxide groups (of the polyethylene oxide, propylene polyoxide or a polyoxide-mixed polymer type).
- polyalkylene oxide groups of the polyethylene oxide, propylene polyoxide or a polyoxide-mixed polymer type.
- ethylene and propylene) or pyrrolidone such as PDMS / hydroxyalkyleneoxypropylmethylsiloxane derivatives or alternatively alkylmethylsiloxane / hydroxyalkyleneoxypropylmethylsiloxane derivatives.
- These copolyols obtained by hydrosilylation reaction have reactive hydroxyl end groups. They can therefore be used to carry out ester groups, for example by reacting a fatty acid, or else alkanolamide groups, or even glycoside groups.
- Silicone polymers having lateral (hydrophobic) alkyl groups directly attached to the silicon atom can also be modified by reaction with fluoro (hydrophilic) type molecules to form amphiphilic compounds.
- the surfactant properties are adjusted with the ratio hydrophilic group / hydrophobic group.
- the PDMS copolymers can also be rendered amphiphilic by anionic groups such as phosphate, carboxylate, sulfate or sulphosuccinate groups. These polymers are generally obtained by reaction of acids with the final hydroxyl end groups of alkylene polyoxide side chains of polysiloxane.
- the PDMS copolymers can also be rendered amphiphilic by cationic groups such as quaternary ammonium groups, quaternized alkylamido amine groups, or quaternized alkyl alkoxy amine groups or a quaternized amino imidazoline amine. It is possible to use, for example, the PDMS / benzyltrimethylammoniummethylsiloxane copolymer or the halogeno-N-alkyl-N, N-dimethyl- (3-siloxanylpropyl) ammonium derivatives.
- the PDMS copolymers may also be rendered amphiphilic by betaine-type groups such as carboxybetaine, an alkyl amido betaine, a phosphobetaine or a sulfobetaine.
- the copolymers will comprise a hydrophobic siloxane chain and for example a hydrophilic organobetaine part of general formula: (Me 3 SiO) (SiMe 2 O) 3 (SiMeRO) SiMe 3
- amphiphilic compounds comprising a neutral, anionic, cationic or zwitterionic hydrophilic part, may also have a hydrophobic part (defined as having a high affinity with the water immiscible solvent) halogenated or perhalogenated.
- hydrophobic part defined as having a high affinity with the water immiscible solvent
- amphiphilic compounds halogens, oligomers or polymers can also be used for mixtures water / organic solvent or water / halogenated or perhalogenated solvent or water / silicone solvent.
- Halogenated amphiphilic compounds such as, for example, fluorinated compounds may be ionic or nonionic.
- fluorinated compounds may be ionic or nonionic.
- nonionic amphiphilic halogen or perhalogenated compounds such as the compounds corresponding to the general formula Rf (CH 2 ) (OC 2 H 4 ) n OH, in which Rf is a partially hydrogenated perfluorocarbon or fluorocarbon chain in which n is a whole number at least 1, fluorinated nonionic surfactants of polyoxyethylene-fluoroalkyl ether type,
- ionizable amphiphilic compounds for forming anionic compounds such as perfluorocarboxylic acids, and their salts, or perfluorosulphonic acids and their salts, perfluorophosphate compounds, mono and dicarboxylic acids deriving from perfluoro polyethers, and their salts, mono acids; and disulfonic compounds derived from perfluoro polyethers, and their salts, perfluoro polyether phosphate amphiphilic compounds and perfluoro polyether diphosphate amphiphilic compounds,
- the device comprises a reactor of 1.5 liters of capacity comprising an inlet 11 and an outlet for the gas, a suction 12 and a discharge 13 for the liquid. These liquid inlet and outlet are connected to a circulation loop 14 of 10 meters consisting of tubes of internal diameter equal to 7.7 mm. Tubes of diameter similar to those of the loop ensure the flow of fluids from the loop to the reactor, and vice versa, via a gear pump 15 placed between the two.
- a sapphire cell C integrated in the circuit allows a visualization of the circulating liquid, and therefore hydrates, if they have formed.
- the liquid or liquids (water or water + solvent + additive) are introduced into the reactor at a volume of 1.4 L.
- the plant is then pressurized to 7 MPa. using the study gas. Homogenization of the liquids is ensured by their circulation in the loop and the reactor.
- a rapid temperature decrease of 17 ° C. to 4 ° C. is imposed (temperature below the formation temperature of the hydrates). The temperature is then maintained at this value.
- the duration of the tests can vary from a few minutes to several hours.
- the conversion rate of water to hydrate is calculated and the transportability of the hydrate slurry once formed is studied, when transport is possible. In this case, the pressure drop DP and the flow rate F in the loop are stable.
- Example 1 is given for comparison.
- Example 1 is given for comparison.
- EXAMPLE 2 The procedure is as in Comparative Example 1, but with a fluid composed, by volume, of 10% of water and 90% of solvent to which an amphiphilic compound obtained by reaction between a polyisobutenyl succinic anhydride and polyethylene is added. glycol. The amphiphilic compound is added at a concentration of 0.17% by weight relative to the volume of solvent.
- the weight composition of the solvent is:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Description
PROCEDE D'ENRICHISSEMENT EN GAZ ACIDES D'UN EFFLUENT GAZEUX PROCESS FOR ENRICHING ACIDIC GASES WITH GASEOUS EFFLUENT
La présente invention concerne le domaine de la séparation de composés acides tels que l'hydrogène sulfuré (H2S) ou le dioxyde de carbone (CO2) contenus dans un flux de gaz, par exemple du gaz naturel hydrocarbure, des fumées, ou autre effluent industriel. La présente invention propose d'utiliser la formation d'hydrates de gaz dans le but de retirer le plus de composés acides du flux de gaz pour enrichir en composés acides un autre effluent gazeux tout en ayant la possibilité d'augmenter la pression de délivrance.The present invention relates to the field of the separation of acidic compounds such as hydrogen sulfide (H 2 S) or carbon dioxide (CO 2 ) contained in a gas flow, for example hydrocarbon natural gas, fumes, or other industrial effluent. The present invention proposes to use the formation of gas hydrates in order to remove the most acidic compounds from the gas stream to enrich in acidic compounds another gaseous effluent while having the possibility of increasing the delivery pressure.
On connaît un procédé de désacidification d'un gaz qui comporte une étape d'extraction des composés acides contenus dans le gaz à traiter par mise en contact de ce gaz avec le solvant régénéré dans un absorbeur opérant à la pression du gaz à traiter, suivie d'une étape de régénération thermique du solvant opérant généralement à une pression légèrement supérieure à la pression atmosphérique. Cette régénération thermique s'effectue généralement dans une colonne équipée d'un rebouilleur de fond et d'un condenseur en tête permettant de refroidir les composés acides libérés par la régénération et de recycler les condensats en tête du régénérateur à titre de reflux.A process for the deacidification of a gas which comprises a step of extracting the acidic compounds contained in the gas to be treated by contacting this gas with the regenerated solvent in an absorber operating at the pressure of the gas to be treated, is followed. a thermal regeneration step of the solvent generally operating at a pressure slightly above atmospheric pressure. This thermal regeneration is generally carried out in a column equipped with a bottom reboiler and an overhead condenser for cooling the acidic compounds released by the regeneration and to recycle the condensates at the top of the regenerator as reflux.
