EP2141329B1 - Prallkühlvorrichtung - Google Patents

Prallkühlvorrichtung Download PDF

Info

Publication number
EP2141329B1
EP2141329B1 EP09250927.2A EP09250927A EP2141329B1 EP 2141329 B1 EP2141329 B1 EP 2141329B1 EP 09250927 A EP09250927 A EP 09250927A EP 2141329 B1 EP2141329 B1 EP 2141329B1
Authority
EP
European Patent Office
Prior art keywords
gas turbine
turbine engine
engine according
sleeve body
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09250927.2A
Other languages
English (en)
French (fr)
Other versions
EP2141329A3 (de
EP2141329A2 (de
Inventor
Craig F. Smith
A. Burns David
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Aero LLC
Original Assignee
PW Power Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PW Power Systems LLC filed Critical PW Power Systems LLC
Publication of EP2141329A2 publication Critical patent/EP2141329A2/de
Publication of EP2141329A3 publication Critical patent/EP2141329A3/de
Application granted granted Critical
Publication of EP2141329B1 publication Critical patent/EP2141329B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • This disclosure relates to an impingement cooling device for a gas turbine engine that increases cooling air flow to a transition duct.
  • Primary components of a gas turbine engine include a compressor section, a combustion section, and a turbine section.
  • air compressed in the compressor section is mixed with fuel and burned in the combustion section to produce hot gases that are expanded in the turbine section.
  • a combustor is positioned at a compressor discharge opening and is connected to the turbine section by transition ducts.
  • the transition ducts are circumferentially spaced apart from each other in an annular pattern. Each transition duct is spaced from an adjacent transition duct by a small gap.
  • the transition ducts conduct the hot gases from the combustor to a first stage inlet of the turbine section.
  • a cooling impingement sleeve is positioned to surround each of the transition ducts. Each impingement sleeve includes a plurality of air holes that direct cooling air toward the heated transition ducts.
  • GB 836117 discloses improvements in or relating to combustion equipment for gas turbine engines.
  • US 4301657 discloses a gas turbine combustion chamber.
  • US 6494044 discloses a gas turbine engine according to the preamble of claim 1.
  • US 2007/0180827 discloses gas turbine engine transitions comprising closed cooled transition cooling channels.
  • the scoops comprise semi-hemispherical members, i.e. a curved member that forms half of a hemisphere, that are welded to the impingement cooling sleeve at different air hole locations. These scoops have not been efficient in capturing and redirecting flow through impingement cooling holes.
  • the invention provides a gas turbine engine, as claimed in claim 1.
  • the first opening comprises an annular end face surface that defines a plane that is obliquely orientated relative to an outer surface of the sleeve body.
  • conduit members of the invention provide a more effective cooling configuration that is less sensitive to variations in air flow direction.
  • Figure 1 shows a transition duct 30 that connects a combustion section, indicated schematically at 18, to a turbine section indicated schematically at 20.
  • the combustion 18 and turbine 20 sections are incorporated in a gas turbine engine as known.
  • the gas turbine engine 10 can be any type of engine and includes a plurality of transition ducts 30 as shown in Figure 2.
  • Figure 1 shows an example of one transition duct, and it should be understood that the other transition ducts would be similarly configured.
  • the transition duct 30 includes an outer surface 32 and an inner surface 34 that defines a passage 36 that carries the hot gases from an upstream combustor in the combustion section 18 to the turbine section 20.
  • Air flow (as indicated by arrows 38) from a compressor section flows into a discharge casing 40 that surrounds the transition duct 30.
  • the impingement cooling sleeve 50 is positioned to surround each transition duct 30.
  • the impingement cooling sleeve 50 includes a sleeve body 51 having an inner surface 52 that faces the outer surface 32 of the transition duct 30 and an outer surface 54 that faces the discharge casing 40.
  • the inner surface 52 of the impingement cooling sleeve 50 is spaced circumferentially apart from the outer surface 32 of the transition duct 30 to define a chamber 56 around the transition duct 30.
  • the impingement cooling sleeve 50 includes a plurality of cooling holes 58 that extend through a thickness T of the sleeve body of the impingement cooling sleeve 50 from the outer surface 54 to the inner surface 52.
  • Air flow indicated by arrow passes from the discharge casing 40 into the chamber 56 via the cooling holes 58 to provide cooling air for the transition duct 30.
  • transition ducts 30 are spaced such that each transition duct is separated from an adjacent duct by a small gap G. Discharge air from the compressor section that passes between the closely spaced transition ducts is accelerated in the gaps G, which results in a low local static pressure. This reduces the pressure drop that drives cooling air flow through the impingement cooling sleeve 50.
