EP2118608B1 - Wärmetauscher und solch einen tauscher enthaltende eingebaute anordnung - Google Patents

Wärmetauscher und solch einen tauscher enthaltende eingebaute anordnung Download PDF

Info

Publication number
EP2118608B1
EP2118608B1 EP08717605A EP08717605A EP2118608B1 EP 2118608 B1 EP2118608 B1 EP 2118608B1 EP 08717605 A EP08717605 A EP 08717605A EP 08717605 A EP08717605 A EP 08717605A EP 2118608 B1 EP2118608 B1 EP 2118608B1
Authority
EP
European Patent Office
Prior art keywords
fluid
tube
heat exchanger
main
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08717605A
Other languages
English (en)
French (fr)
Other versions
EP2118608A1 (de
Inventor
Jimmy Lemee
Stéphane MEUNIER
François VILLALONGA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP2118608A1 publication Critical patent/EP2118608A1/de
Application granted granted Critical
Publication of EP2118608B1 publication Critical patent/EP2118608B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to a heat exchanger, in particular to an internal exchanger for an air conditioning circuit operating with a supercritical refrigerant fluid, such as carbon dioxide (CO 2 ).
  • a supercritical refrigerant fluid such as carbon dioxide (CO 2 ).
  • CO 2 carbon dioxide
  • the invention also relates to an integrated assembly for such a circuit.
  • An exchanger according to the preamble of claim 1 is known from the document FR 2 329 9 62 .
  • the supercritical refrigerant fluid remains substantially in the gaseous state and under a very high pressure.
  • Such a circuit generally comprises a compressor, a gas cooler, an internal exchanger, a pressure reducer, an evaporator and an accumulator.
  • the compressor passes the refrigerant at high pressure before sending it to the gas cooler where it is cooled.
  • the fluid then passes into a first part of the internal exchanger and is then expanded by the expander.
  • the expanded low pressure fluid then passes through the evaporator, then passes through the accumulator before passing into a second part of the internal exchanger.
  • the fluid then returns to the compressor.
  • the hot high pressure fluid of the first part of the heat exchanger exchanges heat with the cold fluid at low pressure of the second part.
  • the accumulator is provided at the outlet of the evaporator to store the excess liquid leaving the evaporator.
  • the accumulator is generally in the form of a reservoir adapted to separate the liquid part of the fluid refrigerant of the gaseous part.
  • the accumulator sends the gaseous portion of the refrigerant fluid at low temperature to the compressor after passing through the internal exchanger.
  • Such an air conditioning circuit requires a large number of components and connections, which complicates its manufacture, increases its cost and its size. Furthermore, it is subject to risks of leakage, especially in view of the high pressure of the refrigerant fluid in the gaseous state.
  • patents US 6,523,365 and US 2000-0 752 419 disclose an integrated assembly comprising an accumulator and an internal exchanger arranged coaxially.
  • the internal heat exchanger has a general spiral shape and is composed of two coiled tubes, one for the circulation of the hot fluid and the other for the circulation of the cold fluid.
  • the integrated assembly comprises an outer cylinder and an inner cylinder arranged inside the outer cylinder, and an accumulator.
  • the inner cylinder is in the form of a coiled flat tube provided with micro channels for the circulation of high pressure fluid.
  • This solution has the disadvantage of generating a large longitudinal footprint.
  • the invention improves the situation by providing a heat exchanger for an air conditioning circuit, comprising at least one tube defining a path for the circulation of a first fluid and a second fluid, the tube being wound around an axis. so as to define successive windings.
  • the invention also relates to the use of a heat exchanger, as defined above, as an internal exchanger, wherein the first fluid is a high pressure fluid and the second fluid is a low pressure fluid.
  • the invention further provides an integrated assembly for an air conditioning circuit operating with a refrigerant fluid.
  • the air conditioning circuit comprises an internal heat exchanger having one of the preceding characteristics and a housing in which is housed the internal heat exchanger, the housing delimiting a bottom.
  • the housing comprises an auxiliary tubing arranged outside the windings of the tube, the auxiliary tubing being adapted to receive the second fluid and to convey it to the bottom of the casing so as to send only the part vaporized from the second fluid into the secondary inlet tubing.
  • the invention also proposes an air conditioning circuit operating with a refrigerant fluid, comprising a compressor, a condenser, an expander, and an evaporator.
  • the circuit comprises the integrated assembly defined above.
  • the main inlet pipe is connected to the condenser, and the auxiliary pipe is connected to the compressor, while the main outlet pipe is connected to the lower part of an accumulator and receives the vaporized part of the fluid.
  • FIG 1 shows an air conditioning circuit 10 operating with a refrigerant fluid, in particular a supercritical refrigerant fluid, for example carbon dioxide (CO 2 ).
