EP2108843A1 - Sensor for turning a pump on or off - Google Patents

Sensor for turning a pump on or off Download PDF

Info

Publication number
EP2108843A1
EP2108843A1 EP08007006A EP08007006A EP2108843A1 EP 2108843 A1 EP2108843 A1 EP 2108843A1 EP 08007006 A EP08007006 A EP 08007006A EP 08007006 A EP08007006 A EP 08007006A EP 2108843 A1 EP2108843 A1 EP 2108843A1
Authority
EP
European Patent Office
Prior art keywords
pump
electrode
sensor
electrodes
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08007006A
Other languages
German (de)
French (fr)
Other versions
EP2108843B1 (en
Inventor
Klaus Vestergaard Kragelund
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Management AS
Original Assignee
Grundfos Management AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Management AS filed Critical Grundfos Management AS
Priority to DE502008001581T priority Critical patent/DE502008001581D1/en
Priority to EP08007006A priority patent/EP2108843B1/en
Priority to AT08007006T priority patent/ATE485450T1/en
Priority to CN200980112828.3A priority patent/CN101990603B/en
Priority to US12/936,933 priority patent/US8610309B2/en
Priority to PCT/EP2009/001826 priority patent/WO2009124635A1/en
Publication of EP2108843A1 publication Critical patent/EP2108843A1/en
Application granted granted Critical
Publication of EP2108843B1 publication Critical patent/EP2108843B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0209Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid
    • F04D15/0218Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid the condition being a liquid level or a lack of liquid supply

