EP2113127A1 - Selective absorber for converting sunlight into heat, and method and device for the production thereof - Google Patents

Selective absorber for converting sunlight into heat, and method and device for the production thereof

Info

Publication number
EP2113127A1
EP2113127A1 EP05733673A EP05733673A EP2113127A1 EP 2113127 A1 EP2113127 A1 EP 2113127A1 EP 05733673 A EP05733673 A EP 05733673A EP 05733673 A EP05733673 A EP 05733673A EP 2113127 A1 EP2113127 A1 EP 2113127A1
Authority
EP
European Patent Office
Prior art keywords
selective absorber
group
oxygen
roller
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05733673A
Other languages
German (de)
French (fr)
Inventor
Peter Lazarov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2113127A1 publication Critical patent/EP2113127A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a selective absorber for converting sunlight into heat, a method for its production, and a device for its production.
  • DE 36 37 810 C2 discloses a decorative layer with titanium, oxygen, nitrogen and carbon. This layer is described as gray to black. It can be seen from this that the ⁇ TH will be unacceptably high.
  • DE 31 17 299 C2 discloses TiNO and TiCO layers produced by means of electron steel evaporation. It is known that layers produced in this way are porous, ie they contain empty spaces as disclosed in DE 32 10 420 A1 and in DE 43 44 258 C1. These layers also have stability problems.
  • the object of the present invention is to provide a selective absorber which has the good optical properties mentioned above without their disadvantages. Furthermore, the object of the present invention is to provide a method and a device with which the selective absorber can be produced.
  • the selective absorber for converting sunlight into heat consists of thin layers on a substrate, preferably aluminum, copper or steel.
  • the thin layers in turn consist of two layer systems.
  • the first, the system adjacent to the substrate, contains at least one layer of dense, ie void-free material made of titanium, aluminum, nitrogen, carbon and oxygen.
  • This material has the chemical formula Ti ⁇ AlßN x CyO z .
  • the sum of ⁇ and ⁇ is 1 and ⁇ to ⁇ is 1 to (0.05 to 1), preferably 1 to (0.05 to 0.6) and particularly preferably (0.05 to 0.09) ).
  • x + y + z is in the range from 0.8 to 2, preferably in the range from 1.2 to 2 and particularly preferably in the range from 1.5 to 5.
  • x + y + z is in the range from 0.8 to 2, preferably in the range from 1.2 to 2 and particularly preferably in the range from 1.5 to 5.
  • the second system above contains at least one layer made of a mixture TiO z and Al 2 0 exists. The following applies to this layer 1 ⁇ z ⁇ 2.
  • x + y + z is in the range from 0.9 to 2, preferably in the range from 1.3 to 2.
  • the second layer system can further contain at least one of one of the following materials Si0 2 , Zr0 2 , Ti02, Ba 2 ⁇ 3, Al 2 0 3 , Pb0 2 , or Zn0 2 or combinations thereof.
  • the selective absorber can be passivated by such an oxide layer, thereby increasing its service life.
  • the thickness of the first system is in the range from 50 to 150 nm, preferably in the range from 70 to 120 nm.
  • the thickness of the second system is in the range from 80 to 300 nm, preferably in the range from 90 to 180 nm.
  • the present invention is further achieved by a method for reactive arc evaporation (ARC) according to claim 8.
  • ARC reactive arc evaporation
  • titanium and aluminum are formed on a substrate during the deposition of the metals by maintaining a gas atmosphere which min. contains at least one of the gases argon, nitrogen, carbon dioxide and oxygen, an oxide, nitride or carbide compound.
  • a gas atmosphere which min. contains at least one of the gases argon, nitrogen, carbon dioxide and oxygen, an oxide, nitride or carbide compound.
  • a plasma is used to deposit the target material and leads to a high ionization rate of the material to be evaporated. The result is dense layers.
  • the substrate to be coated is guided over two groups of rows of arc evaporators.
  • the rows of evaporators are arranged transversely to the direction of movement of the substrate.
  • the evaporators in the first group in the direction of movement are equipped with titanium targets and those in the second with targets consisting of a mixture of titanium and aluminum.
  • the volume fraction of aluminum in this target is 5 to 45%, preferably 15 to 33%.
  • the reaction gases nitrogen and carbon dioxide are supplied near the first group of evaporators.
  • the distance between the evaporator and the gas supply is smaller than the distance between the two groups.
  • Oxygen is supplied near the second group, closer than half the distance between the two groups.
  • Argon is also supplied between the two groups.
  • the total pressure is set to a value in the range 10 "3 to 10 " 2 via the inflow of argon or optionally oxygen.
  • the ratio of the inflows of the gases 0 2 to C0 2 to N 2 is 1 to (0.05 to 5) to (0 to 0.25).
  • the proportion of argon in the gas mixture is in the range 0 to 50%.
  • a preferred embodiment of the invention is that after the second group of evaporators, further thermal evaporators are used in order to reactively deposit dielectric layers made of SiO 2 , ZrO 2 , TiO 2 , Ba 2 O 3 , Al 2 O 3 , PbO 2 or ZnO 2 .
  • a bias voltage of preferably 50 to 1000 V, particularly preferably 150 to 750 V can be used between the arc evaporator and the substrate, so that contaminated substrates can also be coated with the process in an adherent manner.
  • the substrate temperature in the range from 150 ° C to 500 ° C. This can improve the adhesive strength.
  • the possibility of replacing or supplementing C0 2 with methane and / or CO permits more flexible production of the absorber according to the invention.
  • a layer system is deposited in a cylindrical vacuum chamber by means of reactive arc evaporation.
  • the cylindrical, evacuable vacuum chamber (3) has a door (2) on at least one side of the cylinder.
  • a support tube (1) on which a winding device (17) is fastened passes through this door (2).
  • an unwinding roller (8), a winding roller (9) at least two deflection rollers (6,7) and at least one dancer roller (12,13) and at least one pressure roller (11) the axes of all Rollers are parallel to the axis of the support tube (1) and the support tube (1) and door (2) are independently attached to a carriage.
  • This trolley runs on rollers or rails parallel to the cylinder axis of the chamber (3), so that the winding device (17) can be completely moved into the chamber (3) and the door (2) closes the chamber (3) in a vacuum-tight manner. Furthermore, the winding device (17) has dancer rollers (12, 13), each of which is pulled in the direction of the support tube (1) by two spring assemblies (14). The substrate tape to be coated forms a free path between the wrapping rollers (6, 7). Below this are groups of arc evaporators. These evaporators are fastened in ventilated vessels (21) which are positioned in the chamber (3).
  • Fig. 1 shows the reflection as a function of the wavelength of Example 1.
  • Fig. 2 shows schematically the structure of the device according to Example 4.
  • Example 3 shows the reflection as a function of the wavelength of Example 2.
  • Example 4 shows the reflection as a function of the wavelength of Example 3.
  • Evacuated in an vacuum chamber by an oil diffusion pump followed by a roots pump and a two-stage rotary vane pump are two commercially available 0 69 mm arc vaporizers.
  • 0.2 mm thick copper substrate strips are guided over the evaporators by means of a manipulator.
  • Both evaporators are equipped with 20% Al-Ti mixed targets. 5 mm before the first evaporator 100 sccm N 2 and 350 sccm C0 2 are introduced. 5 mm behind the second evaporator 1000 sccm 0 2 are fed.
  • the arc evaporators burn at 60A each. The substrates are passed over the evaporators in such a way that the desired layer thickness is produced.
  • the first evaporator was only equipped with titanium
  • the coating device consists of a cylindrical vacuum chamber (3), a winding device (17) which is attached to a support tube (1).
  • the support tube (1) and door (2) of the vacuum chamber (3) are attached to a trolley.
  • the carriage runs on a rail system in such a way that the door (2) and support tube (1) with the winding device (17) can move into the vacuum chamber (17).
  • the door (2) and the chamber (3) are both provided with a sealing flange (18) so that the door (2) seals the chamber (3) in a vacuum-tight manner.
  • the winding device consists of two end plates (4,5) on which the rollers, unwinding and winding rollers (8,9), deflection rollers (6,7), pressure rollers (10,11), dancer rollers (12,13) and the spring assemblies ( 14) are attached.
  • the strip to be coated is passed from the unwinding roller (8) over the deflection roller (6). It is guided and stretched by the dancer roller (13) so that a defined wrap angle is created on the deflection roller (6).
  • the deflection roller (6) is designed as a heating roller in this example. For this purpose, electrical lines are laid through the pipe (1) and reach the vacuum side via electrical feedthroughs (19). From there, the lines to the heating roller (6) are laid on the vacuum side.
  • the heating roller (6) itself is designed such that it consists of a hollow tube which is rotatably mounted. A cylindrical electric radiant heater is fixed in this hollow tube.
  • the belt forms a free path from the heating roller (6) to the deflection roller (7). Below this free path there are two rows of arc evaporators, each row consisting of three evaporators, attached to the chamber (3) with which the running strip is coated. Each individual evaporator is placed in a ventilated vessel (21) in such a way that it can be freely positioned in the chamber (3).
  • the tape is guided around a second dancer roller (12) to the take-up roller (9). Furthermore, the winding device (17) is provided with two pressure rollers (11). These allow a degree of cutting to be pressed on metal strips and lead to better winding quality.
  • the winding (9) and unwinding rollers (8) are connected to motors (16) via drive shafts (20) via a rotary vacuum feedthrough. The motors are attached to the door (2) on the air side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to a selective absorber for converting sunlight into heat, said absorber being composed of thin layers on a substrate, preferably aluminum, copper, or steel. The thin layers are made of two layer systems. The first layer system, which borders the substrate, comprises at least one layer that is made of tight, i.e. void-free material composed of titanium, aluminum, nitrogen, carbon, and oxygen. Said material has the chemical formula TiaAlßNxCyOz. The superimposed second system comprises at least one layer that is made of a mixture of TiOz and Al2O3.

