EP2134025B1 - Digital signal detection method and device - Google Patents

Digital signal detection method and device Download PDF

Info

Publication number
EP2134025B1
EP2134025B1 EP08010796A EP08010796A EP2134025B1 EP 2134025 B1 EP2134025 B1 EP 2134025B1 EP 08010796 A EP08010796 A EP 08010796A EP 08010796 A EP08010796 A EP 08010796A EP 2134025 B1 EP2134025 B1 EP 2134025B1
Authority
EP
European Patent Office
Prior art keywords
signal
state
voltage signal
communication unit
current signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08010796A
Other languages
German (de)
French (fr)
Other versions
EP2134025A1 (en
Inventor
Tobias Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comprion GmbH
Original Assignee
Comprion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comprion GmbH filed Critical Comprion GmbH
Priority to AT08010796T priority Critical patent/ATE518325T1/en
Priority to EP08010796A priority patent/EP2134025B1/en
Publication of EP2134025A1 publication Critical patent/EP2134025A1/en
Application granted granted Critical
Publication of EP2134025B1 publication Critical patent/EP2134025B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/16Electric signal transmission systems in which transmission is by pulses

Definitions

  • the invention relates to a method for detecting a digital signal according to the preamble of patent claim 1.
  • the invention further relates to a device for detecting a digital signal according to claim 6.
  • a device for detecting the data transmission direction between two communication units wherein on the basis of a current spike and a logical level change on an input / output line (I / O line), the data transmission direction can be detected.
  • the known device is part of a measuring pool, on the basis of which the communication between a trained as a SIM card communication unit with a card reading unit of a mobile phone trained further communication unit can be tested.
  • an S1 signal is generated as a voltage signal and an S2 signal as a current signal and transmitted. If the signals S1 and S2 are to be determined and evaluated by means of an external test tool, the problem arises that due to line capacitances and transient effects, incorrect measurement results can occur. In particular, the detection of the S2 signal (current signal) is relatively difficult, since during the H state of the S1 signal (voltage signal) set different signal levels (H state and L state) for the S2 signal.
  • a method for detecting a digital signal wherein the digital signal is transmitted via a single-wire connection between a first communication unit and a second communication unit.
  • the second communication unit is embodied as a sensor which receives a first signal formed as a voltage signal via the single-wire connection formed as a bus.
  • the sensor is addressable via the bus and allows the query of sensor data for the first communication unit. So that no false transmission result from the sensors to the first communication unit is set by noise peaks or other overlapping signals, the voltage signal is sampled over half a period ten times. These samples are each compared and, given a corresponding number of true samples, it is arrived that the current signal of the sensor read on the bus signal is in the high state.
  • the inventive method has the features of claim 1.
  • the method according to the invention makes it possible to determine with high reliability, on the one hand, a state of the digital voltage signal and, on the other hand, the state of the digital current signal.
  • the basic idea of the invention is to determine the state of the current signal in the communication between two communication units in a time period which is close to a falling edge of the voltage signal, when the transient phenomena of the current signal have already subsided.
  • a time or a time interval for determining the state of the current signal is provided, which is located immediately before the beginning of the falling edge of the voltage signal. At this time or in this time interval, the fluctuations of the current signal are the lowest; Consequently, the current signal is in an approximately steady state.
  • the digital profile of the voltage signal and of the current signal can advantageously be used for communication between two communication units connected via a single-wire connection recorded or determined for test purposes.
  • the inventive method serves as a reference time for the determination of the logic state of the current signal, an end time of the H level of the voltage signal.
  • the state-relevant sampling time or the state-relevant sampling time interval for the current signal can then be calculated back, so that the relevant state-relevant value for the signal level of the current signal is taken as the value at this sampling time or within this sampling time interval has been determined.
  • a signal level pattern or signal level value of the current signal in the range close to the falling edge of the voltage signal can be used to decide whether the current signal is H level or L level.
  • a bit width or period of the voltage signal is determined so that the maximum duration of the falling edge of the voltage signal can be determined as a function of this period.
  • a sampling time or sampling time interval can thereby be determined at different period lengths, for which the actually present signal level of the current signal represents the signal level for the current signal during the H state of the voltage signal.
  • a reliable and reliable determination of the signal level of the current signal can be carried out in a simple manner.
  • the current signal is sampled or determined at least in a time segment of the H state of the voltage signal which precedes the falling edge of the voltage signal. This period is located in a near the beginning of the falling edge area. If the duration of the H level of the voltage signal can not be predicted, the current signal is sampled during the entire H state of the voltage signal. Once the end time of the voltage signal has been determined, taking into account the maximum duration of the falling edge of the voltage signal to the state-relevant sampling time for the current signal or to the state-relevant sampling time interval of the current signal can be concluded. This or this is located in a preceding at the beginning of the falling edge of the voltage signal time or time interval.
  • the invention makes use of the fact that with high probability the transients of the current signal at the beginning of the falling edge of the voltage signal have decayed so far that a reasonable detection of the current state of the voltage signal is possible.
  • a defined time or time range can thus be specified, in which a detection of the current signal takes place.
  • the current signal is detected by selecting, for a current signal from a sequence of measured values for the current signal detected during the pulse duration of the voltage signal, the signal which is present at the beginning of the falling edge or in one before Beginning of the falling edge near period of the voltage signal has been sampled.
  • an error-free determination of the state of the current signal can advantageously take place.
  • the device according to the invention has the features of claim 6.
  • the particular advantage of the device according to the invention is that a relatively simple error-free detection of the signal level of a voltage signal and a current signal is made possible, which are exchanged via a single-wire connection between communication units.
  • a relatively simple error-free detection of the signal level of a voltage signal and a current signal is made possible, which are exchanged via a single-wire connection between communication units.
  • the decision base for one or the other signal level forms a specific pattern or a plurality of digital state-relevant values of the current signal or a single digital value of the current signal, wherein the state-relevant values are determined as a function of the temporal determination of a falling edge of the voltage signal.
  • an evaluation unit of the device has a counter for determining a period duration the voltage signal and a counter for determining a pulse width of the pulse-shaped voltage signal.
  • the duration and / or the earliest starting time of a falling edge of the pulse-shaped voltage signal can be determined, from which the state-relevant sampling time for the determination of the signal level of the current signal can be derived.
  • an intermediate storage of sample values of the current signal preferably takes place during a pulse width of the pulse-shaped voltage signal.
  • the corresponding memory value in the shift register is then read out and used to determine the state of the current signal.
  • the other values stored in the shift register are not taken into account.
  • the shift register can be overwritten during the sampling period as soon as the state-relevant sampling instant has been determined based on a pulse of the voltage signal.
  • a first communication unit 1 (CLF) is designed as a control module or controller which can be connected to a non-illustrated near field antenna for communication of the mobile telephone with an external terminal via a 13.56 MHz interface.
  • this first communication unit 1 communicates with one formed as a UICC card or SIM card second communication unit 2, which is preferably releasably supported in a receptacle, not shown, of the mobile phone.
  • SWP single wire protocol
  • an output terminal 3 of the first communication unit 1 is connected to an input terminal 4 of the second communication unit 2 on the one hand and a ground terminal 5 of the first communication unit 1 to a ground terminal 6 of the second communication unit 2 via a respective wire connection are.
  • the data communication takes place by transmitting a first signal S1 designed as a voltage signal and a second signal S2 designed as a current signal.
  • a device For detecting a first signal S1 sent from the first communication unit 1 to the second communication unit 2 and / or a second signal S2 transmitted from the second communication unit 2 to the first communication unit 1, a device is provided according to FIG. 2 intended. This device is used for measuring and determining signals S1 and S2 exchanged between the first communication unit 1 and the second communication unit 2.
  • the invention essentially comprises a first measuring device 7 having an A / D converter for determining the first signal S1, a second measuring device 8 having an A / D converter for determining the second signal S2, and an evaluation device 9 in which the detected measured values of the measuring device 7, 8 further processed and the digital values for the first signal S1 and the second signal S2 to a display unit (monitor), not shown, for displaying the same. Additionally or alternatively, the determined digital values of the evaluation device 9 can also stored and processed in another form.
  • the first measuring device 7 has a comparator 10, whose one input is connected to the output terminal 3 of the first communication unit 1 and a second input to a threshold voltage.
  • the comparator 10 is configured to detect the first signal S1 (voltage signal).
  • the second measuring device 8 has a comparator 11 whose inputs are connected to a shunt resistor 12.
  • the shunt resistor 12 is connected in the wire connection between the output terminal 3 of the first communication unit 1 and an input of the second communication unit 2.
  • the second communication unit 2 is represented or simulated by a switch 13 'and a resistor 13 connected in series therewith.
  • the first communication unit 1 is represented or simulated by a pulse generator 14, which emits a voltage signal corresponding to the first signal S1.
  • FIGS. 3a . 3b, 3c The functionality of the evaluation device 9 is based on the FIGS. 3a . 3b, 3c respectively.
  • FIGS. 4a, 4b explained in more detail.
  • a first signal S1 (voltage signal) with a variable period T 1 , T 2 are sent.
  • a pulse P1 of the first signal S1 having a rising edge F1 at the beginning of the same and an edge F2 falling at the end thereof can be transmitted with a first period T 1 .
  • pulses P2 can be with a smaller to the period T1 time period T 2 are sent.
  • the pulses P1, P2 in FIG. 3a they are shown without the rising edge F1 and the falling edge F2.
  • the digitization of the analog S1 signal according to FIGS. 3a to 3c takes place by means of the comparator 10, which switches when reaching half the flank height D1 (digitization threshold), so that a digital signal curve 16 results from an analog signal course 15.
  • the voltage 0.9 V is applied to the second input of the comparator 10.
  • the H state of the first signal S1 can thus be detected relatively easily.
  • the second signal S2 is a current signal that can be generated only when the first signal S1 is in the H state, because the current can flow only against the ground via the second communication unit 2.
  • the real waveform of the first signal S1 and the second signal S2 is different, see Figure 3c .
  • the detection of the first signal S1, which is present according to the signal form 21, is relatively easily possible due to the lack of equalization processes, so that the digitized signal 16 can be determined.
  • Due to the voltage jump results for the second signal S2 a changed waveform 19, in which the second signal S2 sections below the digitization threshold D2.
  • a waveform 20 would be detected which does not correspond to the logic state "H" of the second signal S2.
  • the device of the invention For the determination of the signal state of the second signal S2, the device of the invention provides that Z is selected as the relevant state of relevant sampling time t, which is located immediately before the start t4, the falling edge of F2 and at which the transient effects of the second signal 19 are so reduced that a clear statement about the state of the second signal S2 can be made.
  • the evaluation device 9 has, on the one hand, a first counter for determining the period T 1 of the pulse-shaped first signal 21, P1. On the other hand, the evaluation device 9 has a second counter for determining a pulse width T H of the first signal 21.
  • the evaluation device 9 has a calculation module, by means of which the maximum duration of the falling edge F2 of the first signal 21 can be calculated from the period T 1 and the pulse width T H. Taking into account that the end time t5 of the pulse P1 serving as reference time is known, the starting time t4 of the falling edge F2 can now be determined.
  • the second signal S2 is sampled during the pulse width T H at a sampling rate T sample , the sampling rate T sampling is significantly smaller than the minimum duration of the H-pulse width T H of the first signal 21.
  • the sampling rate T sampling may be 10 ns or 20 ns. How out Figure 3c is apparent, there are a plurality of samples or digital values of the second signal S2 during the H-pulse width T H of the first signal S1. These sequences of digital values are buffered in a shift register of the evaluation device 9.
  • the evaluation device 9 contains a calculation module, by means of which, starting from the end time t5 of the digitized S1 signal, it is possible to recalculate to the state point of time t z relevant to the second signal 20.
  • the maximum duration of the falling edge F2 of the first signal S1 is determined as a function of the period T, T1, T 2 of the first signal S1.
  • the minimum rise / fall time of edge F2 is 5 ns.
  • the maximum rise / fall time of the falling edge F2 is 0.05 ⁇ T, wherein the period T, T 1 , T 2 can be between 590 ns and 10 ⁇ s. However, the maximum rise / fall time must not exceed 250 ns.
  • the maximum duration of the edge F2 is calculated to be 50 ns. Since only the end time t5 of the digital S1 signal is present, to determine the start time t4, the edge F2 is calculated back from the end time t5 by 25 ns in order to determine the beginning t4 of the edge F2.
  • the calculation module is implemented a difference value, so that the state-relevant sampling time t z is always a fixed time interval before the calculated start time t4 of the falling edge F2.
  • the state-relevant value W corresponding to the state-relevant sampling instant tz can be extracted or selected from a sequence of digital values of the signal S2 buffered in the shift register.
  • this calculation can only take place when a further subsequent pulse P2 of the first signal S1 occurs, since the period T 1 must be taken into account in order to determine the maximum duration of the edge F2.
  • the period lengths T 1 , T 2 may vary since the pulses P1, P2 may be of different lengths.
  • the determined digital value W represents the signal level of the second signal S2 between the times t2 and t5.
  • the state-relevant sampling time tz is dependent on the start of the falling edge F2 and, viewed in terms of time, is preferably immediately before the start time t4 of the edge F2.
  • the signal level of the second signal S2 can be determined by determining the state-relevant digital value W, according to FIG Figure 3c an "H” level and according to FIG. 4b an "L level” is detected.
  • a state-relevant sampling time interval may also be used ⁇ tz, which is prior to the start of the falling edge F2 of the first signal 21.
  • ⁇ tz a state-relevant sampling time interval
  • the preferred embodiment sees the calculation of the maximum duration of the falling edge F2 from the determined temporal parameters of the first signal S1 in front. It can then be deduced from the end time t5 of the pulse P1 to the beginning t4 of the edge F2 and the state-relevant sampling time t z are determined taking into account a predetermined differential time interval.
  • the second signal S2 is in an L state according to FIGS FIGS. 4a and 4b , the duration of the falling edge F2 of the first signal S1 and the recalculation to the state-relevant sampling instant tz are preferably carried out in the same way. Same waveforms are therefore in the FIGS. 3b and 3c on the one hand and the FIGS. 4a and 4b on the other hand provided with the same reference numerals. The only difference is that the second signal S2 has other signal curves 17 ', 18', 19 ', 20'.
  • the second signal S2 can be represented by a digital value W which has been sampled within the state-relevant sampling time interval ⁇ ts.
  • the device according to the invention thus makes it possible to detect both the signal level (H state or L state) of the first signal S1 and of the second signal S2.
  • the signal level state of the second signal S2 or of the signal 19 can only take place after a time delay after the first pulse P1 of the first signal S1 if another subsequent second pulse P2 of the first signal S1 already exists.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc Digital Transmission (AREA)
  • Communication Control (AREA)