  • a refrigerant fluid in particular a supercritical refrigerant fluid, for example carbon dioxide (CO 2 ).
  • CO 2 carbon dioxide
  • the air conditioning circuit 10 can be installed in a motor vehicle to cool the air of the passenger compartment, according to the needs of the passengers.
  • An air conditioning circuit operating in a supercritical refrigerant cycle essentially comprises a compressor 14, a gas cooler 11 associated with a fan 16, an internal heat exchanger 9, a pressure reducer 12, an evaporator 13, and an accumulator 17.
  • the compressor 14 compresses the refrigerant fluid to a discharge pressure, called high pressure.
  • the fluid then passes through the gas cooler where it undergoes a gas phase cooling under high pressure.
  • the fluid is not condensed during cooling, unlike air conditioning circuits that use fluorinated compounds as a coolant.
  • the fluid cooled by the gas cooler 11 then passes into a first portion 90 of the internal exchanger, called "hot" branch, to be further cooled.
  • the fluid then passes into the regulator 12 which lowers its pressure, bringing it at least partly in the liquid state.
  • the fluid then passes through the evaporator 13.
  • the evaporator 13 passes the fluid in the gaseous state, at constant pressure.
  • the exchange in the evaporator makes it possible to produce a flow of conditioned air that is sent to the passenger compartment of the vehicle.
  • the refrigerant flowing out of the evaporator 13 is not fully vaporized.
  • the accumulator is provided at the outlet of the evaporator for storing the excess of liquid leaving the evaporator.
  • the conventional accumulators are in the form of a reservoir adapted to separate the liquid portion of the refrigerant fluid from the gaseous portion.
  • the accumulator 17 then sends the gaseous part of the refrigerant fluid at low temperature into a second part 92 of the internal exchanger 9, called the "cold" part, for a heat exchange with the "hot" part 90.
  • the internal exchanger 9 comprises a flat tube 5 wound in a spiral around an axis (XX) so as to define successive windings, and so that its general shape is substantially cylindrical. Thus, one end of the tube is outside the spiral while the other part is inside the spiral.
  • the successive windings of the tube are closely clamped together so as to define so-called "secondary" channels 54 sealed for the circulation of the fluid at low pressure.
  • the secondary channels 54 are situated between protruding zones or protuberances 53 of the tube 5.
  • the tube 5 has so-called "main" channels 52 at the projecting areas, to be traversed by the fluid at high pressure.
  • the tube 5 has salient main channels 52 for the circulation of the high-pressure fluid which circulates in the part 90 of the internal exchanger.
  • the main channels extend over the entire length of the tube and therefore between the outer end of the spiral and the inner end of the spiral.
  • the successive windings of the tube 50 are closely clamped together so as to delimit between certain at least adjacent main channels 52 sealed secondary channels 54 for the circulation of low pressure fluid (part 92 of the internal exchanger).
  • the secondary channels 54 are represented on the figure 4 .
  • the flat tube 5 is made in the form of a metal section monobloc having a particular section illustrated on the figure 3 .
  • the profile of the tube comprises on one of its faces ribs formed by the main channels 52 and grooves between the main channels 51.
  • the other side of the tube is substantially flat.
  • the ribs formed by the main channels 52 extend along the tubes and have a circular section.
  • the figure 4 is a sectional view showing two successive windings 50 n and 50 n + 1 .
  • the successive windings 50 n and 50 n + 1 are tightly clamped against each other, so that a secondary channel 54 for the circulation of the low pressure fluid is delimited by a groove 51 between two adjacent ribs 52. a given winding 50 n and the flat face of the next winding 50 n + 1 .
  • FIG 5 represents a view of a part of the internal exchanger, according to the state of the art.
  • the tube is still made in the form of a metal profile.
  • the profile of the tube shown in more detail on the figure 6 , has on both sides protruding ribs 520 formed by the main channels 52, and grooves 51 between these ribs.
  • the tube 5 furthermore has a symmetry along an axis (AA) perpendicular to the axis of the main channels 52.
  • each secondary channel 54 for the second fluid is delimited by a groove 51 between two adjacent ribs 52 of a given winding 50 n and the facing groove 51 n + 1 between two adjacent ribs 52 n +1 of the next winding 50 n + 1 .
  • Successive windings of the tube are again closely clamped against each other so as to ensure the sealing of the secondary channels 54.
  • the ribs facing 520 n and 520 n + 1 are in abutment against each other.
  • the internal exchanger 9 can be brazed or glued. During the soldering or gluing process, the windings 50 are fixed together.
  • the internal heat exchanger 9 of the invention thus has an alternation of hot main channels 52 and cold secondary channels 54 in the axis (XX) of the exchanger, which makes it possible to reduce the diametral size of the internal heat exchanger .
