EP2131098A1 - Module d'éclairage pour projecteur de véhicule automobile - Google Patents

Module d'éclairage pour projecteur de véhicule automobile Download PDF

Info

Publication number
EP2131098A1
EP2131098A1 EP09161373A EP09161373A EP2131098A1 EP 2131098 A1 EP2131098 A1 EP 2131098A1 EP 09161373 A EP09161373 A EP 09161373A EP 09161373 A EP09161373 A EP 09161373A EP 2131098 A1 EP2131098 A1 EP 2131098A1
Authority
EP
European Patent Office
Prior art keywords
reflector
edge
orthogonal
axis
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09161373A
Other languages
German (de)
English (en)
Other versions
EP2131098B1 (fr
Inventor
Pierre Albou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP2131098A1 publication Critical patent/EP2131098A1/fr
Application granted granted Critical
Publication of EP2131098B1 publication Critical patent/EP2131098B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/155Surface emitters, e.g. organic light emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/155Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having inclined and horizontal cutoff lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/30Fog lights

Definitions

  • a lighting module of this kind is known, in particular according to EP 1 434 002 .
  • This module gives satisfaction and allows to obtain a good efficiency, with a high efficiency. It is recalled that the efficiency corresponds to the ratio of the luminous flux coming out of the module to the luminous flux emitted by the light source.
  • an additional plane mirror called a bender, intervenes between the two reflectors to achieve the breaking of the outgoing beam. It follows that, during a manufacture of the reflectors by plastic molding, the module can not be demolded at once, without a drawer, except to reduce its efficiency by removing a portion of one of the reflectors to allow the demolding in one go.
  • Lighting modules are also known that make it possible to obtain a cut-off beam without involving a cover, for example according to the patent US 5,440,456 wherein a first concave reflector is provided with a diverging lens in front. But the presence of such a lens complicates the manufacture.
  • the object of the invention is, above all, to provide a reflector module which does not use a lens and which can be demolded in a simple manner, preferably in a single operation, and whose output is high, in particular from less 70%.
  • the outgoing beam is clean cut and fully located on one side of a plane orthogonal to the axis of the cylindrical wave from the second reflector.
  • the illumination module according to claim 1 preferably has edges orthogonal to the optical axis of the planar emitter which are substantially orthogonal to the direction of the axis of the cylindrical wave from the second reflector.
  • the edges considered are preferably but not necessarily the large edges of the rectangle of the emitting surface.
  • the planar emitter is preferably orthogonal to the optical axis of the module. Generally, the optical axis is horizontal and the planar emitter is located in a vertical plane.
  • the first reflector can be determined to take into account the lower orthogonal edge of the emitter and to give an "image" constituting the rectilinear edge of the virtual spot, which is in front of this rectilinear edge, and the second reflector is convex, with its reflective surface facing forwards, and is determined to give, from the virtual light spot, a beam located below a line corresponding to the image of the rectilinear edge provided by the second reflector, the axis of the output wave surface being located behind the second reflector.
  • image is understood to mean a geometrical transformation of the task in question: at least part of its contour, in particular one of its edges, can be found (and in fact is found ) deformed with respect to its initial contour.
  • image has therefore been retained for the sake of brevity, without it being really an image in the strict sense of the term, so there will not necessarily be restitution of the interior details to the object / the Image task.
  • the first reflector can be determined by considering both ends of the lower orthogonal edge of the transmitter and the spherical light wave emitted by each of these ends; each portion of the first reflector, located on one side of the longitudinal vertical median plane passing through the optical axis, is determined to form the straight edge of the light spot as an image of the end of the orthogonal edge of the other side of the median plane.
  • any ray coming from one of said ends and striking the first reflector at a point situated on the opposite side of the longitudinal vertical median plane passing through the optical axis meets the rectilinear edge so that that this optical path of one of said ends to said edge of said radius is constant and independent of the ray path chosen.
  • the first reflector is determined to take into account the upper orthogonal edge of the transmitter and to give an image constituting the rectilinear edge of the virtual spot, which is behind this rectilinear edge, and the second reflector is saddle-shaped, with a concave reflecting surface facing forwards, and is determined to give, from the virtual light spot, a beam located above a plane perpendicular to the axis of the output wave surface, said axis being located in front of the second reflector.
  • the first reflector can be determined by associating each part of the first reflector, situated on one side of the longitudinal vertical median plane passing through the optical axis, with the end of the upper orthogonal edge of the emitter situated on the same side of the median plane. , and considering the points of the upper orthogonal edge between the ends.
  • the distance traveled to the first reflector by any ray coming from the upper orthogonal edge and perpendicular to said segment or coming from one of its ends, and reaching the first reflector at a point on the side containing no part of the transmitter of a vertical plane parallel to the optical axis passing through the end considered and from the first reflector to the edge of the virtual spot is a constant independent of the radius considered.
  • the invention also relates to a motor vehicle light projector, in particular a code or fog light, characterized in that it comprises at least one lighting module as defined above.
  • the light projector may comprise two juxtaposed modules, one of the modules comprising a first reflector determined to take into account the lower orthogonal edge of the emitter and the second reflector being convex, the axis of the output wave surface being located behind the second reflector, this first module giving a relatively spread beam, while the second module has a first reflector determined to take into account the upper orthogonal edge of the transmitter and the second reflector is saddle-shaped, the axis of the output wave surface being located in front of the second reflector, this second module giving a narrower but larger beam.
  • the second module is rotated 180 ° with respect to the optical axis, in particular so that the module produces a code beam according to US regulations.
  • the light projector comprises two juxtaposed modules, to achieve a European code cut, one of the modules giving the horizontal branch of the cut, the other module being rotated about its optical axis to give the inclined branch of the cut.
  • a lighting module M1 for motor vehicle headlamp provided to give a cut-off beam, including a code or fog beam.
  • the module has an optical axis XX which, when the module is mounted on the vehicle, is generally horizontal and parallel to the longitudinal axis of the vehicle.
  • the module M1 comprises a light source constituted by at least one light emitting diode 1, designated by the abbreviation LED, with rectangular planar emitter 2.
  • the expression "rectangular planar emitter” includes any quadrangular emitter, that is to say rectangular or square.
  • the transmitter 2 is located in a plane orthogonal to the optical axis XX and the average transmission direction D of the diode 1 is parallel to the optical axis XX, the emission taking place forward.
  • the expression “forwards” is to be understood as meaning a direction away from the vehicle: when the module is disposed at the front of the vehicle, the direction D is actually directed towards the front of the vehicle, whereas when the module is arranged at the rear of the vehicle, the direction D is oriented towards the rear.
  • the plane P of the transmitter 2 is summarily represented in perspective on Fig. 1 .
  • the module M1 comprises a first concave reflector R1 which receives the beam coming from the LED 1 and sends it to a second reflector R2 which outputs the cut-off beam E.
  • the first reflector R1 is located in front of the LED 1.
  • the term "front” corresponds to the direction of emission of the light by the transmitter 2.
  • the reflective concave face of the reflector R1 is turned towards the rear.
  • the rectangular planar emitter 2 has two edges 2a, 2b, generally corresponding to the long sides of the rectangle, orthogonal to the optical axis X-X and horizontal when the module is in place in the vehicle.
  • the orthogonal lower edge is designated 2a and the orthogonal upper edge is 2b.
  • the first reflector R1 is determined to transform a surface wave coming from one of the edges 2a, 2b of the rectangular emitter in a cylindrical wave of horizontal axis Y1-Y1 parallel to the edges 2a, 2b, and situated in a plane perpendicular to the optical axis XX, generally at below the lower edge 2a of the transmitter.
  • the lower edge 2a of the emitter 2 is chosen as the origin of the source wavefront and the reflector R1 is determined accordingly.