  • Each impingement cooling sleeve 50 includes a plurality of conduit members 60 to direct an increased portion of the air flow 38 toward the transition duct 30 to provide increased cooling.
  • Each conduit member 60 is associated with one of the cooling holes 58 in the impingement cooling sleeve 50.
  • One conduit member 60 is not necessarily associated with every cooling hole; however, depending upon the application, conduit members could be associated with each cooling hole.
  • the conduit members 60 are attached to the impingement cooling sleeve 50 in areas where there is low local static pressure.
  • the conduit members 60 can be attached by welding or other attachment methods.
  • Each conduit member 60 has a first opening 62 to define an air inlet and a second opening 64 to define an air outlet.
  • the first opening 62 is spaced apart from the outer surface 54 of the impingement cooling sleeve 50 by a distance D. Spacing the opening 62 a distance D from the outer surface 54 improves flow capture efficiency because the opening 62 is clear of a boundary layer that is formed immediately adjacent the outer surface 54.
  • the distance D can be varied as needed depending upon the application and packaging constraints.
  • the conduit member 60 comprises a tube 66 having a first portion 68 that provides the opening 62 for the air inlet and a second portion 70 that provides the opening 64 for the air outlet to the chamber 56.
  • the first portion 68 extends along a first axis A1 and the second portion 70 extends along a second axis A2 that is non-parallel to the first axis A1.
  • This configuration changes direction of air flowing in from one direction as indicated by arrows 72, to a different direction 74 such that cooling air is directed against the transition duct 30.
  • This transition is provided by an elbow portion 76 that connects the first 68 and second 70 portions of the tube 66.
  • first A1 and second A2 axes are perpendicular to each other. It should be understood that an angular relationship between the first A1 and second A2 axes could be varied as needed to provide increased flow.
  • the first opening 62 comprises an annular end face 78 that defines a plane P that is obliquely orientated relative to the outer surface 54 of the impingement cooling sleeve 50.
  • the orientation of this annular end face 78 makes the conduit 60 less sensitive to variations in directions of air flow relative to the first axis A1. In other words, air that flows in a non-parallel direction relative to the first axis A1 will have a minimal effect on capture efficiency due to the oblique orientation of the first opening 62.
  • Each cooling hole 58 is defined by a cooling hole diameter H1.
  • Each conduit 60 has an inner circumferential surface 80 defined by an inner diameter H2 and an outer circumferential surface 82 defined by an outer diameter H3. The conduit 60 is attached to the inner surface 52 of the sleeve 50 with a fillet weld W.
  • the first portion 68 of the tube 66 is positioned on one side of the impingement cooling sleeve 50 and the second portion 70 of the tube 66 is positioned on an opposite side of the impingement cooling sleeve 50 such that the tube 66 extends entirely through the thickness T of the sleeve body.
  • the outer circumferential surface 82 directly abuts an inner peripheral surface 88 of the cooling hole 58.
  • FIG 4 another example of a conduit member 60.
  • each conduit member 60 comprises a tube 100 with a first tube end 102 forming the air inlet and a second tube end 104 forming the air outlet.
  • An elbow portion 106 transitions from the first tube end 102 to the second tube end 104 to change air flow direction as described above.
  • first A1 and second A2 axes defined by the first 102 and second 104 tube ends are perpendicular to each other; however, it should be understood that an angular relationship between the first A1 and second A2 axes could be varied as needed to provide increased flow.
  • the first tube end 102 defines a first opening 108 for the air inlet and the second tube end 104 defines a second opening 110 for the air outlet.
  • the first opening 108 is spaced apart from the outer surface 54 of the impingement cooling sleeve 50 by a distance D to improve flow capture efficiency as discussed above.
  • the distance D can be varied as needed depending upon the application and packaging constraints.
  • the first opening 108 comprises an annular end face surface 112 that defines a plane P that is obliquely orientated relative to the outer surface 54 of the impingement cooling sleeve 50.
  • the orientation of this annular end face surface 112 makes the conduit member 60 less sensitive to variations in air flow direction relative to the first axis A1 as discussed above.
  • the tube 100 has an inner circumferential surface 116 defined by an inner diameter H2 and an outer circumferential surface 118 defined by an outer diameter H3.
  • the outer diameter H3 is greater than the cooling hole diameter H1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (13)

