EP2120514A1 - Dispositif de traitement d'un gaz par plasma froid, procédés d'utilisation et de fabrication associés - Google Patents

Dispositif de traitement d'un gaz par plasma froid, procédés d'utilisation et de fabrication associés Download PDF

Info

Publication number
EP2120514A1
EP2120514A1 EP09160249A EP09160249A EP2120514A1 EP 2120514 A1 EP2120514 A1 EP 2120514A1 EP 09160249 A EP09160249 A EP 09160249A EP 09160249 A EP09160249 A EP 09160249A EP 2120514 A1 EP2120514 A1 EP 2120514A1
Authority
EP
European Patent Office
Prior art keywords
gas
electrode
electrodes
tips
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09160249A
Other languages
German (de)
English (en)
Other versions
EP2120514B1 (fr
EP2120514B9 (fr
Inventor
Didier Frochot
Frédéric TUVACHE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Original Assignee
Electricite de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA filed Critical Electricite de France SA
Publication of EP2120514A1 publication Critical patent/EP2120514A1/fr
Publication of EP2120514B1 publication Critical patent/EP2120514B1/fr
Application granted granted Critical
Publication of EP2120514B9 publication Critical patent/EP2120514B9/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes

Definitions

  • the present invention relates to a device for treating a gas.
  • the invention also relates to methods of using a device mentioned above, and a method of manufacturing a device mentioned above.
  • a dielectric barrier discharge (DBD) device for purifying a gas comprising a stack of units in which discharges occur, the discharges purifying the gas passing through the units.
  • DBD dielectric barrier discharge
  • Each unit has two dielectric plates and two metal electrodes, each dielectric plate being connected to a metal electrode. Discharges occur between two dielectric plates.
  • the reduction of the useful section of passage also causes, for the same flow rate, an increase in the rate of passage of the gas in the device, and therefore decreases the residence time of the gas in the device, with the consequence of a lower destruction efficiency polluting molecules.
  • undesirable plasmas can be formed between the metal electrodes and the dielectric plates.
  • the contact between the metal electrodes and the dielectric plates is in imperfect cold effect, and perfect contact is even more difficult to obtain as the device heats up in operation.
  • the gas between the metal electrodes and the dielectric plates constitutes energy losses for the device because the gas does not circulate there.
  • the distribution of cold plasma discharges is also not well controlled throughout the gas flow volume, particularly if the plates are not perfectly parallel and flat, or if the dielectric material is not perfectly homogeneous in density and in thickness.
  • Such a device also has drawbacks.
  • the gas circulating in the device is little stirred, because of the fineness of the pins, and the function of the device is to create certain active species, which is recovered at the output.
  • Some of the active species created by the plasma are unexploited because they are not brought into rapid contact with the molecules in the presence gas.
  • the power supply must be able to generate current pulses, which increases the complexity and the cost of the power supply.
  • This device geometry is not well adapted to obtain a significant destruction rate of the molecules in the plasma creation volume.
  • SU 1 606 464 a water ozonisation device comprising a reaction chamber, in which discharges occur between metal electrode tips. The discharges pass through the perforations of a perforated grid of dielectric material.
  • This device which concerns the treatment of a liquid and not that of a gas (there is no creation of a plasma in the reaction chamber), furthermore requires, due to discharges between the electrodes, a powerful power supply that must be able to generate current pulses for the creation of discharges.
  • EP 0 366 876 a gas treatment device comprising a stack of surface metal electrodes and electrically insulated double dielectric plates positioned between two metal electrodes,
  • the double dielectric plates relatively thick, reduce the useful section of passage of the gas to be treated, which generates the same disadvantages as those mentioned above vis-à-vis US 2005/0142047 .
  • the surface electrodes are corrugated and have longitudinal ridges extending perpendicular to the direction of passage of the gas during its treatment.
  • the longitudinal ridges do not allow a homogeneous distribution of discharges along their length and therefore do not allow a good distribution of discharges throughout the gas passage volume, especially if the electrodes are not perfectly parallel.
  • the invention proposes to overcome at least one of these disadvantages.
  • the invention also relates to methods of using a device mentioned above, and a method of manufacturing a device mentioned above.
  • the invention has many advantages.
  • the invention is close to the principle of a dielectric barrier discharge (DBD) type device, and can thus operate with a high voltage power supply of simple design at low cost.
  • DBD dielectric barrier discharge
  • each gas blade prevents the discharge from being blown, even with gas velocities greater than 10 m / s.
  • the flow of gas is efficient because of the very great fineness of the electrodes and plates (of the order of a millimeter).
  • the geometry of the construction and the choice of materials used make it possible to obtain a very low pressure drop (of the order of 40 Pa) even at very high gas flow rates (> 10 m / second), which allows energy saving ventilation for example.
  • Discharges which take place between a tip of a metal electrode and a dielectric plate make it possible to limit the current necessary for the discharge to take place.
  • a discharge between two metal electrodes corresponds to a large current, and the plasma thus created is a high energy plasma with a high temperature.
  • the dielectric plate electrically insulated, is charged only on the surface (dielectric ionization phenomenon) by acting as a capacitance.
  • the discharge between a tip of an electrode and the plate therefore corresponds to a weak current, and the plasma obtained is a low energy plasma, so cold.
  • the points of the electrodes pointed and therefore pointwise at their ends, correspond to well-located discharge points.
  • the distribution of the discharges is homogeneous throughout the volume of passage of the gas.
  • the device according to the invention has a low energy consumption, for a high efficiency of destruction of pollutants.
  • the circulating gas is stirred, which increases the gas treatment efficiency.
  • the tips thanks to their shape (substantially triangular and of different orientation) and their implementation (the tips are arranged and arranged in staggered rows, that is to say in rows offset from each other, with a very high density), indeed allow to mix intimately and immediately (that is to say when the electronic species are the most numerous and the most active) the polluted gas with the electronic species made in the cold plasma.