  • the source wave surface to be considered is a sphere centered on each of the lower corners 2a1, 2a2 of the transmitter 2.
  • the reflector R1 in one piece, can be optically decomposed into two parts R11, R12 situated on either side of a median longitudinal vertical plane V ( Fig. 2 ) passing through the optical axis XX. Each portion R11, R12 is determined to produce a cylindrical wave surface of axis Y1-Y1 from the spherical wave emitted by the end 2a1 (or corner) of the edge 2a located on the opposite side of the median plane V.
  • the planar transmitter 2 comprises a protection provided by a transparent flat plate or a transparent spherical dome, encapsulating the transmitter; this protection is taken into account for the determination of the reflector R1.
  • a spot of light 3 is obtained (see FIG. Fig. 3 ) having a straight edge 4 coincides with the axis Y1-Y1.
  • the edge 4 is in a way the image of the lower edge 2a of the transmitter.
  • the light spot 3 is located in front of the net edge 4, the source points 2a1, 2a2 having been taken on the lower edge 2 of the transmitter.
  • the second reflector R2 has a reflective surface facing forwards and is arranged to intercept the rays reflected by the first reflector R1 so that the spot 4 is virtual. This spot is considered as a virtual light source for the second reflector R2 which will produce a flat-cut beam at infinity.
  • the second reflector R2 is calculated so as to transform a wave composed of a cylinder and two quarter of sphere from the net edge 4 of the virtual source into a cylindrical wave of vertical axis Z1.
  • the width of the edge of the intermediate source constituted by the light spot 4 is taken as the effective width of the first reflector R1.
  • the position of the vertical axis Z1 of the cylindrical output wave makes it possible to adjust the spreading of the beam, by adjusting the distance to the emitter 2, and possibly its orientation on the left or on the right (lateral position).
  • the second reflector R2 is convex and the vertical axis Z1 is located behind the virtual source constituted by the spot 4.
  • the rear contour of the reflector R1 and the rear contour of the reflector R2 may be in the vertical plane P passing through the plane of the emitter or the plane defined by its protection, namely either the plane passing through the outer face of the emitter. transparent blade covering the transmitter, the section plane of the half sphere constituting the protective dome of this transmitter.
  • the plane Y1-Y1 is located either in the plane P or slightly in front of the plane P (for example in front of about 1 mm).
  • a radius i1 coming from the corner 2a1 is reflected by the concave inner surface of the reflector R1 along a radius i'1 which, if it were not intercepted by the reflector R2, would cut the axis Y1-Y1.
  • This ray i'1, falling on the convex surface of the second reflector R2 is returned forwards along a radius i "1 whose rearward extension is based on the axis Z1. from the same point 2a1 will come out after two reflections according to a radius i "2 located in a horizontal plane parallel to the plane containing i" 1 as the radius i "1 and whose rearward extension meets the axis Z1.
  • the reflected rays i "1, i" 2 diverge, which corresponds to the spreading of the beam E.
  • the outgoing beam is therefore a horizontally cut beam, the beam being located below the cut whose rectilinear edge corresponds to the image or pseudo-image of a segment of the Y1-Y1 axis by the second reflector R2. .
  • each end 2b1, 2b2 ( Fig.5 ) of the upper edge 2b is associated with the portion R'11, R'12 of the first reflector R'1 situated on the side having no part of the emitter of a vertical plane parallel to the optical axis passing through the end considered.
  • the determination of said reflector between the two planes delimiting the surfaces R'11 and R'12 is performed by considering a cylindrical source wave surface of axis constituted by the segment 2b .
  • the protection of the transmitter 2 flat plate or spherical dome
  • the determination of R ' 1 is taken into account for the determination of R ' 1 (it is involved in the calculation of optical paths whose constancy makes it possible to determine the desired surfaces).
  • the reflector R'1 is determined to give an arrival wave surface of horizontal axis Y'1-Y'1 ( Fig.4 ) contained in a plane perpendicular to the optical axis XX.
  • the second reflector R'2 is calculated so as to transform a wave composed of a cylinder and two quarter of sphere, from the net edge 4 'of the virtual source into a cylindrical wave of vertical axis Z'1.
  • the two-quarter sphere corresponds to the wave of each of the ends of the edge 4 ', while the cylinder corresponds to the segment between the ends.
  • the reflector R'2 is saddle-shaped with its concave surface facing forward.
  • the cut-off beam obtained was a high-cut beam, the light being situated below the cut-off line
  • the variant of Figs. 3 and 4 gives a low-cut beam, the light being located above the cutoff line corresponding to the image of the edge 4 'given by the second reflector R'2.
  • the vertical axis Z'1 of the cylindrical output wave is located in front of the module so that the outgoing beam first converges towards this axis Z'1 and then extends beyond.
  • the module with its two reflectors R1, R2 or R'1, R'2 can be demolded in a single operation, the two reflectors being able to be secured to one another by a frame .
  • the Fig.6 to 9 give networks of isolux curves (constant illumination along the curve) with abscissa the angular values of the directions considered in a horizontal plane with respect to the optical axis in the center, and the ordinate the angular values of the directions considered in a plane vertical to the optical axis in the center.
  • Fig. 6 is a network of isolux curves obtained with a module according to Fig. 1 and 2 .
  • the beam has a horizontal cutoff line and is located below this line. It appears that the beam is relatively spread in width, symmetrically on either side of the median vertical plane passing through the optical axis.
  • Fig. 7 is a network of isolux curves obtained with a module according to Fig. 4 and 5 , reversed up / down, that is to say that the first reflector R'1, contrary to the representation of Fig. 4 is below the second reflector R'2.
  • the isolux curves are less spread on both sides of the median longitudinal vertical plane than on Fig. 6 .
  • the beam produced by a module according to Fig. 4 and 5 is more concentrated than that of a module according to Fig. 1 and 2 .
  • Fig. 8 gives an example of a network of isolux curves for a module according to Fig. 4 and 5 but with different parameters, this module being reversed to give a high-cut beam.
  • the beam of Fig.8 appears more concentrated than that of Fig. 7 .
  • the isolux curves of lower illumination on Fig. 8 are convex downwards, without a concave hollow in the median plane, as in the case of Fig. 7 .
  • the size of the transmitter 2 is imposed: the size of the transmitter 2; the geometry and the refractive index of the material of the protection (plane blade or transparent dome) of the transmitter.
  • Fig. 9 illustrates a network of isolux curves obtained with a module conforming to Fig. 1 and 2 whose light source consists of a 2 square emitter protected by a hemispherical dome (spherical encapsulation). The beam appears more spread in width than in the case of Fig. 6 , and more reduced in height.
  • the invention makes it possible to obtain good flux efficiencies, of the order of 70%, since the first collector reflector R1, R'1 is relatively enveloping, close to an ellipse in section through a vertical plane passing through the center of the transmitter 2.
  • the module according to the invention can be manufactured by molding without a drawer. It is possible, by increasing the distance to the source of the intermediate virtual image 4, 4 ', to create a free space T ( Fig. 2 ) or T '( Fig. 5 ) to facilitate the closing of the mold without affecting the yield.
  • the parameters of the output reflector R2, R'2 make it possible to compensate for the increase in image sizes, hence the interest of having two diopters.
  • the module is a relatively flat system, whose size along the optical axis is of the order of 50 mm for the described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Module d'éclairage prévu pour donner un faisceau à coupure, admettant un axe optique et comprenant : une source lumineuse constituée par au moins une LED (1), à émetteur plan rectangulaire (2) ; un premier réflecteur concave (R1) qui reçoit le faisceau issu de la LED et le renvoie vers un deuxième réflecteur (R2), lequel donne en sortie le faisceau à coupure ; la direction moyenne d'émission (D) de la LED est parallèle à l'axe optique (X-X) du module et deux bords (2a,2b) de l'émetteur plan rectangulaire sont orthogonaux à l'axe optique ; le premier réflecteur (R1) est situé en avant de la LED, avec sa face concave réfléchissante tournée vers l'arrière, et est déterminé pour transformer une surface d'onde issue de l'un des bords orthogonaux (2a) de l'émetteur en une onde cylindrique, et pour former une tache lumineuse (3) limitée par un bord rectiligne (4) ; et le deuxième réflecteur (R2) présente une surface réfléchissante tournée vers l'avant, et est disposé pour intercepter les rayons renvoyés par le premier réflecteur de sorte que la susdite tache (3) est virtuelle, ce deuxième réflecteur étant déterminé pour transformer une onde semblant provenir du bord rectiligne (4) de la tache virtuelle en une onde cylindrique d'axe (Z1) orthogonal à l'axe optique (X-X) et au bord rectiligne (4, 4') de la tache virtuelle.

