EP2113984A1 - Motor, and electric pump - Google Patents
Motor, and electric pump Download PDFInfo
- Publication number
- EP2113984A1 EP2113984A1 EP08711791A EP08711791A EP2113984A1 EP 2113984 A1 EP2113984 A1 EP 2113984A1 EP 08711791 A EP08711791 A EP 08711791A EP 08711791 A EP08711791 A EP 08711791A EP 2113984 A1 EP2113984 A1 EP 2113984A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- motor
- sintered metal
- circumferential portion
- stator
- stator core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/02—Details of the magnetic circuit characterised by the magnetic material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
Definitions
- the present invention relates to a motor and an electric pump.
- an inner rotor-type motor like one described in JP-A-2006223024 is widely known in which a rotor is disposed in an inner circumference of a stator. More specifically, there is known a motor which comprises a state and a rotor disposed in an inner circumference of the stator, the motor comprising covers which cover axial end portions of the motor and a motor casing which covers an outer circumference of the motor (that is, an outer circumference of the stator), wherein the stator is press fitted in the motor casing.
- motors inner rotor-type motors
- a so-called frame-less motor in which there is provided no motor casing which covers an outer circumference of the motor (for example, refer to JP-A-9-149567 , JP-A-9-219950 ).
- a motor which comprises a stator and a rotor disposed in an inner circumference of the stator, the motor comprising brackets which cover axial end portions of the motor, wherein axial end portions of the stator are fixed to the brackets.
- the conventional motor which is configured to include the motor casing
- the volume of the motor has to be increased by one thickness of the motor casing. Consequently, when attempting to reduce the size of a motor, it is desirable to use the motor having the configuration in which there is provided no motor casing.
- the outer circumference of the stator is exposed. Since the stator is generally intended to generate a magnetic field for rotating the rotor, the material of the stator is selected by paying as much attention as possible to magnetic properties such as permeability. Consequently, there occurs a situation where the stator has no desired mechanical strength, whereby the exposed outer circumference of the stator is damaged. When considering a situation like this, there has been a problem that the configuration has to be secured in which the motor includes the motor casing which covers the outer circumference of the stator, although the motor is made larger in size by the thickness of the motor casing.
- the invention has been made in view of the problem, and an object thereof is to provide a motor which is configured in such a manner that a stator can have a desired mechanical strength, whereby there has to be provided no member which covers an outer circumference of the motor so as to realize a reduction in size of the motor and an electric pump.
- a motor comprising a stator and a rotor disposed in an inner circumference of the stator, the stator comprising a substantially cylindrical stator core and coils made up of a wound conductor, the motor being characterized in that the stator core comprises an outer circumferential portion which configures an outer circumferential wall of the stator and an inner circumferential portion round which the conductor is wound, in that the outer circumferential portion is formed of a first sintered metal made of a powder magnetic material and the inner circumferential portion is formed of a second sintered metal made of a powder magnetic material, the first sintered metal being a sintered metal having a higher mechanical strength than the second sintered metal, and in that the stator core is formed by the outer circumferential portion and the inner circumferential portion being bonded together by diffusion bonding.
- the outer circumferential portion of the stator core is formed of the first sintered metal having the higher mechanical strength than the second sintered metal which forms the inner circumferential portion, compared with a case where the stator core is formed of the second sintered core only, the outer circumferential portion of the stator core is made difficult to be damaged. Consequently, by the outer circumferential portion of the stator core being given the mechanical strength which makes it difficult to be damaged, the configuration can be attained in which no motor casing (that is, no member which covers the outer circumference of the motor) is provided, thereby making it possible to make the motor smaller in size by one thickness of the motor casing, compared with the motor which is configured to include the motor casing which covers the outer circumference of the stator.
- a motor as set forth in the first aspect, characterized in that the second sintered metal is a sintered metal which has a larger permeability than the first sintered metal.
- the stator core since the inner circumferential portion of the stator core is formed of the second sintered metal having the larger permeability than the first sintered metal, compared with a case where the stator core is formed on the first sintered metal only, the stator core having better magnetic properties can be obtained. Consequently, the magnetic properties of the stator core can be improved, thereby making it possible to obtain the motor having good efficiency.
- an electric pump comprising a pump and a motor for driving the pump, characterized in that the motor is made up of the motor set forth in the first or second aspect of the invention.
- the motor of the electric pump is made up of the motor set forth in the first or second aspect of the invention, no member is required which covers an outer circumference of the motor, thereby making it possible to make the electric pump smaller in size by making the motor of the electric pump smaller in size.
- the outer circumferential portion of the stator core can be given the desired mechanical strength, whereby a reduction in size of the motor can be realized by obviating the necessity of the member which covers the outer circumference of the motor.
- This motor 10 is used as a drive source for auxiliaries such as a water pump, an oil pump and a transmission pump of a vehicle.
- the motor 10 includes a stator 11, a rotor 14 which includes a shaft 15 and a permanent magnet 16 and covers 17, 18 which are disposed in such a manner as to cover axial (that is, directions indicated by arrows X)end portions of the stator 11 and the rotor 14. Further, the motor 10 includes bearings 19a, 19b which support the shaft 15 rotatably and a sealing device 19c which is provided near the bearing 19b.
- the stator core 11 is made up of a substantially cylindrical stator core 12 which is made to open at both axial ends thereof and coils 13 which is made up of wound conductors.
- the stator core 12 includes an outer circumferential portion 12a which makes up an outer circumferential wall 11a of the stator 11 and an inner circumferential portion around which the conductors are wound.