Dans le procédé antérieur, la régénération de la solution absorbante chargée en composés acides est coûteuse sur le plan de la consommation d'énergie, ce qui représente un inconvénient important. De plus, le gaz acide délivré par la régénération est délivré à la faible pression de régénération, généralement entre 1 et 5 bar absolu. En cas d'injection de ces gaz acides dans un réservoir, une compression très coûteuse en énergie est alors nécessaire.In the previous process, the regeneration of the absorbent solution loaded with acid compounds is expensive in terms of energy consumption, which represents a significant drawback. In addition, acid gas delivered by the regeneration is delivered at the low regeneration pressure, generally between 1 and 5 bar absolute. In case of injection of these acid gases in a tank, a very expensive energy compression is then necessary.
On connaît par le document US-7128777 un procédé de séparation par formation d'hydrate des gaz acides contenu dans un flux gazeux. Ce brevet utilise de l'eau à la fois comme composant des hydrates et comme milieu de transport de la phase hydrate vers un séparateur, puis vers des compresseurs. La double fonction de l'eau comme composant et milieu de transport est susceptible de limiter la conversion de l'eau en hydrate et d'engendrer la formation de blocs d'hydrate qui risquent de boucher les conduites.Document US-7128777 discloses a process for separating hydrate formation from acid gases contained in a gas stream. This patent uses water both as a hydrate component and as a transport medium from the hydrate phase to a separator and then to compressors. The dual function of water as a component and transport medium is likely to limit the conversion of water into hydrate and lead to the formation of hydrate blocks that may clog pipes.
La présente invention propose d'utiliser une phase non miscible à l'eau comme milieu de dispersion de l'eau et de transport de la phase hydrate, permettant à la fois d'éviter les risques de bouchage lors du transport du coulis d'hydrate, d'améliorer le transfert du gaz acide vers une phase aqueuse, et d'augmenter le taux de conversion de l'eau en hydrates. Pour réaliser ce coulis, on utilise un ou plusieurs additifs amphiphiles présentant éventuellement la propriété d'abaisser la température de formation des hydrates et/ou de modifier les mécanismes de formation et d'agglomération.The present invention proposes to use a water-immiscible phase as a water dispersion medium and a hydrate phase transport medium, making it possible at the same time to avoid the risks of clogging during the transport of the hydrate slurry. to improve the transfer of the acidic gas to an aqueous phase, and to increase the rate of conversion of water into hydrates. To achieve this grout, one or more amphiphilic additives optionally having the property of lowering the hydrate formation temperature and / or modifying the formation and agglomeration mechanisms are used.
Ainsi, la présente invention concerne un procédé d'enrichissement en composés acides d'un effluent gazeux qui comporte les étapes suivantes:Thus, the present invention relates to a process for enriching acid compounds with a gaseous effluent that comprises the following steps:
- on introduit dans un contacteur un gaz de charge et un mélange d'au moins deux phases liquides non miscibles entre elles, dont une phase aqueuse, ledit gaz de charge contenant au moins des composés acides,a charge gas and a mixture of at least two liquid phases which are immiscible with one another, including an aqueous phase, said feed gas containing at least acid compounds, are introduced into a contactor;
- on établit dans ledit contacteur des conditions de pression et de température déterminées pour la formation d'hydrates composées d'eau et desdits composés acides, es"in said contactor, determined pressure and temperature conditions for the formation of hydrates composed of water and of said acidic compounds, es "
- on transporte lesdits hydrates en dispersion dans la phase non miscible dans la phase aqueuse par pompage vers un ballon de dissociation des hydrates,said hydrates are transported in dispersion in the immiscible phase in the aqueous phase by pumping to a hydrate dissociation tank,
- on établit dans ledit ballon les conditions de dissociation des hydrates, - on évacue le gaz issu de la dissociation, ledit gaz étant enrichi en composés acides par rapport au gaz de charge,the conditions for dissociation of the hydrates are established in the said flask; the gas resulting from the dissociation is discharged, the said gas being enriched in acidic compounds with respect to the charge gas,
On peut augmenter la pression de la dispersion d'hydrates dans un facteur compris entre 2 et 200 fois la pression du gaz de charge.The pressure of the hydrate dispersion can be increased by a factor between 2 and 200 times the pressure of the feed gas.
On peut ajouter audit mélange au moins un composé amphiphile non ionique, anionique, cationique, ou zwittérionique, ayant au moins la propriété anti-agglomération des hydrates.To said mixture may be added at least one nonionic, anionic, cationic, or zwitterionic amphiphilic compound having at least the anti-agglomeration property of the hydrates.
Le composé amphiphile peut comporter une partie hydrophile et une partie présentant une forte affinité avec la phase non miscible à la phase aqueuse.The amphiphilic compound may comprise a hydrophilic part and a part having a high affinity with the phase immiscible with the aqueous phase.
L'invention sera mieux comprise et ses avantages apparaîtront plus clairement à la lecture de la description suivante, nullement limitative, illustrée par les figures ci-après annexées, parmi lesquelles:The invention will be better understood and its advantages will appear more clearly on reading the following description, in no way limiting, illustrated by the appended figures, among which:
- la figure 1 représente schématiquement le procédé selon l'invention, - la figure 2 représente le dispositif d'essai.- Figure 1 shows schematically the method according to the invention - Figure 2 shows the test device.
La présente invention présente notamment les avantages de:The present invention notably presents the advantages of:
- gain énergétique important par rapport à un procédé conventionnel,- significant energy gain compared to a conventional process,
- la délivrance des composés acides à haute pression permettant d'éviter, dans le cas d'une réinjection de l'effluent acide, une compression ultérieure très coûteuse en énergie,the delivery of acidic compounds at high pressure making it possible to avoid, in the case of reinjection of the acidic effluent, a subsequent compression which is very expensive in energy,
- augmentation du taux de conversion de l'eau en hydrate,- increase of the conversion rate of water into hydrate,
- transportabilité de la phase hydrate améliorée,transportability of the hydrate phase improved,
- niveaux thermiques de régénération modérés. Le procédé d'enrichissement en gaz acides d'un effluent gazeux en utilisant les hydrates de gaz comme agent d'enrichissement comporte trois étapes principales illustrées à l'aide de la figure 1:- moderate thermal regeneration levels. The acid gas enrichment process of a gaseous effluent using gas hydrates as an enriching agent comprises three main steps illustrated with the aid of FIG.