Description

  • L'invention est relative à un module d'éclairage pour projecteur de véhicule automobile, prévu pour donner un faisceau à coupure, notamment un faisceau code ou antibrouillard, ce module admettant un axe optique et comprenant :
    • une source lumineuse constituée par au moins une diode électroluminescente, ou LED, à émetteur plan rectangulaire,
    • un premier réflecteur concave qui reçoit le faisceau issu de la diode électroluminescente et le renvoie vers un deuxième réflecteur, lequel donne en sortie le faisceau à coupure.
  • Un module d'éclairage de ce genre est connu, notamment d'après EP 1 434 002 . Ce module donne satisfaction et permet d'obtenir une bonne efficacité, avec un rendement élevé. On rappelle que le rendement correspond au rapport du flux lumineux sortant du module au flux lumineux émis par la source de lumière. Toutefois, selon EP 1 434 002 , un miroir plan supplémentaire, appelé plieuse, intervient entre les deux réflecteurs pour la réalisation de la coupure du faisceau sortant. II en résulte que, lors d'une fabrication des réflecteurs par moulage de matière plastique, le module ne peut pas être démoulé en une seule fois, sans tiroir, sauf à diminuer son rendement en supprimant une partie d'un des réflecteurs pour permettre le démoulage en une seule fois.
  • On connaît également des modules d'éclairage permettant d'obtenir un faisceau à coupure sans faire intervenir de cache, par exemple selon le brevet US 5 440 456 dans lequel un premier réflecteur concave est prévu avec, en avant, une lentille divergente. Mais la présence d'une telle lentille complique la fabrication.
  • L'invention a pour but, surtout de fournir un module à réflecteurs, ne faisant pas appel à une lentille, qui peut être démoulé de manière simple, de préférence en une seule opération, et dont le rendement est élevé, en particulier d'au moins 70 %.
  • Selon l'invention, le module d'éclairage du genre défini précédemment présente également les caractéristiques suivantes :
    • la direction moyenne d'émission de la LED est parallèle à l'axe optique du module, l'émission ayant lieu vers l'avant, et deux bords de l'émetteur plan rectangulaire étant orthogonaux à la direction de l'axe optique,
    • le premier réflecteur est situé en avant de la LED, avec sa face concave réfléchissante tournée vers l'arrière, et ce premier réflecteur est déterminé pour transformer une surface d'onde issue de l'un des bords orthogonaux de l'émetteur en une onde cylindrique d'axe parallèle auxdits bords orthogonaux, et pour former une tache lumineuse limitée par un bord rectiligne,
    • et le deuxième réflecteur présente une surface réfléchissante tournée vers l'avant, et est disposé pour intercepter les rayons renvoyés par le premier réflecteur de sorte que la susdite tache est virtuelle, ce deuxième réflecteur étant déterminé pour transformer une onde semblant provenir du bord rectiligne de la tache virtuelle en une onde cylindrique d'axe orthogonal à l'axe optique et au bord rectiligne de la tache virtuelle,
    de sorte que le faisceau sortant est au-dessus ou au-dessous d'un côté d'un plan orthogonal à l'axe de l'onde cylindrique provenant du deuxième réflecteur.
  • Avantageusement, le faisceau sortant est à coupure nette et entièrement situé d'un côté d'un plan orthogonal à l'axe de l'onde cylindrique provenant du deuxième réflecteur.
  • Le module d'éclairage selon la revendication a de préférence les bords orthogonaux à l'axe optique de l'émetteur plan qui sont sensiblement orthogonaux à la direction de l'axe de l'onde cylindrique provenant du second réflecteur. Les bords considérés sont de préférence mais non nécessairement les grands bords du rectangle de la surface émettrice.
  • L'émetteur plan est de préférence orthogonal à l'axe optique du module. Généralement, l'axe optique est horizontal et l'émetteur plan est situé dans un plan vertical.
  • Bien sûr, selon les conventions bien connues dans le domaine des projecteurs automobiles, « horizontal » est à comprendre comme « sensiblement horizontal », dans la mesure où le module, et donc son axe optique, peut se trouver légèrement incliné par rapport à l'horizontale par les dispositifs de correction d'assiette du véhicule (inclinaison qui reste très faible faible, d'au plus 1 à 2° généralement).
  • Le premier réflecteur peut être déterminé pour prendre en compte le bord orthogonal inférieur de l'émetteur et pour en donner une « image » constituant le bord rectiligne de la tache virtuelle, laquelle se trouve en avant de ce bord rectiligne, et le second réflecteur est convexe, avec sa surface réfléchissante tournée vers l'avant, et est déterminé pour donner, à partir de la tache lumineuse virtuelle, un faisceau situé au-dessous d'une ligne correspondant à l'image du bord rectiligne fournie par le deuxième réflecteur, l'axe de la surface d'onde de sortie étant situé en arrière du second réflecteur.
  • On comprend par « image » au sens de l'invention et dans tout le présent texte, une transformation géométrique de la tâche considérée : une partie au moins de son contour, notamment un de ses bords, peut se retrouver (et de fait se retrouve) déformé par rapport à son contour initial. Le terme d'image a donc été retenu par soucis de concision, sans qu'il s'agisse véritablement d'une image au sens strict du terme, il n'y aura ainsi pas nécessairement restitution des détails intérieurs à l'objet / la tâche imagé(e).
  • Le premier réflecteur peut être déterminé en considérant les deux extrémités du bord orthogonal inférieur de l'émetteur et l'onde lumineuse sphérique émise par chacune de ces extrémités; chaque partie du premier réflecteur, située d'un côté du plan médian vertical longitudinal passant par l'axe optique, est déterminée pour former le bord rectiligne de la tache lumineuse en tant qu'image de l'extrémité du bord orthogonal située de l'autre côté du plan médian.
  • Avantageusement, en l'absence du second réflecteur, tout rayon issu de l'une desdites extrémités et frappant le premier réflecteur en un point situé du côté opposé du plan médian vertical longitudinal passant par l'axe optique rencontre le bord rectiligne de façon à ce que ce chemin optique de l'une desdites extrémités audit bord dudit rayon soit constant et indépendant du trajet de rayon choisi. En faisant abstraction du second réflecteur, on a donc un chemin optique constant.