- the outer circumferential portion 12a is formed of a sintered metal M1 as a first sintered metal which is made up of a powder magnetic material
- the inner circumferential portion 12b is formed of a sintered metal M2 as a second sintered metal which is made up of a powder magnetic material.
- a plurality of (in this embodiment, 12) teeth 12c are provided, and as is shown in Fig. 1 , axial end portions of parts 12d of the teeth 12c where conductors are wound round are recessed, compared with distal end portions 12e of the teeth 12c and axial end portions of the outer circumferential portion 12a.
- the coils 13 are formed by conductors being wound round the teeth 12c.
- the stator core 12 will be described in detail later in which the outer circumferential portion 12a and the inner circumferential portion 12b are formed by the sintered metals M1, M2 which are made of the different powder magnetic materials.
- the rotor 14 is disposed in an inner circumference of the stator 11.
- the shaft 15 is disposed in the rotor 14 in such a manner as to penetrate through the rotor 14 while being fixed thereto, and a cylindrical permanent magnet 16 in which magnetic poles are magnetized alternately in a circumferential direction is fixed to an outer circumferential surface of the rotor.
- An outer circumferential surface 16a of the permanent magnet 16 and the inner circumferential portion 12b of the stator core 12 are made to face each other in such a manner as not to be brought into contact with each other.
- the rotor 14 is configured in the way described above, and the permanent magnet 16, the rotor 14 fixed to the permanent magnet 16 and the shaft 15 are caused to rotate by rotational magnetic fields which are generated by the coils 13 energized.
- a bearing accommodating portion 17a is provided on the cover 17 which covers one end portions of the stator 11 and the rotor 14.
- a bearing accommodating portion 18a is provided on the cover 18 which covers the other end portions of the stator 11 and the rotor 14, and the cover 18 has a through hole 18b through which the shaft 15 penetrates.
- the bearings 19a, 19b which are accommodated in the bearing accommodating portions 17a, 18a, respectively, support the shaft rotatably, and the annular sealing device 19c made of an elastic member is provided between the cover 18 and the bearing 19b for preventing the entrance of foreign matters into the bearing 19b from a slight gap between the shaft 15 and the through hole 18b.
- stator core 12 will be described in detail in which the outer circumferential portion 12a and the inner circumferential portion 12b are formed of the sintered metals M1, M2 which are made of the different powder magnetic materials.
- the sintered metals which are made of the powder magnetic materials are sintered metals which formed by mixing a magnetic metallic powder such as an iron powder with a resin, molding the mixture by a press, and heating to harden (that is, sintering) the molded mixture.
- the resin is mixed in order to establish insulations between particles of the magnetic metallic powder.
- stator core 12 which is formed of the sintered metals which are made up of the powder magnetic materials formed as in the way described above, is molded by the press, compared with a stator core which is formed of a plurality of stacked electromagnetic steel sheets, a three-dimensional shape of the stator core 12 can easily be formed.
- the sintered metal M1 and the sintered metal M2 which are made of these powder magnetic materials are bonded together through diffusion bonding.
- the stator core 12 is formed by the outer circumferential portion 12a which is formed of the sintered metal M1 and the inner circumferential portion 12b which is formed of the sintered metal M2 being bonded together through diffusion bonding.
- the diffusion bonding is a method of bonding two metals together by making use of diffusion of atoms of the two metals which takes place at a portion where the two metals are brought into contact with each other by applying pressure and heat to where the two metals are in contact.
- the sintered metal M1 which is used for formation of the outer circumferential portion 12a for example, a sintered metal is used which is formed by sintering a mixture in which powder of nickel or the like is added to a main constituent of iron powder and which has a higher mechanical strength than the sintered metal M2.
- a sintered metal is used which is formed by sintering a mixture in which powder of nickel or the like is added to a main constituent of iron powder and which has a higher mechanical strength than the sintered metal M2.
- sintered metals specified as SMF 3 series, SMF 4 series and SMF 5 series under JIS are preferred.
- a sintered metal which is used for formation of the inner circumferential portion 12b
- a sintered metal which is formed by sintering a metal powder which is mainly composed of iron powder in which particles whose particle diameters vary approximately from several tens to several hundreds ⁇ m are covered individually by an insulation film or iron and which has a larger permeability than the sintered metal M1.
- soft magnetic composite materials are preferably used, and SOMALOY 500 (a product name) from HOGANAS AB or the like is preferred.
- the sintered metal M2 is the sintered metal M2 which has the larger permeability than the sintered metal M1. Consequently, since the inner circumferential portion 12b of the stator core 12 is formed of the sintered metal M2 which has the larger permeability than the sintered metal M1 which forms the outer circumferential portion 12a, compared with the case where the stator core 12 is made of the sintered metal M1 only, the stator core 12 can be obtained which has better magnetic properties. Consequently, the magnetic properties of the stator core 12 can be improved, thereby making it possible to obtain the motor 10 having good efficiency.
- an electric pump 100 includes a motor 10 as a drive source for the electric pump 100, a pump 20 which is driven by driving the motor 10 and a controller 30 for controlling the driving of the motor 10.
- the pump 20 is provided at an axial end portion of the motor 10, and the controller 30 is provided at the other axial end portion of the motor 10.
- the motor 10 includes a rotor 14 which includes a shaft 15 and a permanent magnet 16. Further, the motor 10 includes bearings 19a, 19b which support rotatably the shaft 15 and a sealing device 19c which is provided near the bearing 19b.