Abstract

The method involves determining a condition-relevant value to determine a logical condition of a signal (S2) i.e. current signal, of a communication unit (2) e.g. subscriber identity module (SIM) card, where the condition is present during a high-state of another signal (S1) i.e. voltage signal, of another communication unit (1) i.e. mobile phone's controller. The value is present at a condition-relevant sampling time point lying directly before the beginning of a falling edge of the signal (S1) and/or a condition-relevant sampling time interval lying directly before the beginning of the edge. An independent claim is also included for a device for detecting a digital signal i.e. single wire protocol (SWP) signal, that is transmitted between two communication units over a single wire connection, comprising an evaluator.

Description

Die Erfindung betrifft ein Verfahren zur Erkennung eines digitalen Signals nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for detecting a digital signal according to the preamble of patent claim 1.

Die Erfindung betrifft ferner eine Vorrichtung zur Erkennung eines digitalen Signals nach Anspruch 6.The invention further relates to a device for detecting a digital signal according to claim 6.

Aus der DE 10 2005 050 457 A1 ist eine Vorrichtung zur Erkennung der Datenübertragungsrichtung zwischen zwei Kommunikationseinheiten bekannt, wobei anhand einer Stromspitze und eines logischen Pegelwechsel auf einer Eingangs-/Ausgangsleitung (I/O-Leitung) die Datenübertragungsrichtung erkannt werden kann. Die bekannte Vorrichtung ist Bestandteil eins Messpools, anhand derer die Kommunikation zwischen einer als SIM-Karte ausgebildeten Kommunikationseinheit mit einer als Kartenleseeinheit eines Mobiltelefons ausgebildeten weiteren Kommunikationseinheit getestet werden kann.From the DE 10 2005 050 457 A1 a device for detecting the data transmission direction between two communication units is known, wherein on the basis of a current spike and a logical level change on an input / output line (I / O line), the data transmission direction can be detected. The known device is part of a measuring pool, on the basis of which the communication between a trained as a SIM card communication unit with a card reading unit of a mobile phone trained further communication unit can be tested.

Inzwischen sind auch Mobiltelefone bekannt geworden, die einen Nahfeldkontroller und eine Nahfeldantenne aufweisen, so dass das Mobiltelefon über eine Funkschnittstelle von 13, 56 MHz, beispielsweise zu Bezahlzwecken mit anderen Kommunikationseinheiten kommunizieren kann. Bei dieser so gerannten Nahfeldkommunikation (wireless shortrange communication) kann von den Normen ISO 18092 und ISO 14443 Gebrauch gemacht werden. Für die verschiedenen Nahfeldanwendungen ist eine Kommunikation innerhalb des Mobiltelefons zwischen einem Controller (CLF als Master) und einer SIM-Karte (UICC als Slave) erforderlich. Die Datenkommunikation zwischen diesen beiden Kommunikationseinheiten erfolgt über eine Eindrahtverbindung, wobei zum einen ein Masseanschluss der beiden Kommunikationseinheiten miteinander verbunden und zum anderen ein weiterer Anschluss (bei der SIM-Karte der C6-Anschluss) miteinander verbunden sind. Bei dem Austausch solcher so genannter SWP-Signale (single wire protocol-Signale) wird ein S1-Signal als spannungssignal und ein S2-Signal als Stromsignal erzeugt und übertragen. Sollen nun mittels eines externen Testtools die Signale S1 und S2 ermittelt und bewertet werden, stellt sich das Problem, dass aufgrund von Leitungskapazitäten sowie von Einschwingvorgängen es zu falschen Messergebnissen kommen kann. Insbesondere gestaltet sich das Erfassen des S2-Signals (Stromsignals) als relativ schwierig, da während des H-Zustandes des S1-Signals (SpannungsSignals) sich unterschiedliche Signalpegel (H-Zustand und L-Zustand) für das S2-Signal einstellen.In the meantime, mobile phones have also become known which have a near-field controller and a near-field antenna, so that the mobile telephone can communicate with other communication units via a radio interface of 13. 56 MHz, for example for payment purposes. With this so-called near field communication (wireless shortrange communication), the standards ISO 18092 and ISO 14443 can be used. For the various near-field applications, communication between the mobile phone between a controller (CLF as master) and a SIM card (UICC as slave) is required. The data communication between these two communication units via a single-wire connection, on the one hand a ground connection of the two communication units connected to each other and on the other a further connection (in the SIM card, the C6 port) are interconnected. In the exchange of such so-called SWP signals (single wire protocol signals), an S1 signal is generated as a voltage signal and an S2 signal as a current signal and transmitted. If the signals S1 and S2 are to be determined and evaluated by means of an external test tool, the problem arises that due to line capacitances and transient effects, incorrect measurement results can occur. In particular, the detection of the S2 signal (current signal) is relatively difficult, since during the H state of the S1 signal (voltage signal) set different signal levels (H state and L state) for the S2 signal.