Description

Selektiver Absorber zur Umwandlung von Sonnenlicht in Wärme, ein Verfahren und eine Vorrichtung zu dessen HerstellungSelective absorber for converting sunlight into heat, a method and a device for the production thereof
Die Erfindung betrifft einen selektiven Absorber zur Umwandlung des Son- nenlichtes in Wärme, ein Verfahren zu dessen Herstellung, sowie eine Vorrichtung zu dessen Herstellung.The invention relates to a selective absorber for converting sunlight into heat, a method for its production, and a device for its production.
Bisher wurden für selektive Absorber meist Substrate aus einem metallischen Material verwendet, die mit einer selektiv absorbierenden Schicht versehen sind. Solche selektiv absorbierenden Schichten sind seit H. Tabor 1955 („Selective Radiation I. Wavelength Discrimination" in Bull. Res. Counc. Israel 5A(1956) p.119) bekannt. Diese Schichten haben die Eigenschaft das Sonnenlicht möglichst vollständig zu absorbieren, gekennzeichnet durch den solaren Absorbtionsgrad CISOL und gleichzeitig möglichst we- nig Energie im thermischen Strahlungsbereich zu emittieren, beschrieben durch den thermischen Emissionsgrad ε-m- Weiterhin müssen diese Schichten für den Einsatz in Sonnenkollektoren geeignet sein, was eine Temperaturstabilität bis 250°C und Feuchtestabilität über mehrere Jahre bedeutet. Eine Vielzahl von selektiven Absorbern sind bekannt, so z. B. DE 28 04447 C3, DE 36 15 181 A1 , DE 4425 140 C1 oder DE 196 20 645 C2. Des weiteren sie explizit auf DE 43 44 258 C1 hingewiesen. Darin wird ein Material aus TiNxOy mit Leerräumen offenbart, welches als dünne Schicht auf vorzugsweise Kupfer einen selektiven Absorber bildet. Die hervorragenden optischen Eigenschaften dieser Absorber (αsoL > 0,94 und £TH< 0,05) brin- gen den Nachteil mit sich, dass die geforderte Temperaturstabilität nicht erfüllt wird.So far, substrates made of a metallic material that have been provided with a selectively absorbing layer have mostly been used for selective absorbers. Such selectively absorbing layers have been known since H. Tabor 1955 ("Selective Radiation I. Wavelength Discrimination" in Bull. Res. Counc. Israel 5A (1956) p.119). These layers have the property of absorbing sunlight as completely as possible due to the solar absorption level CISO L and at the same time to emit as little energy as possible in the thermal radiation range, described by the thermal emissivity ε-m- Furthermore, these layers must be suitable for use in solar collectors, which means a temperature stability up to 250 ° C and moisture stability A number of selective absorbers are known, for example DE 28 04447 C3, DE 36 15 181 A1, DE 4425 140 C1 or DE 196 20 645 C2, and they are also explicitly referred to DE 43 44 258 C1 This discloses a material made of TiN x Oy with empty spaces, which forms a selective absorber as a thin layer on preferably copper The outstanding optical properties of these absorbers (αsoL> 0.94 and £ TH <0.05) have the disadvantage that the required temperature stability is not met.
Weiterhin sind dünne Schichten aus Verbindungen der Metalle der Gruppe IVa mit Stickstoff, Sauerstoff oder Kohlenstoff bekannt. DE 36 37 810 C2 offenbart eine dekorative Schicht mit Titan, Sauerstoff, Stickstoff und Kohlenstoff. Diese Schicht wird als grau bis schwarz beschrieben. Daraus ist zu entnehmen, dass der εTH inakzeptabel hoch liegen wird. DE 31 17 299 C2 offenbart TiNO und TiCO Schichten hergestellt mittels Elektronenstahlverdampfung. Bekanntermaßen sind so hergestellte Schichten porös, d.h. sie enthalten Leerräume wie in DE 32 10 420 A1 und in DE 43 44 258 C1 offenbart. Diese Schichten haben ebenfalls Stabilitätsproble- me.Thin layers of compounds of Group IVa metals with nitrogen, oxygen or carbon are also known. DE 36 37 810 C2 discloses a decorative layer with titanium, oxygen, nitrogen and carbon. This layer is described as gray to black. It can be seen from this that the ε TH will be unacceptably high. DE 31 17 299 C2 discloses TiNO and TiCO layers produced by means of electron steel evaporation. It is known that layers produced in this way are porous, ie they contain empty spaces as disclosed in DE 32 10 420 A1 and in DE 43 44 258 C1. These layers also have stability problems.
DE 41 15 616 C2 offenbart eine TiAINx Schicht als Hartstoffsystem für Werkzeuge. Erfahrungsgemäß führen Metallnitride zu niedrigen αSoι- und sind als selektive Absorber nur bedingt geeignet.DE 41 15 616 C2 discloses a TiAIN x layer as a hard material system for tools. Experience has shown that metal nitrides lead to low α S oι and are only of limited use as selective absorbers.
Aufgabe der vorliegenden Erfindung ist es, einen selektiven Absorber bereitzustellen, der die oben genannten guten optischen Eigenschaften ohne ihre Nachteile aufweist. Weiter besteht die Aufgabe der vorliegenden Erfindung darin, ein Verfahren und eine Vorrichtung bereitzustellen, mit denen der selektive Absorber hergestellt werden kann.The object of the present invention is to provide a selective absorber which has the good optical properties mentioned above without their disadvantages. Furthermore, the object of the present invention is to provide a method and a device with which the selective absorber can be produced.
Erfindungsgemäß wird die Aufgabe durch die Gegenstände der Patentansprüche 1 , 8 und 13 gelöst. Vorteilhafte Ausgestaltungen sind Gegenstände der Unteransprüche.According to the invention the object is solved by the subject matter of claims 1, 8 and 13. Advantageous refinements are the subject of the dependent claims.
Der selektive Absorber zur Umwandlung des Sonnenlichtes in Wärme gemäß Anspruch 1 besteht aus dünnen Schichten auf einem Substrat, vorzugsweise Aluminium , Kupfer oder Stahl. Die dünnen Schichten bestehen ihrerseits aus zwei Schichtsystemen. Das Erste, das am Substrat angren- zende System enthält mindestens eine Schicht aus dichtem, d.h. leerraumfreiem Material aus Titan, Aluminium, Stickstoff, Kohlenstoff und Sauerstoff. Dieses Material weist die chemische Formel TiαAlßNxCyOz auf. Die Summe von α und ß ist 1 und α verhält sich zu ß wie 1 zu (0,05 bis 1), bevorzugt wie 1 zu (0,05 bis 0,6) und besonders bevorzugt wie (0,05 bis 0,09). Weiterhin gilt für dieses Material dass x+y+z im Bereich von 0,8 bis 2 liegt, bevorzugt im Bereich von 1 ,2 bis 2 und besonders bevorzugt im Bereich 1 ,5 bis 5. Für die einzelnen Bestandteile gilt, dass 0,0 < x ≤ 1 ,2, bevorzugt 0,0 < x ≤ 0,1 ; 0,2 < y ≤ 2, bevorzugt 1 < y < 2 und 0,05 < z < 2 ist. Das darüber liegende zweite System enthält mindestens eine Schicht, die aus einem Gemisch aus TiOz und Al20 besteht. Für diese Schicht gilt 1 < z < 2. Die Möglichkeit das System Eins mit mindestens einer weiteren Schicht aus dichtem, d.h. iee- raumfreien Material aus Titan, Stickstoff, Kohlenstoff und Sauerstoff mit der chemischen Formel TiNxCyOz auszugestalten, erlaubt eine schnellere Pro- duktion des selektiven Absorbers bei gleich bleibenden Eigenschaften. Diese Schicht wird dadurch beschrieben, dass x+y+z im Bereich von 0,9 bis 2 liegt, bevorzugt im Bereich von 1 ,3 bis 2. Ferner gilt 0,0 ≤ x < 1 ,2, bevorzugt 0,0 < x < 0,1 ; 0,2 < y < 2, bevorzugt 1 < y < 2 und 0,05 < z < 2. Alle obigen Verhältnisse beziehen sich auf die Teilchenzahl beziehungsweise auf die Molverhältnisse.The selective absorber for converting sunlight into heat according to claim 1 consists of thin layers on a substrate, preferably aluminum, copper or steel. The thin layers in turn consist of two layer systems. The first, the system