  • Another advantage of the invention is the reduction in the manufacturing cost of the device, in particular because of the reduction in the cost of manufacturing the electrodes, by using a simple stamping process.
  • the device is therefore inexpensive.
  • This stamping process also makes it possible to generate a high density of very sharp points (10,000 to 100,000 points / m 2 ) of uniform height, which would be difficult to obtain with another technique.
  • the homogeneity of the peak height and the homogeneity of distribution of the tips make it possible to avoid the concentration of the discharges locally on an electrode, which avoids an inhomogeneity of treatment of the gas in the volume of the device.
  • the fixing by welding (by points of preference) of a strip (from 0.1 to 0.2 mm thick) of rigid metal (preferentially steel) stamped (for the formation of points by tearing) on a stiffer plate (of the order of mm thick) of metal (preferably steel also) substantially flat, allows a very compact.
  • the compactness allows a good exchange factor between the gas and the plasma.
  • the attachment of the strips on the plate allows a very good positioning accuracy of the electrode tips relative to each other, essential to obtain a uniform treatment of the gas throughout the volume of the device.
  • the dielectric plates are also thin plates of mica (of the order of 1 mm), machined.
  • the advantages of this material are its low cost, good mechanical strength, good electrical resistance, and ease of cutting.
  • Other dielectric materials may also be provided.
  • the device can comprise a large number of peaks and reach a high power density (of the order of 800 kW / m 3 ), in order to be able to deal with large gas flows (of the order of 10 000 m 3 / h ) while maintaining a reduced spatial footprint.
  • the electrodes and plates are stacked and maintained at an optimum distance by means of grooves machined in flanges of the device. Disassembly for cleaning or changing one of the elements is greatly facilitated.
  • the discharge frequency, the value of the high discharge voltage or the moisture content of the gas it is possible to obtain a process for purifying or deodorising a gas (for example air), a process for production of a treatment gas from a surface, or a process for producing an electronic or chemical species (ions, free radicals, ozone, etc.).
  • a gas for example air
  • a process for production of a treatment gas from a surface or a process for producing an electronic or chemical species (ions, free radicals, ozone, etc.).
  • the Figures 1 to 5 schematically show a possible embodiment of a device for treating a gas.
  • the device comprises at least one elementary unit 2.
  • the device comprises a plurality of units 2 to form a stack.
  • the plate is of a size substantially similar to that of each electrode, or even slightly larger.
  • the electrodes 3 are connected to an alternating high voltage generator 5,
  • a plurality of discharges 7 can take place between the tips 34 of the electrodes 3 and the plate 4.
  • the alternating high voltage generator 5 can generate an alternating electrical voltage, for example of sinusoidal, slot or pulsed form (with voltage peaks), at high voltage (between 10 kVolt and 30 kVolt, for example).
  • the dielectric plate 4 Due to the application of an alternating voltage on the electrodes 3, the dielectric plate 4, electrically insulated, is charged on the surface according to the phenomenon known to those skilled in the art under the name of dielectric ionization.
  • the plate 4 discharges at the surface when the discharge 7 takes place between the electrode 3 and the plate 4.
  • the flow of gas 10 can be provided by a fan 9 for example, or be produced by any other industrial phenomenon (when the device is placed in a gas evacuation system for example).
  • the tips 34 of each electrode 3 are preferably distributed in staggered relation to each other on the electrode 3, homogeneously, so that the circulating gas systematically passes close to a tip.
  • the tips 34 are firstly distributed in lines, and spaced apart by a space along the lines.
  • the tips 34 are further distributed in columns, the columns being spaced apart by a distance.
  • the lines are offset from each other by half a space as shown in figure 3 .
  • the density of the tips 34 on each electrode is between 10,000 and 100,000 points / m 2 .
  • the homogeneity of treatment of the gas in each unit 2 is therefore ensured.
  • each electrode 3 and each plate 4 is of the order of mm.
  • the discharges are therefore not blown by the gas 10 in circulation, even with very high gas circulation rates (of the order of 10 m / s).
  • the device comprises grooves 81 formed in flanges 8, for the maintenance, at the selected relative distance, of the electrodes 3 and the plates 4. Disassembly for cleaning or changing one of the elements is thus greatly facilitated, sliding plates and electrodes in the grooves.
  • the tips 34 are of triangular shape, with a point end and a relatively wider base, which ensures uniformity of stirring of the gas during its circulation and its contact with the tips.
  • the tips have a uniform height, to avoid the discharge concentrations on the electrodes 3 and ensure homogeneity of gas treatment.
  • Such characteristics of the tips 34 are possible thanks to a method of manufacturing a device according to the invention.
  • At least one metal strip is stamped to form tips 34.
  • the strip is not rigid (thickness of the order of 0.1 mm), which allows easy tearing of the strip for the formation of very sharp points favorable to the formation of plasma, a bit like a cheese grater ( see figure 3 ). This controls the shape, height and density of the tips.
  • Fixing is done by spot welding, or by gluing, for example.
  • Attaching strips on either side of the metal plate to form the electrode allows the formation of discharges on both sides of each electrode, and thus better performance, with higher power and without mechanical deformation due to the heating of the electrodes (there is indeed a compensation of thermal deformations).
  • the dielectric plates are mica plates of similarly low thickness (of the order of 1 mm), machined.
  • the advantages of this material are its low cost, good mechanical strength, good electrical resistance, and ease of cutting.
  • Other dielectric materials may also be provided.
  • the distance between the plates 4 and the electrodes 3, the characteristics and the density of the tips 34 of each electrode, or the humidity of the gas it is possible to obtain, using the device according to the invention, a method for purifying or deodorizing gas, a method for producing a surface treatment gas or a method for producing an electronic or chemical species.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