(1) une première étape de traitement visant à mettre en contact le gaz de charge contenant des composés acides avec un mélange d'au moins deux phases liquides non miscibles dont l'une au moins est constituée d'eau, et préférentiellement de molécules amphiphiles. Le gaz et les phases liquides sont mises en contact dans des conditions de pression et de température compatibles avec la formation d'une phase hydrate constituée de composés acides et d'eau. Cette formation peut être aidée par l'adjonction d'un ou plusieurs additifs adéquats. Cette première étape permet la séquestration d'une forte proportion de gaz acide dans la phase hydrate. Les particules d'hydrate de gaz ainsi enrichies en composés acides sont dispersées dans le liquide non miscible à l'eau et transportées sous forme d'une suspension de solides. Le gaz non transformé en hydrate est ainsi appauvri en composés acides. S'il ne correspond toujours pas aux spécifications demandées, il peut subir une seconde étape d'appauvrissement par les hydrates, ou être éventuellement traité par un autre procédé de désacidification de gaz. Sur la figure 1, la formation d'hydrate se fait dans le contacteur Rl dans lequel pénètre le gaz de charge par le conduit 2, après compression du gaz d'entrée par le conduit 1 à l'aide du compresseur Kl. Le conduit 7 alimente le contacteur en fluide de mélange de deux phases liquides non miscibles dont une est de l'eau, et de préférence additionnées d'au moins un composé amphiphile. Le gaz appauvri est évacué par la conduite 9, alors que le coulis d'hydrate sort du bas du contacteur par le conduit 3.(1) a first treatment step for contacting the feed gas containing acidic compounds with a mixture of at least two immiscible liquid phases, at least one of which consists of water, and preferably of amphiphilic molecules . The gas and the liquid phases are brought into contact under conditions of pressure and temperature compatible with the formation of a hydrate phase consisting of acidic compounds and water. This formation can be aided by the addition of one or more suitable additives. This first step allows the sequestration of a large proportion of acid gas in the hydrate phase. The gas hydrate particles thus enriched in acidic compounds are dispersed in the water immiscible liquid and transported in the form of a suspension of solids. The non-hydrated gas is thus depleted of acidic compounds. If it still does not meet the required specifications, it may undergo a second stage of hydrate depletion, or possibly be treated by another gas deacidification process. In FIG. 1, the formation of hydrate is done in the contactor R1 in which the charge gas enters via the pipe 2, after compression of the inlet gas through the pipe 1 with the aid of the compressor K1. The conduit 7 supplies the fluid mixture contactor with two immiscible liquid phases, one of which is water, and preferably with at least one amphiphilic compound. The depleted gas is discharged through line 9, while the hydrate slurry exits the bottom of the contactor via line 3.
(2) une seconde étape de traitement visant à augmenter la pression partielle en gaz acide de l' effluent issu de l'étape précédente. Elle consiste à pomper (Pl) la suspension de solides, comportant notamment la phase hydrate à une pression 2 à 100 fois supérieure à la pression du gaz de charge, puis à chauffer cette suspension de manière à dissocier les particules d'hydrate enrichies en gaz acide en un mélange des deux liquides non miscibles initiaux, et éventuellement de composé amphiphile, et en une phase gaz enrichie en composés acides à haute pression. Le flux gazeux ainsi obtenu présente une teneur et une pression partielle en gaz acide de deux à cent fois supérieure à celle du gaz de charge. Sur la figure 1, la pompe Pl refoule sous pression le coulis par le conduit 4 dans le ballon de dissociation R2. Le gaz enrichi en composés acides est évacué par le conduit 5, et éventuellement comprimé par le compresseur K2 pour être injecté, par exemple dans un réservoir souterrain par le conduit 8.(2) a second treatment step aimed at increasing the acid gas partial pressure of the effluent from the previous step. It consists in pumping (P1) the suspension of solids, in particular comprising the hydrate phase at a pressure 2 to 100 times greater than the pressure of the feed gas, and then heating this suspension so as to dissociate the gas enriched hydrate particles. acid into a mixture of the two initial immiscible liquids, and optionally amphiphilic compound, and a gas phase enriched in acidic compounds at high pressure. The gas stream thus obtained has a content and a partial pressure of acid gas from two to one hundred times greater than that of the feed gas. In FIG. 1, the pump P1 pressurises the slurry through line 4 into the dissociation tank R2. The gas enriched in acidic compounds is evacuated via line 5, and optionally compressed by compressor K2 to be injected, for example into an underground reservoir via line 8.
(3) le mélange de liquides résultants de l'étape (2), et comportant majoritairement les deux liquides non miscibles, le (les) composé(s) amphiphile(s), et/ou éventuellement d'autres additifs pouvant aider à la formation d'une suspension d'hydrates sous la forme de particules dispersées, est détendu/refroidi pour être retourné par les conduits 6 et 7 dans le contacteur Rl de l'étape 1.(3) the mixture of liquids resulting from step (2), and comprising predominantly the two immiscible liquids, the amphiphilic compound (s), and / or possibly other additives which can help to formation of a suspension of hydrates in the form of dispersed particles, is expanded / cooled to be returned by the conduits 6 and 7 in the contactor Rl of step 1.
Conditions de formation de l'hydrate:Hydrate formation conditions:
Le procédé de formation/dissociation des hydrates visant à appauvrir un gaz de charge, par exemple en CO2, puis à enrichir en CO2 un effluent issu du procédé, est réalisé dans un milieu comprenant de l'eau -composant des hydrates- et un solvant non miscible à l'eau. A ce mélange, on ajoute deThe process for forming / dissociating hydrates to deplete a feed gas, for example CO 2 , and then to enrich in CO 2 an effluent resulting from the process, is carried out in a medium comprising water -composing hydrates- and a solvent immiscible with water. To this mixture, we add
^ préférence au moins un composé amphiphile qui présente la propriété d'abaisser la température de formation des hydrates et/ou de modifier les mécanismes de formation et d'agglomération. Ces modifications peuvent particulièrement être mises à profit pour le transport de la dispersion d'hydrates. ^ Preferably at least one amphiphilic compound which has the property of lowering the formation temperature of the hydrates and / or modify the mechanisms of formation and agglomeration. These modifications can be used particularly for the transport of the hydrate dispersion.
Les proportions du mélange eau/solvant peuvent être comprises respectivement entre 0,5/99,5 à 60/40% en volume, et de préférence entre 10/90 et 50/50%, et plus précisément entre 20/80 et 40/60% en volume.The proportions of the water / solvent mixture may be between 0.5 / 99.5% and 60% by volume, and preferably between 10/90 and 50/50%, and more particularly between 20/80 and 40% by weight. 60% in volume.
Les composés amphiphiles sont des composés chimiques (monomère ou polymère) ayant au moins un groupement chimique hydrophile ou polaire, présentant une forte affinité avec la phase aqueuse et au moins un groupement chimique présentant une forte affinité avec le solvantThe amphiphilic compounds are chemical compounds (monomer or polymer) having at least one hydrophilic or polar chemical group, having a high affinity with the aqueous phase and at least one chemical group having high affinity with the solvent
(communément désignée comme hydrophobe).(commonly referred to as hydrophobic).
Lors du contact d'une phase eau avec un gaz pouvant former des hydrates, on observe d'une part, un faible taux de conversion de l'eau en hydrate dû essentiellement à la faible solubilité des gaz dans l'eau, et d'autre part, lors de la formation de ces hydrates, une forte agglomération des particules entre elles conduisant à la formation de blocs solides, de bouchons ou de dépôts qui rendent le système non pompable.When a water phase is contacted with a gas that can form hydrates, a low conversion rate of water into hydrate is observed, mainly due to the low solubility of the gases in the water, and on the other hand, during the formation of these hydrates, a strong agglomeration of the particles between them leading to the formation of solid blocks, plugs or deposits which make the system non-pumpable.