adjacent to the substrate, contains at least one layer of dense, ie void-free material made of titanium, aluminum, nitrogen, carbon and oxygen. This material has the chemical formula Ti α AlßN x CyO z . The sum of α and β is 1 and α to β is 1 to (0.05 to 1), preferably 1 to (0.05 to 0.6) and particularly preferably (0.05 to 0.09) ). Furthermore, for this material it applies that x + y + z is in the range from 0.8 to 2, preferably in the range from 1.2 to 2 and particularly preferably in the range from 1.5 to 5. For the individual constituents, 0 <x ≤ 1, 2, preferably 0.0 <x ≤ 0.1; 0.2 <y ≤ 2, preferably 1 <y <2 and 0.05 <z <2. The second system above contains at least one layer made of a mixture TiO z and Al 2 0 exists. The following applies to this layer 1 <z <2. The possibility of designing system one with at least one further layer of dense, ie space-free material made of titanium, nitrogen, carbon and oxygen with the chemical formula TiN x C y O z allows one Faster production of the selective absorber with the same properties. This layer is described in that x + y + z is in the range from 0.9 to 2, preferably in the range from 1.3 to 2. Furthermore, 0.0 x x <1, 2, preferably 0.0 <x <0.1; 0.2 <y <2, preferably 1 <y <2 and 0.05 <z <2. All of the above ratios relate to the number of particles or to the molar ratios.
Das zweite Schichtsystem kann weiter mindestens eine aus einem der folgenden Materialien Si02, Zr02, Ti02, Ba2θ3, Al203, Pb02, oder Zn02 oder Kombinationen aus diesen enthalten. Durch eine solche Oxidschicht kann der selektive Absorber passiviert werden, wodurch seine Lebensdauer erhöht wird.The second layer system can further contain at least one of one of the following materials Si0 2 , Zr0 2 , Ti02, Ba 2 θ3, Al 2 0 3 , Pb0 2 , or Zn0 2 or combinations thereof. The selective absorber can be passivated by such an oxide layer, thereby increasing its service life.
Die Dicke des ersten Systems liegt im Bereich von 50 bis 150 nm, bevorzugt im Bereich von 70 bis 120 nm. Die Dicke des zweiten Systems liegt im Bereich von 80 bis 300 nm, bevorzugt im Bereich von 90 bis 180 nm. Diese Ausgestaltung der Erfindung erlaubt mit geringem Materialeinsatz und damit mit geringen Kosten selektive Absorber mit hervorragenden Eigenschaften herzustellen.The thickness of the first system is in the range from 50 to 150 nm, preferably in the range from 70 to 120 nm. The thickness of the second system is in the range from 80 to 300 nm, preferably in the range from 90 to 180 nm. This embodiment of the invention Allows selective absorbers with excellent properties to be produced with a low use of material and thus at low cost.
Es wird vollinhaltlich auf die parallelen deutschen Patentanmeldungen DE 10 2004 019 060.7 und DE 10 2004 019 062.3 und die korrespondierenden internationalen Anmeldungen, die zeitgleich mit der vorliegenden Anmeldung eingereicht wurden, Bezug genommen und in die vorliegende Anmeldung aufgenommen.Reference is made in full to the parallel German patent applications DE 10 2004 019 060.7 and DE 10 2004 019 062.3 and the corresponding international applications which were filed at the same time as the present application and incorporated into the present application.
Weiter wird die vorliegende Erfindung durch ein Verfahren zur reaktiven Lichtbogenverdampfung (ARC) gemäß Anspruch 8 gelöst. Erfindungsgemäß entsteht während des Abscheidens der Metalle Titan und Aluminium auf einem Substrat durch Aufrechterhalten einer Gasatmosphäre, die min- destens eines der Gase Argon, Stickstoff, Kohlendioxid und Sauerstoff enthält, eine Oxid-, Nitrid- oder Carbid-Verbindung. Um dichte, also leerraum- freie Schichten zu erhalten, werden keine thermischen Verfahren zum Verdampfen eingesetzt, sondern die Lichtbogenverdampfung. Bei diesem Ver- fahren wird ein Plasma zum Abscheiden des Targetmaterials benutzt und führt zu einer hohen lonisationsrate des zu verdampfenden Materials. Dichte Schichten sind die Folge. In einer Vakuumkammer wird das zu beschichtende Substrat über zwei Gruppen aus Reihen von Lichtbogenverdampfern geführt. Die Reihen der Verdampfer sind quer zur Bewegungsrichtung des Substrates angeordnet. Die Verdampfer der in Bewegungsrichtung ersten Gruppe sind mit Titantargets bestückt und die der zweiten mit Targets bestehend aus einem Gemisch aus Titan und Aluminium. Der Volumenanteil an Aluminium in diesem Target beträgt 5 bis 45%, bevorzugt 15 bis 33%. Die Reaktionsgase Stickstoff und Kohlendioxid werden nahe der ersten Gruppe von Verdampfern zugeführt. Der Abstand zwischen Verdampfer und Gaszuführung ist kleiner als der Abstand zwischen den zwei Gruppen. Sauerstoff wird nahe der zweiten Gruppe zugeführt, näher als den halben Abstand zwischen den beiden Gruppen. Ferner wird Argon zwischen den zwei Gruppen zugeführt. Der Gesamtdruck wird über den Zufluss von Argon oder wahlweise von Sauerstoff auf einen Wert im Bereich 10"3 bis 10"2 gestellt. Erfindungsgemäß beträgt das Verhältnis der Zuflüsse der Gase 02 zu C02 zu N2 wie 1 zu (0,05 bis 5) zu (0 bis 0,25). Der Zufluss an N2 Gas wird in Abhängigkeit der Verdampferrate der ersten Gruppe eingestellt nach der Formel: Zufluss [in sccm/s] = Rate [in ,6. g/sec] * f, wobei der Faktor . im Bereich von 0 bis 2, bevorzugt im Bereich 0,05 bis 1 ,3 liegt. Der Anteil an Argon im Gasgemisch liegt im Bereich 0 bis 50%.The present invention is further achieved by a method for reactive arc evaporation (ARC) according to claim 8. According to the invention, titanium and aluminum are formed on a substrate during the deposition of the metals by maintaining a gas atmosphere which min. contains at least one of the gases argon, nitrogen, carbon dioxide and oxygen, an oxide, nitride or carbide compound. In order to obtain dense, void-free layers, no thermal evaporation processes are used, but arc evaporation. In this process, a plasma is used to deposit the target material and leads to a high ionization rate of the material to be evaporated. The result is dense layers. In a vacuum chamber, the substrate to be coated is guided over two groups of rows of arc evaporators. The rows of evaporators are arranged transversely to the direction of movement of the substrate. The evaporators in the first group in the direction of movement are equipped with titanium targets and those in the second with targets consisting of a mixture of titanium and aluminum. The volume fraction of aluminum in this target is 5 to 45%, preferably 15 to 33%. The reaction gases nitrogen and carbon dioxide are supplied near the first group of evaporators. The distance between the evaporator and the gas supply is smaller than the distance between the two groups. Oxygen is supplied near the second group, closer than half the distance between the two groups. Argon is also supplied between the two groups. The total pressure is set to a value in the range 10 "3 to 10 " 2 via the inflow of argon or optionally oxygen. According to the invention, the ratio of the inflows of the gases 0 2 to C0 2 to N 2 is 1 to (0.05 to 5) to (0 to 0.25). The inflow of N 2 gas is adjusted depending on the evaporator rate of the first group according to the formula: inflow [in sccm / s] = rate [in, 6. g / sec] * f, being the factor. is in the range from 0 to 2, preferably in the range from 0.05 to 1.3. The proportion of argon in the gas mixture is in the range 0 to 50%.