  • Selon une autre possibilité, le premier réflecteur est déterminé pour prendre en compte le bord orthogonal supérieur de l'émetteur et pour en donner une image constituant le bord rectiligne de la tache virtuelle, laquelle se trouve en arrière de ce bord rectiligne, et le second réflecteur est en forme de selle de cheval, avec une surface réfléchissante concave tournée vers l'avant, et est déterminé pour donner, à partir de la tache lumineuse virtuelle, un faisceau situé au-dessus d'un plan perpendiculaire à l'axe de la surface d'onde de sortie, ledit axe étant situé en avant du second réflecteur.
  • Le premier réflecteur peut être déterminé en associant chaque partie du premier réflecteur, située d'un côté du plan médian vertical longitudinal passant par l'axe optique, avec l'extrémité du bord orthogonal supérieur de l'émetteur située du même côté du plan médian, et en considérant les points du bord orthogonal supérieur compris entre les extrémités.
  • De préférence, la distance parcourue jusqu'au premier réflecteur par tout rayon issu du bord orthogonal supérieur et perpendiculaire audit segment ou issu d'une de ses extrémités, et atteignant le premier réflecteur en un point situé du côté ne contenant aucune partie de l'émetteur d'un plan vertical parallèle à l'axe optique passant par l'extrémité considérée et du premier réflecteur jusqu'au bord de la tache virtuelle est une constante indépendante du rayon considéré.
  • L'invention concerne également un projecteur lumineux de véhicule automobile, en particulier un projecteur code ou antibrouillard, caractérisé en ce qu'il comporte au moins un module d'éclairage tel que défini précédemment.
  • Le projecteur lumineux peut comporter deux modules juxtaposés, l'un des modules comportant un premier réflecteur déterminé pour prendre en compte le bord orthogonal inférieur de l'émetteur et le second réflecteur étant convexe, l'axe de la surface d'onde de sortie étant situé en arrière du second réflecteur, ce premier module donnant un faisceau relativement étalé, tandis que le deuxième module comporte un premier réflecteur déterminé pour prendre en compte le bord orthogonal supérieur de l'émetteur et le second réflecteur est en forme de selle de cheval, l'axe de la surface d'onde de sortie étant situé en avant du second réflecteur, ce deuxième module donnant un faisceau plus étroit mais de plus grande portée.
  • Selon un mode de réalisation, le second module est tourné de 180° par rapport à l'axe optique, notamment afin que le module réalise un faisceau de code selon les réglementations américaines.
  • Selon une autre possibilité, le projecteur lumineux comporte deux modules juxtaposés, pour réaliser une coupure code européen, l'un des modules donnant la branche horizontale de la coupure, l'autre module étant tourné autour de son axe optique pour donner la branche inclinée de la coupure.
  • L'invention consiste, mises à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'exemples de réalisation décrits avec référence aux dessins annexés, mais qui ne sont nullement limitatifs. Sur ces dessins :
    • Fig. 1 est une vue schématique en perspective de trois-quarts arrière droite d'un module d'éclairage selon l'invention.
    • Fig. 2 est une vue schématique de face du module de Fig. 1.
    • Fig. 3 est une représentation de la tache lumineuse produite par le premier réflecteur de Fig. 1 et 2.
    • Fig. 4 est une vue schématique en perspective, depuis l'avant gauche et d'en bas, d'une variante de réalisation du module d'éclairage.
    • Fig. 5 est une vue schématique de face du module de Fig. 4.
    • Fig. 6 est un réseau de courbes isolux du faisceau sortant d'un module d'éclairage du type des Fig. 1 et 2.
    • Fig. 7 est un réseau de courbes isolux du faisceau lumineux sortant d'un module d'éclairage du type des Fig. 4 et 5, module retourné de 180° autour de l'axe optique,
    • Fig. 8 est un réseau de courbes isolux du faisceau sortant d'un module conforme aux Fig. 4 et 5 et retourné de 180° autour de l'axe optique, avec des paramètres différents de Fig. 7, et
    • Fig. 9 est un autre réseau de courbes isolux d'un faisceau sortant d'un module d'éclairage, selon l'invention, équipé d'une LED avec émetteur carré et encapsulation sphérique.
  • En se reportant aux Fig. 1 et 2 des dessins, on peut voir un module d'éclairage M1 pour projecteur de véhicule automobile prévu pour donner un faisceau à coupure, notamment un faisceau code ou antibrouillard. Le module admet un axe optique X-X qui, lorsque le module est monté sur le véhicule, est généralement horizontal et parallèle à l'axe longitudinal du véhicule.
  • Le module M1 comprend une source lumineuse constituée par au moins une diode électroluminescente 1, désignée par l'abréviation LED, à émetteur plan rectangulaire 2. L'expression "émetteur plan rectangulaire" englobe tout émetteur quadrangulaire, c'est-à-dire rectangulaire ou carré. L'émetteur 2 est situé dans un plan orthogonal à l'axe optique X-X et la direction moyenne d'émission D de la diode 1 est parallèle à l'axe optique X-X, l'émission ayant lieu vers l'avant. L'expression "vers l'avant" est à comprendre comme désignant un sens qui éloigne du véhicule : lorsque le module est disposé à l'avant du véhicule, la direction D est effectivement orientée vers l'avant du véhicule, tandis que lorsque le module est disposé à l'arrière du véhicule, la direction D est orientée vers l'arrière. Le plan P de l'émetteur 2 est représenté sommairement en perspective sur Fig. 1.
  • Le module M1 comporte un premier réflecteur R1 concave qui reçoit le faisceau issu de la LED 1 et le renvoie vers un deuxième réflecteur R2 qui donne en sortie le faisceau à coupure E.
  • Le premier réflecteur R1 est situé en avant de la LED 1. Le terme "avant" correspond au sens d'émission de la lumière par l'émetteur 2. La face concave réfléchissante du réflecteur R1 est tournée vers l'arrière. L'émetteur plan rectangulaire 2 présente deux bords 2a, 2b, correspondant généralement aux grands côtés du rectangle, orthogonaux à l'axe optique X-X et horizontaux lorsque le module est en place dans le véhicule. Le bord inférieur orthogonal est désigné par 2a et le bord supérieur orthogonal par 2b.
  • Le premier réflecteur R1 est déterminé pour transformer une surface d'onde issue d'un des bords 2a, 2b de l'émetteur rectangulaire en une onde cylindrique d'axe horizontal Y1-Y1 parallèle aux bords 2a, 2b, et situé dans un plan perpendiculaire à l'axe optique X-X, généralement au-dessous du bord inférieur 2a de l'émetteur.