- the stator 11 is made up of a stator core 12 and coils 13. As in the first embodiment that has been described above, the stator core 12 includes an outer circumferential portion 12a which constitutes an outer circumferential wall 11a of the stator 11 and an inner circumferential portion 12b round which conductors are wound.
- stator core 12 is formed by the outer circumferential portion 12a which is formed of a sintered metal M1 which is made of a powder magnetic material and the inner circumferential portion 12b which is formed of a sintered metal M2 which is made of a powder magnetic material being bonded together through diffusion bonding.
- the pump 20 is made up of a pump housing 21 which covers the one axial end portion of the motor 10, an inner gear 23 which is accommodated within a pump compartment 22, an outer gear 24 which meshes with the inner gear 23 for rotation, and a pump plate 25 which covers an axial end portion of the pump housing 21.
- a bearing accommodating portion 21a for accommodating the bearing 19b and a through hole 21b through which the axially extended shaft 15 is passed are provided in the pump housing 21.
- the sealing device 19c is provided between the through hole 21b and the bearing 19b, so as to inhibit the entrance of a fluid into the bearing 19b from a slight gap between the shaft 15 and the through hole 21b.
- the inner gear 23 which is accommodated within the pump housing 21 is fixed to the shaft 15 which is provided to extend from the rotor 14, the inner gear 23 rotates together with the rotor 14.
- the outer gear 24 meshes with the inner gear 23 for rotation.
- Rotational shafts of the inner gear 23 and the outer gear 24 are eccentric, and the numbers of teeth of the inner gear 23 and the outer gear 24 are different. Because of this, space portions are formed between the inner gear 23 and the outer gear 24, and the volumes of the space portions vary as the inner gear 23 and the outer gear 24 rotate.
- the pump plate 25 is fixed to the pump housing 21, and an annular seal member 26 is provided between the pump housing 21 and the pump plate 25. Since this seal member 26 is pressed against the pump housing 21 to thereby be compressed, the fluid-tightness between the pump housing 21 and the pump plate 25 is ensured.
- the controller 30 is made up of a housing which covers the other axial end portion of the motor 10, a controller accommodating portion 32, a controller circuit board 34 on which electronic components 33 are installed and a controller cover 35 which covers the controller circuit board 34.
- a bearing accommodating portion 31a for accommodating the bearing 19a is provided and a controller accommodating portion 32 for accommodating the controller circuit board 34 is formed. Additionally, since a controller cover 35 is fixed to the housing 31 in such a manner as to cover the controller circuit board 34 which is accommodated within the controller accommodating portion 32, the waterproofness and mud proofing properties of the controller circuit board 34 and the electronic components 33 are ensured.
- a fluid for example, a fluid such as fuel, water, oil or the like
- a fluid which has flowed thereinto from the inlet port flows out towards the outlet port in a desired amount per unit time.
- the electric pump 100 includes the pump 20 and the motor 10 for driving the pump 20 and the motor 10 is made up of the motor which has the same configuration as that described in the first embodiment, the motor 10 having the advantages described above under (1) to (2) can be obtained. Consequently, since no member which covers the outer circumference of the motor 10 is required, the motor 10 of the electric pump 100 can be made smaller in size, and hence, the electric pump 100 can be made smaller in size.
- the pump 20 is the internal gear pump which is made up of the inner gear 23 and the outer gear 24, the pump 20 may be an external gear pump.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Rotary Pumps (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
- The present invention relates to a motor and an electric pump.
- Conventionally, an inner rotor-type motor like one described in
JP-A-2006223024 - In addition, in general, in inner rotor-type motors (hereinafter, referred to simply as a "motors"), there is known a so-called frame-less motor in which there is provided no motor casing which covers an outer circumference of the motor (for example, refer to
JP-A-9-149567 JP-A-9-219950 - Incidentally, in the conventional motor which is configured to include the motor casing, since the outer circumference of the motor is covered by the motor casing, compared with the configuration in which the motor has no motor casing, the volume of the motor has to be increased by one thickness of the motor casing. Consequently, when attempting to reduce the size of a motor, it is desirable to use the motor having the configuration in which there is provided no motor casing.
- In the conventional motor which has no motor casing, however, the outer circumference of the stator is exposed. Since the stator is generally intended to generate a magnetic field for rotating the rotor, the material of the stator is selected by paying as much attention as possible to magnetic properties such as permeability. Consequently, there occurs a situation where the stator has no desired mechanical strength, whereby the exposed outer circumference of the stator is damaged. When considering a situation like this, there has been a problem that the configuration has to be secured in which the motor includes the motor casing which covers the outer circumference of the stator, although the motor is made larger in size by the thickness of the motor casing.
- Then, the invention has been made in view of the problem, and an object thereof is to provide a motor which is configured in such a manner that a stator can have a desired mechanical strength, whereby there has to be provided no member which covers an outer circumference of the motor so as to realize a reduction in size of the motor and an electric pump.
- According to a first aspect of the invention, there is provided a motor comprising a stator and a rotor disposed in an inner circumference of the stator, the stator comprising a substantially cylindrical stator core and coils made up of a wound conductor, the motor being characterized in that the stator core comprises an outer circumferential portion which configures an outer circumferential wall of the stator and an inner circumferential portion round which the conductor is wound, in that the outer circumferential portion is formed of a first sintered metal made of a powder magnetic material and the inner circumferential portion is formed of a second sintered metal made of a powder magnetic material, the first sintered metal being a sintered metal having a higher mechanical strength than the second sintered metal, and in that the stator core is formed by the outer circumferential portion and the inner circumferential portion being bonded together by diffusion bonding.