Eine bevorzugte Ausgestaltung der Erfindung ist, dass nach der zweiten Gruppe an Verdampfern weitere thermische Verdampfer eingesetzt werden um dielektrische Schichten aus Si02, Zr02, Ti02, Ba203, Al203, Pb02, oder Zn02 reaktiv abzuscheiden. Weiterhin kann zwischen Lichtbogenverdampfer und Substrat eine Bias- spannung vorzugsweise von 50 bis 1000 V, besonderst bevorzugt 150 bis 750 V eingesetzt werden, damit auch verunreinigte Substrate mit dem Verfahren haftfest beschichtet werden können.A preferred embodiment of the invention is that after the second group of evaporators, further thermal evaporators are used in order to reactively deposit dielectric layers made of SiO 2 , ZrO 2 , TiO 2 , Ba 2 O 3 , Al 2 O 3 , PbO 2 or ZnO 2 . Furthermore, a bias voltage of preferably 50 to 1000 V, particularly preferably 150 to 750 V, can be used between the arc evaporator and the substrate, so that contaminated substrates can also be coated with the process in an adherent manner.
Weiterhin ist es von Vorteil die Substrattemperatur im Bereich von 150°C bis 500°C zu wählen. Dadurch kann die Haftfestigkeit verbessert werden. Die Möglichkeit C02 durch Methan und/oder CO zu ersetzen oder zu ergänzen erlaubt flexiblere Herstellung des erfindungsgemäßen Absorbers.Furthermore, it is advantageous to choose the substrate temperature in the range from 150 ° C to 500 ° C. This can improve the adhesive strength. The possibility of replacing or supplementing C0 2 with methane and / or CO permits more flexible production of the absorber according to the invention.
Bei der erfindungsgemäßen Vorrichtung zur Herstellung des selektiven Absorbers nach obigem Verfahren wird in einer zylindrischen Vakuumkammer ein Schichtsystem mittels reaktiver Lichtbogenverdampfung abgeschieden. Die zylindrische, evakuierbare Vakuumkammer (3) hat mindestens an einer Seite des Zylinders eine Türe (2). Durch diese Türe (2) führt ein Tragrohr (1) auf dem eine Wickelvorrichtung (17) befestigt ist. Zwischen zwei Lagerschilden (4,5) befinden sich eine Abwickelwalze (8), eine Aufwickelwalze (9) mindestens zwei Umlenkwalzen (6,7) und mindestens eine Tänzerwalze (12,13) sowie mindestens eine Anpresswalze (11), wobei die Achsen aller Walzen parallel zur Achse des Tragrohres (1) sind und Tragrohr (1) und Türe (2) unabhängig voneinander auf einem Fahrwagen befestigt sind. Dieser Fahrwagen fährt auf Rollen oder Schienen parallel zur Zylinderachse der Kammer (3), derart dass die Wickelvorrichtung (17) vollständig in die Kammer (3) einfahrbar ist und die Türe (2) die Kammer (3) vakuumdicht schließt. Ferner weist die Wickelvorrichtung (17) Tänzerwalzen (12,13) auf, die je durch zwei Federpakete (14) in Richtung Tragrohr (1) gezogen werden. Das zu beschichtende Substratband bildet zwischen den Umwickelwalzen (6,7) eine freie Strecke. Unterhalb dieser sind Gruppen von Lichtbogenverdampfern angebracht. Diese Verdampfer sind in belüfteten Gefäßen (21) befestigt, welche in der Kammer (3) positioniert sind.In the device according to the invention for producing the selective absorber according to the above method, a layer system is deposited in a cylindrical vacuum chamber by means of reactive arc evaporation. The cylindrical, evacuable vacuum chamber (3) has a door (2) on at least one side of the cylinder. A support tube (1) on which a winding device (17) is fastened passes through this door (2). Between two end plates (4,5) there is an unwinding roller (8), a winding roller (9) at least two deflection rollers (6,7) and at least one dancer roller (12,13) and at least one pressure roller (11), the axes of all Rollers are parallel to the axis of the support tube (1) and the support tube (1) and door (2) are independently attached to a carriage. This trolley runs on rollers or rails parallel to the cylinder axis of the chamber (3), so that the winding device (17) can be completely moved into the chamber (3) and the door (2) closes the chamber (3) in a vacuum-tight manner. Furthermore, the winding device (17) has dancer rollers (12, 13), each of which is pulled in the direction of the support tube (1) by two spring assemblies (14). The substrate tape to be coated forms a free path between the wrapping rollers (6, 7). Below this are groups of arc evaporators. These evaporators are fastened in ventilated vessels (21) which are positioned in the chamber (3).
Die Erfindung wird weiter anhand der Figuren beschrieben, welche zeigen:The invention is further described with reference to the figures, which show:
Fig. 1 zeigt die Reflexion als Funktion der Wellenlänge von Beispiel 1. Fig. 2 zeigt schematisch den Aufbau der Vorrichtung nach Beispiel 4.1 shows the reflection as a function of the wavelength of Example 1. Fig. 2 shows schematically the structure of the device according to Example 4.
Fig. 3 zeigt die Reflexion als Funktion der Wellenlänge von Beispiel 2.3 shows the reflection as a function of the wavelength of Example 2.
Fig. 4 zeigt die Reflexion als Funktion der Wellenlänge von Beispiel 3.4 shows the reflection as a function of the wavelength of Example 3.
Die Erfindung wird weiter anhand der Beispiele beschrieben.The invention is further described on the basis of the examples.
Ausführunqsbeispiel 1 :Example 1:
In einer Vakuumkammer evakuiert durch eine Öldiffusionspumpe gefolgt von einer Wälzkolbenpumpe und einer zweistufigen Drehschieberpumpe sind zwei kommerziell erhältliche Lichtbogenverdampfer mit 0 69 mm angebracht. 0,2 mm dicke Kupfersubstratbänder werden mittels eines Manipu- lators über die Verdampfer geführt. Beide Verdampfer sind mit 20%igen Al- Ti Mischtargets bestückt. 5mm vor dem ersten Verdampfer werden 100 sccm N2 und 350 sccm C02 eingeführt. 5 mm hinter dem zweiten Verdampfer werden 1000 sccm 02 zugeführt. Vor Beginn und während der Beschichtung brennen die Lichtbogenverdampfer je mit 60A. Die Substrate werden derart über die Verdampfer geführt, dass die gewünschte Schichtdicke entsteht. Diese wird mit Schwingquarzen, welche ebenfalls mit den Substraten bewegt werden, gemessen. Als Substrattemperatur wurde 250°C gewählt. Nach der Beschichtung wurden der solare Emissionsgrad und der thermische Emissionsgrad mit Spektrometern bestimmt. Die Schichtzusammen- setzung wurde mittels Auge-Spektroskopie ermittelt. Folgende Ergebnisse wurden gemessen:Evacuated in an vacuum chamber by an oil diffusion pump followed by a roots pump and a two-stage rotary vane pump are two commercially available 0 69 mm arc vaporizers. 0.2 mm thick copper substrate strips are guided over the evaporators by means of a manipulator. Both evaporators are equipped with 20% Al-Ti mixed targets. 5 mm before the first evaporator 100 sccm N 2 and 350 sccm C0 2 are introduced. 5 mm behind the second evaporator 1000 sccm 0 2 are fed. Before and during the coating process, the arc evaporators burn at 60A each. The substrates are passed over the evaporators in such a way that the desired layer thickness is produced. This is measured with quartz crystals, which are also moved with the substrates. 250 ° C. was chosen as the substrate temperature. After coating, the solar emissivity and the thermal emissivity were determined with spectrometers. The layer composition was determined by means of eye spectroscopy. The following results were measured:
ÖSOL = 0,94; ε™ = 0,04 von TiαAlßNxCyOz mit (α=0,8; ß=0,2; x = 0,1 ; y = 1 ,1 ; z = 0,6) der Dicke 90 nm und Ti02 / Al203 - Schicht der Dicke 105 nm auf Kupfer.ÖSOL = 0.94; ε ™ = 0.04 of Ti α AlßN x CyO z with (α = 0.8; β = 0.2; x = 0.1; y = 1, 1; z = 0.6) with a thickness of 90 nm and Ti0 2 / Al 2 0 3 - 105 nm thick layer on copper.
Ausführunqsbeispiel 2:Example 2:
