EP2113084A2 - Dispositif de mesure de la pression totale d'un ecoulement et procede mettant en oeuvre le dispositif - Google Patents

Dispositif de mesure de la pression totale d'un ecoulement et procede mettant en oeuvre le dispositif

Info

Publication number
EP2113084A2
EP2113084A2 EP07822290A EP07822290A EP2113084A2 EP 2113084 A2 EP2113084 A2 EP 2113084A2 EP 07822290 A EP07822290 A EP 07822290A EP 07822290 A EP07822290 A EP 07822290A EP 2113084 A2 EP2113084 A2 EP 2113084A2
Authority
EP
European Patent Office
Prior art keywords
total pressure
flow
pitot tube
pressure
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07822290A
Other languages
German (de)
English (en)
Inventor
Joël CHOISNET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2113084A2 publication Critical patent/EP2113084A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter
    • G01P5/165Arrangements or constructions of Pitot tubes

Definitions

  • the invention relates to a device for measuring the total pressure of a flow.
  • the invention also relates to a method of implementing a device according to the invention.
  • the piloting of any aircraft requires knowing its relative speed with respect to the air, that is to say to the relative wind. This speed is determined using sensors of the static pressure Ps, the total pressure Pt, the angle of incidence ⁇ and the skid angle ⁇ .
  • ⁇ and ⁇ provide the direction of the velocity vector in a reference system, or reference system, linked to the aircraft and Pt - Ps provides the modulus of this velocity vector.
  • the four aerodynamic parameters thus make it possible to determine the speed vector of an aircraft and, incidentally, of a so-called convertible rocker aircraft.
  • the measurement of the total pressure Pt is usually done using a pitot tube. It is an open tube at one end and obstructed at the other. The open end of the tube substantially faces the flow.
  • the airflow can convey solid or liquid particles that can enter the pitot tube and accumulate in the tube at the obstructed end.
  • a purge hole through which any particles can evacuate.
  • a total pressure probe has been used with a fluid stopping point. More specifically, this probe takes at least two air streams in an air flow and brings them into contact with one another so as to slow them down. The pressure in the zone where the air is slowed down is measured and this measured pressure gives the total pressure of the flow.
  • a probe is described in patent application No. FR 2 823 846.
  • the two types of probe are not susceptible to the same risks of clogging.
  • the pitot tube fears small particles from clogging its bleed hole.
  • the fluid stopping probe fears larger particles, such as for example a bird, from obstructing the area where the air streams are taken.
  • An object of the invention is to overcome this problem by proposing to combine the two types of probe.
  • Another object of the invention is to propose a redundant probe where the total pressure measurement is made of two different principles. This limits any common mode faults that would impair redundant probes made according to the same principle.
  • the subject of the invention is a device for measuring the total pressure of a flow, comprising a pitot tube, characterized in that it furthermore comprises means for taking total pressure at a breakpoint. fluid and means for comparing pressures measured by the pitot tube and the fluid-stop total pressure tap means, the pitot tube, and the fluid-stop total pressure tap means being integral and taking air streams from the flow along the same axis.
  • the invention also relates to a method for measuring the total pressure of a flow using the device described above, characterized in that it consists of:
  • FIG. 1 represents a device for measuring the total pressure of a flow comprising means for taking total pressure with a fluid stopping point
  • FIG. 2 shows a device for measuring the total pressure of a flow comprising both a Pitot tube and a total pressure point with fluid stopping point, the device being fixed relative to the skin of an aircraft
  • Figure 3 shows the device of Figure 2 secured to a pallet for orientation in the axis of the flow
  • FIG. 4 represents steps of a method implementing the device of the invention.
  • the same elements will bear the same references in the different figures.
  • FIG. 1 represents a total pressure setting device whose position is fixed relative to the skin 1 of an aircraft on which it is arranged.
  • the device is fixed on a mast 2 making it integral with the skin 1.
  • the device comprises a hollow body 3 comprising a channel 4.
  • the device is located in an air flow whose direction is represented by the arrow 5.
  • the channel 4 has an upstream end 6 opening substantially perpendicular to the direction 5 of the flow.
  • the channel 4 has a substantially tubular shape about an axis 7.
  • the channel 4 is located between an outer cylindrical wall 8 and an inner cylindrical wall 9.
  • the two walls extend along the axis 7.
  • the inner cylindrical wall 9 ends with a rounded end 10 to separate the air streams entering the channel 4.
  • the embodiment shown in Figure 1 advantageously has a symmetry of revolution about the axis 7 oriented in the direction 5 of the air flow.
  • the circulation of the air streams flowing in the channel 4 is represented by arrows 11.
  • the various air streams flowing in the channel 4 are brought into contact with each other to form a fluid stopping point in an area 12 of the hollow body 3 before escaping from the hollow body 3 by at least one downstream orifice.
  • the channel 4 closes around the zone 12 where the different air streams flowing in the channel 4 are brought into contact so as to slow each other down.
  • the hollow body 3 has two downstream orifices 15 and 16.
  • the orifice 15 is situated in the extension of the outer wall 8 and allows the air streams to escape from the zone 12 directly into the chamber. flow in the direction 5 along the axis 7.
  • the orifice 16 is located in the extension of the inner wall 9 and allows the air streams to escape from the zone 12 in the direction opposite to the direction 5 of the flow.
  • the air streams discharged through the orifice 16 open into an internal channel 17 located partly in the mat 2 and rejecting the air streams therein in the flow along an axis 18 parallel to the axis 7.
  • An orifice 20 of a tube 21 is located in the zone 12 and makes it possible to take a pressure tap in the zone 12.
  • the hollow body 3 is integral with the mast 2 inside which the tube 21 extends.
  • the pressure air prevailing in zone 12 is representative of the total pressure Pt prevailing in the flow.
  • the tube 21 is connected at its second end to pressure measuring means such as for example a pressure sensor.
  • This pressure sensor may be located inside the aircraft, in which case the tube 21 extends from the inside of the hollow body 3 to the inside of the aircraft while passing inside the aircraft. mast 2.
  • the channel 4 formed between the walls 8 and 9 has been shown in a fixed position with respect to the skin 1 of the aircraft. It is also possible to fix the channel 4 on a moving pallet in order to improve the alignment of the channel 4 with respect to the axis 7 of the flow when the aircraft modifies its direction with respect to the axis 7 of the 'flow.
  • FIG. 2 shows a device for measuring the total pressure of a flow comprising both a Pitot tube and a fluid-stopping total pressure setting means. More specifically, we find the various elements of the device of Figure 1 to which is added the Pitot tube 25 having an opening 26 for withdrawing air in the flow. The opening 26 is located inside the channel 4.
  • the Pitot tube 25 advantageously comprises a bleed hole, not shown in Figure 2 and for discharging from the Pitot tube 25 any particles entering it, as for example drops of water present in the flow.