Definitions

  • the invention relates to a sensor for switching on and / or off a pump, in particular a submersible pump or basement pump.
  • Submersible pumps such as sewage pumps often have sensors or switches, which turn on the pump when exceeding a predetermined water level and turn off when falling below a generally lower second water level, the pump again.
  • sensors or switches which turn on the pump when exceeding a predetermined water level and turn off when falling below a generally lower second water level, the pump again.
  • mechanical float switch known.
  • electronic sensors such as capacitive sensors for switching the pump on and off as a function of a fluid or water level are known.
  • a high-frequency oscillator is provided, which is connected to the water.
  • the change in the capacity formed by the water is determined by the power consumption of the oscillator.
  • These electronic circuits require a high frequency signal generator and a very sensitive circuit for detecting power consumption. This makes such circuits consuming and expensive.
  • the sensor according to the invention is for switching on and / or off a pump, in particular a submersible pump or basement pump, as used for example for basement drainage provided.
  • the sensor operates on a capacitive measuring principle and has for this purpose a first and a second electrode, which form a capacitor.
  • the condenser is arranged so that its capacity is influenced by the fluid to be delivered. That depending on the height of the liquid level or level, the capacity changes. The two extremes are defined by the condition in which there is no water between the electrodes, and the condition in which both electrodes are completely contained in the fluid, i. preferably below the water level.
  • an electronic circuit is provided, which is connected to the electrodes and the signal evaluation of the changing capacitance between the electrodes is used to generate an on and / or off signal for a pump.
  • the electronic circuit has a voltage supply connected to the first electrode.
  • This power supply is intended to electrically charge the first electrode with respect to the environment and the second electrode.
  • the power supply is designed so that it can deliver short voltage pulses for charging the first electrode.
  • Preferred is the electronic Circuit configured such that a plurality of voltage pulses of the electrode, for example between three and forty pulses, more preferably between five and twenty pulses are delivered to charge the first electrode. These short voltage pulses prevent electrolysis between the electrodes and wear of the electrodes. Preferably, a very short on-time ⁇ 1% of the total charging time is selected.
  • the electronic circuit further comprises an evaluation circuit, which is designed to detect and evaluate capacitance changes between the electrodes in order to generate an on and / or off signal for the pump.
  • This evaluation circuit is designed such that it detects the current between the electrodes during a voltage increase during charging and / or a voltage drop when discharging the electrode and outputs an on and / or off signal depending on the detected current.
  • the current flowing between the electrodes during charging and discharging is proportional to the capacitance between the electrodes. In this respect can be determined from the current, whether the electrodes are in the water or not.
  • the electronic circuit according to the invention is much simpler and cheaper to build than known capacitive sensors, as can be dispensed with a high-frequency signal generator.
  • the detection of the current during charging and / or discharging is quite easy to accomplish and for charging only a pulse generator for generating the voltage pulses is required, but not a signal generator which generates a specific high-frequency signal.
  • the capacity depends on whether there is fluid between the electrodes or not. In this way, thus knowing the charge or discharge curve by measuring the current capacity can be determined.
  • the predetermined slope is steep, preferably steeper than 5V / ⁇ s.
  • the electronic circuit preferably has an unloading device which effects the unloading process with the defined pitch.
  • the slope of the voltage curve during charging or the negative slope during discharge is more preferably> 100V / ⁇ s, in particular> 500V / ⁇ s.
  • the electronic circuit is designed such that a cyclically repeating charging and discharging the electrode takes place with detection of the current during charging and / or discharging. In this way, a continuous monitoring process is performed to determine whether there is fluid between the electrodes or not.
  • the capacitive sensor can be used as a sensor for switching on a pump. Also, such a sensor can be used to turn off such a pump, wherein the switch-off is recognized by the fact that less or no fluid between the electrodes is present, ie the pump has the environment to the required level emptied or dry.
  • the electronic circuit is designed such that the electrode is first charged by a plurality of voltage pulses of the power supply and then discharged, the evaluation circuit detects the current during discharge and outputs an input and / or off depending on the detected current.
  • the detected current is representative or proportional to the capacitance between the electrodes, which in turn depends on whether there is fluid between the electrodes or not.
  • the current measurement and thereby the capacity determination during a defined discharge process preferably takes place.
  • This discharge can be initiated and performed by an unloading device provided in the electronic circuit, so that a discharging operation can be performed with a very steep discharge curve, as described above.
  • this discharge curve is linear in the region in which the current measurement is carried out.
  • the arrangement of the electrodes determines whether the on and / or off point of the sensor is determined by them. Basically, one sensor is sufficient to determine on and off point. Thus, a switch-on signal for switching on the pump can be issued if due to the larger capacity fluid between the electrodes of the evaluation circuit is detected.
  • a switch-off signal for switching off the pump is delivered.
  • two sensors at different vertical levels and to turn on the pump by a turn-on signal of the upper sensor, this turn-on signal is generated by the evaluation circuit, when water is detected by the electrodes of this upper sensor.
  • the pump can then be switched off by a switch-off signal of the second lower sensor, which is output by its evaluation device when no water, ie air between the electrodes is detected.
  • the electronic circuit is designed such that the evaluation circuit additionally determines the electrical resistance between the two electrodes and outputs an on and / or off signal depending on the detected current and the resistance.
  • the evaluation circuit additionally determines the electrical resistance between the two electrodes and outputs an on and / or off signal depending on the detected current and the resistance.
  • this Electrodes do not form an ideal capacitance can be achieved by additional consideration of the electrical resistance of the medium, ie fluid between the electrodes greater accuracy.
  • the power supply preferably has a voltage source with one of these downstream electrical resistance and one of these parallel-connected capacitance.
  • the voltage supply preferably has a signal generator.
  • This signal generator generates the defined and at least partially very steep voltage curve when loading and particularly preferably during unloading.
  • the capacitance formed by the electrodes is discharged with a defined voltage curve over time. This voltage curve during discharging is specified by the signal generator.
  • Subject of the invention is further a pump for conveying a fluid with an electric drive motor and a control device for switching on and off of the drive motor.
  • the pump according to the invention is designed such that its control device has at least one sensor according to the preceding description, which serves to turn on and / or off the pump as a function of the fluid level.
  • the sensor which generates the switch-on signal in cooperation with the evaluation device, is arranged at a vertical level, which is the switch-on level. That is, when the fluid level reaches this switch-on level, the pump is switched on.
  • the sensor is arranged so that at this level of fluid its capacity is changed so that it is determined by the evaluation device via the discharge current and correspondingly a turn-on signal is emitted.
  • one of the electrodes is formed by the housing of the pump and the second electrode is isolated from the housing. This is particularly useful when the pump housing is made of metal.
  • the electrodes are in direct contact with the surrounding fluid, i. they are not covered by further layers of material to the pump outside.
  • the at least one sensor is arranged to generate a switch-on signal for the drive motor at a predetermined fluid level.
  • This sensor is preferably seconded in the vertically upper region of the pump.
  • a shut-off device for the pump, which has at least one detection means for detecting at least one electrical parameter of the drive motor and is designed such that on the basis of this electrical parameter, a dry run of the pump is detectable, and when dry run detected a shutdown signal for generates the drive motor.
  • the dry run can be detected, for example, due to a phase shift in the electrical operating voltage supplied to the drive motor.
  • the drive motor is preferably provided with a frequency converter for speed control. It can Means or functions of the existing frequency converter can be used to detect this phase shift and thus the dry run. However, other parameters, such as the electric current, may be used to detect dry run.
  • the detection means is then designed accordingly.
  • a protective electrode is arranged on the pump, which shields the first electrode of the sensor against electrical components in the interior of the pump.
  • this protective electrode is arranged in or on the housing further inwardly behind the first electrode, so that the protective electrode is located between electronic components in the interior of the housing and the first electrode.
  • the sensor according to the invention is a capacitive sensor, ie on and / or off timing for a pump as a function of a fluid level are determined on the basis of a changing capacitance between two electrodes 2 and 4.
  • the electrodes 2 and 4 are spaced from each other and electrically isolated from each other so arranged that the fluid to be delivered, the fluid level to be detected, affects the capacitance of the capacitor formed by the electrodes 2 and 4. This happens because in the case that fluid, for example water, is located between the electrodes 2 and 4, the capacitance changes markedly compared to a state in which there is air between the two electrodes 2 and 4. This results from the very different Permittivity of water and air. Fig.
  • FIG. 3 shows a model or equivalent circuit diagram for the arrangement of the electrodes 2 and 4 in the environment in which either air or the fluid to be delivered is located.
  • the arrangement of the electrodes 2 and 4 does not behave like an ideal capacitor.
  • This is in the equivalent circuit diagram Fig. 3 considered, there is parallel to the capacitance C, an electrical resistance R shown.
  • the measurement or detection of the capacitance between the electrodes 2 and 4 is carried out such that initially the electrodes 2 and 4 are slowly charged with low current. For this purpose, a charge can be applied to one of the electrodes 2, 4.
  • the charging is preferably carried out by a plurality of very short voltage pulses. This has the advantage that no or only a small current flow occurs between the electrodes 2 and 4, so that an electrolysis between the electrodes 2 and 4, which could lead to damage of the electrodes, is avoided.
  • the voltage curve during charging is in Fig. 1 shown.
  • the charging process takes place until time T at which the maximum charge is reached.
  • Fig. 2 At time T, the capacitor C formed by the electrodes 2 and 4 is discharged very quickly, ie the voltage drops, as in Fig. 1 shown is steep. This leads to a high discharge current, as in Fig. 2 is shown. This discharge current during the discharging process is measured. The magnitude of the discharge current is proportional to the capacitance C between the electrodes 2 and 4.
  • Fig. 4 schematically shows in a block diagram an inventive pump unit with a sensor which operates according to the previously described measuring principle.
  • the pump unit has a power supply 11, for example in the form of a connection plug for connection to the power grid, and an electric drive motor M and a control device 12, which is responsible for switching on and off of the drive motor.
  • two sensors 14 and 16 are provided, which each have two electrodes 2, 4, as described above.
  • a sensor 14 is provided for switching on the pump
  • the second sensor 16 is for switching off provided the pump.
  • the sensors 14 and 16 are arranged in two vertically spaced-apart positions.
  • the pump is turned on.
  • the pump or the drive motor M is switched off when the fluid level falls below the lower sensor 16, and the lower sensor 16 thus detects air between the electrodes 2 and 4.
  • the control device 12 has a power supply 18 for the control device 12, a controller 20 and a power switch 22.
  • the controller 20 controls the charging and discharging of the electrodes 24 of the sensors 14 and 16 in the manner described above and the current measurement and takes over the evaluation during discharge.
  • the controller correspondingly drives the power switch 22 to turn on and off the motor.
  • the controller 20 preferably carries out a continuous monitoring process in which the electrodes of the sensors 14 and 16 are periodically charged and then discharged again, with the described current measurement being carried out to detect the capacitance during each discharge process. It is conceivable that the discharge cycle and the next charge cycle are spaced in time. However, this time interval should not be too long to be able to detect the achievement of the on and off level of the fluid as soon as possible. Especially when switching off this is important to avoid prolonged dry running of the pump.
  • Fig. 5 shows in a block diagram the schematic structure of a sensor device with sensor electrodes 2 and 4 and the associated control and evaluation circuit, which will now be described in more detail.
  • the electronic circuit as essential further components a pulse generator 24 and a current sensor 26.
  • pulse shaper 28 and an output stage 30 are connected on the output side of the pulse generator 24, pulse shaper 28 and an output stage 30 are connected.
  • the output stage 30 serves to buffer the signal in order to be able to detect even highly conductive fluids with the sensor according to the invention.
  • the output stage 30 is connected via a capacitor 32 to the first electrode 2.
  • the pulse generator generates for charging the electrode 2 a plurality or a plurality of very short voltage pulses, with which the sensor electrode is charged.
  • the pulse generator 24 To discharge the pulse generator 24 generates together with the pulse shaper 28, the steep predetermined discharge curve described above.
  • the current sensor 26 detects the discharge current between the electrodes 2 and 4.
  • the output of the current sensor 26 is supplied to a sample and hold circuit 34 which stores the peak value of the discharge current and outputs a proportional voltage as an output signal.
  • This output signal is fed to the microcontroller 20 which, knowing the discharge curve, determines the capacitance between the electrodes 2 and 4 and carries out an evaluation as to whether there is fluid or water between the electrodes 2 and 4.
  • the microcontroller 20 also drives the pulse generator 24 and specifies the charge and discharge cycles.
  • the electrode 4 is coupled via a capacitor 36.
  • the coupling of the electrodes 2 and 4 via capacitors 32 and 36 isolates the electrodes 2, 4 from the electronics, so that a direct contact of a person with the electrodes 2 and 4 is harmless.
  • Fig. 6 shows a possible arrangement of the electrodes 2 and 4 in the pump unit.
  • the electrode 4 is formed by the metallic pump and / or motor housing.
  • the electrode 2 is arranged separately and via an insulator 38 to the housing 4th connected so that the electrodes 2 and 4 are electrically isolated from each other.
  • the electrodes 2 and 4 are connected via capacitors 32 and 36 to the transmitter 40.
  • the transmitter 40 comprises, as based on Fig. 5 explained, power supply 18, controller 20, pulse generator 24, current sensor 26, pulse shaper 28, power amplifier 30 and sample and hold circuit 34.
  • the transmitter 40 can also be deviating in other suitable manner to implement the measuring principle of the invention.
  • Fig. 7 shows a further possible arrangement of the electrodes 2 and 4 in the pump unit, which substantially the arrangement in Fig. 6 equivalent.
  • a protective electrode 42 is arranged between the housing which forms the second electrode 4 and the first electrode 2.
  • the guard electrode 42 is connected to an active protection circuit 44.
  • Protective electrode 42 and protective circuit 44 serve to shield electric fields which occur on the back side of the electrode 2 in the interior of the housing by the electrical or electronic components arranged there against the electrode 2, so that the electrode 2 detects only electric fields outside the housing, such as indicated by the field lines 46.
  • Fig. 8 shows again in a schematic plan view of the pump unit, the housing serves as a second electrode 4.
  • the first electrode is arranged so as to be electrically insulated from the housing and thus from the second electrode, so that a capacitance C is present between the electrodes 2 and 4 as a function of the surrounding medium or fluid.
  • Fig. 9 shows a possible arrangement of a pump 48 with a sensor 50, which, as in Fig. 5 is constructed described.
  • This sensor 50 is not integrated in the pump unit 48 but in the electrical Supply line between the power supply 11 and the pump unit 48 is arranged.
  • the sensor 50 has, as in Fig. 10 shown, two sensor electrodes 2 and 4, which form a capacitor in the manner described above with the environment.
  • the sensor 50 is located near the bottom 52. If the water or fluid level rises so high that the electrodes 2 and 4 of the sensor 50 are in the water, that is detected by the sensor and it turns on the power supply to the pump 48 so that it promotes fluid or water.
  • the capacitance of the electrodes 2 and 4 changes significantly, which is detected in the manner described above, and the sensor 50 then connects, via a power switch, the line between the power supply 11 and the pump unit 48 and thus switch off the pump set.
  • Fig. 11 shows an arrangement similar to the arrangement in Fig. 9 with the difference that two sensors 50 and 54 are provided.
  • the pump unit 48 With two sensors 50 and 54, the pump unit 48 is operated such that when the fluid level reaches the upper sensor 54 and thus its electrodes 2 and 4 are in fluid, the pump 48 is turned on.
  • the pump unit 48 is switched off when the lower sensor 50 detects air between its electrodes 2 and 4, ie, the fluid level has fallen below the vertical level of the sensor 50.
  • the motor control for the pump motor detects the dry running of the pump. This is recognizable from electrical parameters of the motor, for example based on a phase shift of the supply voltage.
  • VCC is the input voltage for the capacitive sensor.
  • C 1 is a bypass capacitor and C 2 is the capacitor that is charged to provide a certain amount of energy to the sensor.
  • VCC is the input voltage for the capacitive sensor.
  • C 1 is a bypass capacitor and C 2 is the capacitor that is charged to provide a certain amount of energy to the sensor.
  • the power supply VCC is interrupted and the sensor electrodes 2, 4 are supplied via the output A 1 alone with the voltage from the capacitor C 2 .
  • the stored energy in the capacitor C 2 is released by the capacity or the conductivity of the water. Consequently, at the end of the measurement, a residual amount of energy remains in the capacitor C 2 , so that the conductivity of the water can be determined by the remaining voltage across the capacitor C 2 .
  • U1 is a pulse shaper in the form of a Schmitt trigger. Via the input E 2 , which represents the input of the Schmitt trigger, the pulses for activating the sensor are fed to the pulse shaper U1.
  • the discharge curve or discharge rate dU / dt is specified for the sensor.
  • the transistors Q 1 and Q 2 serve to supply a higher current to the sensor output A1.
  • the diode D 1 and the resistor R 1 serve to protect the transistor Q 1 and reduced the charging speed dU / dt.
  • the capacitors C 4 and C 6 are isolating capacitors which serve to protect persons who come into contact with the electrodes 2, 4.
  • the resistor R 3 serves to detect the current flowing here between the electrodes 2, 4 and the earth, that is, the current which is proportional to the capacitance to be measured between the sensor electrodes 2, 4.
  • the capacitor C 8 is a decoupling capacitor, which allows the peak detector formed by the diode D 3 and the capacitor C 9 in conjunction with the bias circuit formed from the resistors R 4 and R 5 and the diode D 4 offset Has error near zero.
  • the capacitor C 9 serves to hold the voltage corresponding to the detected capacitance and to perform a slow digitization of the voltage via, for example, an analog-to-digital converter at the output A 2 .
  • the capacitor C 28 serves to eliminate interference or spurious oscillations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Seal Device For Vehicle (AREA)
  • Reciprocating Pumps (AREA)

Abstract

The sensors (14,16) have two electrodes, an electronic circuit that has a voltage supply connected to former electrode and designed for issuing short voltage pulses for charging former electrode, and evaluating circuit. The evaluating circuit is designed such that it measures current between the electrodes during a voltage increase when the former electrode is charged or during a voltage drop when the former electrode is discharged. An independent claim is included for a pump for supplying fluids.

Description

Die Erfindung betrifft einen Sensor zum Ein- und/oder Ausschalten einer Pumpe, insbesondere einer Tauchpumpe oder Kellerpumpe.The invention relates to a sensor for switching on and / or off a pump, in particular a submersible pump or basement pump.