L'invention concerne un dispositif de traitement d'un gaz, caractérisé en ce qu 'il comporte un empilement (1) d'unités (2) élémentaires, chaque unité (2) comportant une alternance composée de : - deux électrodes (3) métalliques surfaciques comportant des pointes de part et d'autre d'un plan médian et étant reliée à un générateur (5) de haute tension, et - une plaque (4) diélectrique située entre les deux électrodes (3) et isolées électriquement de sorte qu'une pluralité de décharges (7) puisse avoir lieu entre l'électrode (3) et la plaque (4) pour la création d'un plasma froid apte à traiter un gaz en circulation dans le dispositif. L'invention concerne également des procédés d'utilisation du dispositif précité, et un procédé de fabrication d'un dispositif précité.

Description

    DOMAINE TECHNIQUE GENERAL
  • La présente invention concerne un dispositif de traitement d'un gaz.
  • L'invention concerne également des procédés d'utilisation d'un dispositif précité, et un procédé de fabrication d'un dispositif précité.
  • ETAT DE L'ART
  • Il existe de nombreux dispositifs permettant une purification d'un gaz ou une production d'espèces électroniques ou chimiques spécifiques (comme de l'ozone ou des ions de traitement de surface ou de désinfection par exemple).
  • On connaît premièrement, par exemple par US 2005/0142047 , un dispositif du type décharge à barrière diélectrique (DBD) de purification d'un gaz comportant un empilement d'unités dans lesquelles se produisent des décharges, les décharges purifiant le gaz passant dans les unités.
  • Chaque unité comporte deux plaques diélectriques et deux électrodes métalliques, chaque plaque diélectrique étant reliée à une électrode métallique. Les décharges se produisent entre deux plaques diélectriques.
  • Un tel dispositif présente des inconvénients.
  • La présence de deux plaques diélectriques relativement épaisses dans chaque unité diminue la section utile de passage du gaz.
  • Cette diminution de la section utile de passage, liée à un nombre accru de plaques diélectriques dans l'unité, engendre des pertes de charge, ce qui provoque une augmentation de la consommation énergétique pour la mise en circulation du gaz.
  • La diminution de la section utile de passage provoque également, pour un même débit, une augmentation de la vitesse de passage du gaz dans le dispositif, et diminue donc le temps de séjour du gaz dans le dispositif, avec pour conséquence une efficacité moindre de destruction des molécules polluantes.
  • Par ailleurs, dans ce type de dispositif, il peut se former des plasmas indésirables entre les électrodes métalliques et les plaques diélectriques. Le contact entre les électrodes métalliques et les plaques diélectriques est en effet imparfait à froid, et un contact parfait est encore plus difficile à obtenir au fur et à mesure que le dispositif s'échauffe en fonctionnement. Le gaz compris entre les électrodes métalliques et les plaques diélectriques constitue des pertes énergétiques pour le dispositif, car le gaz ne circule pas à cet endroit.
  • De plus, le gaz qui circule entre les plaques diélectriques n'est pas brassé correctement, du fait de la relative planéité des plaques diélectriques.
  • La répartition des décharges de plasma froid n'est en outre pas bien maîtrisée dans tout le volume de passage du gaz, en particulier si les plaques ne sont pas parfaitement parallèles et planes, ou si le matériau diélectrique n'est pas parfaitement homogène en densité et en épaisseur.
  • On connaît deuxièmement, par exemple par US 6 375 714 , un dispositif faisant appel à électrodes métalliques sous forme de grilles comportant de simples picots entre lesquels se produisent les décharges. Le dispositif ne comporte pas de plaque diélectrique entre deux électrodes métalliques, et utilise ainsi l'effet couronne.
  • Un tel dispositif présente également des inconvénients.
  • Le gaz qui circule dans le dispositif est peu brassé, du fait de la finesse des picots, et la fonction du dispositif est de créer certaines espèces actives, qu'on récupère en sortie.
  • Certaines des espèces actives créées par le plasma (radicaux de très faible durée de vie) sont inexploitées, car elles ne sont pas mises en contact rapidement avec les molécules en présence dans le gaz de passage.
  • En raison de l'absence de matériau diélectrique permettant la limitation du courant de décharge, l'alimentation électrique doit être capable de générer des impulsions de courant, ce qui augmente la complexité et le coût de l'alimentation.
  • Cette géométrie de dispositif n'est pas bien adaptée pour obtenir un taux de destruction important des molécules dans le volume de création du plasma.
  • On connaît également de SU 1 606 464 un dispositif d'ozonisation d'eau comportant une chambre de réaction, dans laquelle des décharges ont lieu entre des pointes d'électrodes métalliques. Les décharges passent au travers des perforations d'une grille perforée en matériau diélectrique.