Avec les systèmes eau/solvant/composés amphiphiles, on observe qu'en mettant en contact le gaz de charge à traiter avec ces mélanges, on obtient :With the water / solvent / amphiphilic compound systems, it is observed that by contacting the feed gas to be treated with these mixtures, the following are obtained:
- avec un choix judicieux du solvant, une possible solubilisation préférentielle du ou des composés acides du gaz à traiter dans le solvant,with a judicious choice of the solvent, a possible preferential solubilization of the acidic compound (s) of the gas to be treated in the solvent,
- dans des conditions de pression et de température adéquates, une formation d'hydrates enrichis en composés acides dans des conditions thermodynamiques favorables et avec un taux de conversion de l'eau en hydrate élevé,under conditions of adequate pressure and temperature, a formation of hydrates enriched in acidic compounds under favorable thermodynamic conditions and with a conversion rate of water to high hydrate,
- avec des composés amphiphiles adaptés, on obtient des particules d'hydrates non agrégées dans le solvant. La formation de bloc d'hydrates est donc évitée et la dispersion des particules d'hydrates reste pompable, - l'utilisation d'un solvant non miscible à l'eau permet éventuellement de limiter la teneur résiduelle en eau des composés acides enrichis libérés lors de la dissociation des hydrates.with suitable amphiphilic compounds, non-aggregated hydrate particles are obtained in the solvent. The hydrate block formation is thus avoided and the dispersion of the hydrate particles remains pumpable, the use of a water-immiscible solvent optionally makes it possible to limit the residual water content of the enriched acid compounds released during dissociation of hydrates.
Ces propriétés avantageuses se retrouvent sur une très large gamme de températures et de pressions. Le composé amphiphile peut être ajouté audit mélange dans une proportion comprise entre 0,1 et 10% en poids, et de préférence entre 0,1 et 5% en poids, par rapport à la phase non miscible dans la phase aqueuse, c'est-à-dire le solvant.These advantageous properties are found over a very wide range of temperatures and pressures. The amphiphilic compound may be added to said mixture in a proportion of between 0.1 and 10% by weight, and preferably between 0.1 and 5% by weight, relative to the immiscible phase in the aqueous phase. i.e. the solvent.
Le solvant utilisé pour le procédé peut être choisi parmi plusieurs familles : les solvants hydrocarbonés, les solvants de type silicone, les solvants halogènes ou perhalogénés. Dans le cas des solvants hydrocarbonés. Le solvant peut être choisi parmiThe solvent used for the process can be chosen from several families: hydrocarbon solvents, silicone type solvents, halogenated or perhalogenated solvents. In the case of hydrocarbon solvents. The solvent may be selected from
- des coupes aliphatiques, par exemple des coupes isoparaffiniques ayant un point éclair suffisamment élevé pour être compatibles avec le procédé selon l'invention,aliphatic cuts, for example isoparaffinic sections having a flash point sufficiently high to be compatible with the process according to the invention,
- des solvants organiques de type coupes aromatiques ou coupes naphténiques peuvent également être utilisées avec les mêmes conditions de point éclair,organic solvents such as aromatic cuts or naphthenic cuts may also be used with the same flash point conditions,
- des produits purs ou en mélanges choisis parmi les alcanes ramifiés, les cycloalcanes et alkylcycloalcanes, les composés aromatiques, alkylaromatiques,- pure products or in mixtures chosen from branched alkanes, cycloalkanes and alkylcycloalkanes, aromatic compounds, alkylaromatic compounds,
Le solvant hydrocarboné pour le procédé est caractérisé en ce que son point éclair est supérieur à 4O0C, et de préférence supérieur à 75°C et plus précisément supérieur à 1000C. Son point de cristallisation est inférieur à -50C.The hydrocarbon solvent for the process is characterized in that its flash point is greater than 40 ° C., and preferably greater than 75 ° C. and more precisely greater than 100 ° C. Its crystallization point is less than -5 ° C.
Les solvants de type silicone, seuls ou en mélanges, sont choisis par exemple parmi :Solvents of silicone type, alone or in mixtures, are chosen for example from:
- les polydiméthylsiloxane (PDMS) linéaires du type (CH3)3-SiO-[(CH3)2- SiO]n-Si(CHg)3 avec n compris entre 1 et 900, correspondant à des viscosités à température ambiante comprises entre 0,1 et 10000 mPa.s,linear polydimethylsiloxane (PDMS) of the (CH 3 ) 3 -SiO - [(CH 3 ) 2 -SiO] n -Si (CH g ) 3 type with n between 1 and 900, corresponding to viscosities at ambient temperature included between 0.1 and 10000 mPa.s,
- les polydiéthylsiloxanes dans la même gamme de viscosité,polydiethylsiloxanes in the same viscosity range,
- les polydiméthylsiloxanes cycliques D4 à D10 et préférentiellement de D5 à D8. Le motif D représente l'unité monomère diméthylsiloxane, - les poly(trifluoropropyl méthyl siloxane).cyclic polydimethylsiloxanes D 4 to D 10 and preferentially D 5 to D 8 . The unit D represents the dimethylsiloxane monomer unit, poly (trifluoropropyl methyl siloxane).
Les solvants halogènes ou perhalogénés pour le procédé sont choisis parmi les perfluorocarbures (PFC), les hydrofluoroéthers (HFE), les perfluoropolyéthers (PFPE). Le solvant halogène ou perhalogéné pour le procédé est caractérisé en ce que son point d'ébullition est supérieur ou égal à 7O0C à pression atmosphérique et que sa viscosité est inférieure à 1 Pa. s à température ambiante et à la pression atmosphérique.The halogenated or perhalogenated solvents for the process are chosen from perfluorocarbons (PFCs), hydrofluoroethers (HFE) and perfluoropolyethers (PFPE). The halogenated or perhalogenated solvent for the process is characterized in that its boiling point is greater than or equal to 70 ° C. under pressure atmospheric and that its viscosity is less than 1 Pa. s at ambient temperature and at atmospheric pressure.
Les composés amphiphiles comportent une partie hydrophile qui peut être soit neutre, soit anionique, soit cationique, soit encore zwittérionique. La partie présentant une forte affinité avec le solvant (désignée comme hydrophobe) peut être soit hydrocarbonée, soit siliconée ou fluoro-siliconée, soit encore halogénée ou perhalogénée.The amphiphilic compounds include a hydrophilic moiety which can be either neutral, anionic, cationic, or even zwitterionic. The part having a high affinity with the solvent (designated as hydrophobic) can be either hydrocarbon-based, or silicone or fluoro-silicone, or still halogenated or perhalogenated.
Les composés amphiphiles hydrocarbonés utilisés seuls, ou en mélanges, pour faciliter la formation et/ou le transport des hydrates selon la présente invention sont choisis parmi les composés amphiphiles non ioniques, anioniques, cationiques ou zwittérioniques.The hydrocarbon amphiphilic compounds used alone, or in mixtures, to facilitate the formation and / or transport of the hydrates according to the present invention are chosen from nonionic, anionic, cationic or zwitterionic amphiphilic compounds.
Les composés non ioniques sont caractérisés en ce qu'ils contiennent : - une partie hydrophile comprenant soit des groupements oxyde d'alkylène, hydroxy ou encore des groupements amino alkylène,The nonionic compounds are characterized in that they contain: a hydrophilic part comprising either alkylene oxide groups, hydroxyl groups or even amino alkylene groups,
- une partie hydrophobe comprenant une chaîne hydrocarbonée dérivée d'un alcool, d'un acide gras, d'un dérivé alkylé d'un phénol ou une polyoléfine, par exemple dérivée de l'isobutène ou du butène. La liaison entre la partie hydrophile et la partie hydrophobe peut, par exemple être une fonction éther, ester ou amide. Cette liaison peut également être obtenue par un atome d'azote ou de soufre.a hydrophobic part comprising a hydrocarbon chain derived from an alcohol, a fatty acid, an alkylated derivative of a phenol or a polyolefin, for example derived from isobutene or butene. The bond between the hydrophilic part and the hydrophobic part may, for example be an ether, ester or amide function. This bond can also be obtained by a nitrogen or sulfur atom.