  1. Ein Gasturbinentriebwerk, das eine Übergangsleitung (30), die einen Verbrennungsabschnitt (18) mit einem Turbinenabschnitt (20) verbindet, und eine Prallkühlungshülle (50) aufweist, die die besagte Übergangsleitung (30) umgibt, wobei die besagte Prallkühlungshülle (50) aufweist:
    einen Hüllenkörper (51) mit einer inneren Oberfläche (52), die in Richtung der besagten Übergangsleitung (30) weist, und einer äußeren Oberfläche (54), die in eine Richtung weist, die entgegengesetzt zu der der besagten inneren Oberfläche (52) ist;
    wenigstens ein Kühlungsloch (58), das innerhalb des besagten Hüllenkörpers (51) ausgebildet ist, um Kühlungsluft in Richtung der Übergangsleitung (30) zu leiten; und
    wenigstens ein Leitungselement (60), das an dem besagten Hüllenkörper (51) befestigt und mit dem besagten wenigstens einen Kühlungsloch (58) verbunden ist und wobei das besagte Leitungselement (60) eine erste Öffnung (62; 108), um einen Lufteinlass zu definieren, und eine zweite Öffnung (64; 110) hat, um einen Luftauslass zu definieren, dadurch gekennzeichnet, dass die besagte erste Öffnung (62; 108) von der besagten äußeren Oberfläche (54) von dem besagten Hüllenkörper (51) um eine Distanz (D) beabstandet ist.
  2. Das Gasturbinentriebwerk nach Anspruch 1, wobei das besagte Leitungselement (60) ein Rohr (66; 100) mit einem ersten Abschnitt mit dem besagten Lufteinlass, der sich entlang einer ersten Achse (A1) erstreckt, und einem zweiten Abschnitt mit dem besagten Luftauslass, der sich entlang einer zweiten Achse (A2) erstreckt, die nicht parallel zu der besagten ersten Achse (A1) ist, aufweist.
  3. Das Gasturbinentriebwerk nach Anspruch 2, wobei die besagten ersten und zweiten Achsen (A1, A2) senkrecht zueinander sind.
  4. Das Gasturbinentriebwerk nach einem vorangegangenen Anspruch, wobei die besagte erste Öffnung (62; 108) eine ringförmige stirnseitige Oberfläche (78; 112) aufweist, die eine Ebene (P) definiert, die quer in Bezug auf die besagte äußere Oberfläche (54) von dem besagten Hüllenkörper (51) orientiert ist.
  5. Das Gasturbinentriebwerk nach einem vorangegangenen Anspruch, wobei das besagte Leitungselement (60) ein Rohr (66; 106) mit einem ersten Rohrende (68; 102), das den besagten Lufteinlass bildet, und einem zweiten Rohrende (70; 104), das den besagten Luftauslass bildet, aufweist und wobei das besagte zweite Rohrende (70; 104) direkt an der besagten äußeren Oberfläche (54) von dem besagten Hüllenkörper (51) befestigt ist.
  6. Das Gasturbinentriebwerk nach einem vorangegangenen Anspruch, wobei das besagte Leitungselement (60) ein Rohr (66) mit einem ersten Rohrende (68), das den besagten Lufteinlass bildet, und einem zweiten Rohrende (70), das den besagten Luftauslass bildet, aufweist und wobei das besagte erste Rohrende (68) auf einer Seite von dem besagten Hüllenkörper (51) positioniert ist und das besagte zweite Rohrende (70) auf einer gegenüberliegenden Seite von dem besagten Hüllenkörper (51) positioniert ist, so dass sich das besagte Rohr (66) vollständig durch eine Dicke (T) von dem besagten Hüllenkörper (51) erstreckt, die von der besagten äußeren Oberfläche (54) bis zu der besagten inneren Oberfläche (52) definiert ist.
  7. Das Gasturbinentriebwerk nach einem vorangegangenen Anspruch, wobei das besagte Kühlungsloch (58) durch einen Kühlungslochdurchmesser (H1) definiert ist und wobei das besagte Leitungselement (60) eine innere Umfangsoberfläche (116), die durch einen inneren Durchmesser (H2) definiert ist, und eine äußere Umfangsoberfläche (118) aufweist, die durch einen äußeren Durchmesser (H3) definiert ist, und wobei der besagte äußere Durchmesser (H3) wenigstens so groß wie der besagte Kühlungslochdurchmesser (H1) ist.
  8. Das Gasturbinentriebwerk nach Anspruch 7, wobei die besagte äußere Umfangsoberfläche (118) direkt an eine innere periphere Oberfläche (88) von dem besagten Kühlungsloch (58) angrenzt.
  9. Das Gasturbinentriebwerk nach Anspruch 7, wobei der besagte äußere Durchmesser (H3) größer als der besagte Kühlungslochdurchmesser (H1) ist.
  10. Das Gasturbinentriebwerk nach einem vorangegangenen Anspruch, wobei das besagte Leitungselement (60) an den besagten Hüllenkörper (51) geschweißt ist.
  11. Das Gasturbinentriebwerk nach einem vorangegangenen Anspruch, aufweisend eine Vielzahl von Kühlungslöchern (58) und eine Vielzahl von Leitungselementen (60) und wobei jedes Leitungselement (60) mit einem Kühlungsloch (58) verbunden ist.
  12. Das Gasturbinentriebwerk nach einem vorangegangenen Anspruch, aufweisend eine Vielzahl von Übergangsleitungen (30), die durch einen Spalt (G) voneinander beabstandet sind, entsprechende Prallkühlhüllen (50), die die entsprechenden Übergangsleitungen (30) umgeben.
  13. Das Gasturbinentriebwerk nach einem vorangegangenen Anspruch, umfassend ein Austrittsgehäuse (40), das die besagte Übergangsleitung (30) umgibt, wobei ein Luftstrom (38) von einem Kompressorabschnitt in das besagte Austrittsgehäuse (40) hinein strömt.
EP09250927.2A 2008-07-03 2009-03-30 Prallkühlvorrichtung Active EP2141329B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/167,284 US9046269B2 (en) 2008-07-03 2008-07-03 Impingement cooling device