Der Parametersatz in Beispiel 2 unterscheidet sich von Beispiel 1 folgendermaßen: Das Gemisch Titan zu Aluminium betrug 90% Titan und 10% Aluminium. Der N2 Gasfluss betrug 50 sccm und der von 02 2000 sccm. Folgende Ergebnisse wurden gemessen: αsoι_= 0,95; ε-m = 0,04 von TiαAlßNxCyOz mit (α=0,9; ß=0,1 ; x = 0,02; y = 0,9; z = 1 ,08) der Dicke 85 nm und Ti02 / Al203 - Schicht der Dicke 100 nm auf Kupfer.The parameter set in Example 2 differs from Example 1 as follows: The titanium to aluminum mixture was 90% titanium and 10% Aluminum. The N 2 gas flow was 50 sccm and that of 0 2 2000 sccm. The following results were measured: αsoι_ = 0.95; ε-m = 0.04 of Ti α Al ß N x C y O z with (α = 0.9; ß = 0.1; x = 0.02; y = 0.9; z = 1, 08) the thickness 85 nm and Ti0 2 / Al 2 0 3 - layer of thickness 100 nm on copper.
Ausführunqsbeispiel 3:Example 3:
In diesem Beispiel wurde der erste Verdampfer nur mit Titan bestückt, derIn this example, the first evaporator was only equipped with titanium, the
Zweite mit einem Aluminiumanteil von 45%. Der N2 Gasfluss betrug 400 sccm; C02 500 sccm; Methan 500 sccm und 02 1000 sccm. Bei diesem Beispiel wurden folgende Ergebnisse ermittelt:Second with an aluminum content of 45%. The N 2 gas flow was 400 sccm; C0 2 500 sccm; Methane 500 sccm and 0 2 1000 sccm. The following results were obtained in this example:
OSOL = 0,95; εTH = 0,05 von System I: 40 nm TiNxCyOz mit (x = 0,3; y = 1 ,0; z = 0,7); 55 nm TiαAlßNxCyOz mit (o=0,7; ß=0,3; x = 0,1 ; y = 1 ,0; z = 0,9) und System II: Ti02 / Al203 - Schicht der Dicke 105 nm auf Kupferband.O SOL = 0.95; ε TH = 0.05 from System I: 40 nm TiN x C y O z with (x = 0.3; y = 1.0; z = 0.7); 55 nm Ti α Al ß N x C y O z with (o = 0.7; ß = 0.3; x = 0.1; y = 1, 0; z = 0.9) and System II: Ti0 2 / Al 2 0 3 layer 105 nm thick on copper tape.
Ausführunqsbeispiel 4:Example 4:
Die Vorrichtung zur Beschichtung besteht aus einer zylindrischen Vakuumkammer (3), einer Wickelvorrichtung (17), welche an einem Tragrohr (1) befestigt ist. Tragrohr (1) und Türe (2) der Vakuumkammer (3) sind an ei- nem Fahrwerk befestigt. Das Fahrwerk fährt auf einem Schienensystem derart, dass Tür (2) und Tragrohr (1) mit der Wickelvorrichtung (17) in die Vakuumkammer (17) einfahren kann. Die Tür (2) und die Kammer (3) sind beide mit einem Dichtungsflansch (18) versehen, so dass die Türe (2) die Kammer (3) vakuumdicht abdichtet.The coating device consists of a cylindrical vacuum chamber (3), a winding device (17) which is attached to a support tube (1). The support tube (1) and door (2) of the vacuum chamber (3) are attached to a trolley. The carriage runs on a rail system in such a way that the door (2) and support tube (1) with the winding device (17) can move into the vacuum chamber (17). The door (2) and the chamber (3) are both provided with a sealing flange (18) so that the door (2) seals the chamber (3) in a vacuum-tight manner.
Die Wickelvorrichtung besteht aus zwei Lagerschilden (4,5) an denen die Walzen, Ab- und Aufwickelwalze (8,9), Umlenkwalzen (6,7), Anpressrollen (10,11), Tänzerwalzen (12,13) und die Federpakete (14) angebracht sind. Das zu beschichtende Band wird von der Abwickelwalze (8) über die Um- lenkwalze (6) geführt. Hierbei wird es von der Tänzerwalze (13) geführt und gestreckt, so dass an der Umlenkwalze (6) ein definierter Umschlingungs- winkel entsteht. Die Umlenkwalze (6) ist in diesem Beispiel als Heizwalze ausgeführt. Hierzu werden elektrische Leitungen durch das Rohr (1) verlegt, die über elektrische Durchführungen (19) an die Vakuumseite gelangen. Von dort werden die Leitungen zur Heizwalze (6) vakuumseitig verlegt. Die Heizwalze (6) selbst ist derart ausgestaltet, dass sie aus einem Hohlrohr besteht, welches drehbar gelagert ist. In diesem Hohlrohr befindet sich ortsfest eine zylinderförmige elektrische Strahlungsheizung. Das Band bildet von der Heizwalze (6) bis zur Umlenkwalze (7) eine freie Strecke. Unterhalb dieser freien Strecke sind zwei Reihen Lichtbogenverdampfer, jede Reihe bestehend aus drei Verdampfern an der Kammer (3) angebracht, mit welchen das laufende Band beschichtet wird. Jeder einzelne Verdampfer ist in einem belüfteten Gefäß (21) eingebracht, derart, dass er in der Kammer (3) frei positionierbar ist.The winding device consists of two end plates (4,5) on which the rollers, unwinding and winding rollers (8,9), deflection rollers (6,7), pressure rollers (10,11), dancer rollers (12,13) and the spring assemblies ( 14) are attached. The strip to be coated is passed from the unwinding roller (8) over the deflection roller (6). It is guided and stretched by the dancer roller (13) so that a defined wrap angle is created on the deflection roller (6). The deflection roller (6) is designed as a heating roller in this example. For this purpose, electrical lines are laid through the pipe (1) and reach the vacuum side via electrical feedthroughs (19). From there, the lines to the heating roller (6) are laid on the vacuum side. The heating roller (6) itself is designed such that it consists of a hollow tube which is rotatably mounted. A cylindrical electric radiant heater is fixed in this hollow tube. The belt forms a free path from the heating roller (6) to the deflection roller (7). Below this free path there are two rows of arc evaporators, each row consisting of three evaporators, attached to the chamber (3) with which the running strip is coated. Each individual evaporator is placed in a ventilated vessel (21) in such a way that it can be freely positioned in the chamber (3).
Hinter der Umlenkwalze (7) wird das Band um eine zweite Tänzerwalze (12) geführt zur Aufwickelwalze (9). Weiterhin ist die Wickelvorrichtung (17) mit zwei Anpresswalzen (11) versehen. Diese erlauben es einen Schneidgrad bei Metallbändem anzupressen und führen zu einer besseren Wickelqualität. Die Auf- (9) und Abwickelwalzen (8) sind über Antriebswellen (20) mit Motoren (16) über eine Vakuumdrehdurchführung verbunden. Die Motoren sind an der Tür (2) luftseitig angebracht.Behind the deflection roller (7), the tape is guided around a second dancer roller (12) to the take-up roller (9). Furthermore, the winding device (17) is provided with two pressure rollers (11). These allow a degree of cutting to be pressed on metal strips and lead to better winding quality. The winding (9) and unwinding rollers (8) are connected to motors (16) via drive shafts (20) via a rotary vacuum feedthrough. The motors are attached to the door (2) on the air side.
Neben jedem Verdampfer sind zwei Gaseinlassdüsen angebracht. In der Mitte zwischen den Verdampferreihen befindet sich eine Düse für Argon.There are two gas inlet nozzles next to each evaporator. There is a nozzle for argon in the middle between the rows of evaporators.
Bezuqszeichenliste: (I) Tragrohr (2) Türe (3) Vakuumkammer (4) Lagerschild (5) Lagerschild (6) Umlenkwalze; Heizwalze (7) Umlenkwalze (8) Abwickelwalze (9) Aufwickelwalze (10) Anpressrolle (II) Anpressrolle (12) TänzerwalzeBezuqszeichenliste: (I) support tube (2) door (3) vacuum chamber (4) bearing plate (5) bearing plate (6) deflection roller; Heating roller (7) Deflection roller (8) Unwinding roller (9) Winding roller (10) Pressure roller (II) Pressure roller (12) dancer roller
(13) Tänzerwalze(13) dancer roller
(14) Federpaket(14) Spring pack
(15) Dichtungsring (16) Motor(15) Seal ring (16) Motor
(17) Wickelvorrichtung(17) winding device
(18) Dichtungsflansch(18) Sealing flange
(19) Elektrische Durchführungen(19) Electrical feedthroughs
(20) Antriebswelle (21 ) Gefäß zum Anbringen der Lichtbogenverdampfer (20) Drive shaft (21) Vessel for attaching the arc evaporator