Aus der US 4 677 308 A ist ein Verfahren zur Erkennung eines digitalen Signals bekannt, wobei das digitale Signal über eine Eindrahtverbindung zwischen einer ersten Kommunikationseinheit und einer zweiten Kommunikationseinheit übertragen wird. Die zweite Kommunikationseinheit ist als ein Sensor ausgebildet, der über die als ein Bus gebildete Eindrahtverbindung ein als Spannungssignal ausgebildetes erstes Signal erhält. Der Sensor ist über den Bus adressierbar und ermöglicht die Abfrage von Sensordaten für die erste Kommunikationseinheit. Damit durch Störgeräuschspitzen oder anderen sich überlagernden Signalen kein falsches Übertragungsergebnis von den Sensoren zu der ersten Kommunikationseinheit einstellt, wird das Spannungssignal über eine halbe Periode zehn Mal abgetastet. Diese Abtastwerte werden jeweils verglichen und bei entsprechender Anzahl von wahren Abtastwerten wird angekommen, dass das auf dem Bussignal gelesene Stromsignal des Sensors sich im Hochzustand befindet.From the US 4,677,308 A a method for detecting a digital signal is known, wherein the digital signal is transmitted via a single-wire connection between a first communication unit and a second communication unit. The second communication unit is embodied as a sensor which receives a first signal formed as a voltage signal via the single-wire connection formed as a bus. The sensor is addressable via the bus and allows the query of sensor data for the first communication unit. So that no false transmission result from the sensors to the first communication unit is set by noise peaks or other overlapping signals, the voltage signal is sampled over half a period ten times. These samples are each compared and, given a corresponding number of true samples, it is arrived that the current signal of the sensor read on the bus signal is in the high state.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Vorrichtung zur Erkennung eines digitalen Signals derart anzugeben, dass ein von einer ersten Kommunikationseinheit zu einer zweiten Kommunikationseinheit über eine Eindrahtverbindung gesandtes Spannungssignal sowie ein von der zweiten Kommunikationseinheit zu der ersten Kommunikationseinheit über die Eindrahtverbindung gesandtes Stromsignal mit großer Sicherheit richtig erfasst werden.It is therefore an object of the present invention to provide a method and a device for detecting a digital signal in such a way that a voltage signal sent from a first communication unit to a second communication unit via a single-wire connection and one sent from the second communication unit to the first communication unit via the single-wire connection Current signal with great certainty to be detected correctly.

Zur Lösung dieser Aufgabe weist das erfindungsgemäße Verfahren die Merkmale des Patentanspruchs 1 auf.To solve this problem, the inventive method has the features of claim 1.

Das erfindungsgemäße Verfahren ermöglicht, dass mit hoher Sicherheit zum einen ein Zustand des digitalen Spannungssignals und zum anderen der Zustand des digitalen Stromsignals ermittelt werden kann. Grundgedanke der Erfindung ist es, den Zustand des Stromsignal bei der Kommunikation zwischen zwei Kommunikationseinheiten in einem zu einer fallenden Flanke des Spannungssignals nahen Zeitabschnitt zu ermitteln, wenn die Einschwingvorgänge des Stromsignals bereits abgeklungen sind. Erfindungsgemäß ist ein Zeitpunkt oder ein Zeitintervall zur Bestimmung des Zustandes des Stromsignals vorgesehen, der unmittelbar vor Beginn der fallenden Flanke des Spannungssignals liegt. Zu diesem Zeitpunkt bzw. in diesem Zeitintervall sind die Schwankungen des Stromsignals am geringsten; mithin befindet sich das Stromsignal in einem annähernd eingeschwungenen Zustand. Durch Erfassen des Stromsignals zu diesem Zeitpunkt bzw. in diesem Zeitintervall kann durch Vergleich mit einer Digitalisierungsschwelle für das Stromsignal entschieden werden, ob der Signalpegel des Stromsignals während eines H-Pegels des Spannungssignals ebenfalls ein H-Pegel oder ein B-Pegel ist. Vorteilhaft kann somit in einem Testtool bzw. Testmodul der digitale Verlauf des Spannungssignals und des Stromsignals bei einer Kommunikation zwischen zwei über eine Eindrahtverbindung verbundene Kommunikationseinheiten zu Testzwecken erfasst bzw. ermittelt werden. Nach dem erfindungsgemäßen Verfahren dient als Referenzzeitpunkt für die Bestimmung des logischen Zustandes des Stromsignals ein Endzeitpunkt des H-Pegels des Spannungssignals. Unter Berücksichtigung einer maximalen Dauer der fallenden Flanke des Spannungssignals kann dann der zustandsrelevante Abtastzeitpunkt bzw. das zustandsrelevante Abtastzeitintervall für das Stromsignal zurückgerechnet werden, so dass als maßgeblicher zustandsrelevanter Wert für den Signalpegel des Stromsignals der Wert genommen wird, der zu diesem Abtastzeitpunkt oder innerhalb dieses Abtastzeitintervalls ermittelt worden ist. Somit kann ein Signalpegelmuster bzw. ein einziger Signalpegelwert des Stromsignals in dem zu der fallenden Flanke des Spannungssignals nahen Bereich genutzt werden für die Entscheidung, ob dem Stromsignal ein H-Pegel oder ein L-Pegel zukommt.The method according to the invention makes it possible to determine with high reliability, on the one hand, a state of the digital voltage signal and, on the other hand, the state of the digital current signal. The basic idea of the invention is to determine the state of the current signal in the communication between two communication units in a time period which is close to a falling edge of the voltage signal, when the transient phenomena of the current signal have already subsided. According to the invention, a time or a time interval for determining the state of the current signal is provided, which is located immediately before the beginning of the falling edge of the voltage signal. At this time or in this time interval, the fluctuations of the current signal are the lowest; Consequently, the current signal is in an approximately steady state. By detecting the current signal at this time or interval, it can be decided whether the signal level of the current signal during an H level of the voltage signal is also H level or B level by comparison with a digitizing threshold for the current signal. Thus, in a test tool or test module, the digital profile of the voltage signal and of the current signal can advantageously be used for communication between two communication units connected via a single-wire connection recorded or determined for test purposes. According to the inventive method serves as a reference time for the determination of the logic state of the current signal, an end time of the H level of the voltage signal. Taking into account a maximum duration of the falling edge of the voltage signal, the state-relevant sampling time or the state-relevant sampling time interval for the current signal can then be calculated back, so that the relevant state-relevant value for the signal level of the current signal is taken as the value at this sampling time or within this sampling time interval has been determined. Thus, a signal level pattern or signal level value of the current signal in the range close to the falling edge of the voltage signal can be used to decide whether the current signal is H level or L level.

Nach einer Weiterbildung des erfindungsgemäßen Verfahrens wird eine Bit-Breite bzw. Periodendauer des Spannungsignals ermittelt, so dass in Abhängigkeit von dieser Periodendauer die maximale Dauer der fallenden Flanke des Spannungssignals bestimmt werden kann. Vorteilhaft kann hierdurch bei unterschiedlichen Periodendauer ein Abtastzeitpunkt bzw. Abtastzeitintervall bestimmt werden, zu dem der tatsächlich vorliegende Signalpegel des Stromsignals den Signalpegel für das Stromsignal während des H-zustandes des Spannungssignals repräsentiert. Vorteilhaft kann auf einfache Weise eine zuverlässige und sichere Bestimmung der Signalpegel des Stromsignals erfolgen.According to a development of the method according to the invention, a bit width or period of the voltage signal is determined so that the maximum duration of the falling edge of the voltage signal can be determined as a function of this period. Advantageously, a sampling time or sampling time interval can thereby be determined at different period lengths, for which the actually present signal level of the current signal represents the signal level for the current signal during the H state of the voltage signal. Advantageously, a reliable and reliable determination of the signal level of the current signal can be carried out in a simple manner.