Parmi les composés hydrocarbonés amphiphiles non ioniques, on peut mentionner les alcools gras oxyéthylés, les alkylphénol alkoxylés, les dérivés oxyéthylés et/ou oxypropylés, les éthers de sucre, les esters de polyol, tels que glycérol, polyéthylène glycol, sorbitol et sorbitan, les mono et diéthanol amides, les amide d'acides carboxyliques, les acides sulfoniques ou les acides aminés.Among the nonionic amphiphilic hydrocarbon compounds, mention may be made of oxyethylated fatty alcohols, alkylphenol alkoxylates, oxyethylated and / or oxypropylated derivatives, sugar ethers, polyol esters, such as glycerol, polyethylene glycol, sorbitol and sorbitan, the mono and diethanol amides, carboxylic acid amides, sulfonic acids or amino acids.
Les composés hydrocarbonés amphiphiles anioniques sont caractérisés en ce qu'ils contiennent un ou plusieurs groupements fonctionnels ionisables dans la phase aqueuse pour former des ions chargés négativement. Ces groupements anioniques apportant l'activité de surface de la molécule. Un tel groupement fonctionnel est un groupement acide ionisé par un métal ou une aminé. L'acide peut par exemple être un acide carboxylique, sulfonique, sulfurique, ou phosphorique.The anionic amphiphilic hydrocarbon compounds are characterized in that they contain one or more functional groups ionizable in the aqueous phase to form negatively charged ions. These anionic groups bringing the surface activity of the molecule. Such functional group is an acidic group ionized by a metal or an amine. The acid may for example be a carboxylic, sulfonic, sulfuric or phosphoric acid.
Parmi les composés hydrocarbonés amphiphiles anioniques, on peut mentionner:Among the anionic amphiphilic hydrocarbon compounds, mention may be made of:
- les carboxylates tels que les savons métalliques, les savons alkalins, ou les savons organiques (tels que les N-acyl aminoacides, N-acyl sarcosinates, N- acyl glutamates et N-acyl polypeptides),carboxylates such as metal soaps, alkaline soaps, or organic soaps (such as N-acyl amino acids, N-acyl sarcosinates, N-acyl glutamates and N-acyl polypeptides),
- les sulfonates tels que les alkylbenzènesulfonate (c'est à dire les alkylbenzènesulfonate alkoxylés) les paraffines et oléfines sulfonates, les ligosulfonate ou les dérivés sulfonsucciniques (tels que les sulfosuccinates, hémisulfosuccinates, dialkylsulfosuccinates, par exemple le dioctyl- sulfosuccinate de sodium).sulfonates such as alkylbenzenesulphonate (ie alkoxylated alkylbenzene sulphonates), paraffins and olefin sulphonates, ligosulphonates or sulphonuccinic derivatives (such as sulphosuccinates, hemisulfosuccinates, dialkylsulphosuccinates, for example dioctyl sodium sulphosuccinate).
- les sulfates tel que les alkylsulfates, les alkyléthersulfates et les phosphates.sulphates such as alkyl sulphates, alkyl ether sulphates and phosphates.
Les composés hydrocarbonés amphiphile cationiques sont caractérisés en ce qu'ils contiennent un ou plusieurs groupements fonctionnels ionisables dans la phase aqueuse pour former des ions chargés positivement. Ces groupements cationiques apportant l'activité de surface de la molécule.The cationic amphiphilic hydrocarbon compounds are characterized in that they contain one or more functional groups ionizable in the aqueous phase to form positively charged ions. These cationic groups bringing the surface activity of the molecule.
Parmi les composés hydrocarbonés cationiques, on peut mentionner :Among the cationic hydrocarbon compounds, mention may be made of:
- les sels d'alkylamine tels quealkylamine salts such as
• les alkylamine éthers,• alkylamine ethers,
• les sels d'ammonium quaternaires tels que les dérivés d'alkyle triméthyl ammonium ou les dérivés de tetraalkylammonium ou encore les dérivés d'alkyle diméthyle benzyle ammonium,Quaternary ammonium salts such as alkyl trimethylammonium derivatives or tetraalkylammonium derivatives or else alkyl dimethyl benzylammonium derivatives,
• les dérivés d'alkyle aminé alcoxylés• alkoxylated amino alkyl derivatives
- les dérivés de sulfonium ou de phosphonium, par exemple les dérivés tétraalkyle phosphonium. - les dérivés hétérocycliques tels que les dérivés pyridinium, imidazolium, quinolinium, pipéridinium ou morpholinuim. Les composés hydrocarbonés zwittérioniques se caractérisent en ce qu'ils possèdent au moins deux groupements ionisables, tels que l'un au moins est chargé positivement et l'un au moins est chargé négativement. Les groupements étant choisis parmi les groupements anioniques et cationiques décrits précédemment, tels que par exemple les bétaïnes, les dérivés alkyl amido bétaïnes, des sulfobétaïne, des phosphobétaïnes ou encore des carboxybétaïnes.sulfonium or phosphonium derivatives, for example tetraalkylphosphonium derivatives. heterocyclic derivatives such as pyridinium, imidazolium, quinolinium, piperidinium or morpholinium derivatives. The zwitterionic hydrocarbon compounds are characterized in that they possess at least two ionizable groups, such that at least one is positively charged and at least one is negatively charged. The groups being chosen from the anionic and cationic groups described above, such as, for example, betaines, alkyl amido betaine derivatives, sulfobetaine, phosphobetaines or even carboxybetaines.
Les composés amphiphiles, comportant une partie hydrophile neutre, anionique, cationique, ou zwittérionique, peuvent également avoir une partie hydrophobe (définie comme présentant une forte affinité avec le solvant non miscible à l'eau) siliconée ou fluoro-siliconée. Ces composés amphiphiles siliconés, oligomères ou polymères, peuvent également être utilisés pour les mélanges eau/solvant organique ou eau/solvant halogène ou perhalogéné ou encore eau/solvant siliconé.The amphiphilic compounds, comprising a neutral, anionic, cationic or zwitterionic hydrophilic part, can also have a hydrophobic part (defined as having a high affinity with the water-immiscible solvent) silicone or fluoro-silicone. These silicone, oligomeric or polymeric amphiphilic compounds may also be used for the water / organic solvent or water / halogenated or perhalogenated solvent or water / silicone solvent mixtures.
Les composés amphiphiles siliconés neutres peuvent être des oligomères ou des copolymères de type PDMS dans lesquels les groupements méthyles sont partiellement remplacés par des groupements polyoxyde d'alkylène (de type polyoxyde d'éthylène, polyoxyde de propylène ou d'un polymère mélange polyoxyde d'éthylène et de propylène) ou pyrrolidone tels que les dérivés PDMS/hydroxy-alkylène oxypropyl-méthyle siloxane ou encore des dérivés alkyl méthyle siloxane/hydroxy-alkylène oxypropyl-méthyle siloxane. Ces copolyols obtenus par réaction d'hydrosilylation possèdent des groupements hydroxyles finaux réactifs. Ils peuvent donc être utilisés pour réaliser des groupements ester, par exemple par réaction d'un acide gras, ou encore des groupements alkanolamides, ou encore des groupements glycosides.The neutral silicone amphiphilic compounds may be oligomers or copolymers of the PDMS type in which the methyl groups are partially replaced by polyalkylene oxide groups (of the polyethylene oxide, propylene polyoxide or a polyoxide-mixed polymer type). ethylene and propylene) or pyrrolidone such as PDMS / hydroxyalkyleneoxypropylmethylsiloxane derivatives or alternatively alkylmethylsiloxane / hydroxyalkyleneoxypropylmethylsiloxane derivatives. These copolyols obtained by hydrosilylation reaction have reactive hydroxyl end groups. They can therefore be used to carry out ester groups, for example by reacting a fatty acid, or else alkanolamide groups, or even glycoside groups.