  • the internal exchanger of the invention further ensures a sealed separation between the secondary channels 54 so that the risk of accumulation of liquid at the bottom of the internal exchanger is limited. Furthermore, the secondary channels 54 for the circulation of low pressure fluid have no direct contact with the two rows of neighboring main channels 52 where the high pressure fluid flows. Consequently, the risks of interference between the secondary channels 54 and the main channels 52 are extremely low.
  • figure 8 represents a partial perspective view of the upper part of the internal exchanger according to the state of the art.
  • the high pressure fluid and the low pressure fluid flow in opposite directions in their respective channels 52 and 54. More specifically, in the embodiments shown in the drawings, the high pressure fluid flows in the main channels 52 of the the outside of the spiral inward, while the low pressure fluid flows in the secondary channels 54 from the inside of the spiral outwardly.
  • the internal exchanger 9 comprises a main inlet pipe 6 connected to a high-pressure fluid inlet, a main pipe of outlet 32 connected to an outlet for the high pressure fluid, a secondary inlet pipe 30 connected to a low pressure fluid inlet, and a secondary outlet pipe 7 connected to an outlet for the low pressure fluid.
  • the main inlet pipe 6 and the secondary outlet pipe 7 are arranged at the outer end of the pipe 5, while the main outlet pipe 32 and the secondary inlet pipe 30 are arranged at the level of the pipe. inner end of the tube 5.
  • the main inlet pipe 6 receives the fluid from the gas cooler 11 (arrow F1) and the main outlet pipe 32 delivers the fluid to the regulator 12 (arrow F3).
  • the secondary inlet tubing 30 receives the low pressure fluid from the accumulator 17 (arrow F4) while the secondary outlet tubing 7 delivers the low pressure fluid to the compressor 14 (arrow F2).
  • the main inlet tubing 6 is represented on the figure 10 . It has a generally cylindrical shape with an axis parallel to the axis (XX).
  • the main tubing 6 further comprises an elongated opening 60 of shape conjugate to the profile of the tube 5 so as to receive the outer end of the tube 5.
  • the main inlet tubing 6 has a similar shape as represented on the figure 11 , with the exception of the elongate opening 60.
  • the high-pressure fluid thus arrives in the main inlet pipe from the gas cooler 11 and is then transmitted to the main channels 54 through the opening 60.
  • the main outlet pipe 32 for the high-pressure fluid has a general shape similar to that of the main pipe 6 and also has an elongate opening 320 of conjugate shape of the profile of the tube 5 so as to receive the inner end of the tube.
  • the main pipes 6 and 32 both have a closed bottom, while their fluid connections are provided at the top of the pipes.
  • the high-pressure fluid thus passes from the main channels 52 to the main inlet manifold, through the opening 320, then is conveyed outwards towards the expander 12.
  • the secondary inlet tubing 30 partially shown on the Figures 8 and 9 receives fluid at low pressure from bottom to top (arrow F4). It does not have a closed bottom. Apertures 34 elongate along the axis XX are provided on the part of the wall of the pipe 30 which is turned towards the outside of the internal exchanger so as to send the fluid into the secondary channels 54. Thus the fluid at low pressure arrives from the bottom of the tubing 30 before going up along it. The fluid then passes through the openings 34, as shown by the arrows indicated in the tubing 30, to spread in the secondary channels 54, at the beginning of the heat exchange.
  • the secondary inlet tubing 30 may comprise a plurality of channels 300 elongate along the axis (XX), to promote a better distribution in the secondary channels 54.
  • these channels are three in number. non-limiting example.
  • the inlet channels 300 generate a good distribution of the refrigerant on the vertical plane.
  • the openings 34 are arranged on the secondary inlet pipe 30 so as to optimize the distribution of the low-pressure fluid received in all the secondary channels 54.
  • the openings 34 are elongate and arranged to occupy substantially the entire length of the tube.
  • three openings 34 are provided for the fluid communication with each of the three channels 300 of the secondary inlet pipe 30.
  • the three openings are furthermore slightly offset so as to come into communication with each one. 300 channels of the secondary inlet tubing 30.
  • the secondary outlet tubing 7 extends along an axis parallel to the axis (XX) and has a closed bottom. Its fluidic connection is provided on its upper part. Moreover one or more openings 37 elongated along the axis (XX) are provided on the part of its wall facing the center of the internal exchanger to receive the fluid exiting the secondary channels. 54. An embodiment of the openings 37 is shown in FIG. figure 21 .
  • the low-pressure fluid thus passes secondary channels 54 inside the secondary outlet pipe 7, at the end of the heat exchange, then goes back up the along the tubing before being sent to the compressor 14.
  • the main inlet pipe 6 and the secondary outlet pipe 7 may be secured to a connecting plate 76 (see also FIG. figure 21 ).
  • the plate 76 has a curved section and a shape adapted to be housed between the penultimate outer winding of the tube and the last winding of the tube.