- According to the above configuration, since the outer circumferential portion of the stator core is formed of the first sintered metal having the higher mechanical strength than the second sintered metal which forms the inner circumferential portion, compared with a case where the stator core is formed of the second sintered core only, the outer circumferential portion of the stator core is made difficult to be damaged. Consequently, by the outer circumferential portion of the stator core being given the mechanical strength which makes it difficult to be damaged, the configuration can be attained in which no motor casing (that is, no member which covers the outer circumference of the motor) is provided, thereby making it possible to make the motor smaller in size by one thickness of the motor casing, compared with the motor which is configured to include the motor casing which covers the outer circumference of the stator.
- In addition, according to a second aspect of the invention, there is provided a motor as set forth in the first aspect, characterized in that the second sintered metal is a sintered metal which has a larger permeability than the first sintered metal.
- According to the above configuration, since the inner circumferential portion of the stator core is formed of the second sintered metal having the larger permeability than the first sintered metal, compared with a case where the stator core is formed on the first sintered metal only, the stator core having better magnetic properties can be obtained. Consequently, the magnetic properties of the stator core can be improved, thereby making it possible to obtain the motor having good efficiency.
- Additionally, according to a third aspect of the invention, there is provided an electric pump comprising a pump and a motor for driving the pump, characterized in that the motor is made up of the motor set forth in the first or second aspect of the invention.
- According to the above configuration, since the motor of the electric pump is made up of the motor set forth in the first or second aspect of the invention, no member is required which covers an outer circumference of the motor, thereby making it possible to make the electric pump smaller in size by making the motor of the electric pump smaller in size.
- According to the invention, the outer circumferential portion of the stator core can be given the desired mechanical strength, whereby a reduction in size of the motor can be realized by obviating the necessity of the member which covers the outer circumference of the motor.
-
-
Fig. 1 is a partially sectional view of a motor according to an embodiment of the invention. -
Fig. 2 is a plan view of a stator core. -
Fig. 3 is a partially sectional view of an electric pump according to another embodiment of the invention. Best Mode for Carrying out the Invention - Hereinafter, a first embodiment into which the invention is embodied into a motor will be described based on
Figs. 1 and2 . Thismotor 10 is used as a drive source for auxiliaries such as a water pump, an oil pump and a transmission pump of a vehicle. - As is shown in
Fig. 1 , themotor 10 includes astator 11, arotor 14 which includes ashaft 15 and apermanent magnet 16 and covers 17, 18 which are disposed in such a manner as to cover axial (that is, directions indicated by arrows X)end portions of thestator 11 and therotor 14. Further, themotor 10 includesbearings shaft 15 rotatably and asealing device 19c which is provided near thebearing 19b. - As is shown in
Figs. 1 and2 , thestator core 11 is made up of a substantiallycylindrical stator core 12 which is made to open at both axial ends thereof andcoils 13 which is made up of wound conductors. Thestator core 12 includes an outercircumferential portion 12a which makes up an outercircumferential wall 11a of thestator 11 and an inner circumferential portion around which the conductors are wound. In addition, the outercircumferential portion 12a is formed of a sintered metal M1 as a first sintered metal which is made up of a powder magnetic material, and the innercircumferential portion 12b is formed of a sintered metal M2 as a second sintered metal which is made up of a powder magnetic material. In addition, as is shown inFig. 2 , a plurality of (in this embodiment, 12)teeth 12c are provided, and as is shown inFig. 1 , axial end portions ofparts 12d of theteeth 12c where conductors are wound round are recessed, compared withdistal end portions 12e of theteeth 12c and axial end portions of the outercircumferential portion 12a. Thecoils 13 are formed by conductors being wound round theteeth 12c. In addition, thestator core 12 will be described in detail later in which the outercircumferential portion 12a and the innercircumferential portion 12b are formed by the sintered metals M1, M2 which are made of the different powder magnetic materials. - As is shown in
Fig. 1 , therotor 14 is disposed in an inner circumference of thestator 11. Theshaft 15 is disposed in therotor 14 in such a manner as to penetrate through therotor 14 while being fixed thereto, and a cylindricalpermanent magnet 16 in which magnetic poles are magnetized alternately in a circumferential direction is fixed to an outer circumferential surface of the rotor. An outercircumferential surface 16a of thepermanent magnet 16 and the innercircumferential portion 12b of thestator core 12 are made to face each other in such a manner as not to be brought into contact with each other. Therotor 14 is configured in the way described above, and thepermanent magnet 16, therotor 14 fixed to thepermanent magnet 16 and theshaft 15 are caused to rotate by rotational magnetic fields which are generated by thecoils 13 energized. - As is shown in
Fig. 1 , a bearing accommodatingportion 17a is provided on thecover 17 which covers one end portions of thestator 11 and therotor 14. In addition, a bearing accommodating portion 18a is provided on thecover 18 which covers the other end portions of thestator 11 and therotor 14, and thecover 18 has a throughhole 18b through which theshaft 15 penetrates. These covers 17, 18 which cover the axial end portions of thestator core 11 and therotor 14 are connected to axial end faces of thestator core 12 with screws (not shown) or the like. - As is shown in
Fig. 1 , thebearings portions 17a, 18a, respectively, support the shaft rotatably, and theannular sealing device 19c made of an elastic member is provided between thecover 18 and thebearing 19b for preventing the entrance of foreign matters into thebearing 19b from a slight gap between theshaft 15 and the throughhole 18b. - The
aforesaid stator core 12 will be described in detail in which the outercircumferential portion 12a and the innercircumferential portion 12b are formed of the sintered metals M1, M2 which are made of the different powder magnetic materials. - The sintered metals which are made of the powder magnetic materials are sintered metals which formed by mixing a magnetic metallic powder such as an iron powder with a resin, molding the mixture by a press, and heating to harden (that is, sintering) the molded mixture. The resin is mixed in order to establish insulations between particles of the magnetic metallic powder.