Des polymères siliconés comportant des groupements alkyls latéraux (hydrophobes) directement liés à l'atome de silicium peuvent également être modifiés par réaction avec des molécules de type fluoro alcools (hydrophiles) pour former des composés amphiphiles.Silicone polymers having lateral (hydrophobic) alkyl groups directly attached to the silicon atom can also be modified by reaction with fluoro (hydrophilic) type molecules to form amphiphilic compounds.
Les propriétés tensioactives sont ajustées avec le rapport groupement hydrophile/groupement hydrophobe.The surfactant properties are adjusted with the ratio hydrophilic group / hydrophobic group.
Les copolymères PDMS peuvent également être rendus amphiphiles par des groupements anioniques tels que des groupements phosphate, carboxylate, sulfate ou encore sulfosuccinate. Ces polymères sont généralement obtenus par réaction d'acides sur les fonctions hydroxydes finales de chaînes latérales de polyoxyde d'alkynlène de polysiloxane.The PDMS copolymers can also be rendered amphiphilic by anionic groups such as phosphate, carboxylate, sulfate or sulphosuccinate groups. These polymers are generally obtained by reaction of acids with the final hydroxyl end groups of alkylene polyoxide side chains of polysiloxane.
Les copolymères PDMS peuvent également être rendus amphiphiles par des groupements cationiques tels que des groupements ammonium quaternaire, des groupements alkylamido aminé quaternisée, ou des groupements alkyle alcoxy aminé quaternisée ou encore une imidazoline aminé quaternisée. On peut utiliser, par exemple le copolymère PDMS/chlorure de benzyle tri-méthyl ammonium méthylsiloxane ou encore les dérivés halogéno N-Alkyl-N,Ndiméthyl-(3-siloxanylpropyl)ammonium.The PDMS copolymers can also be rendered amphiphilic by cationic groups such as quaternary ammonium groups, quaternized alkylamido amine groups, or quaternized alkyl alkoxy amine groups or a quaternized amino imidazoline amine. It is possible to use, for example, the PDMS / benzyltrimethylammoniummethylsiloxane copolymer or the halogeno-N-alkyl-N, N-dimethyl- (3-siloxanylpropyl) ammonium derivatives.
Les copolymères PDMS peuvent également être rendus amphiphiles par des groupements de type bétaïne tel que une carboxybétaïne, une alkyl amido bétaïne, une phosphobétaïne ou encore une sulfobétaïne. Dans ce cas, les copolymères comprendront une chaîne siloxane hydrophobe et par exemple une partie organobétaïne hydrophile de formule générale : (Me3SiO)(SiMe2O)3(SiMeRO)SiMe3 The PDMS copolymers may also be rendered amphiphilic by betaine-type groups such as carboxybetaine, an alkyl amido betaine, a phosphobetaine or a sulfobetaine. In this case, the copolymers will comprise a hydrophobic siloxane chain and for example a hydrophilic organobetaine part of general formula: (Me 3 SiO) (SiMe 2 O) 3 (SiMeRO) SiMe 3
Avec R = (CH2)3 +NMe2(CH2)bCOO ; a= 0,10 ; b= 1,2R = (CH 2) 2 NMe 3 + (CH 2) b COO; a = 0.10; b = 1.2
Les composés amphiphiles, comportant une partie hydrophile neutre, anionique, cationique, ou zwittérionique, peuvent aussi avoir une partie hydrophobe (définie comme présentant une forte affinité avec le solvant non miscible à l'eau) halogènes ou perhalogénés. Ces composés amphiphiles halogènes, oligomères ou polymères, peuvent également être utilisés pour les mélanges eau/solvant organique ou eau/solvant halogène ou perhalogéné ou encore eau/solvant siliconé.The amphiphilic compounds, comprising a neutral, anionic, cationic or zwitterionic hydrophilic part, may also have a hydrophobic part (defined as having a high affinity with the water immiscible solvent) halogenated or perhalogenated. These amphiphilic compounds halogens, oligomers or polymers, can also be used for mixtures water / organic solvent or water / halogenated or perhalogenated solvent or water / silicone solvent.
Les composés amphiphiles halogènes tels que par exemple les composés fluorés peuvent être ioniques ou non ioniques. En particulier, on peut citer :Halogenated amphiphilic compounds such as, for example, fluorinated compounds may be ionic or nonionic. In particular, we can mention:
- les composés halogènes ou perhalogénés amphiphiles non ioniques tels que les composés répondant à la formule générale Rf(CH2)(OC2H4)nOH, dans laquelle Rf est une chaîne perfluorocarbonée ou fluorocarbonée partiellement hydrogénée dans lesquels n est un nombre entier au moins égal à 1, les agents tensioactifs non ioniques fluorés de type polyoxyéthylène-fluoroalkyléther,the nonionic amphiphilic halogen or perhalogenated compounds such as the compounds corresponding to the general formula Rf (CH 2 ) (OC 2 H 4 ) n OH, in which Rf is a partially hydrogenated perfluorocarbon or fluorocarbon chain in which n is a whole number at least 1, fluorinated nonionic surfactants of polyoxyethylene-fluoroalkyl ether type,
- les composés amphiphiles ionisables pour former de composés anioniques, tels que les acides perfluorocarboxyliques, et leurs sels, ou les acides perfluorosulphoniques et leurs sels, les composés perfluorophosphates, les acides mono et dicarboxyliques dérivant des perfluoro polyéthers, et leurs sels, les acides mono et disulfoniques dérivant des perfluoro polyéthers, et leurs sels, les composés amphiphiles perfluoro polyéther phosphates et les composés amphiphiles perfluoro polyéther diphosphates,ionizable amphiphilic compounds for forming anionic compounds, such as perfluorocarboxylic acids, and their salts, or perfluorosulphonic acids and their salts, perfluorophosphate compounds, mono and dicarboxylic acids deriving from perfluoro polyethers, and their salts, mono acids; and disulfonic compounds derived from perfluoro polyethers, and their salts, perfluoro polyether phosphate amphiphilic compounds and perfluoro polyether diphosphate amphiphilic compounds,
- les composés halogènes amphiphiles cationiques ou anioniques perfluorés ou ceux dérivants des perfluoro polyéthers ayant 1, 2 ou 3 chaînes hydrophobes latérales, les fluoroalcools éthoxylés, les sulfonamides fluorées ou les carboxamides fluorées.amphiphilic halogenated cationic or anionic perfluorinated compounds or those derived from perfluoro polyethers having 1, 2 or 3 hydrophobic side chains, ethoxylated fluoroalcohols, fluorinated sulphonamides or fluorinated carboxamides.
Pour tester l'efficacité de l'utilisation d'un solvant non miscible à l'eau et de composés amphiphiles utilisés dans le procédé de l'invention, on a simulé la phase de formation des hydrates et leur transport pour un mélange de gaz contenant du méthane et du CO2 dans le dispositif décrit par la figure 2.To test the effectiveness of the use of a water-immiscible solvent and of amphiphilic compounds used in the process of the invention, the hydrate formation phase and their transport for a gas mixture containing gas were simulated. methane and CO 2 in the device described in FIG. 2.