Nach einer Weiterbildung des erfindungsgemäßen Verfahrens wird das Stromsignal zumindest in einem Zeitabschnitt des H-Zustandes des Spannungssignals abgetastet bzw. ermittelt, der der abfallenden Flanke des Spannungssignals vorausgeht. Dieser Zeitabschnitt befindet sich in einem zu Beginn der abfallenden Flanke nahen Bereich. Sofern die Dauer des H-Pegels des Spannungssignals nicht voraussehbar ist, erfolgt eine Abtastung des Stromsignals während des gesamten H-Zustandes des Spannungssigrals. Sobald der Endzeitpunkt des Spannungssignals ermittelt worden ist, kann unter Berücksichtigung der maximalen Dauer der fallenden Flanke des Spannungssignals auf den zustandsrelevanten Abtastzeitpunkt für das Stromsignal bzw. auf das zustandsrelevante Abtastzeitintervall des Stromsignal geschlossen werden. Dieser bzw. dieses befindet sich in einem zu dem Beginn der fallenden Flanke des Spannungssignals vorausgehenden Zeitpunkt bzw. Zeitintervall. Die Erfindung macht sich hierbei zunutze, dass mit hoher Wahrscheinlichkeit die Einschwingvorgänge des Stromsignals zu Beginn der fallenden Flanke des Spannungssignals so weit abgeklungen sind, dass eine vernünftige Detektion des aktuellen zustandes des Spannungssignals möglich ist. Ausgehend von dem Ende des pulsförmigen Signals kann somit ein definierter Zeitpunkt bzw. Zeitbereich angegeben werden, in dem eine Detektion des Stromsignals erfolgt. Die Detektion des Stromsignals erfolgt dadurch, dass aus einer Folge von während der Pulsdauer des Spannungssignals detektierten Messwerten für das Stromsignal derjenige ausgewählt wird, der zu Beginn der fallenden Flanke bzw. in einem vor dem Beginn der fallenden Flanke nahen Zeitabschnitt des Spannungssignals abgetastet worden ist. Vorteilhaft kann somit eine fehlerfreie Bestimmung des Zustandes des Stromsignals erfolgen.According to a development of the method according to the invention, the current signal is sampled or determined at least in a time segment of the H state of the voltage signal which precedes the falling edge of the voltage signal. This period is located in a near the beginning of the falling edge area. If the duration of the H level of the voltage signal can not be predicted, the current signal is sampled during the entire H state of the voltage signal. Once the end time of the voltage signal has been determined, taking into account the maximum duration of the falling edge of the voltage signal to the state-relevant sampling time for the current signal or to the state-relevant sampling time interval of the current signal can be concluded. This or this is located in a preceding at the beginning of the falling edge of the voltage signal time or time interval. The invention makes use of the fact that with high probability the transients of the current signal at the beginning of the falling edge of the voltage signal have decayed so far that a reasonable detection of the current state of the voltage signal is possible. Starting from the end of the pulse-shaped signal, a defined time or time range can thus be specified, in which a detection of the current signal takes place. The current signal is detected by selecting, for a current signal from a sequence of measured values for the current signal detected during the pulse duration of the voltage signal, the signal which is present at the beginning of the falling edge or in one before Beginning of the falling edge near period of the voltage signal has been sampled. Thus, an error-free determination of the state of the current signal can advantageously take place.

Zur Lösung der Aufgabe weist die erfindungsgemäße Vorrichtung die Merkmale des Patentanspruchs 6 auf.To achieve the object, the device according to the invention has the features of claim 6.

Der besondere Vorteil der erfindungsgemäßen Vorrichtung besteht darin, dass eine relativ einfache fehlerfreie Erfassung der signalpegel eines Spannungssignals und eines Stromsignals ermöglicht wird, die über eine Eindrahtverbindung zwischen Kommunikationseinheiten ausgetauscht werden. Vorteilhaft kann aufgrund des Signalverlaufs eines Stromsignals in einem zu einer fallenden Flanke des Spannungssignals nahen Bereichs auf das Vorliegen eines H-Pegels oder L-Pegels des Stromsignals geschlossen werden. Die Entscheidungsgrundlage für den einen oder anderen Signalpegel bildet hierbei ein bestimmtes Muster bzw. mehrere digitale zustandsrelevante Werte des stromsignals oder ein einziger digitaler Wert des Stromsignals, wobei die zustandsrelevanten Werte in Abhängigkeit von der zeitlichen Bestimmung einer fallenden Flanke des Spannungssignals, bestimmt werden. Die geringste Fehlerwahrscheinlichkeit für die Bestimmung des Signalpegels des Stromsignals liegt dann vor, wenn ein digitaler Wert des Stromsignals herangezogen wird, der aufgrund einer Abtastung unmittelbar vor Beginn der fallenden Flanke des Spannungssignals ermittelt worden ist. Nach der Erfindung weist eine Auswerteeinheit der Vorrichtung einen Zähler zur Bestimmung einer Periodendauer des Spannungssignals und einen Zähler zur Bestimmung einer Pulsbreite des pulsförmigen Spannungssignals auf. In einem Rechenmodul der Auswerteeinheit kann die Dauer und/oder der früheste Anfangszeitpunkt einer fallenden Flanke des pulsförmigen Spannungssignals bestimmt werden, woraus der zustandsrelevante Abtastzeitpunkt für die Ermittlung des Signalpegels des Stromsignals ableitbar ist.The particular advantage of the device according to the invention is that a relatively simple error-free detection of the signal level of a voltage signal and a current signal is made possible, which are exchanged via a single-wire connection between communication units. Advantageously, due to the waveform of a current signal in a region close to a falling edge of the voltage signal, it can be concluded that there is an H-level or L-level of the current signal. The decision base for one or the other signal level forms a specific pattern or a plurality of digital state-relevant values of the current signal or a single digital value of the current signal, wherein the state-relevant values are determined as a function of the temporal determination of a falling edge of the voltage signal. The lowest error probability for the determination of the signal level of the current signal is present if a digital value of the current signal is used, which was determined on the basis of a sampling immediately before the beginning of the falling edge of the voltage signal. According to the invention, an evaluation unit of the device has a counter for determining a period duration the voltage signal and a counter for determining a pulse width of the pulse-shaped voltage signal. In a calculation module of the evaluation unit, the duration and / or the earliest starting time of a falling edge of the pulse-shaped voltage signal can be determined, from which the state-relevant sampling time for the determination of the signal level of the current signal can be derived.

Nach einer Weiterbildung der Erfindung erfolgt eine Zwischenspeicherung von Abtastwerten des Stromsignals vorzugsweise während einer Pulsbreite des pulsförmigen Spannungssignals. Nach Berechnung des zustandsrelevanten Abtastzeitpunktes für das Stromsignal wird dann der entsprechende Speicherwert im Schieberegister herausgelesen und zur Bestimmung des Zustandes des Stromsignals herangezogen. Die weiteren im Schieberegister gespeicherten Werte werden nicht berücksichtigt. Vorteilhaft kann das Schieberegister während des Abtastzeitraumes überschrieben werden, sobald der zustandsrelevante Abtastzeitpunkt bezogen auf einen Puls des Spannungssignals ermittelt worden ist.According to a development of the invention, an intermediate storage of sample values of the current signal preferably takes place during a pulse width of the pulse-shaped voltage signal. After calculating the state-relevant sampling instant for the current signal, the corresponding memory value in the shift register is then read out and used to determine the state of the current signal. The other values stored in the shift register are not taken into account. Advantageously, the shift register can be overwritten during the sampling period as soon as the state-relevant sampling instant has been determined based on a pulse of the voltage signal.

Weitere Vorteile der Erfindung ergeben sich aus den weiteren Unteransprüchen.Further advantages of the invention will become apparent from the further subclaims.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnungen näher erläutert.An embodiment of the invention will be explained in more detail with reference to the drawings.