Tauchpumpen wie beispielsweise Abwasserpumpen weisen häufig Sensoren bzw. Schalter auf, welche die Pumpe beim Übersteigen eines vorbestimmten Wasserstandes einschalten und beim Unterschreiten eines in der Regel niedrigeren zweiten Wasserstandes die Pumpe wieder ausschalten. Hierzu sind z.B. mechanische Schwimmerschalter bekannt. Bei diesen besteht jedoch die Gefahr, dass sie in ihrer Bewegung blockiert werden, was zu Fehlern beim Ein- und Ausschalten der Pumpe führt.Submersible pumps such as sewage pumps often have sensors or switches, which turn on the pump when exceeding a predetermined water level and turn off when falling below a generally lower second water level, the pump again. For this, e.g. mechanical float switch known. However, there is a risk that they will be blocked in their movement, which leads to errors when switching on and off the pump.

Darüber hinaus sind elektronische Sensoren wie kapazitive Sensoren zum Ein- und Ausschalten der Pumpe in Abhängigkeit von einem Fluid- bzw. Wasserpegel bekannt. Bei diesen bekannten kapazitiven Sensoren ist ein Hochfrequenzoszillator vorgesehen, welcher mit dem Wasser verbunden ist. Die Änderung der vom Wasser gebildeten Kapazität wird dabei über den Stromverbrauch des Oszillators bestimmt. Diese elektronischen Schaltungen benötigen einen Hochfrequenzsignalgenerator und eine sehr empfindliche Schaltung zur Erfassung des Stromverbrauches. Das macht derartige Schaltungen aufwendig und teuer.In addition, electronic sensors such as capacitive sensors for switching the pump on and off as a function of a fluid or water level are known. In these known capacitive sensors, a high-frequency oscillator is provided, which is connected to the water. The change in the capacity formed by the water is determined by the power consumption of the oscillator. These electronic circuits require a high frequency signal generator and a very sensitive circuit for detecting power consumption. This makes such circuits consuming and expensive.

Es ist daher Aufgabe der Erfindung, einen verbesserten Sensor zum Ein-und/oder Ausschalten einer Pumpe bereitzustellen, welcher nach einem kapazitiven Messprinzip arbeitet, jedoch einfacher und kostengünstiger aufzubauen ist.It is therefore an object of the invention to provide an improved sensor for switching on and / or off a pump, which after a capacitive measuring principle works, however, is easier and less expensive to build.

Diese Aufgabe wird durch einen Sensor zum Ein- und/oder Ausschalten einer Pumpe mit den im Anspruch 1 angegebenen Merkmalen sowie durch eine Pumpe mit den im Anspruch 9 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den zugehörigen Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.This object is achieved by a sensor for switching on and / or off a pump having the features specified in claim 1 and by a pump having the features specified in claim 9. Preferred embodiments will become apparent from the appended subclaims, the following description and the attached figures.

Der erfindungsgemäße Sensor ist zum Ein- und/oder Ausschalten einer Pumpe, insbesondere einer Tauchpumpe oder Kellerpumpe, wie sie beispielsweise zur Kellerdrainage eingesetzt wird, vorgesehen. Der Sensor arbeitet nach einem kapazitiven Messprinzip und weist dazu eine erste und eine zweite Elektrode auf, welche einen Kondensator bilden. Der Kondensator ist so angeordnet, dass seine Kapazität durch das zu fördernde Fluid beeinflusst wird. D.h. abhängig von der Höhe des Flüssigkeitsstandes bzw. Pegels ändert sich die Kapazität. Die zwei Extreme sind dabei durch den Zustand definiert, in welchem sich kein Wasser zwischen den Elektroden befindet, und den Zustand, bei welchem beide Elektroden vollständig in dem Fluid, d.h. vorzugsweise unter dem Wasserspiegel liegen. Ferner ist eine elektronische Schaltung vorgesehen, welche mit den Elektroden verbunden ist und der Signalauswertung der sich ändernden Kapazität zwischen den Elektroden dient, um ein Ein- und/oder Ausschaltsignal für eine Pumpe zu generieren.The sensor according to the invention is for switching on and / or off a pump, in particular a submersible pump or basement pump, as used for example for basement drainage provided. The sensor operates on a capacitive measuring principle and has for this purpose a first and a second electrode, which form a capacitor. The condenser is arranged so that its capacity is influenced by the fluid to be delivered. That depending on the height of the liquid level or level, the capacity changes. The two extremes are defined by the condition in which there is no water between the electrodes, and the condition in which both electrodes are completely contained in the fluid, i. preferably below the water level. Further, an electronic circuit is provided, which is connected to the electrodes and the signal evaluation of the changing capacitance between the electrodes is used to generate an on and / or off signal for a pump.

Erfindungsgemäß weist die elektronische Schaltung eine mit der ersten Elektrode verbundene Spannungsversorgung auf. Diese Spannungsversorgung ist dazu vorgesehen, die erste Elektrode gegenüber der Umgebung und der zweiten Elektrode elektrisch zu laden. Dazu ist die Spannungsversorgung so ausgebildet, dass sie kurze Spannungspulse zum Laden der ersten Elektrode abgeben kann. Bevorzugt ist die elektronische Schaltung so ausgebildet, dass eine Vielzahl von Spannungspulsen der Elektrode, beispielsweise zwischen drei und vierzig Pulsen, weiter bevorzugt zwischen fünf und zwanzig Pulsen abgegeben werden, um die erste Elektrode zu laden. Durch diese kurzen Spannungspulse wird eine Elektrolyse zwischen den Elektroden und ein Verschleiß der Elektroden verhindert. Vorzugsweise wird eine sehr kurze Einschaltzeit < 1 % der Gesamtladezeit gewählt.According to the invention, the electronic circuit has a voltage supply connected to the first electrode. This power supply is intended to electrically charge the first electrode with respect to the environment and the second electrode. For this purpose, the power supply is designed so that it can deliver short voltage pulses for charging the first electrode. Preferred is the electronic Circuit configured such that a plurality of voltage pulses of the electrode, for example between three and forty pulses, more preferably between five and twenty pulses are delivered to charge the first electrode. These short voltage pulses prevent electrolysis between the electrodes and wear of the electrodes. Preferably, a very short on-time <1% of the total charging time is selected.

Erfindungsgemäß weist die elektronische Schaltung ferner eine Auswerteschaltung auf, welche dazu ausgebildet ist, Kapazitätsänderungen zwischen den Elektroden zu erfassen und auszuwerten, um ein Ein-und/oder Ausschaltsignal für die Pumpe zu erzeugen. Diese Auswerteschaltung ist so ausgebildet, dass sie während eines Spannungsanstieges beim Laden und/oder eines Spannungsabfalls beim Entladen der Elektrode den Strom zwischen den Elektroden erfasst und ein Ein-und/oder Ausschaltsignal abhängig von dem erfassten Strom ausgibt. Der zwischen den Elektroden beim Laden bzw.- Entladen fließende Strom ist proportional zu von der Kapazität zwischen den Elektroden. Insofern kann anhand des Stroms festgestellt werden, ob die Elektroden im Wasser liegen oder nicht.According to the invention, the electronic circuit further comprises an evaluation circuit, which is designed to detect and evaluate capacitance changes between the electrodes in order to generate an on and / or off signal for the pump. This evaluation circuit is designed such that it detects the current between the electrodes during a voltage increase during charging and / or a voltage drop when discharging the electrode and outputs an on and / or off signal depending on the detected current. The current flowing between the electrodes during charging and discharging is proportional to the capacitance between the electrodes. In this respect can be determined from the current, whether the electrodes are in the water or not.

Die elektronische Schaltung gemäß der Erfindung ist deutlich einfacher und kostengünstiger aufzubauen als bekannte kapazitive Sensoren, da auf einen Hochfrequenzsignalgenerator verzichtet werden kann. Die Erfassung des Stroms beim Laden und/oder Entladen ist recht einfach zu bewerkstelligen und für das Laden ist lediglich ein Pulsgenerator zum Erzeugen der Spannungspulse erforderlich, nicht jedoch ein Signalgenerator, welcher ein bestimmtes Hochfrequenzsignal erzeugt.The electronic circuit according to the invention is much simpler and cheaper to build than known capacitive sensors, as can be dispensed with a high-frequency signal generator. The detection of the current during charging and / or discharging is quite easy to accomplish and for charging only a pulse generator for generating the voltage pulses is required, but not a signal generator which generates a specific high-frequency signal.

Vorzugsweise ist die elektronische Schaltung derart ausgebildet, dass beim Laden der Elektrode und/oder beim Entladen der Elektrode der zeitliche Signalverlauf der Spannung U zumindest in einem Abschnitt eine vorbestimmte Steigung aufweist. D.h. im Bereich dieser vorbestimmten Steigung ist dU/dt bekannt. In Kenntnis dieser Steigung lässt sich bei Erfassung bzw. Messung des Entladestroms Ic die Kapazität C bestimmen nach der Formel I C = C U t .

Figure imgb0001
Preferably, the electronic circuit is designed such that when charging the electrode and / or when discharging the electrode, the temporal waveform of the voltage U at least in one section has a predetermined slope. That is, in the range of this predetermined slope dU / dt is known. In knowledge of this slope can be determined on detection or measurement of the discharge current I c, the capacitance C according to the formula I C = C U t ,
Figure imgb0001

Die Kapazität ist abhängig davon, ob sich zwischen den Elektroden Fluid befindet oder nicht. Auf diese Weise kann somit in Kenntnis der Lade- bzw. Entladekurve durch Strommessung die Kapazität bestimmt werden.The capacity depends on whether there is fluid between the electrodes or not. In this way, thus knowing the charge or discharge curve by measuring the current capacity can be determined.