  • the purge hole opens at the bottom of the pitot tube and opens for example into the inner channel 17.
  • the opening 26 of the pitot tube 25 is located downstream of the upstream end 6 forming an opening, also bearing the mark 6.
  • the opening 6 of the total pressure tap means with a fluid stop point allows the sampling the air streams from the flow.
  • the upstream and downstream qualifiers are defined according to the direction of flow.
  • the opening 26 of the Pitot tube 25 is located on the inner cylindrical wall 9 at the rounded end 10.
  • the air flow inside the Pitot tube 25 is much lower than that flowing in the channel 4 in the direction of the zone 12. Consequently, the presence of the Pitot tube 25 inside the channel 4 does not disturb the operation of the total pressure point with a fluid stopping point.
  • the fact that the opening 26 is located downstream of the opening 6 makes it possible to guide the flow upstream of the Pitot tube 25.
  • the opening 26 of the Pitot tube 25 is substantially circular and centered on the axis 7 of the channel 4, in order to ensure a good symmetry of the device and more principally a symmetry in the flow of the air streams at the same time. This symmetry is important to ensure a good position of the zone 12.
  • An orifice 27 of a tube 28 is located at the bottom of the Pitot tube 25 and makes it possible to take a pressure tap designed to measure the pressure at the bottom of the Pitot tube 25. This pressure corresponds to the total pressure of the flow. .
  • the tube 28 extends inside the mat 2.
  • the pressure taps of the zone 12 and the pitot tube 25 give two redundant information on the total pressure of the flow. These two pieces of information are obtained by different principles, one by a pitot tube and the other by a fluid stopping point, and are therefore not sensitive to the same risks of errors.
  • the device further comprises means for comparing pressures measured by the pitot tube 25 and the total pressure tap means with a fluid stopping point.
  • Each of the tubes 21 and 28 includes a second end, respectively 30 and 31 located inside the aircraft. In a simple manner, it is possible to measure each of the pressures in the tubes 21 and 28 by means of two pressure sensors each disposed at one of the ends 30 and 31. The comparison means compare the values obtained by each of the pressure sensors.
  • the comparison means comprise a differential pressure sensor or a flowmeter 32 making it possible to dispense with one of the two pressure sensors.
  • the device comprises only one absolute pressure sensor 33 measuring the pressure at the total pressure setting point with fluid stopping point.
  • the fluid stop point makes it possible to tolerate particles penetrating into the channel 4 of larger dimensions than for the Pitot tube 25 without drift measuring the total pressure. The risk of clogging is therefore lower for the means of total pressure tap at fluid stopping point.
  • FIG. 2 describes a device comprising the pitot tube 25 and the fluid stop point total pressure setting means having a fixed position relative to the skin 1 of an aircraft. It is also possible, in order to limit the effect of modifying the local incidence of the flow on the pressure measurements, to make the Pitot tube 25 and the total pressure setting means with a fluid stopping point integral. means for orienting in the axis of the flow.
  • FIG. 3 represents another embodiment of the invention in which the hollow body 3 has a position that is movable relative to the skin 1 of an aircraft.
  • the channel 4 and the zone 12 forming the fluid-stopping total pressure setting means as well as the pitot tube 25.
  • the hollow body 3 is fixed on a pallet 35 movable about an axis 36
  • the pallet 35 is intended to orient in the bed of the flow as a function of the local incidence of the flow in the vicinity of the device.
  • the pallet 35 is integral with a shaft 37 substantially perpendicular to the skin 1 of the aircraft.
  • a bearing 38 for example rolling, makes it possible to ensure easy rotation of the shaft 37 relative to the skin of the aircraft while ensuring precise positioning according to the degrees of freedom of the bearing other than the rotation around the plane.
  • axis 36 for example rolling
  • the device comprises heating means allowing it to operate at high altitude, in an environment where frost may form on the walls of the device and more particularly in the channel 4 or in the Pitot tube 25. example a heating electric resistance drowned in solid portions of the probe surrounding the channel 4 and the pitot tube 25.
  • the heating means may be implemented both for a device having a fixed position that a position movable relative to the skin of the aircraft. In the case of a device whose position is mobile, resistance supply wires pass through the rotary joint.
  • FIG. 4 represents steps of a method implementing the device of the invention.
  • a first step 40 consists of comparing the pressures measured by the two pressure taps, that associated with the pitot tube and that associated with the fluid stop point. In other words, the pressures measured at the two tubes 21 and 28 are compared. The comparison can be made directly by the flowmeter or differential pressure sensor 32. In the case of a flowmeter, the pressure difference is a function of the density air and its temperature. These two parameters are determined by means of other probes external to the device.
  • a second step 41 consists in comparing the difference obtained in step 40 with a given deviation E which may be a function of the flight phase in which the aircraft is located, takeoff, landing or cruising.
  • the value of the difference E can be a function of the implementation or not of a reduced vertical separation between aircraft, well known in the English literature as the RVSM for "Reduce Vertical Separation Minimum”. If the difference is smaller than the given difference E, it is considered, in a step 42, that the two measured pressures are correct. If, on the contrary, the difference between the two measured pressures is greater than the given distance E, an alert is generated in a step 43, for the attention of the pilot of the aircraft, stating that only the highest pressure has a good probability of being correct.
  • the lowest pressure measurement is declared invalid and the highest pressure measurement is kept. Indeed in a total pressure measuring device, the most likely cause of failure is the plugging of either channel 4 leading to zone 12 or the Pitot tube 25. Such clogging causes a pressure measurement close to the static pressure of the flow and therefore less than the total pressure. Declaring a measure invalid allows you to generate an alert to warn operators, such as the pilot and the maintenance personnel of the aircraft.
  • the two pressure measurements are declared invalid. This case can be detected by a sudden variation of the measured pressures. Such a variation is not likely under normal flight conditions and will therefore be interpreted as a defect of the entire device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un dispositif et un procédé de mesure de la pression totale d'un écoulement. Selon l'invention le dispositif comporte un tube de Pitot (25), des moyens de prise de pression totale à point d'arrêt fluide (4, 12) et des moyens de comparaison (32, 33) de pressions mesurées par le tube de Pitot (25) et les moyens de prise de pression totale à point d'arrêt fluide (4, 12), le tube de Pitot (25) et les moyens de prise de pression totale à point d'arrêt fluide (4, 12) étant solidaires et prélevant des filets d'air de l'écoulement suivant le même axe (7). Le procédé mettant en œuvre le dispositif consiste à comparer les pressions mesurées, si la différence entre les deux pressions mesurées est supérieure à un écart donné, on génère une alerte précisant que seule la pression la plus élevée a une bonne probabilité d'être correcte.