Publications (3)

Publication Number Publication Date
EP2141329A2 EP2141329A2 (de) 2010-01-06
EP2141329A3 EP2141329A3 (de) 2013-03-06
EP2141329B1 true EP2141329B1 (de) 2016-09-14

Family

ID=40718690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09250927.2A Active EP2141329B1 (de) 2008-07-03 2009-03-30 Prallkühlvorrichtung

Country Status (2)

Country Link
US (1) US9046269B2 (de)
EP (1) EP2141329B1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH703657A1 (de) * 2010-08-27 2012-02-29 Alstom Technology Ltd Verfahren zum betrieb einer brenneranordnung sowie brenneranordnung zur durchführung des verfahrens.
US9127551B2 (en) * 2011-03-29 2015-09-08 Siemens Energy, Inc. Turbine combustion system cooling scoop
GB2492374A (en) * 2011-06-30 2013-01-02 Rolls Royce Plc Gas turbine engine impingement cooling
US9476429B2 (en) * 2012-12-19 2016-10-25 United Technologies Corporation Flow feed diffuser
US9228747B2 (en) * 2013-03-12 2016-01-05 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
KR101867050B1 (ko) * 2015-05-27 2018-06-14 두산중공업 주식회사 공기유도부재를 포함하는 연소기 챔버.
KR101759707B1 (ko) * 2016-01-11 2017-07-20 부산대학교 산학협력단 캡처 및 베인이 구비된 가스터빈의 연소기
KR101766449B1 (ko) * 2016-06-16 2017-08-08 두산중공업 주식회사 공기유도 캡 및 이를 구비하는 연소 덕트
EP3263840B1 (de) * 2016-06-28 2019-06-19 Doosan Heavy Industries & Construction Co., Ltd. Übergangsteilanordnung und brennkammer damit
US10544803B2 (en) * 2017-04-17 2020-01-28 General Electric Company Method and system for cooling fluid distribution
KR101986729B1 (ko) * 2017-08-22 2019-06-07 두산중공업 주식회사 실 영역 집중냉각을 위한 냉각유로 구조 및 이를 포함하는 가스 터빈용 연소기
DE102017125051A1 (de) * 2017-10-26 2019-05-02 Man Diesel & Turbo Se Strömungsmaschine
US10995635B2 (en) 2017-11-30 2021-05-04 Raytheon Technologies Corporation Apparatus and method for mitigating particulate accumulation on a component of a gas turbine engine
US11415319B2 (en) * 2017-12-19 2022-08-16 Raytheon Technologies Corporation Apparatus and method for mitigating particulate accumulation on a component of a gas turbine
US11371703B2 (en) * 2018-01-12 2022-06-28 Raytheon Technologies Corporation Apparatus and method for mitigating particulate accumulation on a component of a gas turbine
KR102051988B1 (ko) * 2018-03-28 2019-12-04 두산중공업 주식회사 이중관 라이너 내부 유동가이드를 포함하는 가스 터빈 엔진의 연소기, 및 이를 포함하는 가스터빈
US11391161B2 (en) * 2018-07-19 2022-07-19 General Electric Company Component for a turbine engine with a cooling hole