- Since the
stator core 12, which is formed of the sintered metals which are made up of the powder magnetic materials formed as in the way described above, is molded by the press, compared with a stator core which is formed of a plurality of stacked electromagnetic steel sheets, a three-dimensional shape of thestator core 12 can easily be formed. In addition, in general, there is less iron loss in a high-frequency area in a stator core which is formed of a sintered metal made of a powder magnetic material like the ones described above than in a stator core which is formed of electromagnetic steel sheets. The sintered metal M1 and the sintered metal M2 which are made of these powder magnetic materials are bonded together through diffusion bonding. - The
stator core 12 is formed by the outercircumferential portion 12a which is formed of the sintered metal M1 and the innercircumferential portion 12b which is formed of the sintered metal M2 being bonded together through diffusion bonding. The diffusion bonding is a method of bonding two metals together by making use of diffusion of atoms of the two metals which takes place at a portion where the two metals are brought into contact with each other by applying pressure and heat to where the two metals are in contact. - In addition, as the sintered metal M1 which is used for formation of the outer
circumferential portion 12a, for example, a sintered metal is used which is formed by sintering a mixture in which powder of nickel or the like is added to a main constituent of iron powder and which has a higher mechanical strength than the sintered metal M2. For example, sintered metals specified as SMF 3 series, SMF 4 series and SMF 5 series under JIS are preferred. - Additionally, as the sintered metal M2 which is used for formation of the inner
circumferential portion 12b, a sintered metal is used which is formed by sintering a metal powder which is mainly composed of iron powder in which particles whose particle diameters vary approximately from several tens to several hundreds µm are covered individually by an insulation film or iron and which has a larger permeability than the sintered metal M1. As this sintered metal, for example, soft magnetic composite materials are preferably used, and SOMALOY 500 (a product name) from HOGANAS AB or the like is preferred. - According to the motor of the first embodiment, the following advantages can be obtained.
- (1) The
stator core 12 includes the outercircumferential portion 12a which constitutes the outer circumferential wall of thestator 11 and the innercircumferential portion 12b round which the conductors are wound, and the outercircumferential portion 12a is formed of the sintered metal M1 made of the powder magnetic material, while the innercircumferential portion 12b is formed of the sintered metal M2 made of the powder magnetic material. In addition, the sintered metal M1 is the sintered metal having the higher mechanical strength than the sintered metal M2. Consequently, since the outercircumferential portion 12a of thestator core 12 is formed of the sintered metal M1 which has the higher mechanical strength than the sintered metal M2 which forms the innercircumferential portion 12b, compared with the case where thestator core 12 is formed on the sintered metal M2 only, the outercircumferential portion 12a of thestator core 12 is made difficult to be damaged. Consequently, by the outercircumferential portion 12a of thestator core 12 being given the mechanical strength which makes the outercircumferential portion 12a difficult to be damaged, the configuration can be attained in which there is provided no motor casing (the member which covers the outer circumference of the motor), whereby themotor 10 can be made smaller in size by one thickness of the motor casing, compared with the motor which is configured to include the motor casing which covers the outer circumference of thestator 11. - The sintered metal M2 is the sintered metal M2 which has the larger permeability than the sintered metal M1. Consequently, since the inner
circumferential portion 12b of thestator core 12 is formed of the sintered metal M2 which has the larger permeability than the sintered metal M1 which forms the outercircumferential portion 12a, compared with the case where thestator core 12 is made of the sintered metal M1 only, thestator core 12 can be obtained which has better magnetic properties. Consequently, the magnetic properties of thestator core 12 can be improved, thereby making it possible to obtain themotor 10 having good efficiency. - Next, a second embodiment will be described in which the invention is embodied into an electric pump. This electric pump is used, for example, as auxiliaries such as a water pump, an oil pump and a transmission pump of a vehicle. Note that like reference numerals will be given to like constituent members to those of the first embodiment, and a detailed description thereof will be omitted.