Claims

Patentansprüche claims
1. Selektiver Absorber zur Umwandlung des Sonnenlichtes in Wärme, dadurch gekennzeichnet, dass auf einem Substrat zwei Schichtsy- steme aufgetragen sind, wobei das dem Substrat am nächsten liegende System mindestens eine Schicht aus dichtem, d.h. leerraumfreiem Material aus Titan, Aluminium, Stickstoff, Kohlenstoff und Sauerstoff mit der chemischen Formel TiαAlßNxCyOz enthält, wobei α + ß = 1 ist und sich α zu ß wie 1 zu (0,05 bis 1) verhält und x+y+z = 0,8 bis 2 ist und 0,0 < x < 1,2 ist und 0,2 < y < 2 ist und 0,05 < z < 2 ist, weiterhin dass das darüber liegende zweite System mindestens eine Schicht enthält, die aus einem Gemisch aus TiOz und AI2O3 besteht, mit 1 ≤ z < 2. 1. Selective absorber for converting sunlight into heat, characterized in that two layer systems are applied to a substrate, the system closest to the substrate being at least one layer of dense, ie void-free material made of titanium, aluminum, nitrogen, carbon and contains oxygen with the chemical formula Ti α Al β N x C y O z , where α + β = 1 and α to β behaves like 1 to (0.05 to 1) and x + y + z = 0, 8 to 2 and 0.0 <x <1.2 and 0.2 <y <2 and 0.05 <z <2, further that the overlying second system contains at least one layer consisting of a mixture consists of TiO z and AI2O3, with 1 ≤ z <2.
2. Selektiver Absorber nach Anspruch 1 , dadurch gekennzeichnet, dass das Material in dem ersten System aus Titan, Aluminium, Stickstoff, Kohlenstoff und Sauerstoff mehr Kohlenstoff als Sauerstoff enthält. 2. Selective absorber according to claim 1, characterized in that the material in the first system made of titanium, aluminum, nitrogen, carbon and oxygen contains more carbon than oxygen.
3. Selektiver Absorber nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine der Schichten des dem Substrat am nächsten liegenden Systems aus dichtem, d.h. leerraumfreiem Material aus Titan, Stickstoff, Kohlenstoff und Sauerstoff mit der chemischen Formel TiNxCyOz besteht wobei x+y+z = 0,9 bis 2 ist und 0,0 ≤ x ≤ 1 ,2 ist und 0,2 < y < 2 ist und 0,05 < z < 2 ist.3. Selective absorber according to claim 1 or 2, characterized in that one of the layers of the system closest to the substrate consists of dense, ie void-free material made of titanium, nitrogen, carbon and oxygen with the chemical formula TiN x CyO z where x + y + z = 0.9 to 2 and 0.0 ≤ x ≤ 1, 2 and 0.2 <y <2 and 0.05 <z <2.
4. Selektiver Absorber nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens eine der Schichten im zweiten System aus mindestens einem der folgenden Materialien besteht: Si02, Zr 0 ,Ti02, Ba203, Al203, Pb02, oder Zn02 oder aus Kombinationen von diesen. 4. Selective absorber according to one of claims 1 to 3, characterized in that at least one of the layers in the second system consists of at least one of the following materials: Si0 2 , Zr 0, Ti0 2 , Ba 2 0 3 , Al 2 0 3 , Pb0 2 , or Zn0 2 or combinations of these.
5. Selektiver Absorber nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Dicke des ersten Systems im Bereich von 50 bis 150 nm liegt.5. Selective absorber according to one of claims 1 to 4, characterized in that the thickness of the first system is in the range of 50 to 150 nm.
6. Selektiver Absorber nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Dicke des zweiten Systems im Bereich 80 bis 300 nm liegt.6. Selective absorber according to one of claims 1 to 5, characterized in that the thickness of the second system is in the range 80 to 300 nm.
7. Selektiver Absorber nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich bei dem Substrat um ein Band aus Kupfer, Aluminium oder Stahl handelt.7. Selective absorber according to one of claims 1 to 6, characterized in that the substrate is a strip of copper, aluminum or steel.
8. Verfahren zur Herstellung des selektiven Absorbers nach einem der Ansprüche 1 bis 7 mittels reaktiver Lichtbogenentladung, dadurch gekennzeichnet, dass in einer Vakuumkammer das zu beschichtende Substrat über zwei Gruppen aus Reihen von Lichtbogenverdampfern geführt wird, wobei die Reihen der Verdampfer quer zur Bewegungsrichtung des Substrates angeordnet sind, weiterhin die Verdampfer der in Bewegungsrichtung ersten Gruppe mit Titan oder auch einem Gemisch aus Titan und Aluminium als Verdampfermaterial bestückt sind, die der Zweiten mit einem Gemisch aus Titan und Aluminium mit 5 bis 45% Volumenprozent an Aluminium bestückt sind, weiterhin die Gase Stickstoff und Kohlendioxid nahe der Verdampfer der ersten Gruppe zugeführt werden, in einem Abstand der maximal die Hälfte des Abstandes zwischen den zwei Gruppen beträgt und Sauerstoff in der Nähe der zweiten Gruppe, ebenfalls in einem Abstand der kleiner als die Hälfte des Abstandes zwischen den zwei Gruppen ist, und ebenso Argon zwischen den zwei Gruppen zugeführt wird, wobei der Gesamtdruck über den Zufluss von Argon oder wahlweise von Sauerstoff auf 10"3 bis 10"2 geregelt wird, wobei das Verhältnis der Zuflüsse der Gase 02 zu C02 zu N2 sich wie 1 zu (0,05 bis 5) zu (0 bis 0,25) verhält und der Zufluss an N2 Gas über die Verdampferrate der ersten Gruppe geregelt wird nach der Formel: Zufluss [in sccm/s] = Rate [in μg/sec] * f, wobei fim Bereich von 0 bis 2 liegt und der Anteil an Argon im Gasgemisch im Bereich 0 bis 50% liegt.8. A method for producing the selective absorber according to one of claims 1 to 7 by means of reactive arc discharge, characterized in that the substrate to be coated is guided over two groups of rows of arc evaporators in a vacuum chamber, the rows of the evaporators transverse to the direction of movement of the substrate are arranged, the evaporators of the first group in the direction of movement are equipped with titanium or a mixture of titanium and aluminum as the evaporator material, the second are equipped with a mixture of titanium and aluminum with 5 to 45% by volume of aluminum, and the gases Nitrogen and carbon dioxide are supplied near the evaporator of the first group, at a distance that is a maximum of half the distance between the two groups and oxygen near the second group, also at a distance that is less than half the distance between the two groups is, and likewise Argon is fed between the two groups, the total pressure being regulated via the inflow of argon or optionally from oxygen to 10 "3 to 10 " 2 , the ratio of the inflows of the gases 0 2 to C0 2 to N 2 increasing as 1 (0.05 to 5) is related to (0 to 0.25) and the inflow of N 2 gas is regulated via the evaporator rate of the first group according to the formula: inflow [in sccm / s] = rate [in μg / sec] * f, where f is in the range of 0 to 2 and the proportion of argon in the gas mixture is in the range 0 to 50%.