  • Dans l'exemple de réalisation de Fig. 1 et 2, on choisit le bord inférieur 2a de l'émetteur 2 comme origine de la surface d'onde source et le réflecteur R1 est déterminé en conséquence. Dans ce premier cas, la surface d'onde source à considérer est une sphère centrée sur chacun des coins inférieurs 2a1, 2a2 de l'émetteur 2.
  • Le réflecteur R1, d'une seule pièce, peut être décomposé optiquement en deux parties R11, R12 situées de part et d'autre d'un plan vertical longitudinal médian V (Fig. 2) passant par l'axe optique X-X. Chaque partie R11, R12 est déterminée pour produire une surface d'onde cylindrique d'axe Y1-Y1 en provenance de l'onde sphérique émise par l'extrémité 2a1 (ou coin) du bord 2a située du côté opposé du plan médian V. L'émetteur plan 2 comporte une protection assurée par une lame plane transparente ou un dôme sphérique transparent, encapsulant l'émetteur; cette protection est prise en compte pour la détermination du réflecteur R1.
  • Dans un plan horizontal contenant l'axe Y1-Y1 de la surface d'onde cylindrique obtenue au-delà du premier réflecteur R1, on obtient une tache de lumière 3 (voir Fig. 3) ayant un bord rectiligne 4 confondu avec l'axe Y1-Y1. Le bord 4 constitue en quelque sorte l'image du bord inférieur 2a de l'émetteur.
  • Dans le cas de la réalisation de Fig. 1 et 2, la tache lumineuse 3 est située en avant du bord net 4, les points sources 2a1, 2a2 ayant été pris sur le bord inférieur 2 de l'émetteur.
  • Le deuxième réflecteur R2 présente une surface réfléchissante tournée vers l'avant et est disposé pour intercepter les rayons renvoyés par le premier réflecteur R1 de sorte que la tache 4 est virtuelle. Cette tache est considérée comme une source de lumière virtuelle pour le second réflecteur R2 qui va réaliser un faisceau à coupure plate à l'infini.
  • Le second réflecteur R2 est calculé de manière à transformer une onde composée d'un cylindre et de deux quarts de sphère issus du bord net 4 de la source virtuelle en une onde cylindrique d'axe vertical Z1. On prend pour largeur du bord de la source intermédiaire constituée par la tache lumineuse 4, la largeur effective du premier réflecteur R1.
  • En utilisant une telle onde source intermédiaire produite par le premier réflecteur R1, plutôt que l'onde cylindrique servant à la construction du premier réflecteur R1, on évite des remontées de lumière dues à des effets de bord, eux-mêmes dus à l'étendue de la source.
  • La position de l'axe vertical Z1 de l'onde de sortie cylindrique permet de régler l'étalement du faisceau, en réglant la distance à l'émetteur 2, et éventuellement son orientation sur la gauche ou sur la droite (position latérale).
  • Dans la réalisation de Fig. 1 et 2, le deuxième réflecteur R2 est convexe et l'axe vertical Z1 est situé en arrière de la source virtuelle constituée par la tache 4.
  • Le contour arrière du réflecteur R1 et le contour arrière du réflecteur R2 peuvent se trouver dans le plan vertical P passant par le plan de l'émetteur ou par le plan défini par sa protection, à savoir soit le plan passant par la face externe de la lame transparente recouvrant l'émetteur, soit le plan de section de la demi sphère constituant le dôme de protection de cet émetteur. Le plan Y1-Y1 est situé soit dans le plan P, soit légèrement en avant du plan P (par exemple en avant d'environ 1 mm).
  • Sur Fig. 1 et 2 on a schématisé des rayons lumineux issus de l'émetteur 2.
  • Un rayon i1 provenant du coin 2a1 est réfléchi par la surface interne concave du réflecteur R1 selon un rayon i'1 qui, s'il n'était pas intercepté par le réflecteur R2, viendrait couper l'axe Y1-Y1. Ce rayon i'1, en tombant sur la surface convexe du second réflecteur R2, est renvoyé vers l'avant selon un rayon i"1 dont le prolongement vers l'arrière s'appuie sur l'axe Z1. Un autre rayon i2 provenant du même point 2a1 sortira après deux réflexions suivant un rayon i"2 situé dans un plan horizontal parallèle au plan contenant i"1 que le rayon i"1 et dont le prolongement vers l'arrière rencontre l'axe Z1. Les rayons réfléchis i"1, i"2 divergent, ce qui correspond à l'étalement du faisceau E.
  • Un rayon i3 (Fig. 2) provenant d'un point de l'émetteur 2 situé au-dessus du bord inférieur 2a, après réflexion sur le premier réflecteur R1 donne un rayon i'3 et, après réflexion sur le second réflecteur R2, donne le rayon sortant i"3 qui est descendant au-dessous du plan horizontal.
  • Le faisceau sortant est donc un faisceau à coupure horizontale, le faisceau étant situé au-dessous de la coupure dont le bord rectiligne correspond à l'image ou pseudo-image d'un segment de l'axe Y1-Y1 par le deuxième réflecteur R2.
  • Dans le cas de Fig. 1 et 2, du fait du croisement des faisceaux considérés provenant des extrémités opposées 2a1, 2a2 du bord inférieur de l'émetteur 2, et se dirigeant vers les parties de réflecteur R11, R12, il n'y aura pas de "trou", c'est-à-dire de zone indéterminée du réflecteur vis-à-vis des équation de constance du chemin optique des extrémités 2a1 et 2b1 jusqu'au segment 4..
  • La situation est différente pour la variante de module M2 des Fig. 4 et 5 selon laquelle c'est le bord orthogonal supérieur 2b de l'émetteur qui est pris en compte pour former le bord rectiligne 4' de la tache lumineuse 3'.
  • Dans ce cas, chaque extrémité 2b1, 2b2 (Fig.5) du bord supérieur 2b est associée à la partie R'11, R'12 du premier réflecteur R'1 située du côté ne comportant aucune partie de l'émetteur d'un plan vertical parallèle à l'axe optique passant par l'extrémité considérée.
  • Pour éviter un "trou" dans le réflecteur R'1, la détermination dudit réflecteur entre les deux plans délimitant les surfaces R'11 et R'12 est effectuée en considérant une surface d'onde source cylindrique d'axe constituée par le segment 2b. Comme pour le cas précédent (R1) et pour la détermination des parties R'11 et R'12 de R'1, la protection de l'émetteur 2 (lame plane ou dôme sphérique) est prise en compte pour la détermination de R'1 (elle intervient dans le calcul des chemins optiques dont la constance permet de déterminer les surfaces recherchées).
  • Le réflecteur R'1 est déterminé pour donner une surface d'onde d'arrivée d'axe horizontal Y'1-Y'1 (Fig.4) contenu dans un plan perpendiculaire à l'axe optique X-X. La tache lumineuse 3' au lieu de se trouver en avant du bord rectiligne 4', comme dans le cas des Fig. 1 et 2, se trouve en arrière de ce bord.