Weiter ist es bevorzugt, dass die vorbestimmte Steigung steil, vorzugsweise steiler als 5V/µs gewählt ist. Durch solch schnelles Laden oder Entladen des von den Elektroden gebildeten Kondensators wird der Einfluss des elektrischen Widerstandes zwischen den Elektroden auf den Lade- bzw. Entladevorgang verringert bzw. eliminiert. Bei langsamerer Ladung bzw. Entladung würde, wenn sich Wasser zwischen den Elektroden befindet, ein Strom zwischen den Elektroden fließen, welcher eine Entladung bedingt. In diesem Zustand könnte somit keine definierte Lade- bzw. Entladekurve mit vorbekannter Steigung erreicht werden. Durch das sehr schnelle Laden bzw. vorzugsweise Entladen über entsprechende Komponenten in der elektronischen Schaltung wird die Entladung der Elektroden über des zwischen den Elektroden befindliche Fluid weitgehend minimiert bzw. ausgeschlossen. Um die geladene Elektrode definiert entladen zu können, weist die elektronische Schaltung vorzugsweise eine Entladevorrichtung auf, welche den Entladevorgang mit der genannten definierten Steigung bewirkt. Die Steigung des Spannungsverlaufs beim Laden bzw. die negative Steigung beim Entladen ist weiter bevorzugt >100V/µs, insbesondere >500V/µs.Further, it is preferable that the predetermined slope is steep, preferably steeper than 5V / μs. Such rapid charging or discharging of the capacitor formed by the electrodes reduces or eliminates the influence of the electrical resistance between the electrodes on the charging or discharging process. With slower charging or discharging, when there is water between the electrodes, a current would flow between the electrodes, causing a discharge. In this state, therefore, no defined charging or discharging curve with a previously known gradient could be achieved. As a result of the very rapid charging or preferably discharging via corresponding components in the electronic circuit, the discharge of the electrodes via the fluid located between the electrodes is largely minimized or eliminated. In order to be able to discharge the charged electrode in a defined manner, the electronic circuit preferably has an unloading device which effects the unloading process with the defined pitch. The slope of the voltage curve during charging or the negative slope during discharge is more preferably> 100V / μs, in particular> 500V / μs.

Gemäß einer bevorzugten Ausgestaltung ist die elektronische Schaltung derart ausgebildet, dass ein sich zyklisch wiederholendes Laden und Entladen der Elektrode mit Erfassung des Stroms beim Laden und/oder Entladen stattfindet. Auf diese Weise wird ein kontinuierlicher Überwachungsprozess durchgeführt, um festzustellen, ob sich zwischen den Elektroden Fluid befindet oder nicht. Auf diese Weise kann der kapazitive Sensor als Sensor zum Einschalten einer Pumpe genutzt werden. Auch kann einer solcher Sensor zum Ausschalten einer solchen Pumpe genutzt werden, wobei der Ausschaltzeitpunkt daran erkannt wird, dass weniger oder kein Fluid zwischen den Elektroden vorhanden ist, d.h. die Pumpe die Umgebung auf das erforderliche Niveau leer- bzw. trockengepumpt hat.According to a preferred embodiment, the electronic circuit is designed such that a cyclically repeating charging and discharging the electrode takes place with detection of the current during charging and / or discharging. In this way, a continuous monitoring process is performed to determine whether there is fluid between the electrodes or not. In this way, the capacitive sensor can be used as a sensor for switching on a pump. Also, such a sensor can be used to turn off such a pump, wherein the switch-off is recognized by the fact that less or no fluid between the electrodes is present, ie the pump has the environment to the required level emptied or dry.

Weiter bevorzugt ist die elektronische Schaltung derart ausgebildet, dass die Elektrode zunächst durch mehrere Spannungspulse der Spannungsversorgung geladen und anschließend entladen wird, wobei die Auswerteschaltung während des Entladens den Strom erfasst und ein Ein- und/oder Ausschaltsignal abhängig von dem erfassten Strom ausgibt. Dabei ist der erfasste Strom repräsentativ bzw. proportional zu der Kapazität zwischen den Elektroden, welche wiederum davon abhängt, ob sich zwischen den Elektroden Fluid befindet oder nicht. Bevorzugt findet somit die Strommessung und dabei die Kapazitätsbestimmung während eines definierten Entladevorganges statt. Dieses Entladen kann von einer in der elektronischen Schaltung vorhandenen Entladevorrichtung veranlasst und durchgeführt werden, sodass ein Entladevorgang mit einer sehr steilen Entladekurve durchgeführt werden kann, wie es vorangehend beschrieben wurde. Besonders bevorzugt ist diese Entladekurve in dem Bereich, in welchem die Strommessung durchgeführt wird, linear. Durch das Laden der Elektrode mittels sehr kurzer Spannungspulse wird, wie beschrieben, eine Elektrolyse im Fluid verhindert. Durch den schnellen Entladevorgang kann der Einfluss des elektrischen Widerstandes verringert bzw. ausgeschlossen werden.More preferably, the electronic circuit is designed such that the electrode is first charged by a plurality of voltage pulses of the power supply and then discharged, the evaluation circuit detects the current during discharge and outputs an input and / or off depending on the detected current. In this case, the detected current is representative or proportional to the capacitance between the electrodes, which in turn depends on whether there is fluid between the electrodes or not. Thus, the current measurement and thereby the capacity determination during a defined discharge process preferably takes place. This discharge can be initiated and performed by an unloading device provided in the electronic circuit, so that a discharging operation can be performed with a very steep discharge curve, as described above. Particularly preferably, this discharge curve is linear in the region in which the current measurement is carried out. By charging the electrode by means of very short voltage pulses, as described, an electrolysis in the fluid is prevented. Due to the fast discharge process, the influence of the electrical resistance can be reduced or eliminated.

Durch den beim Entladen gemessenen Strom kann auch die Kapazität des von den Elektroden gebildeten Kondensators berechnet werden. Wenn sich zwischen den Elektroden das zu fördernde Fluid befindet, ist die Kapazität deutlich größer, als wenn sich zwischen den Elektroden kein Fluid, d.h. Luft befindet. Im Falle von Wasser als Fluid ist die Kapazität etwa achtzig Mal größer als bei Luft, aufgrund der größeren relativen Permittivität von Wasser (εR = 80) gegenüber Luft (εR = 1). Die Anordnung der Elektroden bestimmt, ob durch sie der Ein- und/oder Ausschaltpunkt des Sensors bestimmt wird. Grundsätzlich ist ein Sensor ausreichend, um Ein- und Ausschaltpunkt zu bestimmen. So kann ein Einschaltsignal zum Einschalten der Pumpe abgegeben werden, wenn aufgrund der größeren Kapazität Fluid zwischen den Elektroden von der Auswerteschaltung detektiert wird. Wenn von der Auswerteschaltung wieder eine geringere Kapazität aufgrund des geringeren Entladestroms detektiert wird, kann daraus geschlossen werden, dass sich kein Fluid mehr zwischen den Elektroden befindet und ein Ausschaltsignal zum Ausschalten der Pumpe abgegeben wird. Alternativ ist es möglich, zwei Sensoren auf unterschiedlichem vertikalen Niveau anzuordnen und die Pumpe durch ein Einschaltsignal des oberen Sensors einzuschalten, wobei dieses Einschaltsignal von der Auswerteschaltung dann erzeugt wird, wenn Wasser von den Elektroden dieses oberen Sensors detektiert wird. Ausgeschaltet werden kann die Pumpe dann durch ein Ausschaltsignal des zweiten unteren Sensors, welches von dessen Auswerteeinrichtung ausgegeben wird, wenn kein Wasser, d.h. Luft zwischen den Elektroden detektiert wird.The current measured during discharging can also be used to calculate the capacitance of the capacitor formed by the electrodes. If there is the fluid to be pumped between the electrodes, the capacity is significantly greater than if there is no fluid between the electrodes, ie air. In the case of water as fluid, the capacity is about eighty times greater than air, due to the greater relative permittivity of water (ε R = 80) to air (ε R = 1). The arrangement of the electrodes determines whether the on and / or off point of the sensor is determined by them. Basically, one sensor is sufficient to determine on and off point. Thus, a switch-on signal for switching on the pump can be issued if due to the larger capacity fluid between the electrodes of the evaluation circuit is detected. If again a lower capacity is detected by the evaluation circuit due to the lower discharge current, it can be concluded that there is no more fluid between the electrodes and a switch-off signal for switching off the pump is delivered. Alternatively, it is possible to arrange two sensors at different vertical levels and to turn on the pump by a turn-on signal of the upper sensor, this turn-on signal is generated by the evaluation circuit, when water is detected by the electrodes of this upper sensor. The pump can then be switched off by a switch-off signal of the second lower sensor, which is output by its evaluation device when no water, ie air between the electrodes is detected.

Gemäß einer weiteren bevorzugten Ausführungsform ist die elektronische Schaltung derart ausgebildet, dass die Auswerteschaltung zusätzlichen den elektrischen Widerstand zwischen den beiden Elektroden bestimmt und ein Ein- und/oder Ausschaltsignal abhängig von dem erfassten Strom und dem Widerstand ausgibt. Da in dem Fall, dass sich ein leitfähiges Fluid wie Wasser zwischen den Elektroden befindet, diese Elektroden keine ideale Kapazität bilden, kann durch zusätzliche Berücksichtigung des elektrischen Widerstands des Mediums, d.h. Fluids zwischen den Elektroden eine größere Messgenauigkeit erzielt werden.According to a further preferred embodiment, the electronic circuit is designed such that the evaluation circuit additionally determines the electrical resistance between the two electrodes and outputs an on and / or off signal depending on the detected current and the resistance. In the case where a conductive fluid such as water is located between the electrodes, this Electrodes do not form an ideal capacitance can be achieved by additional consideration of the electrical resistance of the medium, ie fluid between the electrodes greater accuracy.

Die Spannungsversorgung weist vorzugsweise eine Spannungsquelle mit einem dieser nachgeschalteten elektrischen Widerstand und einer dieser parallel geschalteten Kapazität auf. Durch diese Anordnung kann die Schaltung kurzschlussfest gemacht werden.The power supply preferably has a voltage source with one of these downstream electrical resistance and one of these parallel-connected capacitance. By this arrangement, the circuit can be made short-circuit proof.

Zur Erzeugung einer Lade- und/oder Entladespannung mit definiertem Signalverlauf weist die Spannungsversorgung vorzugsweise einen Signalgenerator auf. Dieser Signalgenerator erzeugt beim Laden und besonders bevorzugt beim Entladen die definierte und zumindest abschnittsweise sehr steile Spannungskurve erzeugt. So wird die von den Elektroden gebildete Kapazität mit einem definierten Spannungsverlauf über die Zeit entladen. Dieser Spannungsverlauf beim Entladen wird durch den Signalgenerator vorgegeben.To generate a charging and / or discharging voltage with a defined signal curve, the voltage supply preferably has a signal generator. This signal generator generates the defined and at least partially very steep voltage curve when loading and particularly preferably during unloading. Thus, the capacitance formed by the electrodes is discharged with a defined voltage curve over time. This voltage curve during discharging is specified by the signal generator.