  • Ce dispositif, qui concerne le traitement d'un liquide et non pas celui d'un gaz (il n'y a pas création d'un plasma dans la chambre de réaction), requiert en outre, du fait des décharges entre les électrodes, une alimentation électrique puissante qui doit être capable de générer des impulsions de courant pour la création des décharges.
  • On connaît en outre de EP 0 366 876 un dispositif de traitement d'un gaz comportant un empilement d'électrodes métalliques surfaciques et de doubles plaques diélectriques isolées électriquement et positionnées entre deux électrodes métalliques,
  • Les doubles plaques diélectriques, relativement épaisses, diminuent la section utile de passage du gaz à traiter, ce qui génère les mêmes inconvénients que ceux mentionnés ci-dessus vis-à-vis de US 2005/0142047 .
  • De plus, les électrodes surfaciques sont ondulées et présentent des crêtes longitudinales s'étendant perpendiculairement au sens de passage du gaz lors de son traitement. Les crêtes longitudinales ne permettent pas une répartition homogène des décharges sur leur longueur et par conséquent ne permettent pas une bonne répartition des décharges dans tout le volume de passage du gaz, en particulier si les électrodes ne sont pas parfaitement parallèles.
  • PRESENTATION DE L'INVENTION
  • L'invention propose de pallier au moins un de ces inconvénients.
  • A cet effet, on propose selon l'invention un dispositif selon la revendication 1.
  • L'invention est avantageusement complétée par les caractéristiques des revendications 2 à 7, prises seules ou en une quelconque de leur combinaison techniquement possible.
  • L'invention concerne également des procédés d'utilisation d'un dispositif précité, et un procédé de fabrication d'un dispositif précité.
  • L'invention présente de nombreux avantages.
  • L'invention est proche du principe d'un dispositif du type décharge à barrière diélectrique (DBD), et peut donc fonctionner avec une alimentation électrique haute tension de conception simple à faible coût.
  • Même si chaque lame de gaz dans laquelle s'effectuent les décharges pour la production de plasma froid est de très faible épaisseur (de l'ordre du mm), la section utile de passage est relativement importante.
  • La finesse de chaque lame de gaz permet d'éviter que la décharge soit soufflée, même avec des vitesses de gaz supérieures à 10 m/s.
  • La circulation du gaz est efficace du fait de la très grande finesse des électrodes et des plaques (de l'ordre du millimètre). La géométrie de construction et le choix des matériaux utilisés permettent d'obtenir une perte de charge très faible (de l'ordre de 40 Pa) même aux vitesses de passage de gaz très importantes (> 10 m/seconde), ce qui permet des économies d'énergie de ventilation par exemple.
  • De plus, du fait de la structure du dispositif, il n'y a aucune formation de plasma froid indésirable entre une plaque diélectrique et une électrode métallique. On évite aussi la formation de plasmas de surface qui ne seraient pas utiles pour le flux de gaz en circulation.
  • Les décharges qui ont lieu entre une pointe d'une électrode métallique et une plaque diélectrique permettent de limiter le courant nécessaire pour que la décharge puisse avoir lieu.
  • En effet, une décharge entre deux électrodes métalliques correspond à un courant important, et le plasma ainsi créé est un plasma à haute énergie avec une température élevée.
  • Dans le cas de l'invention, la plaque diélectrique, isolée électriquement, se charge uniquement en surface (phénomène d'ionisation diélectrique) en jouant le rôle d'une capacité. La décharge entre une pointe d'une électrode et la plaque correspond donc à un faible courant, et le plasma obtenu est un plasma à faible énergie, donc froid.
  • Les pointes des électrodes, pointues et donc ponctuelles à leur extrémité, correspondent à des points de décharge bien localisés.
  • La répartition des décharges est homogène dans tout le volume de passage du gaz.
  • Concrètement le dispositif selon l'invention a une consommation énergétique faible, pour une grande efficacité de destruction des polluants.
  • De plus, du fait de la présence de pointes génératrices de turbulences dans la section de passage du gaz, le gaz en circulation est brassé, ce qui augmente le rendement de traitement du gaz.
  • Les pointes, grâce à leur forme (sensiblement triangulaire et d'orientation différente) et à leur implantation (les pointes sont rangées et disposées en quinconce, c'est-à-dire selon des rangées décalées les unes par rapport aux autres, avec une très forte densité), permettent en effet de mélanger intimement et immédiatement (c'est à dire quand les espèces électroniques sont les plus nombreuses et les plus actives) le gaz pollué aux espèces électroniques fabriquées dans le plasma froid.
  • On peut donc dire que la probabilité de mise en contact d'une molécule polluante avec une décharge ou une espèce active nouvellement créée est fortement améliorée par rapport aux dispositifs existants.