  • Le second réflecteur R'2 est calculé de manière à transformer une onde composée d'un cylindre et de deux quarts de sphère, issue du bord net 4' de la source virtuelle en une onde cylindrique d'axe vertical Z'1. Les deux quarts de sphère correspondent à l'onde de chacune des extrémités du bord 4', tandis que le cylindre correspond au segment compris entre les extrémités. Le réflecteur R'2 a une forme en selle de cheval avec sa surface concave tournée vers l'avant.
  • Alors que dans le cas des Fig. 1 et 2, le faisceau à coupure obtenu était un faisceau à coupure haute, la lumière étant située au-dessous de la ligne de coupure, la variante des Figs. 3 et 4 donne un faisceau à coupure basse, la lumière étant située au-dessus de la ligne de coupure correspondant à l'image du bord 4' donnée par le deuxième réflecteur R'2. Dans le cas d'un tel module, pour disposer d'un faisceau code avec coupure haute, il faut renverser le système, selon une rotation de 180° autour de l'axe optique, de sorte que le premier réflecteur R'1 se trouve en position basse et le deuxième réflecteur R'2 en position haute.
  • Sur le schéma de Fig. 4, le plan Q de la "source" intermédiaire 3' a été esquissé. Si le deuxième réflecteur R'2 est enlevé, on voit apparaître dans le plan Q la tache 3' avec un bord net 4' confondu avec l'axe de l'onde cylindrique Y'1-Y'1 utilisé pour le calcul.
  • L'axe vertical Z'1 de l'onde cylindrique de sortie est situé en avant du module de telle sorte que le faisceau sortant converge d'abord vers cet axe Z'1 puis s'étale au-delà.
  • Quelle que soit la variante de réalisation, le module avec ses deux réflecteurs R1, R2 ou R'1, R'2 peut être démoulé en une seule opération, les deux réflecteurs pouvant être rendus solidaires l'un de l'autre par un encadrement.
  • Dans le cas des Figs. 4 et 5, des rayons lumineux issus du bord supérieur 2b sortent du module, après deux réflexions en étant situés dans un plan horizontal et en venant couper l'axe vertical Z'1 en avant du module. Les rayons lumineux issus de points de l'émetteur 2 situé au-dessous du bord supérieur 2b sortent du module, après deux réflexions, en étant orientés vers le haut donnant ainsi un faisceau à coupure basse.
  • Les Fig.6 à 9 donnent des réseaux de courbes isolux (éclairement constant le long de la courbe) avec en abscisse les valeurs angulaires des directions considérées dans un plan horizontal par rapport à l'axe optique au centre, et en ordonnée les valeurs angulaires des directions considérées dans un plan vertical par rapport à l'axe optique au centre.
  • Fig. 6 est un réseau de courbes isolux obtenu avec un module selon Fig. 1 et 2. Le faisceau présente une ligne de coupure horizontale et est situé au-dessous de cette ligne. II apparaît que le faisceau est relativement étalé en largeur, symétriquement de part et d'autre du plan vertical médian passant par l'axe optique.
  • Fig. 7 est un réseau de courbes isolux obtenu avec un module selon Fig. 4 et 5, renversé haut/bas, c'est-à-dire que le premier réflecteur R'1, contrairement à la représentation de Fig. 4 se trouve au-dessous du deuxième réflecteur R'2. Les courbes isolux sont moins étalées de part et d'autre du plan vertical longitudinal médian que sur Fig. 6. Le faisceau produit par un module selon Fig. 4 et 5 est plus concentré que celui d'un module selon Fig. 1 et 2.
  • Pour réaliser un projecteur de véhicule automobile on peut notamment associer un module selon Fig. 1 et 2, qui donnera la largeur du faisceau, et un module selon Fig. 4 et 5 renversé, qui donnera la portée du faisceau.
  • Avec d'autres paramètres, on peut obtenir des faisceaux d'aspects différents. Fig. 8 donne un exemple de réseau de courbes isolux pour un module selon Fig. 4 et 5 mais avec des paramètres différents, ce module étant renversé pour donner un faisceau à coupure haute. Le faisceau de Fig.8 apparaît plus concentré que celui de Fig. 7. Les courbes isolux de plus faible éclairement sur Fig. 8 sont convexes vers le bas, sans présenter un creux concave dans le plan médian comme dans le cas de Fig. 7.
  • Comme paramètres de conception du module, on peut citer : la distance du centre de l'émetteur 2 à un point particulier du premier réflecteur collecteur R1, R'1; la position de l'axe Y'1-Y'1 de l'onde cylindrique intermédiaire; la distance d'un point particulier du deuxième réflecteur de sortie R2, R'2 à l'axe précédent; la position de l'axe Z1, Z'1 de l'onde cylindrique de sortie; les dimensions latérales maximales.
  • D'autres paramètres sont imposés : la taille de l'émetteur 2; la géométrie et l'indice de réfraction du matériau de la protection (lame plane ou dôme transparent) de l'émetteur.
  • Fig. 9 illustre un réseau de courbes isolux obtenu avec un module conforme aux Fig. 1 et 2, dont la source lumineuse est constituée par un émetteur 2 carré protégé par un dôme hémisphérique (encapsulation sphérique). Le faisceau apparaît plus étalé en largeur que dans le cas de Fig. 6, et plus réduit en hauteur.
  • La combinaison de deux faisceaux obtenus respectivement avec un module selon Fig. 1 et 2 et un module selon Fig. 4 et 5, permet d'obtenir un faisceau de croisement à ligne de coupure horizontale, conforme au règlement des Etats-Unis. Pour obtenir un faisceau de croisement de type européen à coupure en V, comportant une branche horizontale et une branche inclinée, on peut combiner deux modules dont l'un garde sa coupure horizontale et dont l'autre est tourné d'un angle approprié autour de son axe optique pour produire la branche inclinée de la coupure du faisceau.
  • L'invention permet d'obtenir de bons rendements en flux, de l'ordre de 70 %, car le premier réflecteur collecteur R1, R'1 est relativement enveloppant, proche d'une ellipse en coupe par un plan vertical passant par le centre de l'émetteur 2.
  • Le module selon l'invention peut être fabriqué par moulage sans tiroir. II est possible, en augmentant la distance à la source de l'image virtuelle intermédiaire 4, 4', de créer un espace libre T (Fig. 2) ou T' (Fig. 5) pour faciliter la fermeture du moule sans affecter le rendement. Les paramètres du réflecteur de sortie R2, R'2 permettent de compenser l'augmentation des tailles d'image, d'où l'intérêt d'avoir deux dioptres.
  • Le module constitue un système relativement plat, dont la dimension suivant l'axe optique est de l'ordre de 50 mm pour les exemples de réalisation décrits.