  • the secondary tubing 7 is arranged along the wall of the connecting plate under the last winding of the tube while the main inlet tubing 6 is arranged at an edge of the connecting plate, outside the windings.
  • the section of the secondary tubing 7 has a small radial width section to promote its insertion under the last winding of the tube.
  • the heat exchanger also comprises an inner core of substantially cylindrical shape around which the tube 5 is wound. This core 3 makes it possible to stiffen the internal exchanger.
  • the core may be in three nested parts 360, 38 and 32, the last part being the main outlet pipe while the secondary inlet pipe 30 is an integral part of the 360 part.
  • the assembly of the parts 360 and 38 delimits a recess adapted to house the main outlet pipe 32 for the outlet of the high-pressure fluid 32.
  • the core 3 is monobloc and of cylindrical general shape.
  • the main outlet pipe 32 and the secondary inlet pipe 30 form an integral part of the core 3.
  • a tubing 40 is also an integral part of the core 3 to define a passage for the realization of the spiral.
  • the core may consist of two coaxial portions 31 and 33.
  • the portion 33 constitutes an internal rigid structure having recesses in the form of grooves on its periphery while the portion 31 consists of a metal sheet surrounding the rigid structure 31 to define the main outlet tubing 32 and the secondary inlet tubing 30.
  • the tube 5 according to the invention is produced as a profiled monobloc piece and can be obtained by extrusion.
  • the tube 5 is made of aluminum alloy, but other materials are possible.
  • the invention makes it possible to obtain a reduced diametral bulk for the internal exchanger, thanks to the alternation of hot main channels 52 and cold secondary channels 54.
  • the sealed separation between, on the one hand, the secondary channels 54, and on the other hand, between the secondary channels 54 and the neighboring main channels 52 makes it possible to limit the risks of accumulation of liquid at the bottom of the exchanger and the risks of thermal interference.
  • the structure of the internal exchanger according to the invention further ensures good thermal insulation between the main channels 52 and the secondary channels 54, without it is necessary to interpose insulation sheets.
  • the invention therefore reduces the number of components in the exchanger, which simplifies the manufacturing process of the exchanger and reduces its costs.
  • the profile of the tube or tubes is defined in such a way that the channels formed by winding thereof do not comprise convex shapes in order to avoid any filling of the form previously mentioned with oil and therefore to increase the surface area. exchange.
  • the invention also relates to the use of a heat exchanger, as defined above, as an internal exchanger, in which the first fluid is a high-pressure fluid and the second fluid is a low-pressure fluid. .
  • the invention further provides an integrated assembly comprising an accumulator and the internal exchanger 9 described above.
  • the figure 1 schematically shows an air conditioning circuit incorporating such an integrated assembly 100.
  • the integrated assembly comprises an outer casing 115 in which the internal exchanger 9 and an accumulator 17 are arranged.
  • the casing 115 is delimited by a bottom and is closed by a cover, not shown, in order to form a sealed internal chamber.
  • the lid and the housing can be fixed together by soldering.
  • the lid and the housing may be formed of any suitable material.
  • the integrated assembly also comprises an auxiliary pipe 4 designed to receive the low-pressure fluid from the evaporator and convey it towards the bottom of the housing, as shown in FIGS. Figures 8 and 9 .
  • the auxiliary tubing 4 has a general shape cylindrical and is arranged outside the windings of the tube as shown in FIG. figure 9 .
  • the fluid that arrives in the tubing 4 is received in the bottom of the casing 115, so that the liquid portion of the low-pressure refrigerant remains at the bottom of the casing, while only the vaporized portion of the fluid passes into the secondary tubing of the casing. entry 30 whose bottom is open.
  • the low pressure fluid is then sent into the secondary channels 54 through the openings 34.
  • the main external tubing 6 receives the high pressure fluid that is sent into the main channels 52 to flow in the opposite direction to that of the low pressure fluid. pressure in the secondary channels 54.
  • the fluids exchange heat before exiting through their respective outlet pipes 32 and 7.
  • the number of main channels 52 may vary depending on the heat exchange to be performed.
  • the various components of the integrated assembly 100 are advantageously made of an aluminum alloy and are then brazed by means of solder plating.
  • the assembly can be brazed at one time by passing through a brazing furnace. The assembly being thus realized, it is then sufficient to connect it to the branches of the circuit as indicated above.
  • Such an integrated assembly reduces the overall size of the air conditioning circuit while providing satisfactory cooling performance.
  • the invention applies in particular to air conditioning circuits of motor vehicles.