Description

Dispositif de mesure de la pression totale d'un écoulement et procédé mettant en œuvre le dispositif
L'invention concerne un dispositif de mesure de la pression totale d'un écoulement. L'invention concerne également un procédé de mise en œuvre d'un dispositif selon l'invention. Le pilotage de tout aéronef nécessite de connaître sa vitesse relative par rapport à l'air, c'est-à-dire au vent relatif. Cette vitesse est déterminée à l'aide de capteurs de la pression statique Ps, de la pression totale Pt, de l'angle d'incidence α et de l'angle de dérapage β. α et β fournissent la direction du vecteur de vitesse dans un système de référence, ou référentiel, lié à l'aéronef et Pt - Ps fournit le module de ce vecteur vitesse. Les quatre paramètres aérodynamiques permettent donc de déterminer le vecteur vitesse d'un avion et, accessoirement, d'un aéronef à rotor basculant dit convertible.
La mesure de la pression totale Pt se fait habituellement à l'aide d'un tube dit de Pitot. Il s'agit d'un tube ouvert à l'une de ses extrémités et obstrué à l'autre. L'extrémité ouverte du tube fait sensiblement face à l'écoulement.
A l'intérieur du tube de Pitot, au voisinage de l'extrémité obstruée, on dispose un moyen de mesure de la pression d'air qui y règne. Le filet d'air situé en amont du tube est progressivement ralenti jusqu'à atteindre une vitesse nulle à l'entrée du tube. Le ralentissement de la vitesse de l'air tend à augmenter la pression de l'air. Cette pression augmentée forme la pression totale Pt de l'écoulement d'air.
En pratique, l'écoulement d'air peut véhiculer des particules solides ou liquides susceptibles de pénétrer dans le tube de Pitot et de s'accumuler dans le tube au niveau de l'extrémité obstruée. Pour éviter qu'une telle accumulation ne vienne perturber la mesure de pression, on prévoit en général au niveau de l'extrémité obstruée, un trou de purge par lequel les éventuelles particules peuvent s'évacuer.
Dans ce trou, circulent à la fois les particules et une partie de l'air entrée dans le tube de Pitot. Ainsi, le ralentissement de l'air dans le tube n'est pas complet et la mesure de pression totale Pt s'en trouve altérée. Plus précisément, plus on cherche à éviter l'accumulation de particules de taille importante, plus on altère la mesure de pression totale en augmentant les dimensions du trou de purge.
Inversement, plus on cherche à améliorer la mesure de pression totale Pt en diminuant les dimensions du trou de purge, plus le risque d'accumulation de particules augmente.
Avec un tube de Pitot, on est donc tenu de réaliser un compromis entre qualité de la mesure de pression totale Pt et risque de perturbation de la mesure du fait de particules véhiculées par l'écoulement d'air où la mesure est réalisée. Pour pallier ce défaut on a mis en œuvre une sonde de mesure de pression totale à point d'arrêt fluide. Plus précisément, cette sonde prélève au moins deux filets d'air dans un écoulement d'air et les amène au contact l'un de l'autre de façon à les ralentir. On mesure la pression dans la zone où l'air est ralenti et cette pression mesurée donne la pression totale de l'écoulement. Une telle sonde est décrite dans la demande de brevet n° FR 2 823 846.
Les deux types de sonde, tube de Pitot et sonde à point d'arrêt fluide, ne sont pas susceptibles aux mêmes risques de bouchage. Le tube de Pitot craint les particules de petites dimensions venant obstruer son trou de purge. La sonde à point d'arrêt fluide craint les particules de plus grosses dimensions, tel que par exemple un oiseau, venant obstruer la zone où les filets d'air sont prélevés.
Un but de l'invention est de pallier ce problème en proposant de combiner les deux types de sonde. Un autre but de l'invention est de proposer une sonde redondante où la mesure de pression totale est réalisée de deux principes différents. On limite ainsi d'éventuels défauts de mode commun qui altéreraient des sondes redondantes réalisées selon le même principe.
A cet effet, l'invention a pour objet un dispositif de mesure de la pression totale d'un écoulement, comportant un tube de Pitot, caractérisé en ce qu'il comporte en outre des moyens de prise de pression totale à point d'arrêt fluide et des moyens de comparaison de pressions mesurées par le tube de Pitot et les moyens de prise de pression totale à point d'arrêt fluide, le tube de Pitot et les moyens de prise de pression totale à point d'arrêt fluide étant solidaires et prélevant des filets d'air de l'écoulement suivant le même axe.
L'invention a également pour objet un procédé de mesure de la pression totale d'un écoulement mettant en œuvre le dispositif décrit plus haut, caractérisé en ce qu'il consiste à :
• comparer les pressions mesurées,