- As is shown in
Fig. 3 , anelectric pump 100 includes amotor 10 as a drive source for theelectric pump 100, apump 20 which is driven by driving themotor 10 and acontroller 30 for controlling the driving of themotor 10. Thepump 20 is provided at an axial end portion of themotor 10, and thecontroller 30 is provided at the other axial end portion of themotor 10. - As is shown in
Fig. 3 , themotor 10 includes arotor 14 which includes ashaft 15 and apermanent magnet 16. Further, themotor 10 includesbearings shaft 15 and asealing device 19c which is provided near thebearing 19b. In addition, thestator 11 is made up of astator core 12 and coils 13. As in the first embodiment that has been described above, thestator core 12 includes an outercircumferential portion 12a which constitutes an outercircumferential wall 11a of thestator 11 and an innercircumferential portion 12b round which conductors are wound. In addition, thestator core 12 is formed by the outercircumferential portion 12a which is formed of a sintered metal M1 which is made of a powder magnetic material and the innercircumferential portion 12b which is formed of a sintered metal M2 which is made of a powder magnetic material being bonded together through diffusion bonding. - As is shown in
Fig. 3 , thepump 20 is made up of apump housing 21 which covers the one axial end portion of themotor 10, aninner gear 23 which is accommodated within apump compartment 22, anouter gear 24 which meshes with theinner gear 23 for rotation, and a pump plate 25 which covers an axial end portion of thepump housing 21. - A bearing accommodating portion 21a for accommodating the bearing 19b and a through
hole 21b through which the axially extendedshaft 15 is passed are provided in thepump housing 21. The sealingdevice 19c is provided between the throughhole 21b and thebearing 19b, so as to inhibit the entrance of a fluid into the bearing 19b from a slight gap between theshaft 15 and the throughhole 21b. - Since the
inner gear 23 which is accommodated within thepump housing 21 is fixed to theshaft 15 which is provided to extend from therotor 14, theinner gear 23 rotates together with therotor 14. In addition, theouter gear 24 meshes with theinner gear 23 for rotation. Rotational shafts of theinner gear 23 and theouter gear 24 are eccentric, and the numbers of teeth of theinner gear 23 and theouter gear 24 are different. Because of this, space portions are formed between theinner gear 23 and theouter gear 24, and the volumes of the space portions vary as theinner gear 23 and theouter gear 24 rotate. The space portion whose volume is increased to reduce the pressure therein as theinner gear 23 and theouter gear 24 rotate is connected to an inlet port (not shown), while the space portion whose volume is reduced to increase the pressure therein as theinner gear 23 and theouter gear 24 rotate is connected to an outlet port (not shown). Consequently, a fluid which flows in from the inlet port flows out towards the outlet port by way of the spaces portions in thepump 20. As the pump having the mechanism like what has just been described, there is known an internal gear pump in which a trochoid or involute is applied to the shape of gear teeth thereof. - In addition, the pump plate 25 is fixed to the
pump housing 21, and anannular seal member 26 is provided between thepump housing 21 and the pump plate 25. Since thisseal member 26 is pressed against thepump housing 21 to thereby be compressed, the fluid-tightness between thepump housing 21 and the pump plate 25 is ensured. - As is shown in
Fig. 3 , thecontroller 30 is made up of a housing which covers the other axial end portion of themotor 10, acontroller accommodating portion 32, acontroller circuit board 34 on whichelectronic components 33 are installed and acontroller cover 35 which covers thecontroller circuit board 34. - In the housing 31A, a bearing accommodating portion 31a for accommodating the
bearing 19a is provided and acontroller accommodating portion 32 for accommodating thecontroller circuit board 34 is formed. Additionally, since acontroller cover 35 is fixed to thehousing 31 in such a manner as to cover thecontroller circuit board 34 which is accommodated within thecontroller accommodating portion 32, the waterproofness and mud proofing properties of thecontroller circuit board 34 and theelectronic components 33 are ensured. - When the
motor 10 is driven based on a command from thecontroller circuit board 34 of thecontroller 30, theinner gear 23 rotates at a desired speed together with theshaft 15, and in conjunction with this, theouter gear 24 also rotates. Then, as has been described above, in thepump 20, a fluid (for example, a fluid such as fuel, water, oil or the like) which has flowed thereinto from the inlet port flows out towards the outlet port in a desired amount per unit time. - According to the electric pump of the second embodiment that has just been described, the following advantage can be obtained.
Since theelectric pump 100 includes thepump 20 and themotor 10 for driving thepump 20 and themotor 10 is made up of the motor which has the same configuration as that described in the first embodiment, themotor 10 having the advantages described above under (1) to (2) can be obtained. Consequently, since no member which covers the outer circumference of themotor 10 is required, themotor 10 of theelectric pump 100 can be made smaller in size, and hence, theelectric pump 100 can be made smaller in size. - Note that the embodiment may be modified as below. In the second embodiment, although the
pump 20 is the internal gear pump which is made up of theinner gear 23 and theouter gear 24, thepump 20 may be an external gear pump.
Claims (3)
- A motor comprising:a stator including a substantially cylindrical stator core and a coil round which a conductor is wound; anda rotor disposed in an inner circumference of the stator,
wherein the stator core comprises an outer circumferential portion which constitutes an outer circumferential wall of the stator and an inner circumferential portion round which the conductor is wound,
wherein the outer circumferential portion is formed of a first sintered metal made of a powder magnetic material, and the inner circumferential portion is formed of a second sintered metal made of a powder magnetic material,
wherein the first sintered metal is a sintered metal having a higher mechanical strength than the second sintered metal, and
wherein the stator core is formed by diffusion bonding the outer circumferential portion and the inner circumferential portion being bonded together. - The motor according to claim 1, wherein the second sintered metal is a sintered metal which has a larger permeability than the first sintered metal.