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass nach der in Bewegungsrichtung zweiten Gruppe eine weitere Gruppe an thermischen Verdampfern folgt die mit Materialien Si, Zr, Ti, Ba, AI, Pb, oder Zn bestückt sind und durch reaktives Verdampfen entsprechende Dielektrika abscheiden.9. The method according to claim 8, characterized in that after the second group in the direction of movement follows a further group of thermal evaporators which are equipped with materials Si, Zr, Ti, Ba, Al, Pb, or Zn and deposit appropriate dielectrics by reactive evaporation ,
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass zusätzlich oder anstatt dem Gas C02 auch Methan und/oder CO zugeführt werden kann.10. The method according to claim 8 or 9, characterized in that in addition or instead of the gas C0 2 , methane and / or CO can also be supplied.
11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekenn- zeichnet, dass das Substart während der Beschichtung auf einer Temperatur im Bereich von 150°C bis 500°C gehalten wird.11. The method according to any one of claims 8 to 10, characterized in that the substance is kept at a temperature in the range from 150 ° C to 500 ° C during the coating.
12. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass das zwischen Lichtbogenquelle und Substart eine Spannung von 50 bis 1000 V angelegt wird.12. The method according to any one of claims 8 to 11, characterized in that a voltage of 50 to 1000 V is applied between the arc source and Substart.
13. Vorrichtung zur Herstellung des selektiven Absorbers auf bandförmigen Substraten mittels Verfahren nach einem der Ansprüche 8 bis 12, bestehend aus einer zylindrischen evakuierbaren Vakuumkam- mer (3), mit einer mindestens an einer Seite des Zylinders angeordneten Türe (2) und einer Wickelvorrichtung (17), dadurch gekennzeichnet, dass durch die Türe (2) ein Tragrohr (1) führt auf welchem die Wickelvorrichtung (17) befestigt ist, die aus zwei Lagerschilden besteht(4,5), zwischen denen sich eine Abwickelwalze (8), eine Auf- wickelwalze (9) mindestens zwei Umlenkwalzen (6,7) und mindestens eine Tänzerwalze (12,13) sowie mindestens eine Anpresswalze (11) befindet, wobei die Achsen aller Walzen parallel zur Achse des Tragrohres (1) sind und Tragrohr (1) und Türe (2) getrennt oder unabhängig voneinander auf einem Fahrwagen befestigt sind, wobei dieser Fahrwagen auf Rollen oder Schienen parallel zu Zylinderachse der Kammer (3) beweglich ist und jede Tänzerwalze (12,13) durch je zwei Federpakete (14) in Richtung Tragrohr (1) gezogen wird und unter der freien Strecke zwischen den Umwickelwalzen (6,7) an der Vakuumkammer (3) Gruppen von belüfteten Gefäßen (21) mit Lichtbogenverdampfern angebracht sind.13. Device for producing the selective absorber on tape-shaped substrates by means of the method according to one of claims 8 to 12, consisting of a cylindrical evacuable vacuum chamber (3), with a door (2) arranged at least on one side of the cylinder and a winding device ( 17), characterized in that through the door (2) leads a support tube (1) on which the winding device (17) is fastened, which consists of two end plates (4,5), between which there is an unwinding roller (8), one Winding roller (9) has at least two deflecting rollers (6, 7) and at least one dancer roller (12, 13) and at least one pressure roller (11), the axes of all rollers being parallel to the axis of the support tube (1) and support tube (1 ) and door (2) are attached separately or independently of one another on a trolley, wherein this carriage can be moved on rollers or rails parallel to the cylinder axis of the chamber (3) and each dancer roller (12, 13) is pulled in the direction of the support tube (1) by two spring assemblies (14) and under the free path between the wrapping rollers (6, 7) groups of ventilated vessels (21) with arc evaporators are attached to the vacuum chamber (3).
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass neben jedem Verdampfer der Gruppe eins eine Gasdüse für die Zufuhr von C02 und eine für die Zufuhr von N2 angebracht ist, in der Mitte zwischen Gruppe eins und zwei mindestens eine Düse für Argon und neben jedem Verdampfer der Gruppe zwei eine Düse für die Zufuhr von Sauerstoff angebracht ist.14. The apparatus according to claim 13, characterized in that in addition to each evaporator of group one a gas nozzle for the supply of C0 2 and one for the supply of N 2 is attached, in the middle between group one and two at least one nozzle for argon and next to each evaporator in group two there is a nozzle for the supply of oxygen.
15. Vorrichtung nach Anspruch 13 bis 14, dadurch gekennzeichnet, dass mindestens eine Umlenkwalze als Heizwalze ausgestaltet ist. 15. The apparatus according to claim 13 to 14, characterized in that at least one deflecting roller is designed as a heating roller.
EP05733673A 2004-04-20 2005-04-20 Selective absorber for converting sunlight into heat, and method and device for the production thereof Withdrawn EP2113127A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004019061A DE102004019061B4 (en) 2004-04-20 2004-04-20 Selective absorber for converting sunlight to heat, a method and apparatus for making the same
PCT/EP2005/004244 WO2005104173A1 (en) 2004-04-20 2005-04-20 Selective absorber for converting sunlight into heat, and method and device for the production thereof