• si la différence entre les deux pressions mesurées est supérieure à un écart donné, on génère une alerte précisant que seule la pression la plus élevée a une bonne probabilité d'être correcte.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel :
La figure 1 représente un dispositif de mesure de la pression totale d'un écoulement comportant des moyens de prise de pression totale à point d'arrêt fluide ; la figure 2 représente un dispositif de mesure de la pression totale d'un écoulement comportant à la fois un tube de Pitot et des moyens de prise de pression totale à point d'arrêt fluide, le dispositif étant fixe par rapport à la peau d'un aéronef ; la figure 3 représente le dispositif de la figure 2 solidaire d'une palette destinée à s'orienter dans l'axe de l'écoulement ; la figure 4 représente des étapes d'un procédé mettant en œuvre le dispositif de l'invention. Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.
La figure 1 représente un dispositif de prise de pression totale dont la position est fixe par rapport à la peau 1 d'un aéronef sur lequel il est disposé. Le dispositif est fixé sur un mât 2 le rendant solidaire de la peau 1. Le dispositif comporte un corps creux 3 comportant un canal 4. Le dispositif est situé dans un écoulement d'air dont la direction est représentée par la flèche 5.
Plusieurs filets d'air sont prélevés de façon annulaire dans l'écoulement et guidés dans un même canal 4. Plus précisément, le canal 4 comporte une extrémité amont 6 s'ouvrant sensiblement perpendiculairement à la direction 5 de l'écoulement. Le canal 4 a une forme sensiblement tubulaire autour d'un axe 7.
Le canal 4 est situé entre une paroi cylindrique extérieure 8 et une paroi cylindrique intérieure 9. Les deux parois s'étendent selon l'axe 7. Au niveau de l'extrémité amont 6, la paroi cylindrique intérieure 9 se termine par une extrémité arrondie 10 permettant de séparer les filets d'air pénétrant dans le canal 4. Le mode de réalisation représenté figure 1 présente avantageusement une symétrie de révolution autour de l'axe 7 orienté selon la direction 5 de l'écoulement d'air.
La circulation des filets d'air circulant dans le canal 4 est matérialisée par des flèches 11. Les différents filets d'air circulant dans le canal 4 sont amenés au contact les uns des autres pour former un point d'arrêt fluide dans une zone 12 du corps creux 3 avant de s'échapper du corps creux 3 par au moins un orifice aval. Le canal 4 se referme autour de la zone 12 où les différents filets d'air circulant dans le canal 4 sont amenés en contact de sorte à se ralentir mutuellement.
Dans le mode de réalisation représenté, le corps creux 3 comporte deux orifices avals 15 et 16 L'orifice 15 est situé dans le prolongement de la paroi extérieure 8 et permet aux filets d'air de s'évacuer de la zone 12 directement dans l'écoulement dans la direction 5 le long de l'axe 7. L'orifice 16 est situé dans le prolongement de la paroi intérieure 9 et permet aux filets d'air de s'évacuer de la zone 12 dans la direction opposée à la direction 5 de l'écoulement. Les filets d'air évacués par l'orifice 16 débouchent dans un canal intérieur 17 situé en partie dans le mat 2 et rejetant les filets d'air s'y trouvant dans l'écoulement selon un axe 18 parallèle à l'axe 7.
Un orifice 20 d'un tube 21 est situé dans la zone 12 et permet de réaliser une prise de pression dans la zone 12. Le corps creux 3 est solidaire du mât 2 à l'intérieur duquel s'étend le tube 21. La pression de l'air régnant dans la zone 12 est représentative de la pression totale Pt régnant dans l'écoulement. Le tube 21 est raccordé à sa seconde extrémité à des moyens de mesure de la pression tels que par exemple un capteur de pression. Ce capteur de pression peut être situé à l'intérieur de l'aéronef, auquel cas, le tube 21 s'étend depuis l'intérieur du corps creux 3 jusqu'à l'intérieur de l'aéronef en passant à l'intérieur du mât 2. Le canal 4 formé entre les parois 8 et 9 a été représenté en position fixe par rapport à la peau 1 de l'aéronef. Il est également possible de fixer le canal 4 sur une palette mobile afin d'améliorer l'alignement du canal 4 par rapport à l'axe 7 de l'écoulement lorsque l'aéronef modifie sa direction par rapport à l'axe 7 de l'écoulement.
La figure 2 représente un dispositif de mesure de la pression totale d'un écoulement comportant à la fois un tube de Pitot 25 et des moyens de prise de pression totale à point d'arrêt fluide. Plus précisément, on retrouve les différents éléments du dispositif de la figure 1 auquel s'ajoute le tube de Pitot 25 comportant une ouverture 26 de prélèvement d'air dans l'écoulement. L'ouverture 26 est située à l'intérieur du canal 4. Le tube de Pitot 25 comporte avantageusement un trou de purge, non représenté sur la figure 2 et permettant d'évacuer du tube de Pitot 25 d'éventuelles particules y pénétrant, comme par exemple des gouttes d'eau présentes dans l'écoulement. Le trou de purge s'ouvre au fond du tube de Pitot et débouche par exemple dans le canal intérieur 17.