Erfindungsgegenstand ist ferner eine Pumpe zum Fördern eines Fluids mit einem elektrischen Antriebsmotor und einer Steuereinrichtung zum Ein- und Ausschalten des Antriebsmotors. Die Pumpe ist erfindungsgemäß so ausgestaltet, dass ihre Steuereinrichtung zumindest einen Sensor gemäß der vorangehenden Beschreibung aufweist, welcher dazu dient, die Pumpe in Abhängigkeit des Fluidniveaus ein- und/oder auszuschalten. Der Sensor, welcher in Zusammenwirkung mit der Auswerteeinrichtung das Einschaltsignal erzeugt, ist auf einem vertikalen Niveau angeordnet, welches das Einschaltniveau ist. D.h. wenn der Fluidspiegel dieses Einschaltniveau erreicht, wird die Pumpe eingeschaltet. Der Sensor ist so angeordnet, dass bei diesem Fluidniveau seine Kapazität so verändert wird, dass dies von der Auswerteeinrichtung über den Entladestrom ermittelt und entsprechend ein Einschaltsignal abgegeben wird. Zum Ausschalten ist entweder derselbe oder ein weiterer Sensor auf einem Niveau angeordnet, bei dessen Unterschreiten durch den Fluidspiegel die Pumpe wieder abgeschaltet werden soll. Dabei erfolgt das Abschalten dann, wenn die Kapazität sich so ändert, dass sie der Kapazität von Luft zwischen den Elektroden entspricht. Es ist jedoch nicht zwingend erforderlich, dass das Ausschalten der Pumpe ebenfalls durch einen solchen Sensor gemäß der vorangehenden Beschreibung veranlasst wird.Subject of the invention is further a pump for conveying a fluid with an electric drive motor and a control device for switching on and off of the drive motor. The pump according to the invention is designed such that its control device has at least one sensor according to the preceding description, which serves to turn on and / or off the pump as a function of the fluid level. The sensor, which generates the switch-on signal in cooperation with the evaluation device, is arranged at a vertical level, which is the switch-on level. That is, when the fluid level reaches this switch-on level, the pump is switched on. The sensor is arranged so that at this level of fluid its capacity is changed so that it is determined by the evaluation device via the discharge current and correspondingly a turn-on signal is emitted. To turn off either the same or another sensor arranged at a level below which the pump is to be switched off again by the fluid level. In this case, the shutdown takes place when the capacity changes so that it corresponds to the capacity of air between the electrodes. However, it is not absolutely necessary that the switching off of the pump is also caused by such a sensor as described above.

Vorzugsweise wird eine der Elektroden von dem Gehäuse der Pumpe gebildet und die zweite Elektrode ist isoliert gegenüber dem Gehäuse angeordnet. Dies bietet sich insbesondere dann an, wenn das Pumpengehäuse aus Metall ausgebildet ist. Alternativ ist es auch möglich, an der Gehäuseaußenseite zwei voneinander beabstandete und gegeneinander isolierte Elektroden vorzusehen. Bevorzugt haben die Elektroden direkten Kontakt zu dem umgebenden Fluid, d.h. sie sind zur Pumpenaußenseite nicht durch weitere Materialschichten überdeckt.Preferably, one of the electrodes is formed by the housing of the pump and the second electrode is isolated from the housing. This is particularly useful when the pump housing is made of metal. Alternatively, it is also possible to provide on the outside of the housing two spaced-apart and mutually insulated electrodes. Preferably, the electrodes are in direct contact with the surrounding fluid, i. they are not covered by further layers of material to the pump outside.

Wie beschrieben ist der zumindest eine Sensor angeordnet, um bei einem vorbestimmten Fluidniveau ein Einschaltsignal für den Antriebsmotor zu erzeugen. Dieser Sensor ist vorzugsweise im vertikal oberen Bereich der Pumpe abgeordnet.As described, the at least one sensor is arranged to generate a switch-on signal for the drive motor at a predetermined fluid level. This sensor is preferably seconded in the vertically upper region of the pump.

Gemäß einer bevorzugten Ausführungsform ist für die Pumpe eine Abschaltvorrichtung vorgesehen, welche zumindest ein Erfassungsmittel zum Erfassen zumindest eines elektrischen Parameters des Antriebsmotors aufweist und derart ausgebildet ist, dass auf Grundlage dieses elektrischen Parameters ein Trockenlauf der Pumpe detektierbar ist, und bei detektiertem Trockenlauf ein Abschaltsignal für den Antriebsmotor erzeugt. Der Trockenlauf kann beispielsweise aufgrund einer Phasenverschiebung in der dem Antriebsmotor zugeführten elektrischen Betriebsspannung detektiert werden. Der Antriebsmotor ist vorzugsweise mit einem Frequenzumrichter zur Drehzahlsteuerung vorgesehen. Es können Mittel bzw. Funktionen des vorhandenen Frequenzumrichters genutzt werden, um diese Phasenverschiebung und damit den Trockenlauf zu detektieren. Es können jedoch auch andere Parameter, wie der elektrische Strom dazu dienen, um den Trockenlauf zu erfassen. Das Erfassungsmittel ist dann entsprechend ausgestaltet.According to a preferred embodiment, a shut-off device is provided for the pump, which has at least one detection means for detecting at least one electrical parameter of the drive motor and is designed such that on the basis of this electrical parameter, a dry run of the pump is detectable, and when dry run detected a shutdown signal for generates the drive motor. The dry run can be detected, for example, due to a phase shift in the electrical operating voltage supplied to the drive motor. The drive motor is preferably provided with a frequency converter for speed control. It can Means or functions of the existing frequency converter can be used to detect this phase shift and thus the dry run. However, other parameters, such as the electric current, may be used to detect dry run. The detection means is then designed accordingly.

Gemäß einer weiteren bevorzugten Ausführungsform ist an der Pumpe eine Schutzelektrode angeordnet, welche die erste Elektrode des Sensors gegenüber elektrischen Bauteilen im Inneren der Pumpe abschirmt. Dazu ist diese Schutzelektrode in oder am Gehäuse weiter innenliegend hinter der ersten Elektrode angeordnet, sodass die Schutzelektrode zwischen elektronischen Komponenten im Inneren des Gehäuses und der ersten Elektrode gelegen ist.According to a further preferred embodiment, a protective electrode is arranged on the pump, which shields the first electrode of the sensor against electrical components in the interior of the pump. For this purpose, this protective electrode is arranged in or on the housing further inwardly behind the first electrode, so that the protective electrode is located between electronic components in the interior of the housing and the first electrode.

Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:

Fig. 1
den Spannungsverlauf beim Entladen des Sensors,
Fig. 2
den Stromverlauf beim Entladen des Sensors,
Fig. 3
ein Modellschaltbild zweier Elektroden in dem zu fördernden Fluid,
Fig. 4
ein Blockschaltbild einer Pumpe mit einem erfindungsgemäßen Sensor,
Fig. 5
ein Blockschaltbild eines erfindungsgemäßen Sensors,
Fig. 6
schematisch die Anordnung einer Sensorelektrode am Gehäuse der Pumpe,
Fig. 7
schematisch die Anordnung einer Sensorelektrode im Gehäuse einer Pumpe unter Verwendung einer Schutzelektrode,
Fig. 8
schematisch die Anordnung einer Sensorelektrode an dem Pumpengehäuse,
Fig. 9
schematisch eine Anordnung einer Pumpe mit einem erfindungsgemäßen Sensor,
Fig. 10
schematisch die Anordnung einer Pumpe mit einem erfindungsgemäßen Sensor gemäß einer weiteren Ausführungsform,
Fig. 11
eine Anordnung ähnlich der Anordnung in Fig. 9 mit zwei Sensoren, und
Fig. 12
einen beispielhaften Aufbau der Sensorelektronik.
The invention will now be described by way of example with reference to the accompanying drawings. In these shows:
Fig. 1
the voltage curve when unloading the sensor,
Fig. 2
the current flow when unloading the sensor,
Fig. 3
a model circuit diagram of two electrodes in the fluid to be pumped,
Fig. 4
a block diagram of a pump with a sensor according to the invention,
Fig. 5
a block diagram of a sensor according to the invention,
Fig. 6
schematically the arrangement of a sensor electrode on the housing of the pump,
Fig. 7
schematically the arrangement of a sensor electrode in the housing of a pump using a protective electrode,
Fig. 8
schematically the arrangement of a sensor electrode on the pump housing,
Fig. 9
schematically an arrangement of a pump with a sensor according to the invention,
Fig. 10
FIG. 2 schematically the arrangement of a pump with a sensor according to the invention according to a further embodiment, FIG.
Fig. 11
an arrangement similar to the arrangement in Fig. 9 with two sensors, and
Fig. 12
an exemplary structure of the sensor electronics.