  • La conséquence est une performance de destruction des polluants accrue pour une même puissance électrique absorbée.
  • Un autre avantage de l'invention est la réduction du coût de fabrication du dispositif, notamment du fait de la réduction du coût de fabrication des électrodes, en faisant appel à un procédé d'emboutissage simple. Le dispositif est donc peu onéreux.
  • Ce procédé d'emboutissage permet en outre de générer une grande densité de pointes très pointues (10.000 à 100.000 pointes/m2) de hauteur homogène, qui serait difficile à obtenir avec une autre technique.
  • L'homogénéité de hauteur de pointe et l'homogénéité de répartition des pointes permettent d'éviter la concentration des décharges localement sur une électrode, ce qui évite une inhomogénéité de traitement du gaz dans le volume du dispositif.
  • La fixation par soudage (par points de préférence) d'un feuillard (de 0.1 à 0.2 mm d'épaisseur) de métal peu rigide (préférentiellement de l'acier) embouti (pour la formation de pointes par déchirement) sur une plaque plus rigide (de l'ordre du mm d'épaisseur) de métal (préférentiellement d'acier également) sensiblement plane, permet de réaliser un dispositif très compact. La compacité permet un bon facteur d'échange entre le gaz et le plasma.
  • De plus, la fixation des feuillards sur la plaque permet une très bonne précision de positionnement des pointes des électrodes les unes par rapport aux autres, indispensable pour obtenir un traitement homogène du gaz dans tout le volume du dispositif.
  • La création d'un plasma de part et d'autre des électrodes métalliques double face permet d'éliminer la flexion thermique qui se produit inévitablement lorsqu'un seul côté d'une plaque subit un échauffement.
  • De préférence, les plaques diélectriques sont des plaques de mica également de faible épaisseur (de l'ordre de 1 mm), usinées. Les avantages de ce matériau sont son faible coût, sa bonne tenue mécanique, sa bonne tenue électrique, et sa facilité de découpe. D'autres matériaux diélectriques peuvent également être prévus.
  • On pourra aussi construire un dispositif de grande section d'un seul tenant qu'il sera possible d'insérer dans des gaines d'extraction de gaz existantes.
  • Le dispositif peut comporter un grand nombre de pointes et atteindre une densité de puissance élevée (de l'ordre de 800 kW/m3), afin de pouvoir traiter de grands débits de gaz (de l'ordre de 10 000 m3/h) tout en conservant un encombrement spatial réduit.
  • Les électrodes et les plaques sont empilées et maintenues à une distance optimale grâce à des rainures usinées dans des flasques du dispositif. Le démontage pour nettoyage ou changement d'un des éléments est donc grandement facilité.
  • En modifiant la fréquence de décharge, la valeur de la haute tension de décharge ou le taux d'humidité du gaz, on peut obtenir un procédé de purification ou de désodorisation d'un gaz (par exemple de l'air), un procédé de production d'un gaz de traitement d'une surface, ou un procédé de production d'une espèce électronique ou chimique (ions, radicaux libres, ozone, etc.).
  • PRESENTATION DES FIGURES
  • D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
    • la figure 1 montre schématiquement le montage électrique d'un dispositif selon l'invention ;
    • la figure 2 montre schématiquement des décharges entre une électrode et une plaque ;
    • la figure 3 montre schématiquement un feuillage monté sur une plaque pour la construction d'une électrode ;
    • la figure 4 montre schématiquement le montage mécanique d'un dispositif selon l'invention ; et
    • la figure 5 montre schématiquement une vue de profil d'un dispositif selon l'invention comportant un ventilateur de mise en circulation d'un gaz.
  • Sur l'ensemble des figures, les éléments similaires portent des références numériques identiques.
  • DESCRIPTION DETAILLEE
  • Les figures 1 à 5 montrent schématiquement un mode de réalisation possible d'un dispositif de traitement d'un gaz.
  • Le dispositif comporte au moins une unité 2 élémentaire. Avantageusement, le dispositif comporte une pluralité d'unités 2 pour former un empilement.
  • Chaque unité 2 comporte :
    • deux électrodes 3 métalliques surfaciques comportant des pointes 34, avantageusement mais non limitativement de part 31 et d'autre 32 d'un plan 33 médian, et
    • une plaque 4 diélectrique isolée électriquement, et située entre les deux électrodes métalliques 3, et très préférentiellement à égale distance de chacune d'entre elles afin d'avoir un traitement du gaz homogène.
  • La plaque est de taille sensiblement similaire à celle de chaque électrode, voire légèrement plus grande.
  • Les électrodes 3 sont reliées à un générateur 5 de haute tension alternative,
  • Ainsi, en fonctionnement, une pluralité de décharges 7 peuvent avoir lieu entre les pointes 34 des électrodes 3 et la plaque 4. Le générateur 5 de haute tension alternative, peut générer une tension électrique alternative par exemple de forme sinusoïdale, créneau ou pulsée (avec des pics de tension), à haute tension (entre 10 kVolts et 30 kVolts par exemple).