Avantageusement, l'ouverture 26 du tube de Pitot 25 est située en aval de d'extrémité amont 6 formant une ouverture, portant également le repère 6. L'ouverture 6 des moyens de prise de pression totale à point d'arrêt fluide permet le prélèvement des filets d'air de l'écoulement. Les qualificatifs amont et aval sont définis en fonction de la direction 5 de l'écoulement. L'ouverture 26 du tube de Pitot 25 est située sur la paroi cylindrique intérieure 9 au niveau de l'extrémité arrondie 10. Le débit d'air à l'intérieur du tube de Pitot 25 est très inférieur à celui circulant dans le canal 4 en direction de la zone 12. En conséquence, la présence du tube de Pitot 25 à l'intérieur du canal 4 ne perturbe quasiment pas le fonctionnement des moyens de prise de pression totale à point d'arrêt fluide. De plus le fait que l'ouverture 26 soit située en aval de l'ouverture 6 permet de guider l'écoulement en amont du tube de Pitot 25. Ce guidage permet d'améliorer la mesure de pression totale réalisée par le tube de Pitot même si l'axe 5 de l'écoulement se trouvait décalé angulairement par rapport à l'axe 7 du canal 4 par exemple lorsque l'incidence locale de l'écoulement au voisinage du dispositif varie. Avantageusement, l'ouverture 26 du tube de Pitot 25 est sensiblement circulaire et centrée sur l'axe 7 du canal 4, ceci afin d'assurer une bonne symétrie du dispositif et plus principalement une symétrie dans la circulation des filets d'air à l'intérieur du canal 4. Cette symétrie est importante pour assurer une bonne position de la zone 12.
Un orifice 27 d'un tube 28 est situé au fond du tube de Pitot 25 et permet de réaliser une prise de pression destinée à mesurer la pression régnant au fond du tube de Pitot 25. Cette pression correspond à la pression totale de l'écoulement. Le tube 28 s'étend à l'intérieur du mat 2. Les prises de pression de la zone 12 et du tube de Pitot 25 donnent deux informations redondantes sur la pression totale de l'écoulement. Ces deux informations sont obtenues par des principes différents, l'une par un tube de Pitot et l'autre par un point d'arrêt fluide, et ne sont donc pas sensibles aux mêmes risques d'erreurs. Le dispositif comporte en outre des moyens de comparaison de pressions mesurées par le tube de Pitot 25 et les moyens de prise de pression totale à point d'arrêt fluide. Chacun des tubes 21 et 28 comprend une seconde extrémité, respectivement 30 et 31 située à l'intérieur de l'aéronef. De façon simple, il est possible de mesurer chacune des pressions régnant dans les tubes 21 et 28 au moyen de deux capteurs de pression disposé chacun à une des extrémités 30 et 31. Les moyens de comparaison comparent les valeurs obtenues par chacun des capteurs de pression.
Avantageusement, les moyens de comparaison comportent un capteur de pression différentielle ou un débitmètre 32 permettant de se passer d'un des deux capteurs de pression.
Avantageusement, le dispositif ne comporte qu'un seul capteur de pression absolu 33 mesurant la pression au niveau des moyens de prise de pression totale à point d'arrêt fluide. En effet, le point arrêt fluide permet de tolérer des particules pénétrant dans le canal 4 de plus grosses dimensions que pour le tube de Pitot 25 sans dérive de mesure de la pression totale. Le risque de bouchage est donc plus faible pour les moyens de prise de pression totale à point d'arrêt fluide. Dans un fonctionnement dégradé, on peut se contenter de la mesure réalisée par le capteur 33 associé aux moyens de prise de pression totale à point d'arrêt fluide. La figure 2 décrit un dispositif comportant le tube de Pitot 25 et les moyens de prise de pression totale à point arrêt fluide ayant une position fixe par rapport à la peau 1 d'un aéronef. Il est également possible, afin de limiter l'effet de modification de l'incidence locale de l'écoulement sur les mesures de pression, de rendre solidaire le tube de Pitot 25 et les moyens de prise de pression totale à point d'arrêt fluide de moyens destinés à s'orienter dans l'axe 5 de l'écoulement.
La figure 3 représente un autre mode de réalisation de l'invention dans lequel le corps creux 3 a une position mobile par rapport à la peau 1 d'un aéronef. A l'intérieur du corps creux 3 sont disposés, comme dans le mode de réalisation de la figure 2, le canal 4 et la zone 12 formant les moyens de prise de pression totale à point d'arrêt fluide ainsi que le tube de Pitot 25. Le corps creux 3 est fixé sur une palette 35 mobile autour d'un axe 36 La palette 35 est destinée à s'orienter dans le lit de l'écoulement en fonction de l'incidence locale de l'écoulement au voisinage du dispositif. La palette 35 est solidaire d'un arbre 37 sensiblement perpendiculaire à la peau 1 de l'aéronef. Un palier 38, par exemple à roulement, permet d'assurer la rotation facile de l'arbre 37 par rapport à la peau de l'aéronef tout en assurant un positionnement précis suivant les degrés de liberté du palier autre que la rotation autour de l'axe 36.