Publications (1)

Publication Number Publication Date
EP2113127A1 true EP2113127A1 (en) 2009-11-04

Family

ID=34964970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05733673A Withdrawn EP2113127A1 (en) 2004-04-20 2005-04-20 Selective absorber for converting sunlight into heat, and method and device for the production thereof

Country Status (3)

Country Link
EP (1) EP2113127A1 (en)
DE (1) DE102004019061B4 (en)
WO (1) WO2005104173A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037872A1 (en) * 2006-08-11 2008-02-14 Viessmann Werke Gmbh & Co Kg Absorber, apparatus for producing an absorber and method for producing an absorber
DE102006039813A1 (en) * 2006-08-25 2008-02-28 Friedrich Pusnik Solar collector for utilizing solar energy for preparing hot water, particularly flat plate collector, has a tub-shaped housing which is locked by protecting glass, absorber, extending in distance under protecting glass
DE202009015334U1 (en) 2009-11-11 2010-02-25 Almeco-Tinox Gmbh Optically effective multilayer system for solar absorption
US8783246B2 (en) * 2009-12-14 2014-07-22 Aerojet Rocketdyne Of De, Inc. Solar receiver and solar power system having coated conduit
EP2336811B1 (en) 2009-12-21 2016-09-07 ALANOD GmbH & Co. KG Composite material
DE102013110118B4 (en) * 2013-08-20 2016-02-18 Von Ardenne Gmbh Solar absorber and process for its production

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166880A (en) * 1978-01-18 1979-09-04 Solamat Incorporated Solar energy device
DE2804447C3 (en) * 1978-02-02 1981-06-25 Steinrücke, Walter, 5000 Köln Process for the production of selective absorber layers with high absorption capacity and low emission, in particular for solar collectors
JPS56156767A (en) * 1980-05-02 1981-12-03 Sumitomo Electric Ind Ltd Highly hard substance covering material
DE3210420A1 (en) * 1982-03-22 1983-09-22 Siemens AG, 1000 Berlin und 8000 München Electrochemical double-layer capacitor
YU42639B (en) * 1985-05-10 1988-10-31 Do Color Medvode Process for preparing colour coating with high grade of covering
JPS6280068A (en) * 1985-10-04 1987-04-13 Nec Corp Impact-type printer
JPS62116762A (en) * 1985-11-15 1987-05-28 Citizen Watch Co Ltd Production of external parts
DE4115616C2 (en) * 1991-03-16 1994-11-24 Leybold Ag Multi-layer hard material system for tools
DE4344258C1 (en) * 1993-12-23 1995-08-31 Miladin P Lazarov Material from chemical compounds with a metal of group IV A of the periodic table, nitrogen and oxygen, its use and production method
DE4425140C1 (en) * 1994-07-15 1995-07-13 Thomas Dipl Phys Eisenhammer Radiation converter contg. quasi-crystalline material
DE19610015C2 (en) * 1996-03-14 1999-12-02 Hoechst Ag Thermal application process for thin ceramic layers and device for application
AU5810796A (en) * 1995-05-22 1996-12-11 Thomas Eisenhammer Process for producing selective absorbers
JPH09104968A (en) * 1995-10-04 1997-04-22 Nissin Electric Co Ltd Thin film forming device
SE509933C2 (en) * 1996-09-16 1999-03-22 Scandinavian Solar Ab Methods and apparatus for producing a spectrally selective absorbent layer for solar collectors and produced layer
DE10058931A1 (en) * 2000-11-28 2002-06-20 Tinox Ges Fuer Energieforschun Patterned radiant energy converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005104173A1 *

Also Published As

Publication number Publication date
DE102004019061B4 (en) 2008-11-27
WO2005104173A1 (en) 2005-11-03
DE102004019061A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
DE2653242C2 (en) Method and device for coating an insulating substrate by reactive ion coating with an oxide layer
EP0102489B1 (en) Multifilament superconductor and method of making the same
DE102009016708B4 (en) Solar absorber coating system and method for its production
WO2005104173A1 (en) Selective absorber for converting sunlight into heat, and method and device for the production thereof
EP1711643A2 (en) Method for the production of an ultra barrier layer system
DE19518781C1 (en) Metal body with alpha-alumina coating for e.g. shaping tool
EP0579018B1 (en) Process for production of a metal oxide layer, vacuum treatment apparatus for the process and article coated with at least one metal oxide layer
DE2240409A1 (en) FILTER GLASS
CH683776A5 (en) Coating a substrate surface with a permeation barrier.
EP1565591B1 (en) Method for vapor-depositing strip-shaped substrates with a transparent barrier layer made of aluminum oxide
EP3610050B1 (en) Coating apparatus and method for reactive vapor phase deposition on a substrate under vacuum
EP2036998A1 (en) Method for producing a multilayer coating and device for carrying out said method
DE102007025152A1 (en) Method for coating a substrate
WO2009127373A1 (en) Transparent barrier layer system
DE102012109691B4 (en) Graded-layer solar absorber layer system and method for its production
WO2003038141A2 (en) Method for producing a uv-absorbing transparent wear protection layer
EP1592821A2 (en) Method for producing a multilayer coating and device for carrying out said method
DE102013110118B4 (en) Solar absorber and process for its production
DE102009023472A1 (en) Coating plant and coating process
DE19548430C1 (en) Forming heat-reflective layer system, esp. on glass
DE19802333A1 (en) Forming barrier layers for gaseous or liquid substances on plastics substrate, useful for packaging material
EP0834483A1 (en) Thermally insulating coating system for transparent substrates
DE19802506A1 (en) Production of barrier layers for gaseous and/or liquid materials, especially hydrocarbons, oxygen and water vapor, on plastic substrates
DE4006457C1 (en) Appts. for vapour deposition of material under high vacuum - has incandescent cathode and electrode to maintain arc discharge
DE102019129788A1 (en) Use of a CVD reactor to deposit two-dimensional layers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091116

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111101