Es zeigen:

Figur 1
eine schematische Darstellung einer Kommunikati- onsverbindung über eine Eindrahtverbindung zwi- schen einer als Controller eines Mobiltelefons ausgebildeten ersten Kommunikationseinheit und einer als SIM-Karte ausgebildeten zweiten Kommu- nikationseinheit,
Figur 2
ein Blockschaltbild einer erfindungsgemäßen Vor- richtung zur Simulation der SIM-Karte bei der Kommunikation mit dem Controller des Mobiltele- fons,
Figur 3a
ein zeitdiagramm eines ersten digitalen Signals, das gemäß unterschiedlichen Periodendauern abge- sendet wird,
Figur 3b
ein Zeitdiagramm über einen idealisierten analo- gen und digitalen Signalverlauf eines ersten Signals und eines zweiten Signals bei der Kommu- nikation zwischen der ersten Kommunikationsein- heit und der zweiten Kommunikationseinheit, wo- bei sich das erste Signal und das zweite Signal in einem H-Zustand befinden,
Figur 3c
ein Zeitdiagramm über einen realen Signalverlauf des in Figur 3b dargestellten ersten Signals und zweiten Signals bei der Kommunikation zwischen der ersten Kommunikationseinheit und der zweiten Kommunikationseinheit, wobei zur Bestimmung des Zustandes des zweiten Signals der Wert des zwei- ten Signals zum zustandsrelevanten Abtastzeit- punkt unmittelbar vor Beginn der fallenden Flan- ke des ersten Signals zugrunde gelegt wird, wo- bei sich das erste Signal und das zweite Signal in einem H-Zustand befinden,
Figur 4a
ein Zeitdiagramm über einen idealisierten analo- gen und digitalen Signalverlauf eines ersten Signals und eines zweiten Signals bei der Kommu- nikation zwischen der ersten Kommunikationsein- heit und der zweiten Kommunikationseinheit, wo- bei sich das erste Signal in einem H-Zustand und das zweite Signal in einem L-Zustand befinden und
Figur 4b
ein Zeitdiagramm über einen realen Signalverlauf der in Figur 4a dargestellten ersten Signals und zweiten Signals bei der Kommunikation zwischen der ersten Kommunikationseinheit und der zweiten Kommunikationseinheit, wobei sich das zweite Signal im L-Zustand befindet.
Show it:
FIG. 1
2 a schematic representation of a communication connection via a single-wire connection between a first communication unit designed as a controller of a mobile telephone and a second communication unit configured as a SIM card, FIG.
FIG. 2
1 is a block diagram of a device according to the invention for simulating the SIM card during communication with the controller of the mobile telephone;
FIG. 3a
a time diagram of a first digital signal which is transmitted according to different period lengths,
FIG. 3b
a timing diagram of an idealized analog and digital waveform of a first signal and a second signal in the communication between the first communication unit and the second communication unit, wherein the first signal and the second signal in an H state are located,
Figure 3c
a timing diagram of a real waveform of the in FIG. 3b illustrated first signal and second signal in the communication between the first communication unit and the second Communication unit, wherein for determining the state of the second signal, the value of the second signal at the state-relevant sampling instant immediately before the beginning of the falling edge of the first signal is used, wherein the first signal and the second signal in a H state,
FIG. 4a
a timing diagram of an idealized analog and digital waveform of a first signal and a second signal in the communication between the first communication unit and the second communication unit, wherein the first signal in an H state and the second signal are in an L state and
FIG. 4b
a timing diagram of a real waveform of in FIG. 4a illustrated first signal and second signal in the communication between the first communication unit and the second communication unit, wherein the second signal is in the L state.

In Figur 1 sind Kommunikationseinheiten dargestellt, die innerhalb eines Mobiltelefons angeordnet sind und über eine Eindrahtverbindung Daten austauschen. Beispielsweise ist eine erste Kommunikationseinheit 1 (CLF) als ein Steuermodul bzw. Controller ausgebildet, der mit einer nicht dargestellten Nahfeldantenne zur Kommunikation des Mobiltelefons mit einem externen Terminal über eine 13,56 MHz-Schnittstelle verbindbar ist. Innerhalb des Mobiltelefons kommuniziert diese erste Kommunikationseinheit 1 mit einer als UICC-Karte bzw. SIM-Karte ausgebildeten zweiten Kommunikationseinheit 2, die vorzugsweise lösbar in einer nicht dargestellten Aufnahme des Mobiltelefon gehaltert ist. Zur Datenkommunikation wird ein single wire protocol (SWP) eingesetzt, wobei ein Ausgangsanschluss 3 der ersten Kommunikationseinheit 1 mit einem Eingangsanschluss 4 der zweiten Kommunikationseinheit 2 einerseits und ein Masseanschluss 5 der ersten Kommunikationseinheit 1 mit einem Masseanschluss 6 der zweiten Kommunikationseinheit 2 über jeweils eine Drahtverbindung verbunden sind. Die Datenkommunikation erfolgt durch Übertragung eines als Spannungssignal ausgebildeten ersten Signals S1 und eines als Stromsignal ausgebildeten zweiten Signals S2.In FIG. 1 Communication units are shown, which are arranged within a mobile phone and exchange data via a single-wire connection. For example, a first communication unit 1 (CLF) is designed as a control module or controller which can be connected to a non-illustrated near field antenna for communication of the mobile telephone with an external terminal via a 13.56 MHz interface. Within the mobile telephone, this first communication unit 1 communicates with one formed as a UICC card or SIM card second communication unit 2, which is preferably releasably supported in a receptacle, not shown, of the mobile phone. For data communication, a single wire protocol (SWP) is used, wherein an output terminal 3 of the first communication unit 1 is connected to an input terminal 4 of the second communication unit 2 on the one hand and a ground terminal 5 of the first communication unit 1 to a ground terminal 6 of the second communication unit 2 via a respective wire connection are. The data communication takes place by transmitting a first signal S1 designed as a voltage signal and a second signal S2 designed as a current signal.

Zur Erkennung eines von der ersten Kommunikationseinheit 1 an die zweite Kommunikationseinheit 2 übersandten ersten Signals S1 und/oder eines von der zweiten Kommunikationseinheit 2 an die erste Kommunikationseinheit 1 ausgesandten zweiten Signals S2 ist eine Vorrichtung gemäß Figur 2 vorgesehen. Diese Vorrichtung dient zum Messen und Ermitteln von zwischen der ersten Kommunikationseinheit 1 und der zweiten Kommunikationseinheit 2 ausgetauschten Signalen S1 und S2. Die Erfindung umfasst im Wesentlichen eine einen A/D-Wandler aufweisende erste Messeinrichtung 7 zur Ermittlung des ersten Signals S1, eine einen A/D-Wandler aufweisende zweite Messeinrichtung 8 zur Ermittlung des zweiten Signals S2 sowie eine Auswerteeinrichtung 9, in der die erfassten Messwerte des Messeinrichtung 7, 8 weiterverarbeitet und die digitalen Werte für das erste Signal S1 und das zweite Signal S2 an eine nicht dargestellte Anzeigeeinheit (Monitor) zur Darstellung derselben weitergegeben werden. Zusätzlich oder alternativ können die ermittelten digitalen Werte der Auswerteeinrichtung 9 auch abgespeichert und in anderer Form weiterverarbeitet werden.For detecting a first signal S1 sent from the first communication unit 1 to the second communication unit 2 and / or a second signal S2 transmitted from the second communication unit 2 to the first communication unit 1, a device is provided according to FIG FIG. 2 intended. This device is used for measuring and determining signals S1 and S2 exchanged between the first communication unit 1 and the second communication unit 2. The invention essentially comprises a first measuring device 7 having an A / D converter for determining the first signal S1, a second measuring device 8 having an A / D converter for determining the second signal S2, and an evaluation device 9 in which the detected measured values of the measuring device 7, 8 further processed and the digital values for the first signal S1 and the second signal S2 to a display unit (monitor), not shown, for displaying the same. Additionally or alternatively, the determined digital values of the evaluation device 9 can also stored and processed in another form.

Die erste Messeinrichtung 7 weist einen Komparator 10 auf, dessen einer Eingang an den Ausgangsanschluss 3 der ersten Kommunikationseinheit 1 und ein zweiter Eingang an eine Schwellspannung angeschlossen sind. Der Komparator 10 ist dafür ausgelegt, das erste Signal S1 (Spannungssignal) zu detektierten. Die zweite Messeinrichtung 8 weist einen Komparator 11 auf, dessen Eingänge mit einem Shunt-Widerstand 12 verbunden sind. Der Shunt-Widerstand 12 ist in der Drahtverbindung zwischen dem Ausgangsanschluss 3 der ersten Kommunikationseinheit 1 und einem Eingang der zweiten Kommunikationseinheit 2 geschaltet. Die zweite Kommunikationseinheit 2 wird durch einen Schalter 13' und einen in Reihe mit demselben geschalteter Widerstand 13 repräsentiert bzw. simuliert. Die erste Kommunikationseinheit 1 wird durch einen Pulsgenerator 14 repräsentiert bzw. simuliert, der ein Spannungssignal entsprechend dem ersten Signal S1 abgibt.The first measuring device 7 has a comparator 10, whose one input is connected to the output terminal 3 of the first communication unit 1 and a second input to a threshold voltage. The comparator 10 is configured to detect the first signal S1 (voltage signal). The second measuring device 8 has a comparator 11 whose inputs are connected to a shunt resistor 12. The shunt resistor 12 is connected in the wire connection between the output terminal 3 of the first communication unit 1 and an input of the second communication unit 2. The second communication unit 2 is represented or simulated by a switch 13 'and a resistor 13 connected in series therewith. The first communication unit 1 is represented or simulated by a pulse generator 14, which emits a voltage signal corresponding to the first signal S1.

Die Funktionalität der Auswerteeinrichtung 9 wird anhand der Figuren 3a, 3b, 3c bzw. Figuren 4a, 4b näher erläutert.The functionality of the evaluation device 9 is based on the FIGS. 3a . 3b, 3c respectively. FIGS. 4a, 4b explained in more detail.