  • Il peut fonctionner à des fréquences très basses (quelques dizaines de Hz) et jusqu'à des fréquences relativement élevées de plusieurs dizaines de kHz selon les applications et les effets recherchés.
  • Du fait du passage d'un gaz 10 entre chaque électrode 3 et la plaque 4 et des décharges électriques entre les pointes 34 et la plaque 4, il y a création d'un plasma froid apte à traiter le gaz en circulation dans le dispositif.
  • Du fait de l'application d'une tension alternative sur les électrodes 3, la plaque 4 diélectrique, isolée électriquement, se charge en surface selon le phénomène connu de l'homme du métier sous le nom d'ionisation diélectrique. La plaque 4 se décharge en surface lorsque la décharge 7 a lieu entre l'électrode 3 et la plaque 4.
  • Lorsque la décharge 7 a lieu, du fait de la charge uniquement en surface de la plaque 4, le courant est relativement faible, ce qui permet de créer un plasma froid à faible énergie.
  • La circulation du gaz 10 peut être assurée par un ventilateur 9 par exemple, ou être produite par tout autre phénomène industriel (lorsque le dispositif est placé dans un système d'évacuation de gaz par exemple).
  • Les pointes 34 de chaque électrode 3 sont préférentiellement réparties en quinconce les unes par rapport aux autres sur l'électrode 3, de façon homogène, de sorte que le gaz en circulation passe systématiquement à proximité d'une pointe. En d'autres termes, les pointes 34 sont d'une part réparties en lignes, et espacées par un espace selon les lignes. Les pointes 34 sont d'autre part réparties en colonnes, les colonnes étant espacées par une distance. Les lignes sont décalées les unes par rapport aux autres d'un demi-espace comme le montre la figure 3.
  • La densité des pointes 34 sur chaque électrode est comprise entre 10.000 et 100.000 pointes/m2. L'homogénéité de traitement du gaz dans chaque unité 2 est donc assurée.
  • La distance entre chaque électrode 3 et chaque plaque 4 est de l'ordre du mm. Les décharges ne sont donc pas soufflées par le gaz 10 en circulation, même avec des vitesses de circulation du gaz très élevées (de l'ordre de 10 m/s).
  • A cet effet, le dispositif comporte des rainures 81 pratiquées dans des flasques 8, pour le maintien, à la distance relative choisie, des électrodes 3 et des plaques 4. Le démontage pour nettoyage ou changement d'un des éléments est donc grandement facilité, par glissement des plaques et des électrodes dans les rainures.
  • Les pointes 34 sont de forme triangulaire, avec une extrémité ponctuelle et une base relativement plus large, ce qui permet d'assurer une homogénéité de brassage du gaz lors de sa circulation et sa mise en contact avec les pointes.
  • Les pointes ont une hauteur homogène, pour éviter les concentrations de décharges sur les électrodes 3 et assurer une homogénéité de traitement du gaz.
  • De telles caractéristiques des pointes 34 sont possibles grâce à un procédé de fabrication d'un dispositif selon l'invention.
  • Selon un procédé de fabrication possible, on emboutit au moins un feuillard de métal pour former des pointes 34.
  • Le feuillard est peu rigide (épaisseur de l'ordre de 0.1 mm), ce qui permet un déchirement aisé du feuillard pour la formation de pointes très pointues favorables à la formation du plasma, un peu à la façon d'une râpe à fromage (voir figure 3). On contrôle ainsi la forme, la hauteur et la densité des pointes.
  • On fixe ensuite des feuillards ainsi emboutis de part et d'autre d'une plaque de métal sensiblement plane. La plaque matérialise le plan 33 médian des figures 2 et 3.
  • La fixation se fait par soudage par points, ou par collage par exemple.
  • Le fait de fixer des feuillards de part et d'autre de la plaque métallique pour former l'électrode permet la formation de décharges sur les deux côtés de chaque électrode, et ainsi un meilleur rendement, avec une puissance plus élevée et sans déformation mécanique due à l'échauffement des électrodes (il y a en effet une compensation des déformations thermiques).
  • De préférence, les plaques diélectriques sont des plaques de mica de faible également épaisseur (de l'ordre de 1 mm), usinées. Les avantages de ce matériau sont son faible coût, sa bonne tenue mécanique, sa bonne tenue électrique, et sa facilité de découpe. D'autres matériaux diélectriques peuvent également être prévus.
  • En fonction des réglages du générateur 5, de la distance entre les plaques 4 et les électrodes 3, des caractéristiques et de la densité des pointes 34 de chaque électrode, ou de l'humidité du gaz, on peut obtenir, en utilisant le dispositif selon l'invention, un procédé de purification ou de désodorisation du gaz, un procédé de production d'un gaz de traitement d'une surface ou un procédé de production d'une espèce électronique ou chimique.
  • On comprend bien entendu que l'unité supérieure, et l'unité inférieure ne nécessitent pas de pointes sur leur côté supérieur ou inférieur respectif.