Claims (18)

  1. Wärmeaustauscher (1) für einen Klimaanlagenkreislauf, der mindestens ein Rohr (5) enthält, das eine Strecke für die Zirkulation eines ersten Fluids und eines zweiten Fluids begrenzt, wobei das Rohr so um eine Achse gewickelt ist, dass aufeinanderfolgende Wicklungen definiert werden, wobei die aufeinanderfolgenden Wicklungen des Rohrs eng aneinander liegen, um sogenannte Sekundärkanäle (54) zu begrenzen, die für die Zirkulation des zweiten Fluids dicht sind, wobei die Sekundärkanäle (54) sich zwischen vorspringenden Zonen des Rohrs (5) befinden, und dass das Rohr (5) sogenannte Hauptkanäle (52) im Bereich der vorspringenden Zonen aufweist, die dazu bestimmt sind, vom ersten Fluid durchquert zu werden, dadurch gekennzeichnet, dass das Rohr (5) ein Profil aufweist, und dass das Profil des Rohrs (5) auf einer seiner Seiten von den Hauptkanälen (52) gebildete Rippen und Rillen (51) zwischen den Hauptkanälen aufweist, während die andere Seite im Wesentlichen eben ist, und dass jeder Sekundärkanal (54) für das zweite Fluid von einer Rille (51) zwischen zwei benachbarten Rippen einer gegebenen Wicklung und der ebenen Seite der folgenden Wicklung begrenzt wird.
  2. Wärmeaustauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Enden der Hauptkanäle zwischen einem Eingangshauptstutzen (6), der geeignet ist, um das erste Fluid zu empfangen, und einem Ausgangshauptstutzen (32) aufgenommen werden, der geeignet ist, um das erste Fluid außerhalb des Austauschers zu liefern, und dass die Enden der Sekundärkanäle (54) mit einem Eingangssekundärstutzen (30), der geeignet ist, um das zweite Fluid zu empfangen, und mit einem Ausgangssekundärstutzen (7), der geeignet ist, um das zweite Fluid außerhalb des Austauschers zu liefern, in fluidischer Verbindung stehen.
  3. Wärmeaustauscher nach Anspruch 2, dadurch gekennzeichnet, dass jeder Hauptstutzen eine im Wesentlichen zylindrische Form um eine Achse parallel zur Achse des Austauschers hat und eine Öffnung (60, 320) aufweist, die geeignet ist, um eines der Enden des Rohrs (5) aufzunehmen.
  4. Wärmeaustauscher nach einem der Ansprüche 2 und 3, dadurch gekennzeichnet, dass jeder Sekundärstutzen in einem Teil seiner Wand längliche Öffnungen (34, 37) für eine fluidische Verbindung mit den Sekundärkanälen (54) aufweist.
  5. Wärmeaustauscher nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass er eine Verbindungsplatte (76) aufweist, die einen gekrümmten Querschnitt geeigneter Form hat, um sich zwischen der vorletzten äußeren Wicklung des Rohrs und der letzten äußeren Wicklung des Rohrs einzufügen, und dass der Eingangshauptstutzen (6) und der Ausgangssekundärstutzen (7) fest mit der Verbindungsplatte (76) verbunden sind.
  6. Wärmeaustauscher nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass er einen inneren Kern (3) von im Wesentlichen zylindrischer Form aufweist.
  7. Wärmeaustauscher nach Anspruch 6, dadurch gekennzeichnet, dass der Kern (3) einstückig ist.
  8. Wärmeaustauscher nach Anspruch 6, dadurch gekennzeichnet, dass der Kern (3) aus mehreren ineinandergefügten Teilen (360, 38, 32) besteht, die die Versorgung und die Verteilung des Primärkreislaufs und des Sekundärkreislaufs sowie die Wicklung des oder der Rohre (5) gewährleisten.