Wie aus der Figur 3a zu ersehen ist, kann ein erstes Signal S1 (Spannungssignal) mit einer variablen Periodendauer T1, T2 gesendet werden. Ein Puls P1 des ersten Signals S1 mit einer am Anfang desselben steigenden Flanke F1 und einer am Ende desselben fallenden Flanke F2, kann mit einer ersten Periodendauer T1 gesendet werden. Nach Senden des ersten Pulses P1 mit der Periodendauer T1 können Pulse P2 mit einer zu der Periodendauer T1 kleineren Periodendauer T2 gesendet werden. Zur vereinfachten Darstellung der Pulse P1, P2 in Figur 3a sind dieselben ohne die steigende Flanke F1 und die fallende Flanke F2 dargestellt.Like from the FIG. 3a can be seen, a first signal S1 (voltage signal) with a variable period T 1 , T 2 are sent. A pulse P1 of the first signal S1 having a rising edge F1 at the beginning of the same and an edge F2 falling at the end thereof can be transmitted with a first period T 1 . After transmission of the first pulse P1 with the period T 1 pulses P2 can be with a smaller to the period T1 time period T 2 are sent. For a simplified representation of the pulses P1, P2 in FIG. 3a they are shown without the rising edge F1 and the falling edge F2.

Die Digitalisierung des analogen S1-Signales gemäß Figuren 3a bis 3c erfolgt mittels des Komparators 10, der bei Erreichen der halben Flankenhöhe D1 (Digitalisierungsschwelle) umschaltet, so dass sich aus einem analogen Signalverlauf 15 ein digitaler Signalverlauf 16 ergibt. Zu diesem Zweck liegt an dem zweiten Eingang des Komparators 10 die Spannung 0,9 V an. Der H-Zustand des ersten Signals S1 kann somit relativ einfach festgestellt werden.The digitization of the analog S1 signal according to FIGS. 3a to 3c takes place by means of the comparator 10, which switches when reaching half the flank height D1 (digitization threshold), so that a digital signal curve 16 results from an analog signal course 15. For this purpose, the voltage 0.9 V is applied to the second input of the comparator 10. The H state of the first signal S1 can thus be detected relatively easily.

Das zweite Signal S2 ist ein Stromsignal, das nur erzeugt werden kann, wenn das erste Signal S1 sich im H-Zustand befindet, denn der Strom kann über die zweite Kommunikationseinheit 2 nur gegen die Masse fließen.The second signal S2 is a current signal that can be generated only when the first signal S1 is in the H state, because the current can flow only against the ground via the second communication unit 2.

Im idealisierten Signalverlauf des ersten Signals S1 gemäß Figur 3b unter Zugrundelegung einer kapazitiven Leitung ergibt sich aufgrund des Sprunges des ersten Signals S1 sowohl bei der steigenden Flanke F1 als auch bei der fallenden Flanke F2 ein sprunghafter Signalverlauf 17 des zweiten Signals S2. Durch Vergleich mit einer Digitalisierungsschwelle D2 könnte der Zustand des zweiten Signals S2 gemäß dem Signalverlauf 18 ermittelt werden. Da sich der Signalverlauf 17 während des H-Zustandes des Signalverlaufs 15 stets oberhalb der Digitalisierungaschwelle D2 befindet, liegt ein H-Zustand des zweiten Signals S2 vor.In the idealized signal course of the first signal S1 according to FIG FIG. 3b On the basis of a capacitive line, due to the jump of the first signal S1, both at the rising edge F1 and at the falling edge F2 a sudden signal curve 17 of the second signal S2 results. By comparison with a digitization threshold D2, the state of the second signal S2 could be determined according to the signal curve 18. Since the signal profile 17 is always above the digitization threshold D2 during the H state of the signal profile 15, an H state of the second signal S2 is present.

Aufgrund von Einschwingvorgängen ist der reale Signalverlauf des ersten Signals S1 und des zweiten Signals S2 ein anderer, siehe Figur 3c. Die Erkennung des ersten Signals S1, das gemäß der Signalform 21 vorliegt, ist aufgrund fehlender Ausgleichsvorgänge relativ einfach möglich, so dass sich das digitalisierte Signal 16 ermitteln lässt. Aufgrund des Spannungssprungs ergibt sich für das zweite Signal S2 ein geänderter Signalverlauf 19, bei dem das zweite Signal S2 abschnittweise unterhalb der Digitalisierungsschwelle D2 verläuft. Bei Vergleich des Signals 19 mit einer Digitalisierungsschwelle D2 würde ein Signalverlauf 20 detektiert, der nicht dem logischen Zustand "H" des zweiten Signals S2 entspricht. Zur Bestimmung des Signalzustands des zweiten Signals S2 sieht die erfindungsgemäße Vorrichtung vor, dass als maßgeblicher zustandsrelevanter Abtastzeitpunkt tz gewählt wird, der sich unmittelbar vor Beginn t4 der abfallenden Flanke F2 befindet und an dem sich die Einschwingvorgänge des zweiten Signals 19 so reduziert haben, dass eine eindeutige Aussage über den Zustand des zweiten Signals S2 vorgenommen werden kann.Due to transients, the real waveform of the first signal S1 and the second signal S2 is different, see Figure 3c , The detection of the first signal S1, which is present according to the signal form 21, is relatively easily possible due to the lack of equalization processes, so that the digitized signal 16 can be determined. Due to the voltage jump results for the second signal S2 a changed waveform 19, in which the second signal S2 sections below the digitization threshold D2. When comparing the signal 19 with a digitization threshold D2, a waveform 20 would be detected which does not correspond to the logic state "H" of the second signal S2. For the determination of the signal state of the second signal S2, the device of the invention provides that Z is selected as the relevant state of relevant sampling time t, which is located immediately before the start t4, the falling edge of F2 and at which the transient effects of the second signal 19 are so reduced that a clear statement about the state of the second signal S2 can be made.

Die Auswerteeinrichtung 9 weist zum einen einen ersten Zähler zur Bestimmung der Periodendauer T1 des pulsförmigen ersten Signals 21, P1 auf. Zum anderen weist die Auswerteeinrichtung 9 einen zweiten Zähler zur Bestimmung einer Pulsbreite TH des ersten Signals 21 auf.The evaluation device 9 has, on the one hand, a first counter for determining the period T 1 of the pulse-shaped first signal 21, P1. On the other hand, the evaluation device 9 has a second counter for determining a pulse width T H of the first signal 21.

Ferner weist die Auswerteeinrichtung 9 ein Rechenmodul auf, mittels dessen aus der Periodendauer T1 und der Pulsbreite TH die maximale Dauer der fallenden Flanke F2 des ersten Signals 21 berechnet werden kann. Unter Berücksichtigung dessen, dass der als Referenzzeitpunkt dienende Endzeitpunkt t5 des Pulses P1 bekannt ist, kann nun der Startzeitpunkt t4 der fallenden Flanke F2 ermittelt werden. Das zweite Signal S2 wird während der Pulsbreite TH mit einer Abtastrate TAbtast abgetastet, wobei die Abtastrate TAbtast deutlich kleiner ist als die minimale Dauer der H-Pulsbreite TH des ersten Signals 21. Beispielsweise kann die Abtastrate TAbtast 10 ns oder 20 ns betragen. Wie aus Figur 3c ersichtlich ist, liegen eine Mehrzahl von Abtastwerten bzw. digitale Werte des zweiten Signals S2 während der H-Pulsbreite TH des ersten Signals S1 vor. Diese Folgen von digitalen Werten werden in einem Schieberegister der Auswerteeinrichtung 9 zwischengespeichert.Furthermore, the evaluation device 9 has a calculation module, by means of which the maximum duration of the falling edge F2 of the first signal 21 can be calculated from the period T 1 and the pulse width T H. Taking into account that the end time t5 of the pulse P1 serving as reference time is known, the starting time t4 of the falling edge F2 can now be determined. The second signal S2 is sampled during the pulse width T H at a sampling rate T sample , the sampling rate T sampling is significantly smaller than the minimum duration of the H-pulse width T H of the first signal 21. For example, the sampling rate T sampling may be 10 ns or 20 ns. How out Figure 3c is apparent, there are a plurality of samples or digital values of the second signal S2 during the H-pulse width T H of the first signal S1. These sequences of digital values are buffered in a shift register of the evaluation device 9.