Le dispositif comporte un réacteur 10 de 1,5 litres de contenance comprenant une entrée 11 et une sortie pour le gaz, une aspiration 12 et un refoulement 13 pour le liquide. Ces entrée et sortie de liquide sont reliées à une boucle de circulation 14 de 10 mètres constituée de tubes de diamètre intérieur égal à 7,7 mm. Des tubes de diamètre analogue à ceux de la boucle assurent la circulation des fluides de la boucle au réacteur, et inversement, par l'intermédiaire d'une pompe 15 à engrenages placée entre les deux. Une cellule saphir C intégrée dans le circuit permet une visualisation du liquide en circulation, et donc des hydrates, s'ils se sont formés.The device comprises a reactor of 1.5 liters of capacity comprising an inlet 11 and an outlet for the gas, a suction 12 and a discharge 13 for the liquid. These liquid inlet and outlet are connected to a circulation loop 14 of 10 meters consisting of tubes of internal diameter equal to 7.7 mm. Tubes of diameter similar to those of the loop ensure the flow of fluids from the loop to the reactor, and vice versa, via a gear pump 15 placed between the two. A sapphire cell C integrated in the circuit allows a visualization of the circulating liquid, and therefore hydrates, if they have formed.
Pour déterminer l'efficacité des additifs selon l'invention, on introduit le ou les liquides (eau ou eau+solvant+additif) dans le réacteur à un volume de 1,4 L. L'installation est ensuite montée en pression à 7 MPa à l'aide du gaz d'étude. L'homogénéisation des liquides est assurée par leur circulation dans la boucle et le réacteur. En suivant les variations de perte de charge et de débit, on impose une rapide diminution de la température de 170C à 4°C (température inférieure à la température de formation des hydrates). La température est ensuite maintenue à cette valeur. La durée des tests peut varier de quelques minutes à plusieurs heures.To determine the effectiveness of the additives according to the invention, the liquid or liquids (water or water + solvent + additive) are introduced into the reactor at a volume of 1.4 L. The plant is then pressurized to 7 MPa. using the study gas. Homogenization of the liquids is ensured by their circulation in the loop and the reactor. By following the variations of pressure drop and flow rate, a rapid temperature decrease of 17 ° C. to 4 ° C. is imposed (temperature below the formation temperature of the hydrates). The temperature is then maintained at this value. The duration of the tests can vary from a few minutes to several hours.
Le taux de conversion de l'eau en hydrate est calculé et la transportabilité du coulis d'hydrate une fois formé est étudiée, lorsque le transport est possible. Dans ce cas, la perte de charge DP et le débit F dans la boucle sont stables.The conversion rate of water to hydrate is calculated and the transportability of the hydrate slurry once formed is studied, when transport is possible. In this case, the pressure drop DP and the flow rate F in the loop are stable.
Les exemples suivants qui illustrent l'invention ne doivent pas être considérés comme limitatifs. L'exemple 1 est donné à titre comparatif. Exemple 1The following examples which illustrate the invention should not be considered as limiting. Example 1 is given for comparison. Example 1
On opère avec un liquide composé de 100% d'eau. Le gaz utilisé comprend, en molaire, 90% de méthane, 2% d'azote et 8% de CO2. Le réacteur et la boucle sont pressurisés à 7 MPa, puis l'arrivée de gaz est fermée. Dans ces conditions, on observe une chute de la pression de 1,45 MPa. Dès l'amorce de la formation des hydrates, le débit de la pompe devient instable, la perte de charge entre l'entrée et la sortie de la boucle augmente fortement et atteint sa valeur maximale. Le mélange n'est pas pompé correctement. Le bouchage complet par les hydrates intervient en une vingtaine de minutes. Les hydrates forment un bloc et la circulation du fluide devient impossible. La quantité d'eau convertie en hydrate est de 3%.We operate with a liquid composed of 100% water. The gas used comprises, molar, 90% methane, 2% nitrogen and 8% CO2. The reactor and the loop are pressurized to 7 MPa, then the gas supply is closed. Under these conditions, a pressure drop of 1.45 MPa is observed. As soon as the formation of the hydrates starts, the flow of the pump becomes unstable, the pressure drop between the inlet and the outlet of the loop increases sharply and reaches its maximum value. The mixture is not pumped properly. The complete capping by the hydrates intervenes in about twenty minutes. Hydrates form a block and the circulation of the fluid becomes impossible. The amount of water converted to hydrate is 3%.
Exemple 2 On opère comme dans l'exemple 1 comparatif, mais avec un fluide composé, en volume, de 10% d'eau et de 90% de solvant auquel on ajoute un composé amphiphile obtenu par réaction entre un anhydride polyisobutényl succinique et du polyéthylène glycol. Le composé amphiphile est ajouté à une concentration de 0,17% poids par rapport au volume de solvant. La composition pondérale du solvant est :EXAMPLE 2 The procedure is as in Comparative Example 1, but with a fluid composed, by volume, of 10% of water and 90% of solvent to which an amphiphilic compound obtained by reaction between a polyisobutenyl succinic anhydride and polyethylene is added. glycol. The amphiphilic compound is added at a concentration of 0.17% by weight relative to the volume of solvent. The weight composition of the solvent is:
- pour les molécules ayant moins de 11 atomes de carbone : 20% de paraffines et d'isoparaffines, 48% de naphtènes, 10% d'aromatiques;for molecules having less than 11 carbon atoms: 20% of paraffins and isoparaffins, 48% of naphthenes, 10% of aromatics;
- pour les molécules ayant au moins 11 atomes de carbone : 22% d'un mélange de paraffines, d'isoparaffines, de naphtènes et d'aromatiques. Dans ces conditions, on observe une chute de pression de 1,95 MPa, la pression dans le système atteint la courbe d'équilibre des hydrates de méthane. Le débit et la perte de charge après la formation des hydrates dans la boucle sont stables, ce qui signifie que le coulis d'hydrate reste pompable. Le taux de conversion d'eau en hydrate atteint 46%. La composition finale du mélange de gaz est de 4,2% en CO2, 3% en azote et de 92,8% en méthane. Au final, le gaz qui sera largué par dissociation de la phase hydrate contiendra 19% molaire de CO2 et 81% molaire de méthane et pas de N2. Le procédé a permit d'enrichir le gaz issu de la dissociation de 8 à 19% molaire en CO2. for molecules with at least 11 carbon atoms: 22% of a mixture of paraffins, isoparaffins, naphthenes and aromatics. Under these conditions, a pressure drop of 1.95 MPa is observed, the pressure in the system reaches the equilibrium curve of the methane hydrates. The flow rate and the pressure drop after hydrate formation in the loop are stable, which means that the hydrate slurry remains pumpable. The conversion rate of water to hydrate reaches 46%. The final composition of the gas mixture is 4.2% CO 2 , 3% nitrogen and 92.8% methane. Finally, the gas that will be released by dissociation of the hydrate phase will contain 19 mol% of CO 2 and 81 mol% of methane and no N 2 . The process has made it possible to enrich the gas resulting from the dissociation of 8 to 19 mol% CO 2 .