  9. Wärmeaustauscher nach Anspruch 6, dadurch gekennzeichnet, dass der Kern (3) aus zwei koaxialen Teilen (33, 31) besteht, wobei der erste Teil eine steife Struktur mit Rillen auf ihrem Umfang und der zweite Teil eine Metallfolie aufweist, die um den ersten Teil gewickelt ist, um den Ausgangshauptstutzen (32) und den Eingangssekundärstutzen (30) zu definieren.
  10. Wärmeaustauscher nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass die Eingangs- und Ausgangssekundärstutzen eine oder mehrere längliche Öffnungen in der Achse des Austauschers enthalten, um mit den Sekundärkanälen in fluidischer Verbindung zu stehen.
  11. Wärmeaustauscher nach Anspruch 10, dadurch gekennzeichnet, dass die Öffnungen (34) radial und in der Achse des Austauschers zueinander versetzt sind.
  12. Wärmeaustauscher nach Anspruch 11, dadurch gekennzeichnet, dass der Eingangssekundärstutzen (30) eine oder mehrere Öffnungen (34) aufweist, und dass er derart in einen oder mehrere Eingangskanäle (300) aufgeteilt ist, dass jeder Eingangskanal mit mindestens einer der Öffnungen in Verbindung steht.
  13. Wärmeaustauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Rohr (5) als Profilteil aus einem oder mehreren Elementen geformt wird.
  14. Wärmeaustauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Rohr (5) durch Extrudieren erhalten wird.
  15. Wärmeaustauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hauptkanäle (52) des Rohrs einen im Wesentlichen kreisförmigen Querschnitt aufweisen.
  16. Verwendung eines Wärmeaustauschers nach einem der vorhergehenden Ansprüche als innerer Austauscher, wobei das erste Fluid ein Hochdruckfluid und das zweite Fluid ein Niederdruckfluid ist.
  17. Integrierte Einheit für einen Klimaanlagenkreislauf, der mit einem Kühlfluid arbeitet, dadurch gekennzeichnet, dass sie einen inneren Austauscher (9) nach einem der Ansprüche 2 bis 15 und ein Gehäuse (115) aufweist, in dem der innere Austauscher untergebracht ist, wobei das Gehäuse (115) einen Boden begrenzt, und dass das Gehäuse einen Hilfsstutzen (4) aufweist, der außerhalb der Wicklungen des Rohrs (5) angeordnet ist, wobei der Hilfsstutzen geeignet ist, um das zweite Fluid zu empfangen und es zum Boden des Gehäuses zu transportieren, um nur den verdampften Teil des zweiten Fluids in den Eingangssekundärstutzen (30) zu schicken.
  18. Klimaanlagenkreislauf, der mit einem Kühlfluid arbeitet, mit einem Verdichter (14), mit einem Verflüssiger (11), mit einem Expansionsventil (12) und mit einem Verdampfer (13), dadurch gekennzeichnet, dass er eine integrierte Einheit nach Anspruch 17 aufweist, wobei der Eingangshauptstutzen (6) mit dem Verdichter (14) verbunden ist, und der Hilfsstutzen (7) mit dem Verdampfer verbunden ist, während der Ausgangshauptstutzen (32) mit dem Expansionsventil (12) verbunden ist und der Ausgangssekundärstutzen (30) mit dem unteren Bereich eines Akkumulators (17) verbunden ist und den verdampften Teil des Fluids empfängt.
EP08717605A 2007-03-12 2008-03-11 Wärmetauscher und solch einen tauscher enthaltende eingebaute anordnung Active EP2118608B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0701758A FR2913764B1 (fr) 2007-03-12 2007-03-12 Echangeur de chaleur et ensemble integre incorporant un tel echangeur
PCT/EP2008/052858 WO2008113714A1 (fr) 2007-03-12 2008-03-11 Echangeur de chaleur et ensemble intégré incorporant un tel échangeur