Bei dem erfindungsgemäßen Sensor handelt es sich um einen kapazitiven Sensor, d.h. Ein- und/oder Ausschaltzeitpunkt für eine Pumpe in Abhängigkeit eines Fluidniveaus werden auf Grundlage einer sich ändernden Kapazität zwischen zwei Elektroden 2 und 4 bestimmt. Dazu sind die Elektroden 2 und 4 beabstandet voneinander und elektrisch gegeneinander isoliert so angeordnet, dass das zu fördernde Fluid, dessen Fluidspiegel detektiert werden soll, die Kapazität des von den Elektroden 2 und 4 gebildeten Kondensators beeinflusst. Dies geschieht dadurch, dass in dem Fall, dass sich Fluid, beispielsweise Wasser, zwischen den Elektroden 2 und 4 befindet, sich die Kapazität deutlich gegenüber einem Zustand ändert, in welchem sich Luft zwischen den beiden Elektroden 2 und 4 befindet. Dies resultiert aus der stark unterschiedlichen Permittivität von Wasser und Luft. Fig. 3 zeigt ein Modell- bzw. Ersatzschaltbild für die Anordnung der Elektroden 2 und 4 in der Umgebung, in welcher sich entweder Luft oder das zu fördernde Fluid befindet. Insbesondere wenn es sich bei dem zu fördernden Fluid um Wasser handelt, welches in Kontakt mit den beiden Elektroden 2 und 4 kommt, verhält sich die Anordnung der Elektroden 2 und 4 nicht wie ein idealer Kondensator. Dies ist in dem Ersatzschaltbild gemäß Fig. 3 berücksichtigt, dort ist parallel zu der Kapazität C ein elektrischer Widerstand R dargestellt. Dabei handelt es sich um den elektrischen Widerstand R des Mediums zwischen den Elektroden 2 und 4. Wenn Luft zwischen den Elektroden 2 und 4 ist, ist dieser sehr groß. Wenn sich Wasser zwischen den Elektroden 2 und 4 befindet, kann dieser Widerstand R sehr klein werden.The sensor according to the invention is a capacitive sensor, ie on and / or off timing for a pump as a function of a fluid level are determined on the basis of a changing capacitance between two electrodes 2 and 4. For this purpose, the electrodes 2 and 4 are spaced from each other and electrically isolated from each other so arranged that the fluid to be delivered, the fluid level to be detected, affects the capacitance of the capacitor formed by the electrodes 2 and 4. This happens because in the case that fluid, for example water, is located between the electrodes 2 and 4, the capacitance changes markedly compared to a state in which there is air between the two electrodes 2 and 4. This results from the very different Permittivity of water and air. Fig. 3 shows a model or equivalent circuit diagram for the arrangement of the electrodes 2 and 4 in the environment in which either air or the fluid to be delivered is located. In particular, when the fluid to be delivered is water coming into contact with the two electrodes 2 and 4, the arrangement of the electrodes 2 and 4 does not behave like an ideal capacitor. This is in the equivalent circuit diagram Fig. 3 considered, there is parallel to the capacitance C, an electrical resistance R shown. This is the electrical resistance R of the medium between the electrodes 2 and 4. If there is air between the electrodes 2 and 4, this is very large. If there is water between the electrodes 2 and 4, this resistance R can become very small.

Eine Erfassung des Fluids nur anhand des elektrischen Widerstand ist jedoch problematisch, da auch bereits ein dünner Wasserfilm auf dem Gehäuse bzw. der Sensoranordnung oder beispielsweise ein nasses Stück Papier, welches beide Elektroden überdeckt, den Widerstand so verringern würden, als wenn das Fluidniveau entsprechend hoch gestiegen wäre. Die Kapazität wird durch solche Kurzschlüsse jedoch nicht beeinflusst.However, a detection of the fluid only on the basis of the electrical resistance is problematic, as even a thin film of water on the housing or the sensor array or for example a wet piece of paper covering both electrodes would reduce the resistance as if the fluid level were correspondingly high would have risen. However, capacity is not affected by such short circuits.

Die Messung bzw. Erfassung der Kapazität zwischen den Elektroden 2 und 4 wird derart durchgeführt, dass zunächst die Elektroden 2 und 4 langsam mit geringem Strom geladen werden. Dazu kann eine Ladung auf eine der Elektroden 2, 4 aufgebracht werden. Vorzugsweise erfolgt das Laden durch mehrere sehr kurze Spannungspulse. Dies hat den Vorteil, dass zwischen den Elektroden 2 und 4 kein oder nur ein geringer Stromfluss auftritt, sodass eine Elektrolyse zwischen den Elektroden 2 und 4, welche zu einer Beschädigung der Elektroden führen könnte, vermieden wird.The measurement or detection of the capacitance between the electrodes 2 and 4 is carried out such that initially the electrodes 2 and 4 are slowly charged with low current. For this purpose, a charge can be applied to one of the electrodes 2, 4. The charging is preferably carried out by a plurality of very short voltage pulses. This has the advantage that no or only a small current flow occurs between the electrodes 2 and 4, so that an electrolysis between the electrodes 2 and 4, which could lead to damage of the electrodes, is avoided.

Der Spannungsverlauf beim Laden ist in Fig. 1 dargestellt. Der Ladevorgang erfolgt bis zum Zeitpunkt T zu dem die maximale Ladung erreicht ist. Wie in Fig. 2 zu erkennen ist, erfolgt dies bei geringem Ladestrom 1. Zum Zeitpunkt T wird der von den Elektroden 2 und 4 gebildete Kondensator C sehr schnell entladen, d.h. die Spannung fällt, wie in Fig. 1 gezeigt ist, steil ab. Dies führt zu einem hohen Entladestrom, wie in Fig. 2 gezeigt ist. Dieser Entladestrom während des Entladevorganges wird gemessen. Die Höhe des Entladestromes ist proportional zu der Kapazität C zwischen den Elektroden 2 und 4.The voltage curve during charging is in Fig. 1 shown. The charging process takes place until time T at which the maximum charge is reached. As in Fig. 2 At time T, the capacitor C formed by the electrodes 2 and 4 is discharged very quickly, ie the voltage drops, as in Fig. 1 shown is steep. This leads to a high discharge current, as in Fig. 2 is shown. This discharge current during the discharging process is measured. The magnitude of the discharge current is proportional to the capacitance C between the electrodes 2 and 4.

Wesentlich beim Entladevorgang ist, dass das Entladen der Elektroden 2 und 4 mit einem definierten vorbekannten sehr steilen Spannungsverlauf erfolgt. Wie in Fig. 1 zu erkennen ist, ist in dem Bereich 10 die Steigung des Spannungsverlaufes dU/dt konstant. Darüber hinaus ist diese Steigung vorbekannt und wird durch eine elektronische Schaltung beim Entladen vorgegeben. In Kenntnis dieser Steigung kann, basierend auf dem Zusammenhang IC = C· dU/dt auf Grundlage des gemessenen Entladestromes IC die Kapazität C berechnet werden. Vorteil dieses Messprinzips ist, dass es sehr einfach und kostengünstig verwirklicht werden kann, da auf aufwendige Frequenzgeneratoren verzichtet werden kann.Essential in the discharge process is that the discharge of the electrodes 2 and 4 takes place with a defined previously known very steep voltage curve. As in Fig. 1 can be seen, in the region 10, the slope of the voltage curve dU / dt is constant. In addition, this slope is previously known and is specified by an electronic circuit during unloading. Knowing this slope, the capacitance C can be calculated based on the relationship I C = C * dU / dt on the basis of the measured discharge current I C. The advantage of this measuring principle is that it can be realized very simply and inexpensively, because complex frequency generators can be dispensed with.

Fig. 4 zeigt schematisch in einem Blockschaltbild ein erfindungsgemäßes Pumpenaggregat mit einem Sensor, welcher nach dem vorangehend geschilderten Messprinzip arbeitet. Das Pumpenaggregat weist eine Stromversorgung 11, z.B. in Form eines Anschlusssteckers zur Verbindung mit dem Stromnetz, auf sowie einen elektrischen Antriebsmotor M und eine Steuereinrichtung 12, welche für das Ein- und Ausschalten des Antriebsmotors verantwortlich ist. Im gezeigten Beispiels sind zwei Sensoren 14 und 16 vorgesehen, welche jeweils zwei Elektroden 2, 4, wie vorangehend beschrieben, aufweisen. Ein Sensor 14 ist zum Einschalten der Pumpe vorgesehen, der zweite Sensor 16 ist zum Ausschalten der Pumpe vorgesehen. Dazu werden die Sensoren 14 und 16 in zwei vertikal voneinander beabstandeten Positionen angeordnet. Wenn das Fluidniveau den Sensor 14, d.h. den oberen Sensor erreicht, wird die Pumpe eingeschaltet. Ausgeschaltet wird die Pumpe bzw. der Antriebsmotor M, wenn das Fluidniveau unter den unteren Sensor 16 fällt, und der untere Sensor 16 somit Luft zwischen den Elektroden 2 und 4 detektiert. Fig. 4 schematically shows in a block diagram an inventive pump unit with a sensor which operates according to the previously described measuring principle. The pump unit has a power supply 11, for example in the form of a connection plug for connection to the power grid, and an electric drive motor M and a control device 12, which is responsible for switching on and off of the drive motor. In the example shown, two sensors 14 and 16 are provided, which each have two electrodes 2, 4, as described above. A sensor 14 is provided for switching on the pump, the second sensor 16 is for switching off provided the pump. For this purpose, the sensors 14 and 16 are arranged in two vertically spaced-apart positions. When the fluid level reaches the sensor 14, ie the upper sensor, the pump is turned on. The pump or the drive motor M is switched off when the fluid level falls below the lower sensor 16, and the lower sensor 16 thus detects air between the electrodes 2 and 4.

Die Steuereinrichtung 12 weist eine Energieversorgung 18 für die Steuereinrichtung 12, einen Controller 20 sowie eines Leistungsschalter 22 auf. Der Controller 20 steuert das Laden und Entladen der Elektroden 24 der Sensoren 14 und 16 in der vorangehend beschriebenen Weise sowie die Strommessung und übernimmt die Auswertung beim Entladen. Wenn die elektronische Schaltung eines Zustand erfasst, in dem der Motor ein- oder ausgeschaltet werden soll, wird von dem Controller entsprechend der Leistungsschalter 22 zum Ein- und Ausschalten des Motors angesteuert. Der Controller 20 führt vorzugsweise einen kontinuierlichen Überwachungsprozess durch, bei welchem die Elektroden der Sensoren 14 und 16 periodisch geladen und anschließend wieder entladen werden, wobei bei jedem Entladevorgang die beschriebene Strommessung zur Erfassung der Kapazität durchgeführt wird. Es ist denkbar, dass der Entladezyklus und der nächste Ladezyklus zeitlich beabstandet sind. Dieser zeitliche Abstand sollte jedoch nicht zu lang gewählt werden, um das Erreichen des Ein- und Ausschaltpegels des Fluids möglichst zeitnah detektieren zu können. Insbesondere beim Ausschalten ist dies wichtig, um einen längeren Trockenlauf der Pumpe zu vermeiden.The control device 12 has a power supply 18 for the control device 12, a controller 20 and a power switch 22. The controller 20 controls the charging and discharging of the electrodes 24 of the sensors 14 and 16 in the manner described above and the current measurement and takes over the evaluation during discharge. When the electronic circuit detects a state in which the motor is to be turned on or off, the controller correspondingly drives the power switch 22 to turn on and off the motor. The controller 20 preferably carries out a continuous monitoring process in which the electrodes of the sensors 14 and 16 are periodically charged and then discharged again, with the described current measurement being carried out to detect the capacitance during each discharge process. It is conceivable that the discharge cycle and the next charge cycle are spaced in time. However, this time interval should not be too long to be able to detect the achievement of the on and off level of the fluid as soon as possible. Especially when switching off this is important to avoid prolonged dry running of the pump.