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0702495A FR2914565B1 (en) | 2007-04-05 | 2007-04-05 | PROCESS FOR ENRICHING ACIDIC GASES WITH GASEOUS EFFLUENT |
PCT/FR2008/000457 WO2008142262A2 (en) | 2007-04-05 | 2008-04-03 | Process for enriching a gaseous effluent with acid gases |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2142283A2 true EP2142283A2 (en) | 2010-01-13 |
Family
ID=38720375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08787896A Withdrawn EP2142283A2 (en) | 2007-04-05 | 2008-04-03 | Process for enriching a gaseous effluent with acid gases |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100200809A1 (en) |
EP (1) | EP2142283A2 (en) |
JP (1) | JP5096555B2 (en) |
CA (1) | CA2681245A1 (en) |
FR (1) | FR2914565B1 (en) |
WO (1) | WO2008142262A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2228117B1 (en) * | 2009-02-25 | 2015-04-15 | Siemens Aktiengesellschaft | Absorber liquid, method for producing same and application of same |
EP2228118A1 (en) * | 2009-02-25 | 2010-09-15 | Siemens Aktiengesellschaft | Absorber liquid, method for producing same and application of same |
JP5489150B2 (en) * | 2009-02-26 | 2014-05-14 | 学校法人日本大学 | Production method of clathrate hydrate |
FR2960447B1 (en) * | 2010-05-27 | 2012-07-20 | Inst Francais Du Petrole | PROCESS FOR ENRICHING ACIDIC GASES WITH GASEOUS EFFLUENT |
FR2976190B1 (en) | 2011-06-10 | 2013-06-28 | IFP Energies Nouvelles | METHOD OF CAPTURING ACIDIC COMPOUNDS BY FORMATION OF HYDRATES WITH A DEMIXING STEP. |
US9623367B2 (en) * | 2013-12-20 | 2017-04-18 | Solvay Specialty Polymers Italy S.P.A. | Method for removing carbon dioxide from gas mixtures |
CN110982497B (en) * | 2016-11-07 | 2022-08-09 | 天津天诚拓源科技发展有限公司 | Preparation method of high-temperature-resistant filtrate reducer for oil-based drilling fluid |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2625547B1 (en) * | 1987-12-30 | 1990-06-22 | Inst Francais Du Petrole | PROCESS FOR DELAYING FORMATION AND / OR REDUCING THE TENDENCY TO AGGLOMERATION OF HYDRATES |
JPH06205937A (en) * | 1993-01-11 | 1994-07-26 | Ishikawajima Harima Heavy Ind Co Ltd | Flue gas decarboxylation device |
US5434330A (en) * | 1993-06-23 | 1995-07-18 | Hnatow; Miguel A. | Process and apparatus for separation of constituents of gases using gas hydrates |
US6106595A (en) * | 1996-04-30 | 2000-08-22 | Spencer; Dwain F. | Methods of selectively separating CO2 from a multicomponent gaseous stream |
JP3983910B2 (en) * | 1998-11-12 | 2007-09-26 | 千代田化工建設株式会社 | Method for producing gas hydrate |
US7128777B2 (en) * | 2004-06-15 | 2006-10-31 | Spencer Dwain F | Methods and systems for selectively separating CO2 from a multicomponent gaseous stream to produce a high pressure CO2 product |
JP4930963B2 (en) * | 2005-04-25 | 2012-05-16 | 独立行政法人産業技術総合研究所 | Continuous gas separation method and apparatus using hydrate generation by static mixer |
JP5334279B2 (en) * | 2007-03-19 | 2013-11-06 | 東京瓦斯株式会社 | Gas clathrate production accelerator and gas clathrate production method |
FR2960447B1 (en) * | 2010-05-27 | 2012-07-20 | Inst Francais Du Petrole | PROCESS FOR ENRICHING ACIDIC GASES WITH GASEOUS EFFLUENT |
-
2007
- 2007-04-05 FR FR0702495A patent/FR2914565B1/en not_active Expired - Fee Related
-
2008
- 2008-04-03 EP EP08787896A patent/EP2142283A2/en not_active Withdrawn
- 2008-04-03 CA CA002681245A patent/CA2681245A1/en not_active Abandoned
- 2008-04-03 JP JP2010501551A patent/JP5096555B2/en not_active Expired - Fee Related
- 2008-04-03 US US12/594,627 patent/US20100200809A1/en not_active Abandoned
- 2008-04-03 WO PCT/FR2008/000457 patent/WO2008142262A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2008142262A2 * |
Also Published As
Publication number | Publication date |
---|---|
JP5096555B2 (en) | 2012-12-12 |
JP2010523310A (en) | 2010-07-15 |
FR2914565B1 (en) | 2009-05-22 |
WO2008142262A3 (en) | 2009-02-19 |
FR2914565A1 (en) | 2008-10-10 |
CA2681245A1 (en) | 2008-11-27 |
WO2008142262A2 (en) | 2008-11-27 |
US20100200809A1 (en) | 2010-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008142262A2 (en) | Process for enriching a gaseous effluent with acid gases | |
CA2685705C (en) | Process for producing hydrogen with total capture of co2 and recycling of unconverted methane | |
EP2389995A1 (en) | Method for enriching an off-gas with acid gases | |
EP0571257B1 (en) | Process for the treatment and the transport of natural gas coming from a well | |
US20150083425A1 (en) | Inline non-targeted component removal | |
JP2019505378A (en) | Compact underwater dewatering | |
WO2009073442A2 (en) | Process to reduce acidity of crude oil | |
WO2015047712A1 (en) | Ionic liquid and solvent mixtures for hydrogen sulfide removal | |
EP3092044B1 (en) | Recovery of perfluorinated polyether oils from grease matrices incorporating extraction aids by carbon dioxide extraction | |
CN101716475A (en) | Reversed phase emulsion splitter and preparation method thereof | |
FR2923727A1 (en) | METHOD FOR LIQUEFACTING A GASEOUS EFFLUENT | |
Dong et al. | A laboratory study on near-miscible CO2 injection in Steelman reservoir | |
CN106731504B (en) | A kind of hydrogen sulfide absorbent and its application in oil field gas desulfurization | |
CN103079677A (en) | Process for separating CO2 from a gaseous stream | |
US10494563B2 (en) | Method of improving mobility of heavy crude oils in subterranean reservoirs | |
WO2010010239A1 (en) | Aqueous extraction medium containing a hydroxide and a thiol that is used in a process for separating carbon dioxide contained in a gaseous effluent | |
EP2532415A1 (en) | Method for capturing acidic compounds by formation of hydrates with a demixing step | |
CN112302588A (en) | CO reduction with imidazoline compounds2Method for driving out minimum miscible pressure | |
CN113477033B (en) | Self-emulsifiable organic silicon decarbonization solvent | |
CA2496748A1 (en) | Process for extracting an antihydrate compound contained in condensed hydrocarbons | |
AU2011310681A1 (en) | Process for separating kinetic hydrate polymer inhibitors | |
RU2629845C2 (en) | Method of hydrocarbon gas treatment for transportation | |
CN112852476A (en) | Polymer-containing produced liquid demulsifier and preparation method thereof | |
EA041016B1 (en) | STABLE ALKYLETHIR SULFATE MIXTURE FOR INCREASED OIL RECOVERY | |
Benyahia et al. | Dehydration of Acid Gas Prior to Injection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20091105 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PASQUIER, DAVID Inventor name: HUYGHE, RAPHAEL Inventor name: BOUILLON, PIERRE-ANTOINE Inventor name: SINQUIN, ANNE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IFP ENERGIES NOUVELLES |
|
17Q | First examination report despatched |
Effective date: 20120404 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20151103 |