Publications (2)

Publication Number Publication Date
EP2118608A1 EP2118608A1 (de) 2009-11-18
EP2118608B1 true EP2118608B1 (de) 2011-04-06

Family

ID=38658144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08717605A Active EP2118608B1 (de) 2007-03-12 2008-03-11 Wärmetauscher und solch einen tauscher enthaltende eingebaute anordnung

Country Status (6)

Country Link
EP (1) EP2118608B1 (de)
AT (1) ATE504793T1 (de)
DE (1) DE602008006034D1 (de)
ES (1) ES2363053T3 (de)
FR (1) FR2913764B1 (de)
WO (1) WO2008113714A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522633C1 (ru) * 2013-01-09 2014-07-20 Общество с ограниченной ответственностью Научно-производственное предприятие "Донские технологии" Конденсатор влажно-паровой микротурбины
DE102017217313A1 (de) * 2017-09-28 2019-03-28 Franz Josef Ziegler Wärmeübertrager
CN110857823A (zh) * 2018-08-23 2020-03-03 杭州三花研究院有限公司 气液分离器、空调系统及气液分离器的制造方法
US11892212B2 (en) 2018-08-23 2024-02-06 Zhejiang Sanhua Intelligent Controls Co., Ltd. Gas-liquid separator and air conditioning system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007027517B4 (de) * 2007-06-15 2010-11-25 GSP Lüftungstechnik GmbH Heiz- und/oder Kühlgerät
FR2928997B1 (fr) 2008-03-20 2014-06-20 Valeo Systemes Thermiques Echangeur de chaleur et ensemble integre de climatisation comprenant un tel echangeur.
FR2939187B1 (fr) * 2008-12-01 2013-02-22 Valeo Systemes Thermiques Echangeur de chaleur a spires et dispositif de climatisation comprenant un tel echangeur de chaleur
DE102008060699A1 (de) * 2008-12-08 2010-06-10 Behr Gmbh & Co. Kg Verdampfer für einen Kältekreis
FR2940419B1 (fr) * 2008-12-22 2010-12-31 Valeo Systemes Thermiques Dispositif combine constitue d'un echangeur de chaleur interne et d'un accumulateur, et pourvu d'un composant interne multifonctions
FR2940420B1 (fr) * 2008-12-22 2010-12-31 Valeo Systemes Thermiques Dispositif combine comprenant un echangeur de chaleur interne et un accumulateur constitutifs d'une bouche de climatisation
JP2015034663A (ja) * 2013-08-08 2015-02-19 サンデン株式会社 熱交換器及びそれを備えた熱サイクル装置
JP2015034662A (ja) * 2013-08-08 2015-02-19 サンデン株式会社 熱交換器
JP2015034661A (ja) * 2013-08-08 2015-02-19 サンデン株式会社 熱交換器及び熱交換器の製造方法
JP2015034660A (ja) * 2013-08-08 2015-02-19 サンデン株式会社 熱交換器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US705614A (en) * 1901-03-01 1902-07-29 Julien W Mathis Radiator.
US3007680A (en) * 1959-07-02 1961-11-07 William E Harris Heat exchange device
FR2329962A1 (fr) * 1975-11-03 1977-05-27 Applimo Applic Thermo Elec Echangeur de chaleur pour fluides gazeux