Fig. 5 zeigt in einem Blockschaltbild den schematischen Aufbau einer Sensoreinrichtung mit Sensorelektroden 2 und 4 sowie der zugehörigen Ansteuer- und Auswerteschaltung, welche nun näher beschrieben wird. Neben der Energieversorgung 18 und dem Controller 20, welcher den gesamten Betrieb der Sensoranordnung und die Auswertung der Sensorsignale übernimmt, weist die elektronische Schaltung als wesentliche weitere Komponenten einen Pulsgenerator 24 und einen Stromsensor 26 auf. Ausgangsseitig des Pulsgenerators 24 schließen sich Pulsformer 28 sowie eine Endstufe 30 an. Die Endstufe 30 dient dazu, das Signal zu puffern, um auch hochleitfähige Fluide mit dem erfindungsgemäßen Sensor erkennen zu können. Die Endstufe 30 ist über einen Kondensator 32 mit der ersten Elektrode 2 verbunden. Der Pulsgenerator erzeugt zum Laden der Elektrode 2 eine Mehrzahl bzw. Vielzahl sehr kurzer Spannungspulse, mit welchen die Sensorelektrode geladen wird. Zum Entladen erzeugt der Pulsgenerator 24 gemeinsam mit dem Pulsformer 28 die oben beschriebenen steile vorbestimmte Entladekurve. Beim Entladen erfasst der Stromsensor 26 den Entladestrom zwischen den Elektroden 2 und 4. Das Ausgangssignal des Stromsensors 26 wird einem Abtast- und Haltekreis 34 zugeführt, welcher den Spitzenwert des Entladestromes speichert und eine proportionale Spannung als Ausgangssignal ausgibt. Dieses Ausgangssignal wird dem Mikrocontroller 20 zugeführt, welcher daraus in Kenntnis der Entladekurve die Kapazität zwischen den Elektroden 2 und 4 bestimmt und eine Auswertung vornimmt, ob Fluid oder Wasser zwischen den Elektroden 2 und 4 ist. Der Mikrocontroller 20 steuert auch den Pulsgenerator 24 an und gibt die Lade- und Entladezyklen vor. Fig. 5 shows in a block diagram the schematic structure of a sensor device with sensor electrodes 2 and 4 and the associated control and evaluation circuit, which will now be described in more detail. In addition to the power supply 18 and the controller 20, which the Whole operation of the sensor assembly and the evaluation of the sensor signals takes over, the electronic circuit as essential further components a pulse generator 24 and a current sensor 26. On the output side of the pulse generator 24, pulse shaper 28 and an output stage 30 are connected. The output stage 30 serves to buffer the signal in order to be able to detect even highly conductive fluids with the sensor according to the invention. The output stage 30 is connected via a capacitor 32 to the first electrode 2. The pulse generator generates for charging the electrode 2 a plurality or a plurality of very short voltage pulses, with which the sensor electrode is charged. To discharge the pulse generator 24 generates together with the pulse shaper 28, the steep predetermined discharge curve described above. When discharging, the current sensor 26 detects the discharge current between the electrodes 2 and 4. The output of the current sensor 26 is supplied to a sample and hold circuit 34 which stores the peak value of the discharge current and outputs a proportional voltage as an output signal. This output signal is fed to the microcontroller 20 which, knowing the discharge curve, determines the capacitance between the electrodes 2 and 4 and carries out an evaluation as to whether there is fluid or water between the electrodes 2 and 4. The microcontroller 20 also drives the pulse generator 24 and specifies the charge and discharge cycles.

Auch die Elektrode 4 ist über einen Kondensator 36 angekoppelt. Die Ankopplung der Elektroden 2 und 4 über Kondensatoren 32 und 36 isoliert die Elektroden 2, 4 gegenüber der Elektronik, sodass ein direkter Kontakt einer Person mit den Elektroden 2 und 4 ungefährlich ist.Also, the electrode 4 is coupled via a capacitor 36. The coupling of the electrodes 2 and 4 via capacitors 32 and 36 isolates the electrodes 2, 4 from the electronics, so that a direct contact of a person with the electrodes 2 and 4 is harmless.

Fig. 6 zeigt eine mögliche Anordnung der Elektroden 2 und 4 in dem Pumpenaggregat. In diesem Beispiel wird die Elektrode 4 von dem metallischen Pumpen- und/oder Motorgehäuse gebildet. Die Elektrode 2 ist separat angeordnet und über einen Isolator 38 mit dem Gehäuse 4 verbunden, sodass die Elektroden 2 und 4 elektrisch gegeneinander isoliert sind. Wie vorangehend beschrieben sind die Elektroden 2 und 4 über Kondensatoren 32 und 36 mit der Auswerteelektronik 40 verbunden. Die Auswerteelektronik 40 umfasst, wie anhand von Fig. 5 erläutert, Energieversorgung 18, Controller 20, Pulsgenerator 24, Stromsensor 26, Pulsformer 28, Endstufe 30 sowie Abtast- und Haltekreis 34. Die Auswerteelektronik 40 kann jedoch auch abweichend in anderer geeigneter Weise zur Realisierung des erfindungsgemäßen Messprinzips ausgebildet werden. Fig. 6 shows a possible arrangement of the electrodes 2 and 4 in the pump unit. In this example, the electrode 4 is formed by the metallic pump and / or motor housing. The electrode 2 is arranged separately and via an insulator 38 to the housing 4th connected so that the electrodes 2 and 4 are electrically isolated from each other. As described above, the electrodes 2 and 4 are connected via capacitors 32 and 36 to the transmitter 40. The transmitter 40 comprises, as based on Fig. 5 explained, power supply 18, controller 20, pulse generator 24, current sensor 26, pulse shaper 28, power amplifier 30 and sample and hold circuit 34. However, the transmitter 40 can also be deviating in other suitable manner to implement the measuring principle of the invention.

Fig. 7 zeigt eine weitere mögliche Anordnung der Elektroden 2 und 4 in dem Pumpenaggregat, welche im Wesentlichen der Anordnung in Fig. 6 entspricht. Zusätzlich ist hier zwischen dem Gehäuse, welches die zweite Elektrode 4 bildet und der ersten Elektrode 2 eine Schutzelektrode 42 angeordnet. Die Schutzelektrode 42 ist mit einem aktiven Schutzkreis 44 verbunden. Schutzelektrode 42 und Schutzkreis 44 dienen dazu, elektrische Felder, welche rückseitig der Elektrode 2 im Inneren des Gehäuses durch die dort angeordneten elektrischen bzw. elektronischen Bauteile auftreten, gegen die Elektrode 2 abzuschirmen, sodass die Elektrode 2 nur elektrische Felder außerhalb des Gehäuses erfasst, wie durch die Feldlinien 46 angedeutet. Fig. 7 shows a further possible arrangement of the electrodes 2 and 4 in the pump unit, which substantially the arrangement in Fig. 6 equivalent. In addition, a protective electrode 42 is arranged between the housing which forms the second electrode 4 and the first electrode 2. The guard electrode 42 is connected to an active protection circuit 44. Protective electrode 42 and protective circuit 44 serve to shield electric fields which occur on the back side of the electrode 2 in the interior of the housing by the electrical or electronic components arranged there against the electrode 2, so that the electrode 2 detects only electric fields outside the housing, such as indicated by the field lines 46.

Fig. 8 zeigt noch einmal in einer schematischen Draufsicht das Pumpenaggregat, dessen Gehäuse als zweite Elektrode 4 dient. Die erste Elektrode ist gegenüber dem Gehäuse und damit der zweiten Elektrode elektrisch isoliert angeordnet, sodass zwischen den Elektroden 2 und 4 eine Kapazität C abhängig von dem umgebenden Medium bzw. Fluid vorhanden ist. Fig. 8 shows again in a schematic plan view of the pump unit, the housing serves as a second electrode 4. The first electrode is arranged so as to be electrically insulated from the housing and thus from the second electrode, so that a capacitance C is present between the electrodes 2 and 4 as a function of the surrounding medium or fluid.

Fig. 9 zeigt eine mögliche Anordnung einer Pumpe 48 mit einem Sensor 50, welcher wie in Fig. 5 beschrieben aufgebaut ist. Dieser Sensor 50 ist hier nicht in das Pumpenaggregat 48 integriert sondern in der elektrischen Versorgungsleitung zwischen der Stromversorgung 11 und dem Pumpenaggregat 48 angeordnet. Der Sensor 50 weist, wie in Fig. 10 gezeigt, zwei Sensorelektroden 2 und 4 auf, welche in der vorangehend beschriebenen Weise mit der Umgebung einen Kondensator bilden. Der Sensor 50 ist in der Nähe des Bodens 52 gelegen. Wenn der Wasser- bzw. Fluidspiegel so hoch ansteigt, dass die Elektroden 2 und 4 des Sensors 50 im Wasser liegen, wird das von dem Sensor erfasst und er schaltet die Stromversorgung für die Pumpe 48 ein, sodass diese Fluid bzw. Wasser fördert. Wenn der Fluidspiegel unter das Niveau der Sensorelektroden 2 und 4 sinkt, ändert sich die Kapazität der Elektroden 2 und 4 deutlich, was in der vorangehend beschriebenen Weise detektiert wird und der Sensor 50 wird dann über einen Leistungsschalter die Leitung zwischen der Stromversorgung 11 und dem Pumpenaggregat 48 unterbrechen und so das Pumpenaggregat ausschalten. Fig. 9 shows a possible arrangement of a pump 48 with a sensor 50, which, as in Fig. 5 is constructed described. This sensor 50 is not integrated in the pump unit 48 but in the electrical Supply line between the power supply 11 and the pump unit 48 is arranged. The sensor 50 has, as in Fig. 10 shown, two sensor electrodes 2 and 4, which form a capacitor in the manner described above with the environment. The sensor 50 is located near the bottom 52. If the water or fluid level rises so high that the electrodes 2 and 4 of the sensor 50 are in the water, that is detected by the sensor and it turns on the power supply to the pump 48 so that it promotes fluid or water. When the fluid level drops below the level of the sensor electrodes 2 and 4, the capacitance of the electrodes 2 and 4 changes significantly, which is detected in the manner described above, and the sensor 50 then connects, via a power switch, the line between the power supply 11 and the pump unit 48 and thus switch off the pump set.