- An electric pump comprising a pump and a motor for driving the pump, wherein
the motor is made up of the motor set forth in Claim 1 or 2.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007044529 | 2007-02-23 | ||
PCT/JP2008/053017 WO2008102860A1 (en) | 2007-02-23 | 2008-02-22 | Motor, and electric pump |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2113984A1 true EP2113984A1 (en) | 2009-11-04 |
EP2113984A4 EP2113984A4 (en) | 2016-09-21 |
EP2113984B1 EP2113984B1 (en) | 2017-10-11 |
Family
ID=39710131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08711791.7A Not-in-force EP2113984B1 (en) | 2007-02-23 | 2008-02-22 | Motor, and electric pump |
Country Status (4)
Country | Link |
---|---|
US (1) | US8310125B2 (en) |
EP (1) | EP2113984B1 (en) |
JP (1) | JP5233984B2 (en) |
WO (1) | WO2008102860A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011109129A1 (en) * | 2011-07-14 | 2013-01-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electric energy converter and method for its production |
CN105990939A (en) * | 2015-02-09 | 2016-10-05 | 建准电机工业股份有限公司 | Inner rotor motor |
EP3291412A1 (en) * | 2016-08-31 | 2018-03-07 | Siemens Aktiengesellschaft | Electromagnetic path of a stator |
EP3828302A1 (en) * | 2013-09-30 | 2021-06-02 | Persimmon Technologies Corporation | Structures utilizing a structured magnetic material |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8310125B2 (en) * | 2007-02-23 | 2012-11-13 | Jtekt Corporation | Motor and electric pump having a stator including a first sintered metal and second sintered metal |
JP5606077B2 (en) * | 2010-01-19 | 2014-10-15 | サムスン電機ジャパンアドバンスドテクノロジー株式会社 | Disk drive |
JP5936990B2 (en) * | 2012-10-31 | 2016-06-22 | 日本ピストンリング株式会社 | Rotating electric machine |
EP2790297B1 (en) | 2013-04-08 | 2017-08-02 | Siemens Aktiengesellschaft | Rotor for an electric machine |
US10570494B2 (en) | 2013-09-30 | 2020-02-25 | Persimmon Technologies Corporation | Structures utilizing a structured magnetic material and methods for making |
KR102118028B1 (en) * | 2013-11-19 | 2020-06-02 | 엘지이노텍 주식회사 | Electric pump |
KR102150609B1 (en) * | 2014-02-21 | 2020-09-01 | 엘지이노텍 주식회사 | Motor |
DE102014102591A1 (en) * | 2014-02-27 | 2015-08-27 | Rausch & Pausch Gmbh | Method of conveying hydraulic fluid and electro-hydraulic motor-pump unit therefor |
US10170946B2 (en) * | 2015-02-02 | 2019-01-01 | Persimmon Technologies Corporation | Motor having non-circular stator |
TWI746665B (en) * | 2017-10-16 | 2021-11-21 | 鑽全實業股份有限公司 | Driver and driving device of electric nail gun |
US10923969B2 (en) * | 2019-01-14 | 2021-02-16 | GM Global Technology Operations LLC | Molded core assemblies for a motor-generator |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2247890A (en) * | 1940-01-26 | 1941-07-01 | Gen Electric | Core for electrical apparatus |
US3848331A (en) * | 1973-09-11 | 1974-11-19 | Westinghouse Electric Corp | Method of producing molded stators from steel particles |
US4392072A (en) * | 1978-09-13 | 1983-07-05 | General Electric Company | Dynamoelectric machine stator having articulated amorphous metal components |
JPH0643100B2 (en) * | 1989-07-21 | 1994-06-08 | 株式会社神戸製鋼所 | Composite member |
JPH0370440A (en) * | 1989-08-07 | 1991-03-26 | Mitsubishi Electric Corp | Rotating electric machine |
US4947065A (en) * | 1989-09-22 | 1990-08-07 | General Motors Corporation | Stator assembly for an alternating current generator |
JPH07111746A (en) * | 1993-10-12 | 1995-04-25 | Hitachi Ltd | Rotary electric machine |
US5710474A (en) * | 1995-06-26 | 1998-01-20 | Cleveland Machine Controls | Brushless DC motor |
JPH09149567A (en) | 1995-11-17 | 1997-06-06 | Yaskawa Electric Corp | Frameless motor |
JPH09215230A (en) * | 1996-02-09 | 1997-08-15 | Toshiba Corp | Motor |
JP3719281B2 (en) | 1996-02-14 | 2005-11-24 | 株式会社安川電機 | Frameless motor |
JP3462058B2 (en) | 1997-11-07 | 2003-11-05 | ミネベア株式会社 | Motor structure |
SE519302C2 (en) * | 1999-05-11 | 2003-02-11 | Hoeganaes Ab | Stator core with teeth made of soft magnetic powder material and stator assembly |
US6617740B2 (en) * | 2000-12-01 | 2003-09-09 | Petersen Technology Corporation | D.C. PM motor and generator with a stator core assembly formed of pressure shaped processed ferromagnetic particles |
US20030019096A1 (en) * | 2001-06-26 | 2003-01-30 | Weihs Timothy P. | Magnetic devices comprising magnetic meta-materials |
JP2003219583A (en) * | 2002-01-18 | 2003-07-31 | Toshiba Corp | Stator for dynamo-electric machine |
EP1333558A3 (en) * | 2002-01-31 | 2005-01-26 | Hitachi, Ltd. | Rotor for rotating electric machine and method of fabricating the same, for gas turbine power plant |
JP4323940B2 (en) * | 2002-12-20 | 2009-09-02 | 新日本製鐵株式会社 | Exciter, field machine, and synchronous machine using the same |
JP2004254384A (en) * | 2003-02-18 | 2004-09-09 | Asmo Co Ltd | Brushless motor and fluid pump device |
JP4032352B2 (en) | 2003-03-31 | 2008-01-16 | 株式会社デンソー | Stator and rotating electric machine |
WO2005060073A1 (en) * | 2003-12-18 | 2005-06-30 | Intelligent Electric Motor Solutions Pty Ltd | Hybrid construction electric machine |
WO2005107038A1 (en) * | 2004-04-30 | 2005-11-10 | Sumitomo Electric Industries, Ltd. | Dust core and manufacturing method thereof |
JP2005322800A (en) | 2004-05-10 | 2005-11-17 | Sumitomo Electric Ind Ltd | Dust core and its manufacturing method |
JP2006006015A (en) * | 2004-06-16 | 2006-01-05 | Sumitomo Electric Ind Ltd | Stator core |