Die Auswerteeinrichtung 9 enthält ein Rechenmodul, mittels dessen ausgehend von dem Endzeitpunkt t5 des digitalisierten S1-Signals auf den für das zweite Signal 20 zustandsrelevanten Abtastzeitpunkt tz zurückgerechnet werden kann. Hierzu wird die maximale Dauer der fallenden Flanke F2 des ersten Signals S1 in Abhängigkeit von der Periodendauer T, T1, T2 des ersten Signals S1 bestimmt. Aufgrund von Vorgaben liegt die minimale Anstiegs-/Abfallzeit der Flanke F2 bei 5 ns. Die maximale Anstiegs-/Abfallzeit der fallenden Flanke F2 liegt bei 0,05 x T, wobei die Periodendauer T, T1, T2 zwischen 590 ns und 10 µs liegen kann. Die maximale Anstiegs-/Abfallzeit darf allerdings nicht mehr als 250 ns betragen. Es kann somit in Abhängigkeit von der Kommunikationsgeschwindigkeit auf den Startzeitpunkt t4 der fallenden Flanke F2 des ersten Signals 21 zurückgerechnet werden bzw. ein zustandsrelevanter Abtastzeitpunkt tz für die Bestimmung des Signalpegels des zweiten Signals S2 ermittelt werden. Beträgt die Periodendauer T beispielsweise T = 1 µs, errechnet sich die maximale Dauer der Flanke F2 zu 50 ns. Da lediglich der Endzeitpunkt t5 des digitalen S1-Signals vorliegt, wird zur Bestimmung des Startzeitpunktes t4 der Flanke F2 von dem Endzeitpunkt t5 um 25 ns zurückgerechnet, um den Beginn t4 der Flanke F2 zu ermitteln. In dem Rechenmodul ist ein Differenzwert implementiert, so dass der zustandsrelevante Abtastzeitpunkt tz stets um ein festes Zeitintervall vor dem berechneten Startzeitpunkt t4 der fallenden Flanke F2 liegt.The evaluation device 9 contains a calculation module, by means of which, starting from the end time t5 of the digitized S1 signal, it is possible to recalculate to the state point of time t z relevant to the second signal 20. For this purpose, the maximum duration of the falling edge F2 of the first signal S1 is determined as a function of the period T, T1, T 2 of the first signal S1. By default, the minimum rise / fall time of edge F2 is 5 ns. The maximum rise / fall time of the falling edge F2 is 0.05 × T, wherein the period T, T 1 , T 2 can be between 590 ns and 10 μs. However, the maximum rise / fall time must not exceed 250 ns. It can thus be calculated back depending on the communication speed to the start time t4 of the falling edge F2 of the first signal 21 and a state-relevant sampling time tz for the determination of the signal level of the second signal S2 can be determined. If the period T is, for example, T = 1 .mu.s, the maximum duration of the edge F2 is calculated to be 50 ns. Since only the end time t5 of the digital S1 signal is present, to determine the start time t4, the edge F2 is calculated back from the end time t5 by 25 ns in order to determine the beginning t4 of the edge F2. In The calculation module is implemented a difference value, so that the state-relevant sampling time t z is always a fixed time interval before the calculated start time t4 of the falling edge F2.

Ist der zustandsrelevante Abtastzeitpunkt tz ermittelt, kann aus einer Folge von in dem Schieberegister zwischengespeicherten digitalen Werten des Signals S2 der zustanderelevante Wert W extrahiert bzw. ausgewählt werden, der zu dem zustandsrelevanten Abtastzeitpunkt tz korrespondiert. Diese Berechnung kann allerdings erst bei Auftreten eines weiteren nachfolgenden Pulses P2 des ersten Signals S1 erfolgen, da zur Bestimmung der maximalen Dauer der Flanke F2 die Periodendauer T1 zu berücksichtigen ist. Insbesondere können die Periodendauern T1, T2 variieren, da die Pulse P1, P2 unterschiedlich lang sein können.If the state-relevant sampling instant t z is determined, the state-relevant value W corresponding to the state-relevant sampling instant tz can be extracted or selected from a sequence of digital values of the signal S2 buffered in the shift register. However, this calculation can only take place when a further subsequent pulse P2 of the first signal S1 occurs, since the period T 1 must be taken into account in order to determine the maximum duration of the edge F2. In particular, the period lengths T 1 , T 2 may vary since the pulses P1, P2 may be of different lengths.

Der ermittelte digitale Wert W repräsentiert den Signalpegel des zweiten Signals S2 zwischen den Zeitpunkten t2 und t5.The determined digital value W represents the signal level of the second signal S2 between the times t2 and t5.

Der zustandsrelevante Abtastzeitpunkt tz ist abhängig vom Start der fallenden Flanke F2 und liegt zeitlich gesehen vorzugsweise unmittelbar vor dem Startzeitpunkt t4 der Flanke F2.The state-relevant sampling time tz is dependent on the start of the falling edge F2 and, viewed in terms of time, is preferably immediately before the start time t4 of the edge F2.

Es kann somit der Signalpegel des zweiten Signals S2 unter Ermittlung des zustandsrelevanten digitalen Wertes W bestimmt werden, wobei gemäß Figur 3c ein "H"-Pegel und gemäß Figur 4b ein "L-Pegel" erkannt wird.Thus, the signal level of the second signal S2 can be determined by determining the state-relevant digital value W, according to FIG Figure 3c an "H" level and according to FIG. 4b an "L level" is detected.

Alternativ kann statt eines zustandsrelevanten Abtastzeitpunktes tz auch ein zustandsrelevantes Abtastzeitintervall Δtz angegeben werden, das zeitlich vor dem Start der fallenden Flanke F2 des ersten Signals 21 liegt. Als wert für den aktuellen Zustand des zweiten Signals S2 liegen dann mehrere digitale zustandsrelevante werte W vor, die in Abhängigkeit vom Signalpegel des zweiten Signals S2 alle entweder oberhalb der Digitalisierungsschwelle D2 oder unterhalb der Digitalisierungsschwelle D2 liegen. Gleichwohl besteht hier die Gefahr, dass ein zeitlich weit von dem Zeitpunkt t4 entfernt liegender Wert ein falsches Ergebnis liefert. Deshalb erhalten die flankennahen Werte W eine höhere Wichtigkeit als die flankenfernen Werte W. Liegt der Durchschnitt der Werte W oberhalb von 0,5, wird auf einen "H"-Pegel erkannt. Liegt der Durchschnitt der Werte W unterhalb von 0, 5, wird auf einen "L"-Pegel erkannt.Alternatively, instead of a state-relevant sampling instant tz, a state-relevant sampling time interval may also be used Δtz, which is prior to the start of the falling edge F2 of the first signal 21. As a value for the current state of the second signal S2, there are then several digital state-relevant values W which, depending on the signal level of the second signal S2, are all either above the digitization threshold D2 or below the digitization threshold D2. Nevertheless, there is the danger that a value which is far away from the time t4 in time will give a wrong result. Therefore, the near-edge values W are given a higher importance than the off-edge values W. When the average of the values W is above 0.5, it is recognized to be an "H" level. If the average of the values W is below 0, 5, it is detected at an "L" level.

Da die maximale Dauer der fallenden Flanke F2 des ersten Signals S1 abhängig ist von der Periodendauer (Bitbreite T, T1, T2), sieht die bevorzugte Ausführungsform die Berechnung der maximalen Dauer der fallenden Flanke F2 aus den ermittelten zeitlichen Parametern des ersten Signals S1 vor. Es kann dann ausgehend von dem Endzeitpunkt t5 des Pulses P1 auf den Beginn t4 der Flanke F2 zurückgeschlossen und der zustandsrelevante Abtastzeitpunkt tz unter Berücksichtigung eines vorgegebenen Differenzzeitintervalls bestimmt werden.Since the maximum duration of the falling edge F2 of the first signal S1 depends on the period duration (bit width T, T 1 , T 2 ), the preferred embodiment sees the calculation of the maximum duration of the falling edge F2 from the determined temporal parameters of the first signal S1 in front. It can then be deduced from the end time t5 of the pulse P1 to the beginning t4 of the edge F2 and the state-relevant sampling time t z are determined taking into account a predetermined differential time interval.

Befindet sich das zweite Signal S2 tatsächlich in einem L-Zustand gemäß den Figuren 4a und 4b, wird vorzugsweise in gleicher Weise die Dauer der abfallenden Flanke F2 des ersten Signals S1 sowie die Rückrechnung auf den zustandsrelevanten Abtastzeitpunkt tz vorgenommen. Gleiche Signalverläufe werden daher in den Figuren 3b und 3c einerseits und den Figuren 4a und 4b andererseits mit gleichen Bezugsziffern versehen. Der Unterschied besteht lediglich darin, dass das zweite Signal S2 andere Signalverläufe 17', 18', 19', 20' aufweist. Da in einem Zeitabschnitt vor dem Startpunkt t4 der fallenden Flanke F2 das Signal 19' in der Nähe des Nullpunktes verläuft, kann das zweite Signal S2 durch einen digitalen Wert W repräsentiert werden, der innerhalb des zustandsrelevanten Abtastzeitintervalls Δts abgetastet worden ist.Actually, the second signal S2 is in an L state according to FIGS FIGS. 4a and 4b , the duration of the falling edge F2 of the first signal S1 and the recalculation to the state-relevant sampling instant tz are preferably carried out in the same way. Same waveforms are therefore in the FIGS. 3b and 3c on the one hand and the FIGS. 4a and 4b on the other hand provided with the same reference numerals. The only difference is that the second signal S2 has other signal curves 17 ', 18', 19 ', 20'. Since in a period of time before the starting point t4 of the falling edge F2 the signal 19 'is close to the zero point, the second signal S2 can be represented by a digital value W which has been sampled within the state-relevant sampling time interval Δts.

Die erfindungsgemäße Vorrichtung ermöglicht somit das Erfassen sowohl des Signalpegels (H-Zustand oder L-Zustand) des ersten Signals S1 als auch des zweiten Signals S2. Der Signalpegelzustand des zweiten Signals S2 bzw. des Signals 19 kann allerdings erst mit Zeitverzögerung nach dem ersten Puls P1 des ersten Signals S1 erfolgen, wenn schon ein weiterer nachfolgender zweiter Puls P2 des ersten Signals S1 vorliegt.The device according to the invention thus makes it possible to detect both the signal level (H state or L state) of the first signal S1 and of the second signal S2. However, the signal level state of the second signal S2 or of the signal 19 can only take place after a time delay after the first pulse P1 of the first signal S1 if another subsequent second pulse P2 of the first signal S1 already exists.