Claims (13)

  1. Module d'éclairage pour projecteur de véhicule automobile, prévu pour donner un faisceau à coupure, notamment un faisceau code ou antibrouillard, ce module admettant un axe optique et comprenant :
    - une source lumineuse constituée par au moins une diode électroluminescente (1), ou LED, à émetteur plan rectangulaire (2),
    - un premier réflecteur concave (R1, R'1) qui reçoit le faisceau issu de la LED et le renvoie vers un deuxième réflecteur (R2, R'2), lequel donne en sortie le faisceau à coupure,
    caractérisé en ce que :
    - la direction moyenne d'émission (D) de la LED est parallèle à l'axe optique (X-X) du module, l'émission ayant lieu vers l'avant, et deux bords (2a,2b) de l'émetteur plan rectangulaire sont orthogonaux à la direction de l'axe optique,
    - le premier réflecteur (R1, R'1) est situé en avant de la LED, avec sa face concave réfléchissante tournée vers l'arrière, et ce premier réflecteur (R1, R'1) est déterminé pour transformer une surface d'onde issue de l'un des bords orthogonaux (2a, 2b) de l'émetteur en une onde cylindrique d'axe (Y1- Y1 ;Y'1-Y'1) parallèle auxdits bords orthogonaux (2a, 2b), et pour former une tache lumineuse (3,3') limitée par un bord rectiligne (4,4'),
    - et le deuxième réflecteur (R2, R'2) présente une surface réfléchissante tournée vers l'avant, et est disposé pour intercepter les rayons renvoyés par le premier réflecteur de sorte que la susdite tache (3,3') est virtuelle, ce deuxième réflecteur étant déterminé pour transformer une onde semblant provenir du bord rectiligne (4,4') de la tache virtuelle en une onde cylindrique d'axe (Z1, Z'1) orthogonal à la direction de l'axe optique (X-X) et à celle du bord rectiligne (4, 4') de la tache virtuelle,
    de sorte que le faisceau sortant est au-dessus ou au-dessous d'un côté d'un plan orthogonal à l'axe de l'onde cylindrique provenant du deuxième réflecteur.
  2. Module d'éclairage selon la revendication 1, caractérisé en ce que les bords orthogonaux (2a,2b) de l'émetteur plan sont sensiblement orthogonaux à la direction de l'axe (Z1,Z'1) de l'onde cylindrique provenant du second réflecteur (R2,R'2).
  3. Module d'éclairage selon la revendication 1 ou la revendication 2, caractérisé en ce que l'émetteur plan (2) est orthogonal à la direction de l'axe optique (X-X) du module.
  4. Module d'éclairage selon l'une des revendications précédentes, caractérisé en ce que le premier réflecteur (R1) est déterminé pour prendre en compte le bord orthogonal inférieur (2a) de l'émetteur et pour en donner une image (4) constituant le bord rectiligne de la tache virtuelle (3), laquelle se trouve en avant de ce bord rectiligne (4), et le second réflecteur (R2) est convexe, avec sa surface réfléchissante tournée vers l'avant, et est déterminé pour donner, à partir de la tache lumineuse virtuelle (3), un faisceau situé au-dessous d'un plan perpendiculaire à l'axe (Z1) de la surface d'onde de sortie, ledit axe étant situé en arrière du second réflecteur (R2).
  5. Module d'éclairage selon la revendication 4, caractérisé en ce que le premier réflecteur (R1) est déterminé en considérant les deux extrémités (2a1, 2a2) du bord orthogonal inférieur (2a) de l'émetteur (2) et l'onde lumineuse sphérique émise par chacune de ces extrémités, et en ce que chaque partie (R11, R12) du premier réflecteur, située d'un côté du plan médian vertical longitudinal (V) passant par l'axe optique (X-X), est déterminée pour former le bord rectiligne (4) de la tache lumineuse en tant qu'image de l'extrémité (2a1, 2a2) du bord orthogonal située de l'autre côté du plan médian.
  6. Module d'éclairage selon l'une des revendications précédentes, caractérisé en ce que tout rayon issu de l'une des extrémités (2a1, 2a2) de l'émetteur et frappant le premier réflecteur (R1) en un point situé du même coté du plan médian vertical longitudinal (V) passant par l'axe optique (X-X) rencontre, en l'absence du second réflecteur (R2), le bord rectiligne (4) de façon à ce que ce chemin optique de l'une desdites extrémités (2a1, 2a2) audit bord (4) dudit rayon soit constant et indépendant du trajet de rayon choisi.
  7. Module d'éclairage selon l'une des revendications 1 à 3, caractérisé en ce que le premier réflecteur (R'1) est déterminé pour prendre en compte le bord orthogonal supérieur (2b) de l'émetteur (2) et pour en donner une image constituant le bord rectiligne (4') de la tache virtuelle (3'), laquelle se trouve en arrière de ce bord rectiligne (4'), et en ce que le second réflecteur (R'2) est en forme de selle de cheval, avec une surface réfléchissante concave tournée vers l'avant, et est déterminé pour donner, à partir de la tache lumineuse virtuelle (4'), un faisceau situé au-dessus d'un plan perpendiculaire à l'axe de la surface d'onde de sortie (Z'1), ledit axe étant situé en avant du second réflecteur (R'2).
  8. Module d'éclairage selon la revendication 7, caractérisé en ce que le premier réflecteur (R'1) est déterminé en associant chaque partie (R'11, R'12) du premier réflecteur, située d'un côté ne comprenant aucune partie de l'émetteur d'un plan vertical parallèle à l'axe optique passant une des extrémités 2b1 et 2b2, avec l'extrémité (2b1, 2b2) correspondante du bord orthogonal supérieur (2b) de l'émetteur ,et en considérant les points du bord orthogonal supérieur compris entre les extrémités (2b1, 2b2) pour le calcul de la partie de R'1 comprise entre les deux plans verticaux parallèles à l'axe optique passant par les extrémités 2b1 et 2b2.
  9. Module d'éclairage selon la revendication 7 ou 8, caractérisé en ce que la distance parcourue par tout rayon issu du bord orthogonal supérieur (2b) et perpendiculaire audit segment ou issu d'une de ses extrémités jusqu'au premier réflecteur (R'1), et du premier réflecteur (R'1) jusqu'au bord de la tache virtuelle (4') est une constante indépendante du rayon considéré, les rayons issus des extrémités du segment 2b n'étant pris en compte que lorsqu'ils frappent le réflecteur R'1 situé du côté ne comportant aucune partie de l'émetteur du plan vertical parallèle à l'axe optique et passant par l'extrémité du segment 2b d'où est issu le rayon.
  10. Projecteur lumineux de véhicule automobile, en particulier projecteur code ou antibrouillard, caractérisé en ce qu'il comporte au moins un module d'éclairage selon l'une quelconque des revendications précédentes.
  11. Projecteur lumineux selon la revendication 10, caractérisé en ce qu'il comporte deux modules juxtaposés, l'un (M1) des modules comportant un premier réflecteur (R1) déterminé pour prendre en compte le bord orthogonal inférieur (2a) de l'émetteur (2) et le second réflecteur (R2) étant convexe, l'axe (Z1) de la surface d'onde de sortie étant situé en arrière du second réflecteur (R2), ce premier module donnant un faisceau relativement étalé, tandis que le deuxième module (M2) comporte un premier réflecteur (R'1) déterminé pour prendre en compte le bord orthogonal supérieur (2b) de l'émetteur (2) et le second réflecteur (R'2) est en forme de selle de cheval, l'axe (Z'1) de la surface d'onde de sortie étant situé en avant du second réflecteur, ce deuxième module donnant un faisceau plus étroit mais de plus grande portée.
  12. Projecteur selon la revendication 11, caractérisé en ce que le second module (M2) est tourné de 180° par rapport à l'axe optique (X-X), notamment afin que le module réalise un faisceau de code selon les réglementations américaines.
  13. Projecteur lumineux selon la revendication 10, caractérisé en ce qu'il comporte deux modules juxtaposés, pour réaliser une coupure code européen, l'un des modules donnant la branche horizontale de la coupure, l'autre module étant tourné autour de son axe optique pour donner la branche inclinée de la coupure.
EP09161373.7A 2008-06-06 2009-05-28 Module d'éclairage pour projecteur de véhicule automobile Active EP2131098B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0803182A FR2932245B1 (fr) 2008-06-06 2008-06-06 Module d'eclairage pour projecteur de vehicule automobile