Claims (10)

  1. Dispositif de traitement d'un gaz, comportant au moins une unité (2) élémentaire, caractérisé en ce que chaque unité (2) comporte :
    - deux électrodes (3) métalliques surfaciques comportant chacune des pointes (34), et étant reliées à un générateur (5) de haute tension alternative, et
    - une plaque (4) diélectrique isolée électriquement et positionnée entre les deux électrodes métalliques (3),
    de sorte qu'une pluralité de décharges (7) puisse avoir lieu entre les pointes (34) des électrodes (3) et la plaque (4) pour la création d'un plasma froid apte à traiter un gaz en circulation dans le dispositif.
  2. Dispositif selon la revendication 1, dans lequel au moins une électrode (3) comporte des pointes (34) de part et d'autre (31, 32) d'un plan (33) médian.
  3. Dispositif selon la revendication 1 ou 2, dans lequel les pointes (34) de chaque électrode (3) sont réparties en quinconce les unes par rapport aux autres sur l'électrode, de façon homogène sur l'électrode, de sorte que le gaz en circulation passe systématiquement à proximité d'une pointe.
  4. Dispositif selon l'une des revendications 1 à 3, dans lequel la densité des pointes (34) sur chaque électrode est comprise entre 10.000 et 100.000 pointes/m2.
  5. Dispositif selon l'une des revendications 1 à 4, dans lequel la distance entre chaque électrode (3) et chaque plaque (4) est de l'ordre du mm.
  6. Dispositif selon l'une des revendications 1 à 5, comportant des rainures (81) pratiquées dans des flasques (8), pour le maintien des électrodes (3) et des plaques (4).
  7. Dispositif selon l'une des revendications 1 à 6, dans lequel les pointes (34) ont une forme triangulaire, et ont une hauteur homogène.
  8. Procédé de production d'un gaz de traitement d'une surface ou de purification ou de désodorisation d'un gaz, utilisant un dispositif selon l'une des revendications 1 à 7.
  9. Procédé de production d'une espèce électronique ou chimique, utilisant un dispositif selon l'une des revendications 1 à 7.
  10. Procédé de fabrication d'un dispositif selon l'une des revendications 1 à 7, caractérisé en ce que les électrodes (3) sont fabriquées par
    - emboutissage d'au moins un feuillard de métal pour former des pointes (34) ;
    - fixation des feuillards ainsi emboutis de part et d'autre d'une plaque de métal sensiblement plane
    pour obtenir un traitement homogène du gaz dans tout le volume du dispositif.
EP09160249A 2008-05-14 2009-05-14 Dispositif de traitement d'un gaz par plasma froid, procédés d'utilisation et de fabrication associés Not-in-force EP2120514B9 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0853118A FR2931083B1 (fr) 2008-05-14 2008-05-14 Dispositif de traitement d'un gaz, procedes d'utilisation et de fabrication associes

Publications (3)

Publication Number Publication Date
EP2120514A1 true EP2120514A1 (fr) 2009-11-18
EP2120514B1 EP2120514B1 (fr) 2012-06-06
EP2120514B9 EP2120514B9 (fr) 2012-12-05

Family

ID=40193660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09160249A Not-in-force EP2120514B9 (fr) 2008-05-14 2009-05-14 Dispositif de traitement d'un gaz par plasma froid, procédés d'utilisation et de fabrication associés

Country Status (3)