Claims (8)

  1. Digital signal detection device for detecting a digital signal that is transmitted between a first communication unit (1) and a second communication unit (2) via a single-wire line wherein a voltage signal is transferred from said first communication unit (1) to said second communication unit (2) and a current signal from said second communication unit (2) to said first communication unit (1) and wherein to determine a logic state of the current signal (S2) which prevails during the high state of the voltage signal (S1) such a state-relevant value (W) thereof is assessed that at a state-relevant scanning instant (tz) which exists immediately before the beginning (t4) of a negative edge (F2) of the voltage signal (S1) or at a state-relevant scanning interval (Δtz) which prevails immediately before the beginning (t4) of a negative edge (F2) of the voltage signal (S1), characterized in that a reference time for determination of the logic state of the current signal (S2) is established via a termination time (T5) at which the high state of voltage signal (S1) ends and used to calculate back to the state-relevant scanning instant (tz) and/or to the state-relevant scanning interval (Δtz) dependent on the maximum duration of said negative flank (F2) of the voltage signal (S1).
  2. Method according to Claim 1, characterized in that a period length (T, T1, T2) of voltage signal (S1) is determined from the progress the of the voltage signal (S1) by calculating the maximum duration of the negative flank (F2) of said voltage signal (S1) and by calculating back from the termination time (t5) at which the state of the voltage signal (S1) ends the state-relevant scanning instant (tz) and/or the state-relevant scanning interval (Δtz) is then assessed.
  3. Method according to Claim 1 or 2, characterized in that the current signal (S2) is scanned at least during a time slot within the progress of the voltage signal (S1) recognized as being in a high state which is close or precedent to the beginning of the negative flank (F2) of the voltage signal (S1), and stored as a sequence of samples such that the value (W) of the current signal (S2) which corresponds to the later calculated state-relevant scanning instant (tz) and/or to the state-relevant scanning interval (Δtz) is within said time slot.
  4. Method according to any of the preceding Claims 1 to 3, characterized in that the state-relevant scanning instant (tz) or the state-relevant scanning interval (Δtz) of the current signal (S2) is determined on the beginning of a second pulse (P2) of the voltage signal (S1) that corresponds to a first pulse (P1) of current signal (S2).
  5. Method according to any of the preceding Claims 1 to 4, characterized in that the scanning duration (TAbtast) is shorter than the minimum duration of an H pulse width (TH).
  6. Digital signal detection device for detecting a digital signal that can be transmitted between a first communication unit (1) and a second communication unit (2) via a single-wire connection wherein a voltage signal is transferred from said first communication unit (1) to said second communication unit (2) and a current signal from said second communication unit (2) to said first communication unit (1) wherein a first measuring setup (7) for detecting digital values of the voltage signal (S1) and a second measuring setup (8) for detecting digital values of the current signal (S2) are connected to the single-wire line; wherein an evaluator unit (9) is connected to said measuring setups (7, 8) for evaluating the voltage signal (S1) and the current signal (S2) as assessed; wherein the evaluator unit (9) comprises means for storing a sequence of digital values of the current signal (S2) which stored values have been assessed at least within a time slot that is close and precedent to a negative flank (F2) of the voltage signal (S1); and wherein said evaluator unit (9) comprises means permitting for determination of the logic state of the current signal (S2) that prevails during the high state of the voltage signal (S1) such a state-relevant value (W) from a sequence of digital values to be select that results from scanning the current signal (S2) at a state-relevant scanning instant (Tz) which results from a scan of the current signal (S2) immediately before the beginning (t4) of the negative edge (F2) of the voltage signal (S1) or from scanning the current signal (S2) at a state-relevant scanning interval (Δtz) which prevails immediately before the beginning (t4) of the negative edge (F2) of the voltage signal (S1), characterized in that the evaluator unit (9) is provided with a counter to determine a period length (T, T1, T2) of the pulse-shaped voltage signal (S1) and a counter to determine a pulse width (TH) of the pulse-shaped voltage signal (S1) such that the maximum duration and the time slot of the negative flank (F2) of the pulse-shaped voltage signal (S1) can be assessed in a calculator module in order to calculate back the scanning instant (tz) or the scanning interval (Δtz) therefrom.
  7. Device according to Claim 6, characterized in that the evaluator unit (9) comprises a shift register for buffering the digital values of the current signal (S2) which on assessment of the state-relevant value (W) may be enabled for storing further digital values of said current signal (S2).
  8. Device according to Claim 6 or 7, characterized in that the first measuring setup (7) and/or the second measuring setup (8) each comprise an analog/digital converter.
EP08010796A 2008-06-13 2008-06-13 Digital signal detection method and device Not-in-force EP2134025B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT08010796T ATE518325T1 (en) 2008-06-13 2008-06-13 METHOD AND DEVICE FOR DETECTING A DIGITAL SIGNAL
EP08010796A EP2134025B1 (en) 2008-06-13 2008-06-13 Digital signal detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08010796A EP2134025B1 (en) 2008-06-13 2008-06-13 Digital signal detection method and device

Publications (2)

Publication Number Publication Date
EP2134025A1 EP2134025A1 (en) 2009-12-16
EP2134025B1 true EP2134025B1 (en) 2011-07-27

Family

ID=40002978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08010796A Not-in-force EP2134025B1 (en) 2008-06-13 2008-06-13 Digital signal detection method and device

Country Status (2)

Country Link
EP (1) EP2134025B1 (en)
AT (1) ATE518325T1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365687A (en) * 2019-07-19 2019-10-22 北京智芯微电子科技有限公司 SWP protocol processor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8930586B2 (en) 2013-04-03 2015-01-06 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Identification of electronic devices operating within a computing system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677308A (en) 1986-12-22 1987-06-30 Chrysler Motors Corporation Switch status monitoring system, single wire bus, smart sensor arrangement therefor
GB2291769A (en) * 1994-07-27 1996-01-31 Motorola Inc Bidirectional communication system using volatage and current signals
DE102005050457A1 (en) 2005-10-19 2007-04-26 Comprion Gmbh Device for detecting the data transmission direction between communication partners

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365687A (en) * 2019-07-19 2019-10-22 北京智芯微电子科技有限公司 SWP protocol processor

Also Published As

Publication number Publication date
ATE518325T1 (en) 2011-08-15
EP2134025A1 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
DE3233637C2 (en) Device for determining the duration of speech signals
DE4417838B4 (en) A method of characterizing a non-reflective event in a digital data waveform obtained by optical time domain reflectometry
EP2405279A2 (en) Method and device for locating cable errors
DE3438045A1 (en) METHOD AND ARRANGEMENT FOR TRANSMITTING SIGNALS IN ULTRASONIC ECHO SOOL DEVICES
DE2847367A1 (en) CHARACTER RECOGNITION DEVICE
DE69817260T2 (en) Device for acquiring waveform data of a metallic transmission cable
DE4006426A1 (en) METHOD FOR EVALUATING BINARY INFORMATION FROM A MAGNETIC MEMORY CARD
EP2134025B1 (en) Digital signal detection method and device
DE2825651C2 (en)
DE2305917C3 (en) Error correction arrangement for acoustic borehole surveys
DE102007062335A1 (en) Method and device for determining measured values from a time-dependent course
DE3911830A1 (en) METHOD AND CIRCUIT FOR EVALUATING CONTINUOUSLY APPEARING TIMES
EP2079176B1 (en) Communication device and method of data transfer
EP0354214B1 (en) Process for determining the electrical duration of signal paths
DE2535730A1 (en) METHOD AND DEVICE FOR DETERMINING FREQUENCY TONES
DE4344022C2 (en) Digital method for the detection of temporally short pulses and arrangement for carrying out the method
DE102005055830B4 (en) Method and apparatus for quantifying the timing error caused by crosstalk between signal paths
DE102020214099A1 (en) Procedure for detecting unauthorized physical access to a bus system
DE2801333A1 (en) Echo sounding pulse signal receiving circuit - with primary echo selection and target distance screening in parallel channels with output through AND=gate
EP2767836B1 (en) Method and device for detecting a modulation of a physical parameter
DE19854868B4 (en) Thermoflußmeßgerät and fuel control device
EP2384561B1 (en) Device and method for the time calibration between transmission and receiving components
DE4309097C2 (en) Device for testing impedance deviations in cables
EP1104191B1 (en) Arrangement for determining the phase position of a data signal
DE10220844B4 (en) Method for transmitting measured values by means of a pulse-modulated signal and associated sensor and system with sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100610

17Q First examination report despatched

Effective date: 20100707

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPRION GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004315

Country of ref document: DE

Effective date: 20110922

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111128

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111028

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

26N No opposition filed

Effective date: 20120502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004315

Country of ref document: DE

Effective date: 20120502

BERE Be: lapsed

Owner name: COMPRION G.M.B.H.

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111107

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 518325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130613

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150625

Year of fee payment: 8

Ref country code: GB

Payment date: 20150623

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150623

Year of fee payment: 8

Ref country code: FR

Payment date: 20150623

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008004315

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160613

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160613