JP2006166679A (en) | 2004-12-10 | 2006-06-22 | Nissan Motor Co Ltd | Structure of stator for axial gap type dynamo-electric machine |
JP2006223024A (en) | 2005-02-08 | 2006-08-24 | Nsk Ltd | Brushless motor |
JP2006280066A (en) * | 2005-03-29 | 2006-10-12 | Toyota Motor Corp | Stator and rotary electric machine |
JP2006304455A (en) | 2005-04-19 | 2006-11-02 | Nissan Motor Co Ltd | Rotary electric machine structure |
EP1715559A1 (en) * | 2005-04-22 | 2006-10-25 | Isa Innovations S.A. | Grooved part of an electric motor |
US8310125B2 (en) * | 2007-02-23 | 2012-11-13 | Jtekt Corporation | Motor and electric pump having a stator including a first sintered metal and second sintered metal |
-
2008
- 2008-02-22 US US12/449,641 patent/US8310125B2/en active Active
- 2008-02-22 EP EP08711791.7A patent/EP2113984B1/en not_active Not-in-force
- 2008-02-22 JP JP2009500241A patent/JP5233984B2/en not_active Expired - Fee Related
- 2008-02-22 WO PCT/JP2008/053017 patent/WO2008102860A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2008102860A1 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011109129A1 (en) * | 2011-07-14 | 2013-01-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electric energy converter and method for its production |
EP3828302A1 (en) * | 2013-09-30 | 2021-06-02 | Persimmon Technologies Corporation | Structures utilizing a structured magnetic material |
US11404929B2 (en) | 2013-09-30 | 2022-08-02 | Persimmon Technologies Corporation | Structures utilizing a structured magnetic material and methods for making |
US11975386B2 (en) | 2013-09-30 | 2024-05-07 | Persimmon Technologies Corporation | Structures utilizing a structured magnetic material and methods for making |
CN105990939A (en) * | 2015-02-09 | 2016-10-05 | 建准电机工业股份有限公司 | Inner rotor motor |
EP3291412A1 (en) * | 2016-08-31 | 2018-03-07 | Siemens Aktiengesellschaft | Electromagnetic path of a stator |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008102860A1 (en) | 2010-05-27 |
WO2008102860A1 (en) | 2008-08-28 |
JP5233984B2 (en) | 2013-07-10 |
US8310125B2 (en) | 2012-11-13 |
EP2113984B1 (en) | 2017-10-11 |
EP2113984A4 (en) | 2016-09-21 |
US20100040488A1 (en) | 2010-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8310125B2 (en) | Motor and electric pump having a stator including a first sintered metal and second sintered metal | |
US20200227961A1 (en) | Radially embedded permanent magnet rotor and methods thereof | |
US7709988B2 (en) | Methods and apparatus for using an electrical machine to transport fluids through a pipeline | |
US6765319B1 (en) | Plastic molded magnet for a rotor | |
KR102406274B1 (en) | Axial Gap Type Electric Motor and Electric Water Pump Using the Same | |
DE102012219841B4 (en) | Electric pump and method of manufacturing an electric pump | |
JP5898976B2 (en) | Impeller system with axial gap rotor | |
US20140103770A1 (en) | Permanent magnet rotor and methods thereof | |
CN111183287B (en) | Cycloid pump with mandrel | |
CN105229306B (en) | Electric oil pump | |
CN105143674A (en) | Pump having an electric motor | |
WO2020109553A1 (en) | Screw pump for cooling battery packs | |
JP2021508362A (en) | Jeroter pump and its manufacturing method | |
JP2005151648A (en) | Motor and method of manufacturing motor, and driving unit, compressor, and mobile object | |
CN103997136A (en) | Rotation motor and air blower having the same | |
CA3166837A1 (en) | Permanent magnet rotor for an axial flux motor | |
KR102694355B1 (en) | Stator for Axial Gap Type Electric Motor and Manufacturing Method thereof | |
EP4350145A1 (en) | Gear pump for oil | |
CN213521442U (en) | Rotor, permanent magnet synchronous motor, compressor and refrigeration equipment | |
KR102726923B1 (en) | Electric Water Pump Using Axial Gap Type Electric Motor | |
CN1412915A (en) | Mixed rotor type bearing-free motor | |
KR20240016578A (en) | Axial Gap Type Electric Motor for Electric Water Pump | |
JP2019070366A (en) | Fuel supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090814 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160822 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02K 1/14 20060101ALI20160816BHEP Ipc: H02K 1/02 20060101AFI20160816BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170512 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: YUKITAKE, YASUHIRO |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 936827 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008052450 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171011 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 936827 Country of ref document: AT Kind code of ref document: T Effective date: 20171011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180111 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180111 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180112 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180211 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008052450 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20180712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180222 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180222 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20181031 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180222 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210209 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008052450 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220901 |