Lorsque les capteurs de pression 32 et 33 reliés aux tubes 21 et 28 sont situés du coté intérieur de la peau 1 de l'aéronef il est avantageux d'interposer entre d'une part les tubes 21 et 28 et d'autre part les capteurs de pression 32 et 33, un joint tournant, non représenté sur la figure 3, afin de conserver les capteurs de pressions 32 et 33 dans une position fixe par rapport à l'aéronef. Le joint tournant peut classiquement être réalisé au moyen d'une articulation. On peut avantageusement réaliser le joint tournant en interposant entre les tubes 21 , 28 et les capteurs de pression 32, 33 des tuyaux souples tels que décrits dans la demande de brevet français FR 2 847 672 déposée au nom de la demanderesse.
Avantageusement, le dispositif comporte des moyens de réchauffage lui permettant de fonctionner en haute altitude, dans un environnement ou du givre peut se former sur les parois du dispositif et plus particulièrement dans le canal 4 ou dans le tube de Pitot 25. ces moyens comportant par exemple une résistance électrique chauffante noyée dans des parties massives de la sonde entourant le canal 4 et le tube de Pitot 25. Les moyens de réchauffage peuvent être mis en œuvre aussi bien pour un dispositif ayant une position fixe qu'une position mobile par rapport à la peau de l'aéronef. Dans le cas d'un dispositif dont la position est mobile, des fils d'alimentation de la résistance transitent par le joint tournant.
La figure 4 représente des étapes d'un procédé mettant en œuvre le dispositif de l'invention.
Une première étape 40 consiste en la comparaison des pressions mesurées par les deux prises de pression, celle associé au tube de Pitot et celle associée au point arrêt fluide. Autrement dit, on compare les pressions mesurées au niveau des deux tubes 21 et 28. la comparaison peut directement être réalisée par le débitmètre ou capteur de pression différentielle 32. Dans le cas d'un débitmètre, la différence de pression est fonction de la densité de l'air et de sa température. Ces deux paramètres sont déterminés aux moyens d'autres sondes extérieures au dispositif.
Une seconde étape 41 consiste à comparer la différence obtenue à l'étape 40 à un écart donné E qui peut être fonction de la phase de vol dans laquelle se trouve l'aéronef, décollage, atterrissage ou croisière. En croisière, la valeur de l'écart E peut être fonction de la mise en œuvre ou non d'une séparation verticale réduite entre aéronefs, bien connue dans la littérature anglo-saxonne sous le nom de RVSM pour « Reduce Vertical Séparation Minimum ». Si la différence est inférieure à l'écart donné E, on considère, dans une étape 42, que les deux pressions mesurées sont correctes. Si au contraire, la différence entre les deux pressions mesurées est supérieure à l'écart donné E, on génère, dans une étape 43, une alerte, à l'attention du pilote de l'aéronef, précisant que seule la pression la plus élevée a une bonne probabilité d'être correcte. Ensuite, dans une étape 44, on déclare invalide la mesure de pression la plus faible et on conserve, , la mesure de pression la plus forte. En effet dans un dispositif de mesure de pression totale, la cause de panne la plus probable est le bouchage soit du canal 4 aboutissant à la zone 12 soit du tube de Pitot 25. Un tel bouchage entraîne une mesure de pression proche de la pression statique de l'écoulement et donc inférieure à la pression totale. Le fait de déclarer invalide une mesure permet de générer une alerte afin de prévenir des opérateurs, tels que le pilote et le personnel de maintenance de l'aéronef.
En cas de dispositif comportant un capteur de pression différentielle 32 et un capteur absolu 33, si la valeur mesurée par le capteur 33 est déclarée invalide, pour obtenir la valeur mesurée à l'extrémité 31 du tube 28, on ajoute la mesure réalisée par le capteur 33, même si cette mesure a été déclarée invalide, à la mesure du capteur de pression différentielle 32.
En cas de bouchage simultané du canal 4 et du tube de Pitot 25, par exemple lors de l'impact d'un oiseau sur le dispositif, les deux mesures de pression sont déclarées invalides. Ce cas peut être détecté par une variation brutale des pressions mesurées. Une telle variation n'est pas vraisemblable en condition normale de vol et sera donc interprétée comme un défaut de l'ensemble du dispositif.