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB836117A (en) 1956-02-02 1960-06-01 Rolls Royce Improvements in or relating to combustion equipment for gas-turbine engines
US4301657A (en) * 1978-05-04 1981-11-24 Caterpillar Tractor Co. Gas turbine combustion chamber
US4875339A (en) * 1987-11-27 1989-10-24 General Electric Company Combustion chamber liner insert
US5297385A (en) * 1988-05-31 1994-03-29 United Technologies Corporation Combustor
US6079199A (en) * 1998-06-03 2000-06-27 Pratt & Whitney Canada Inc. Double pass air impingement and air film cooling for gas turbine combustor walls
US6494044B1 (en) * 1999-11-19 2002-12-17 General Electric Company Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
GB2356924A (en) * 1999-12-01 2001-06-06 Abb Alstom Power Uk Ltd Cooling wall structure for combustor
US6484505B1 (en) * 2000-02-25 2002-11-26 General Electric Company Combustor liner cooling thimbles and related method
US6435816B1 (en) * 2000-11-03 2002-08-20 General Electric Co. Gas injector system and its fabrication
JP2002243154A (ja) * 2001-02-16 2002-08-28 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器尾筒出口構造及びガスタービン燃焼器
CN1250906C (zh) * 2001-09-07 2006-04-12 阿尔斯托姆科技有限公司 减小燃气轮机装置中的燃烧室脉动的减振装置
US6701714B2 (en) * 2001-12-05 2004-03-09 United Technologies Corporation Gas turbine combustor
US7270175B2 (en) * 2004-01-09 2007-09-18 United Technologies Corporation Extended impingement cooling device and method
US7010921B2 (en) * 2004-06-01 2006-03-14 General Electric Company Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US7827801B2 (en) * 2006-02-09 2010-11-09 Siemens Energy, Inc. Gas turbine engine transitions comprising closed cooled transition cooling channels
US7631503B2 (en) * 2006-09-12 2009-12-15 Pratt & Whitney Canada Corp. Combustor with enhanced cooling access
US8151570B2 (en) * 2007-12-06 2012-04-10 Alstom Technology Ltd Transition duct cooling feed tubes

Also Published As

Publication number Publication date
US9046269B2 (en) 2015-06-02
EP2141329A3 (de) 2013-03-06
US20100000200A1 (en) 2010-01-07
EP2141329A2 (de) 2010-01-06

Similar Documents

Publication Publication Date Title
EP2141329B1 (de) Prallkühlvorrichtung
US8959886B2 (en) Mesh cooled conduit for conveying combustion gases
US9316396B2 (en) Hot gas path duct for a combustor of a gas turbine
US9810081B2 (en) Cooled conduit for conveying combustion gases
EP3214373B1 (de) Rohrbündelbrennstoffdüse mit interner kühlung
CN1318736C (zh) 具有热适应性的阻碍密封装置
US8166764B2 (en) Flow sleeve impingement cooling using a plenum ring
US8291711B2 (en) Flow sleeve impingement cooling baffles
US9038396B2 (en) Cooling apparatus for combustor transition piece
JP6602094B2 (ja) 燃焼器キャップ組立体
US10480322B2 (en) Turbine engine with annular cavity
EP2691610B1 (de) Kühlluftleitelement in einer gasturbinenbrennkammer
WO2004040108A1 (en) Effusion cooled transition duct with shaped cooling holes
JP6599167B2 (ja) 燃焼器キャップ組立体
EP2230456A2 (de) Brennermantel mit Mischlochansatz
EP2730748A2 (de) Kühlsystem zum Kühlen einer Heißgaskomponente, zugehörige Gasturbinenbrennkammer und Kühlverfahren
CN105371303B (zh) 燃烧器罩盖组件及对应的燃烧器和燃气涡轮机
US5016436A (en) Interturbine duct
US20170343216A1 (en) Fuel Nozzle Assembly with Tube Damping
US20180209647A1 (en) Fuel Nozzle Assembly with Fuel Purge
US20170350321A1 (en) Bundled Tube Fuel Nozzle Assembly with Tube Extensions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 9/02 20060101AFI20130129BHEP

Ipc: F23R 3/00 20060101ALI20130129BHEP

17P Request for examination filed

Effective date: 20130904

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PW POWER SYSTEMS, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160420

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009041100

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009041100

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170615

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180719 AND 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009041100

Country of ref document: DE

Owner name: MECHANICAL DYNAMICS & ANALYSIS LLC (N.D.GES.D., US

Free format text: FORMER OWNER: PW POWER SYSTEMS, INC., GLASTONBURY, CONN., US

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 16

Ref country code: GB

Payment date: 20240319

Year of fee payment: 16