Publications (2)

Publication Number Publication Date
EP2131098A1 true EP2131098A1 (fr) 2009-12-09
EP2131098B1 EP2131098B1 (fr) 2014-03-26

Family

ID=40219305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09161373.7A Active EP2131098B1 (fr) 2008-06-06 2009-05-28 Module d'éclairage pour projecteur de véhicule automobile

Country Status (4)

Country Link
EP (1) EP2131098B1 (fr)
JP (1) JP5586172B2 (fr)
ES (1) ES2475204T3 (fr)
FR (1) FR2932245B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960497A1 (fr) * 2010-05-31 2011-12-02 Valeo Vision Module d'eclairage pour projecteur de vehicule automobile
DE102010033707A1 (de) * 2010-08-06 2012-02-09 Hella Kgaa Hueck & Co. Optikanordnung für einen Scheinwerfer eines Fahrzeugs
EP2565522A1 (fr) * 2011-09-05 2013-03-06 Valeo Vision Projecteur pour véhicule automobile
DE102013207845A1 (de) * 2013-04-29 2014-10-30 Automotive Lighting Reutlingen Gmbh Lichtmodul für einen Kraftfahrzeugscheinwerfer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440456A (en) 1993-05-08 1995-08-08 Robert Bosch Gmbh Headlight for vehicles
EP1267116A1 (fr) * 2001-06-14 2002-12-18 Valeo Vision Dispositif d'éclairage ou de signalisation
EP1434002A1 (fr) 2002-12-20 2004-06-30 Valeo Vision Module d'éclairage pour projecteur de véhicule
EP1528312A1 (fr) * 2003-10-31 2005-05-04 Valeo Vision Module d'éclairage pour projecteur de véhicule
EP1843085A1 (fr) * 2006-04-06 2007-10-10 Valeo Vision Module d'éclairage pour projecteur lumineux de véhicule automobile, et projecteur comportant un tel module
EP1870633A1 (fr) * 2006-06-23 2007-12-26 Valeo Vision Module de projecteur avec diode électroluminescente
EP1881264A1 (fr) * 2006-07-21 2008-01-23 Valeo Vision Module optique pour projecteur de véhicule automobile

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349130A (ja) * 2003-05-22 2004-12-09 Koito Mfg Co Ltd 車両用灯具
JP4468857B2 (ja) * 2005-05-17 2010-05-26 株式会社小糸製作所 車両用照明灯具
JP4607811B2 (ja) * 2006-04-18 2011-01-05 株式会社小糸製作所 車両用照明灯具
JP4683650B2 (ja) * 2006-05-29 2011-05-18 株式会社小糸製作所 車輌用灯具
JP4544237B2 (ja) * 2006-10-31 2010-09-15 市光工業株式会社 車両用灯具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440456A (en) 1993-05-08 1995-08-08 Robert Bosch Gmbh Headlight for vehicles
EP1267116A1 (fr) * 2001-06-14 2002-12-18 Valeo Vision Dispositif d'éclairage ou de signalisation
EP1434002A1 (fr) 2002-12-20 2004-06-30 Valeo Vision Module d'éclairage pour projecteur de véhicule
EP1528312A1 (fr) * 2003-10-31 2005-05-04 Valeo Vision Module d'éclairage pour projecteur de véhicule
EP1843085A1 (fr) * 2006-04-06 2007-10-10 Valeo Vision Module d'éclairage pour projecteur lumineux de véhicule automobile, et projecteur comportant un tel module
EP1870633A1 (fr) * 2006-06-23 2007-12-26 Valeo Vision Module de projecteur avec diode électroluminescente
EP1881264A1 (fr) * 2006-07-21 2008-01-23 Valeo Vision Module optique pour projecteur de véhicule automobile

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960497A1 (fr) * 2010-05-31 2011-12-02 Valeo Vision Module d'eclairage pour projecteur de vehicule automobile
US8651716B2 (en) 2010-05-31 2014-02-18 Valeo Vision Lighting module for headlamp of a motor vehicle
EP2390562A3 (fr) * 2010-05-31 2014-12-03 Valeo Vision Module d'éclairage pour projecteur de véhicule automobile
DE102010033707A1 (de) * 2010-08-06 2012-02-09 Hella Kgaa Hueck & Co. Optikanordnung für einen Scheinwerfer eines Fahrzeugs
EP2565522A1 (fr) * 2011-09-05 2013-03-06 Valeo Vision Projecteur pour véhicule automobile
FR2979594A1 (fr) * 2011-09-05 2013-03-08 Valeo Vision Projecteur pour vehicule automobile
US8851724B2 (en) 2011-09-05 2014-10-07 Valeo Vision Headlight for a motor vehicle
DE102013207845A1 (de) * 2013-04-29 2014-10-30 Automotive Lighting Reutlingen Gmbh Lichtmodul für einen Kraftfahrzeugscheinwerfer
US9546766B2 (en) 2013-04-29 2017-01-17 Automotive Lighting Reutlingen Gmbh Light module for a motor vehicle headlamp

Also Published As

Publication number Publication date
JP5586172B2 (ja) 2014-09-10
FR2932245A1 (fr) 2009-12-11
JP2009295585A (ja) 2009-12-17
EP2131098B1 (fr) 2014-03-26
FR2932245B1 (fr) 2010-09-10
ES2475204T3 (es) 2014-07-10

Similar Documents

Publication Publication Date Title
EP1666787B1 (fr) Module d'éclairage pour projecteur de véhicule automobile
EP3708904B1 (fr) Dispositif lumineux imageant les surfaces eclairees d'au moins deux collecteurs
EP1434002B1 (fr) Module d'éclairage pour projecteur de véhicule
WO2020025171A1 (fr) Module lumineux imageant la surface eclairee d'un collecteur
FR3050011A1 (fr) Module d'emission d'un faisceau lumineux pour projecteur de vehicule automobile
FR3032778A1 (fr) Feu de vehicule
FR2851030A1 (fr) Phare de vehicule a source, reflecteur et lentille
EP2679884A1 (fr) Dispositif optique de véhicule automobile à éléments dioptriques intégrés au conduit de lumière
FR2868510A1 (fr) Lampe d'eclairage a diodes electroluminescentes pour vehicule
FR2853393A1 (fr) Phare de vehicule a diode photoemissive
FR3026461A1 (fr) Module lumineux pour l'eclairage et/ou la signalisation d'un vehicule automobile
FR3023600A1 (fr) Module lumineux d'un vehicule automobile
EP2019258A1 (fr) Module optique à source lumineuse pour projecteur automobile
FR3038362A1 (fr) Lampe de vehicule
EP2976569B1 (fr) Module d'éclairage et/ou de signalisation pour véhicule automobile
EP2131098B1 (fr) Module d'éclairage pour projecteur de véhicule automobile
FR3077367A1 (fr) Module lumineux bi-fonction avec surface eclairee commune
FR3008772A1 (fr) Lampe pour vehicule
EP1489351B1 (fr) Projecteur de véhicule automobile permettant d'assurer au moins deux fonctions
FR3008778A1 (fr) Systeme d'eclairage, notamment pour un organe d'eclairage de vehicule automobile, a carte a circuit imprime inclinee par rapport a la direction d'eclairage
FR3009065A1 (fr) Dispositif optique de vehicule automobile
EP3271211B1 (fr) Système d'éclairage et/ou de signalisation pour véhicules automobiles
FR3118127A1 (fr) Dispositif lumineux bi-fonction avec lentille rotative
FR3129122A1 (fr) Module lumineux avec fonctions d’éclairage et de signalisation
FR2894647A1 (fr) Projecteur de vehicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20100527

17Q First examination report despatched

Effective date: 20100623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131023

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 659193

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009022712

Country of ref document: DE

Effective date: 20140508

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2475204

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 659193

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140326

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140326

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140726

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140728

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009022712

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140626

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20150106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009022712

Country of ref document: DE

Effective date: 20150106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090528

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

RIC2 Information provided on ipc code assigned after grant

Ipc: F21S 8/10 20060101ALI20090619BHEP

Ipc: F21V 7/00 20060101AFI20090619BHEP

Ipc: F21Y 101/02 20000101ALN20090619BHEP

Ipc: F21W 101/10 20060101ALN20090619BHEP

Ipc: F21V 7/04 20060101ALI20090619BHEP

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230523

Year of fee payment: 15

Ref country code: ES

Payment date: 20230607

Year of fee payment: 15

Ref country code: DE

Payment date: 20230510

Year of fee payment: 15