Claims

REVENDICATIONS
1. Dispositif de mesure de la pression totale (Pt) d'un écoulement, comportant un tube de Pitot (25), caractérisé en ce qu'il comporte en outre des moyens de prise de pression totale à point d'arrêt fluide (4, 12) et des moyens de comparaison (32, 33) de pressions mesurées par le tube de Pitot (25) et les moyens de prise de pression totale à point d'arrêt fluide (4, 12), le tube de Pitot (25) et les moyens de prise de pression totale à point d'arrêt fluide (4, 12) étant solidaires et prélevant des filets d'air de l'écoulement suivant le même axe (7).
2. Dispositif selon la revendication 1 , caractérisé en ce que les moyens de prise de pression totale à point d'arrêt fluide comportent un canal (4) de forme sensiblement tubulaire, le canal (4) s'ouvrant sensiblement perpendiculairement à l'axe (5) de l'écoulement pour prélever des filets d'air de l'écoulement et une zone (12) dans laquelle les différents filets d'air circulant dans le canal 4 sont amenés en contact de sorte à se ralentir mutuellement, en ce que le tube de Pitot (25) comporte une ouverture (26) de prélèvement d'air dans l'écoulement et en ce que l'ouverture (26) est située à l'intérieure du canal (4).
3. Dispositif selon la revendication 2, caractérisé en ce que l'ouverture (26) du tube de Pitot (25) est situé en aval d'une ouverture (6) des moyens de prise de pression totale à point d'arrêt fluide, l'ouverture (6) permettant le prélèvement des filets d'air de l'écoulement.
4. Dispositif selon l'une quelconque des revendications 2 ou 3, caractérisé en ce que la forme sensiblement tubulaire du canal 4 se développe autour d'un axe (7) et en ce que l'ouverture (26) du tube de Pitot (25) est sensiblement circulaire et centrée sur l'axe (7) du canal (4).
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les moyens de comparaison des pressions obtenues par le tube de Pitot (25) et les moyens de prise de pression totale à point d'arrêt fluide (4, 12) comportent un capteur de pression différentielle ou un débitmètre (32).
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il ne comporte qu'un seul capteur de pression absolu (33) mesurant la pression au niveau des moyens de prise de pression totale à point d'arrêt fluide (4, 12).
7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le tube de Pitot (25) et les moyens de prise de pression totale à point d'arrêt fluide (4, 12) ont une position fixe par rapport à la peau (1) d'un aéronef.
8. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le tube de Pitot (25) et les moyens de prise de pression totale à point d'arrêt fluide (4, 12) sont solidaires de moyens (35, 36, 37, 38) destinés à s'orienter dans l'axe (5) de l'écoulement.
9. Procédé de mesure de la pression totale d'un écoulement mettant en œuvre un dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il consiste à : • comparer les pressions mesurées (40),
• si la différence entre les deux pressions mesurées est supérieure à un écart donné (E), on génère (43) une alerte précisant que seule la pression la plus élevée a une bonne probabilité d'être correcte.
10. Procédé selon la revendication 9, caractérisé en ce qu'après génération de l'alerte, on déclare (44) invalide la mesure de pression la plus faible et on conserve la mesure de pression la plus forte.
EP07822290A 2006-11-17 2007-11-07 Dispositif de mesure de la pression totale d'un ecoulement et procede mettant en oeuvre le dispositif Withdrawn EP2113084A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0610076A FR2908882B1 (fr) 2006-11-17 2006-11-17 Dispositif de mesure de la pression totale d'un ecoulement et procede mettant en oeuvre le dispositif
PCT/EP2007/061976 WO2008058872A2 (fr) 2006-11-17 2007-11-07 Dispositif de mesure de la pression totale d'un ecoulement et procede mettant en oeuvre le dispositif

Publications (1)

Publication Number Publication Date
EP2113084A2 true EP2113084A2 (fr) 2009-11-04

Family

ID=38141359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07822290A Withdrawn EP2113084A2 (fr) 2006-11-17 2007-11-07 Dispositif de mesure de la pression totale d'un ecoulement et procede mettant en oeuvre le dispositif

Country Status (5)

Country Link
US (1) US8100022B2 (fr)
EP (1) EP2113084A2 (fr)
CN (1) CN101558315B (fr)
FR (1) FR2908882B1 (fr)
WO (1) WO2008058872A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265534A1 (fr) 2022-03-04 2023-10-25 Containment Service Providers Company Limited Dispositif de sertissage de doublure