Country Link
EP (1) EP2120514B9 (fr)
ES (1) ES2386694T3 (fr)
FR (1) FR2931083B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250470A (zh) * 2010-12-09 2013-08-14 韩国科学技术院 等离子体发生器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241049B1 (ko) 2011-08-01 2013-03-15 주식회사 플라즈마트 플라즈마 발생 장치 및 플라즈마 발생 방법
KR101246191B1 (ko) 2011-10-13 2013-03-21 주식회사 윈텔 플라즈마 장치 및 기판 처리 장치
KR101332337B1 (ko) 2012-06-29 2013-11-22 태원전기산업 (주) 초고주파 발광 램프 장치
US9815015B2 (en) * 2012-09-26 2017-11-14 Dry Air Solutions, Llc Method of synergistic desiccation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366876A1 (fr) 1988-10-05 1990-05-09 Mitsubishi Jukogyo Kabushiki Kaisha Appareil de traitement de gaz d'échappement
SU1606464A1 (ru) 1989-01-31 1990-11-15 Новосибирский Институт Инженеров Железнодорожного Транспорта Устройство дл озонировани воды
US6375714B1 (en) 1996-12-11 2002-04-23 T.E.M.! Technishe Entwicklungen Und Managament Gmbh Device and process to produce active oxygen ions in the air for improved air quality
JP2002289322A (ja) * 2001-03-27 2002-10-04 Minolta Co Ltd コロナ放電装置
US20050142047A1 (en) 2003-12-31 2005-06-30 Hyundai Motor Company Hybrid-type air purifier for an automobile
US20080047428A1 (en) * 2006-08-23 2008-02-28 General Electric Company Dielectric barrier discharge device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366876A1 (fr) 1988-10-05 1990-05-09 Mitsubishi Jukogyo Kabushiki Kaisha Appareil de traitement de gaz d'échappement
SU1606464A1 (ru) 1989-01-31 1990-11-15 Новосибирский Институт Инженеров Железнодорожного Транспорта Устройство дл озонировани воды
US6375714B1 (en) 1996-12-11 2002-04-23 T.E.M.! Technishe Entwicklungen Und Managament Gmbh Device and process to produce active oxygen ions in the air for improved air quality
JP2002289322A (ja) * 2001-03-27 2002-10-04 Minolta Co Ltd コロナ放電装置
US20050142047A1 (en) 2003-12-31 2005-06-30 Hyundai Motor Company Hybrid-type air purifier for an automobile
US20080047428A1 (en) * 2006-08-23 2008-02-28 General Electric Company Dielectric barrier discharge device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250470A (zh) * 2010-12-09 2013-08-14 韩国科学技术院 等离子体发生器

Also Published As

Publication number Publication date
FR2931083B1 (fr) 2010-07-30
FR2931083A1 (fr) 2009-11-20
EP2120514B1 (fr) 2012-06-06
ES2386694T3 (es) 2012-08-27
EP2120514B9 (fr) 2012-12-05

Similar Documents

Publication Publication Date Title
EP2120514B1 (fr) Dispositif de traitement d'un gaz par plasma froid, procédés d'utilisation et de fabrication associés
JP4699614B2 (ja) プラズマ処置理方法及び装置
JP6581661B2 (ja) 多孔質誘電体を含むプラズマ発生源
CN106999949B (zh) 用于净化气流的静电过滤器
KR101533184B1 (ko) 오존 발생기
JP2020506504A (ja) 空気清浄に用いられる双極イオン発生器及び該双極イオン発生器を使用したサーキュラーディフューザー
EP1738817A1 (fr) Dispositif de traitement de gaz par catalyse, notamment pour hotte de filtration
FR2726729A1 (fr) Dispositif de production d'un plasma permettant une dissociation entre les zones de propagation et d'absorption des micro-ondes
US20140294681A1 (en) Non-thermal plasma cell
JP2009505342A (ja) プラズマ発生装置及びプラズマ発生方法
FR3001641A1 (fr) Dispositif, systeme et procede de traitement de gaz
JP2007188852A (ja) :半導体セラミックを用いたイオン風発生装置
JP2007250284A (ja) プラズマ電極
EP3945361A1 (fr) Modulateur acousto-optique
FR2911633A1 (fr) Dispositif de filtre electrostatique pour la capture et la destruction de particules de suie contenues dans les gaz d'echappement d'un moteur a combustion.
EP0228318A1 (fr) Canon à électrons opérant par émission secondaire sous bombardement ionique
FR2478887A1 (fr) Appareil a decharge electronique
FR3087677A1 (fr) Nouveau dispositif d’epuration d’air par plasma
EP0140730A1 (fr) Source de rayons X mous utilisant un microcanal de plasma obtenu par photoionisation d'un gaz
FR2717711A1 (fr) Electrofiltre épurateur ioniseur en milieu gazeux, de grande puissance, à configuration de champ électrique de haute densité.
EP1933606A1 (fr) Electrode pour reacteur plasma
FR2674238A1 (fr) Ozoniseur a contact.
CN212039862U (zh) 径流式介质阻挡放电装置
Klenko et al. Application of dielectric barrier discharge for treatment of polyester fabric
Sakoda et al. Selective etching of silicon nitride film on single crystalline silicon solar cell using intensive surface discharge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20100512

17Q First examination report despatched

Effective date: 20100615

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 561546

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009007429

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009007429

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009007429

Country of ref document: DE

Effective date: 20120809

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2386694

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120827

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120906

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 561546

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120606

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120907

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

26N No opposition filed

Effective date: 20130307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009007429

Country of ref document: DE

Effective date: 20130307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120906

BERE Be: lapsed

Owner name: ELECTRICITE DE FRANCE

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140520

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140514

Year of fee payment: 6

Ref country code: ES

Payment date: 20140520

Year of fee payment: 6

Ref country code: DE

Payment date: 20140509

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140602

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090514

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130514

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009007429

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150514

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150515