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522633C1 (ru) * 2013-01-09 2014-07-20 Общество с ограниченной ответственностью Научно-производственное предприятие "Донские технологии" Конденсатор влажно-паровой микротурбины
DE102017217313A1 (de) * 2017-09-28 2019-03-28 Franz Josef Ziegler Wärmeübertrager
CN110857823A (zh) * 2018-08-23 2020-03-03 杭州三花研究院有限公司 气液分离器、空调系统及气液分离器的制造方法
CN110857823B (zh) * 2018-08-23 2020-11-06 杭州三花研究院有限公司 气液分离器、空调系统及气液分离器的制造方法
US11892212B2 (en) 2018-08-23 2024-02-06 Zhejiang Sanhua Intelligent Controls Co., Ltd. Gas-liquid separator and air conditioning system

Also Published As

Publication number Publication date
EP2118608A1 (de) 2009-11-18
DE602008006034D1 (de) 2011-05-19
ES2363053T3 (es) 2011-07-19
WO2008113714A1 (fr) 2008-09-25
FR2913764A1 (fr) 2008-09-19
ATE504793T1 (de) 2011-04-15
FR2913764B1 (fr) 2009-12-11

Similar Documents

Publication Publication Date Title
EP2118608B1 (de) Wärmetauscher und solch einen tauscher enthaltende eingebaute anordnung
EP2273224B1 (de) Wärmeaustauscheinheit und entsprechender Wärmetauscher sowie Herstellungsverfahren einer Wärmeaustauscheinheit
FR2941522A1 (fr) Echangeur de chaleur pour deux fluides, en particulier evaporateur de stockage pour dispositif de climatisation
EP0774102B1 (de) Verflüssiger mit einbezogenem behälter für klimaanlage eines kraftfahrzeuges
EP1640676B1 (de) Vorrichtung, die einen inneren Wärmetauscher und Akkumulator für einen Kreislauf einer Klimaanlage kombiniert
EP2208955B1 (de) Wärmeaustauschrippe für ein Wärmeaustauschsystem
EP1592930A1 (de) Kondensator, insbesondere f r einenkraftfahrzeugluftklimatisierungskreislauf
EP2473809A1 (de) Wärmetauscher
EP2912396B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
FR2746490A1 (fr) Condenseur a reservoir integre pour circuit de refrigeration
WO2007101817A1 (fr) Echangeur de chaleur, en particulier refroidisseur de gaz, comportant deux nappes de tubes reliées
EP2260253B1 (de) Integrierte klimatisierunsganordnung mit einem inneren wärmetauscher
EP2529172A1 (de) Wärmetauscher
EP1762803A1 (de) Baueinheit für Klimakreislauf mit superkritischen Kältemittel
EP1676088B1 (de) Strömungselement für einen wärmetauscher und so erhaltener wärmetauscher
WO2017109355A1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP2633255A1 (de) Wärmetauscher mit seitlicher flüssigkeitszufuhr
EP2372288B1 (de) Wärmetauscher für Klimaanlage mit reduzierten Enden
EP2072936B1 (de) Einheitlicher Wärmetauscher für Klimakreislauf
EP3394545B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
FR2871560A1 (fr) Echangeur de chaleur a collecteur perfectionne en particulier pour fluides a haute pression
WO2007063100A1 (fr) Boîte collectrice pour échangeur de chaleur, en particulier pour un évaporateur de climatisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEMEE, JIMMY

Inventor name: VILLALONGA, FRANCOIS

Inventor name: MEUNIER, STEPHANE

17Q First examination report despatched

Effective date: 20100201

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602008006034

Country of ref document: DE

Date of ref document: 20110519

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008006034

Country of ref document: DE

Effective date: 20110519

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2363053

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110719

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110406

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110808

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

26N No opposition filed

Effective date: 20120110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008006034

Country of ref document: DE

Effective date: 20120110

BERE Be: lapsed

Owner name: VALEO SYSTEMES THERMIQUES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120311

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200312

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210219

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210412

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230307

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220312