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2667094A1 (fr) * 2011-01-21 2013-11-27 Babcock-Hitachi Kabushiki Kaisha Brûleur à combustible solide et dispositif de combustion utilisant ce dernier
FR2978829B1 (fr) 2011-08-04 2014-03-21 Aer Velocimetre insensible aux conditions givrantes et aux fortes pluies
FR2999293B1 (fr) * 2012-12-11 2015-01-16 Thales Sa Systeme pour la fourniture d'estimations de parametres de vol d'un aeronef independantes et dissimilaires et aeronef associe
EP2930492B1 (fr) * 2014-04-11 2020-09-23 Bundesrepublik Deutschland, vertreten durch das BMVI, dieses vertreten durch den Deutschen Wetterdienst Dispositif de mesure de vapeur d'eau
US10585109B2 (en) 2014-06-02 2020-03-10 University Of Kansas Systems, methods, and devices for fluid data sensing
US9541429B2 (en) 2014-06-02 2017-01-10 University Of Kansas Systems, methods, and devices for fluid data sensing
US10219506B2 (en) * 2014-06-10 2019-03-05 Cnh Industrial America Llc Device and method for detecting blockages in an agricultural sprayer
GB2541356A (en) * 2015-06-08 2017-02-22 Meggitt (Uk) Ltd Moving-vane angle of attack probe
US9696187B2 (en) * 2015-07-01 2017-07-04 Rosemount Aerospace Inc. Device for measuring total pressure of fluid flow
CN107843281A (zh) * 2016-09-21 2018-03-27 谢潇君 一种多功能大气数据传感器
US10564173B2 (en) * 2018-05-09 2020-02-18 Rosemount Aerospace, Inc. Pitot-static probe with pneumatic angle-of-attack sensor
CN209326840U (zh) 2018-12-27 2019-08-30 热敏碟公司 压力传感器及压力变送器
AT524542B1 (de) * 2021-02-03 2022-07-15 Avl List Gmbh Differenzdrucksensorvorrichtung zur Volumenstrombestimmung
FR3140943A1 (fr) * 2022-10-13 2024-04-19 Office National D'etudes Et De Recherches Aérospatiales Sonde de captage de pression

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364742A (en) * 1964-06-26 1968-01-23 Rosemount Eng Co Ltd Dual pitot and/or static system
US5337602A (en) * 1992-08-24 1994-08-16 Gibson Michael E Pitot static tube having accessible heating element
US5466067A (en) * 1993-09-17 1995-11-14 The B. F. Goodrich Company Multifunctional air data sensing probes
AU2002213899A1 (en) * 2000-09-12 2002-03-26 Fast Technology Ag. Magnetic torque sensor system
FR2823846B1 (fr) * 2001-04-24 2003-06-27 Thomson Csf Dispositif de mesure de la pression totale d'un ecoulement
US6711959B2 (en) * 2001-11-02 2004-03-30 Heidelberger Druckmaschinen Ag Air velocity measurement instrument
US6668640B1 (en) * 2002-08-12 2003-12-30 Rosemount Aerospace Inc. Dual-channel electronic multi-function probes and methods for realizing dissimilar and independent air data outputs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008058872A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265534A1 (fr) 2022-03-04 2023-10-25 Containment Service Providers Company Limited Dispositif de sertissage de doublure

Also Published As

Publication number Publication date
CN101558315A (zh) 2009-10-14
WO2008058872A3 (fr) 2008-07-03
US20100071479A1 (en) 2010-03-25
FR2908882B1 (fr) 2008-12-26
WO2008058872A2 (fr) 2008-05-22
FR2908882A1 (fr) 2008-05-23
US8100022B2 (en) 2012-01-24
CN101558315B (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2008058872A2 (fr) Dispositif de mesure de la pression totale d'un ecoulement et procede mettant en oeuvre le dispositif
EP2385377B1 (fr) Dispositif de contrôle d'une sonde de mesure de pression d'un écoulement et sonde comprenant le dispositif
EP1517125B1 (fr) Dispositif et procédé de détermination de la température totale pour aéronef
EP1247104B1 (fr) Sonde multifonctions pour aeronef
EP2602628B1 (fr) Sonde de mesure de pression totale d'un ecoulement et procede de mise en oeuvre de la sonde
EP2843420B1 (fr) Sonde de mesure aérodynamique pour aéronef
FR2978829A1 (fr) Velocimetre insensible aux conditions givrantes et aux fortes pluies
EP1381873B1 (fr) Dispositif de mesure de la pression totale d'un ecoulement
EP2058641A1 (fr) Sonde iso-cinétique pour l'analyse de la pollution des gaz générés par un moteur d'avion
EP1454147A2 (fr) Sonde multifonction a fleche variable
EP2691778B1 (fr) Dispositif d'entretien et d'analyse de sonde aerodynamique
EP1514085B1 (fr) Sonde de temperature totale et procede de determination de temperature totale
EP2878961B1 (fr) Procédé de contrôle d'une sonde de mesure de pression d'un écoulement.
EP2878959B1 (fr) Dispositif et procédé de contrôle d'une sonde de mesure de pression d'un écoulement.
FR2862383A1 (fr) Sonde d'incidence
FR3053786A1 (fr) Dispositif de mesure de grandeurs aerodynamiques destine a etre place dans une veine d'ecoulement d'une turbomachine
FR3120941A1 (fr) Sonde aeronautique
FR2891620A1 (fr) Capteur de debit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090819

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150602