Fig. 11 zeigt eine Anordnung ähnlich der Anordnung in Fig. 9 mit dem Unterschied, dass zwei Sensoren 50 und 54 vorgesehen sind. Mit zwei Sensoren 50 und 54 wird das Pumpenaggregat 48 in der Weise betrieben, dass dann, wenn der Fluidpegel den oberen Sensor 54 erreicht und somit dessen Elektroden 2 und 4 im Fluid liegen, die Pumpe 48 eingeschaltet wird. Ausgeschaltet wird das Pumpenaggregat 48, wenn der untere Sensor 50 zwischen seinen Elektroden 2 und 4 Luft detektiert., d.h. der Fluidpegel unter das vertikale Niveau des Sensors 50 gesunken ist. Fig. 11 shows an arrangement similar to the arrangement in Fig. 9 with the difference that two sensors 50 and 54 are provided. With two sensors 50 and 54, the pump unit 48 is operated such that when the fluid level reaches the upper sensor 54 and thus its electrodes 2 and 4 are in fluid, the pump 48 is turned on. The pump unit 48 is switched off when the lower sensor 50 detects air between its electrodes 2 and 4, ie, the fluid level has fallen below the vertical level of the sensor 50.

Das Ausschalten der Pumpe kann erfindungsgemäß auch auf andere Weise veranlasst werden. Z. B. kann die Motorsteuerung für den Pumpenmotor den Trockenlauf der Pumpe detektiert. Dieser ist aus elektrischen Parametern des Motors erkennbar, beispielsweise anhand einer Phasenverschiebung der Versorgungsspannung.Turning off the pump according to the invention can also be initiated in other ways. For example, the motor control for the pump motor detects the dry running of the pump. This is recognizable from electrical parameters of the motor, for example based on a phase shift of the supply voltage.

In Fig. 12 ist ein beispielhafter Schaltplan der Sensorelektronik dargestellt, dessen wesentlichen Komponenten nachfolgend beschrieben werden. VCC ist die Eingangsspannung für den kapazitiven Sensor. C1 ist ein Bypass-Kondensator und C2 ist derjenige Kondensator, welcher geladen wird, um eine bestimmte Energiemenge für den Sensor bereitzustellen. Wenn der Sensor aktiviert wird, wird die Spannungsversorgung VCC unterbrochen und die Sensorelektroden 2, 4 wird über den Ausgang A1 allein mit der Spannung aus dem Kondensator C2 versorgt. Die in dem Kondensator C2 gespeicherte Energie wird dabei durch die Kapazität bzw. die Leitfähigkeit des Wassers abgegeben. Folglich verbleibt am Ende der Messung eine Restenergiemenge in dem Kondensator C2, sodass durch die verbleibende Spannung über dem Kondensator C2 die Leitfähigkeit des Wassers bestimmt werden kann.In Fig. 12 an exemplary circuit diagram of the sensor electronics is shown, the essential components are described below. VCC is the input voltage for the capacitive sensor. C 1 is a bypass capacitor and C 2 is the capacitor that is charged to provide a certain amount of energy to the sensor. When the sensor is activated, the power supply VCC is interrupted and the sensor electrodes 2, 4 are supplied via the output A 1 alone with the voltage from the capacitor C 2 . The stored energy in the capacitor C 2 is released by the capacity or the conductivity of the water. Consequently, at the end of the measurement, a residual amount of energy remains in the capacitor C 2 , so that the conductivity of the water can be determined by the remaining voltage across the capacitor C 2 .

U1 ist ein Pulsformer in Form eines Schmitt-Triggers. Über den Eingang E2,welcher den Eingang des Schmitt-Triggers darstellt, werden die Pulse zur Aktivierung des Sensors dem Pulsformer U1 zugeführt.U1 is a pulse shaper in the form of a Schmitt trigger. Via the input E 2 , which represents the input of the Schmitt trigger, the pulses for activating the sensor are fed to the pulse shaper U1.

Durch den Widerstand R2 und den Kondensator C5 wird die Entladekurve bzw. Entladegeschwindigkeit dU/dt für den Sensor vorgegeben. Die Transistoren Q1 und Q2 dienen dazu, einen höheren Strom zu dem Sensorausgang A1 zu liefern. Die Diode D1 und der Widerstand R1 dienen dem Schutz des Transistors Q1 und reduzierten die Ladegeschwindigkeit dU/dt. Die Kondensatoren C4 und C6 sind Trennkondensatoren, welche zum Schutz von Personen, welche in Kontakt mit dem Elektroden 2, 4 kommen, dienen.Through the resistor R 2 and the capacitor C 5 , the discharge curve or discharge rate dU / dt is specified for the sensor. The transistors Q 1 and Q 2 serve to supply a higher current to the sensor output A1. The diode D 1 and the resistor R 1 serve to protect the transistor Q 1 and reduced the charging speed dU / dt. The capacitors C 4 and C 6 are isolating capacitors which serve to protect persons who come into contact with the electrodes 2, 4.

Der Widerstand R3 dient zum Erfassen des Stroms der hier zwischen den Elektroden 2, 4 und der Erde fließt, d. h. dies ist der Strom, welcher proportional zu der zu messenden Kapazität zwischen den Sensorelektroden 2, 4 ist.The resistor R 3 serves to detect the current flowing here between the electrodes 2, 4 and the earth, that is, the current which is proportional to the capacitance to be measured between the sensor electrodes 2, 4.

Der Kondensator C8 ist ein Entkoppel-Kondensator, welcher es ermöglicht, dass der aus der Diode D3 und dem Kondensator C9 gebildete Spitzenwertdetektor im Zusammenhang mit dem Vorspannungskreis gebildet aus den Widerständen R4 und R5 und der Diode D4 einen Offset-Fehler nahe null aufweist.The capacitor C 8 is a decoupling capacitor, which allows the peak detector formed by the diode D 3 and the capacitor C 9 in conjunction with the bias circuit formed from the resistors R 4 and R 5 and the diode D 4 offset Has error near zero.

Der Kondensator C9 dient dazu, die der erfassten Kapazität entsprechende Spannung zu halten und eine langsame Digitalisierung der Spannung über beispielsweise einen Analog-Digital-Wandler an dem Ausgang A2 vorzunehmen.The capacitor C 9 serves to hold the voltage corresponding to the detected capacitance and to perform a slow digitization of the voltage via, for example, an analog-to-digital converter at the output A 2 .

Der Kondensator C28 dient dazu, Störungen bzw. Störschwingungen zu tilgen.The capacitor C 28 serves to eliminate interference or spurious oscillations.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

2, 4 -2, 4 -
Elektrodenelectrodes
10 -10 -
Bereich der SpannungskurveRange of the voltage curve
11 -11 -
Stromversorgungpower supply
12 -12 -
Steuereinrichtungcontrol device
14, 16 -14, 16 -
Sensorsensor
18 -18 -
Energieversorgungpower supply
20 -20 -
Controllercontroller
22 -22 -
Leistungsschalterbreakers
24 -24 -
Pulsgeneratorpulse generator
26 -26 -
Stromsensorcurrent sensor
28 -28 -
Pulsformerpulse shaper
30 -30 -
Endstufefinal stage
32 -32 -
Kondensatorcapacitor
34 -34 -
Abtast- und HaltekreisSample and hold circuit
36 -36 -
Kondensatorcapacitor
38 -38 -
Isolatorinsulator
40 -40 -
Auswertelektronikevaluation system
42 -42 -
Schutzelektrodeguard electrode
44 -44 -
Schutzkreisprotection circuit
46 -46 -
Feldlinienfield lines
48 -48 -
Pumpenaggregatpump unit
50 -50 -
Sensorsensor
52 -52 -
Bodenground
54 -54 -
Sensorensensors
R -R -
Widerstandresistance
C -C -
Kapazitätcapacity
U -U -
Spannungtension
t -t -
ZeitTime
IC -I C -
Stromelectricity
T -T -
Zeitpunkttime
VCC -VCC -
Eingangsspannunginput voltage
E2 -E 2 -
Eingangentrance
A1,A2 -A 1 , A 2 -
Ausgängeoutputs
U1 -U 1 -
Pulsformerpulse shaper
C1, C2, C3, C4, C5, C6, C7,C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 ,
C8, C9, C28 -C 8 , C 9 , C 28 -
Kondensatorencapacitors
D1, D2, D3,D 1 , D 2 , D 3 ,
D5 -D 5 -
Diodendiodes
R1, R2, R3,R 1 , R 2 , R 3 ,
R4, R5 -R 4 , R 5 -
Widerständeresistors
Q1, Q2, -Q 1 , Q 2 , -
Transistorentransistors

Claims (13)

Sensor zum Ein- und/oder Ausschalten einer Pumpe mit zumindest einer ersten (2) und einer zweiten (4) Elektrode, welche eine durch das zu fördernde Fluid beeinflussbare Kapazität (C) bilden, und einer mit den Elektroden (2, 4) verbundenen elektronischen Schaltung (40),
dadurch gekennzeichnet, dass die elektronische Schaltung (40) eine mit der ersten Elektrode (2) verbundenen Spannungsversorgung (24) aufweist, welche zur Abgabe kurzer Spannungspulse zum Laden der ersten Elektrode (2) ausgebildet ist, und eine Auswerteschaltung (20, 26, 34) aufweist, welche derart ausgebildet ist, dass sie während eines Spannungsanstiegs beim Laden und/oder eines Spannungsabfalls beim Entladen der Elektrode (2) den Strom (IC) zwischen den Elektroden (2, 4) erfasst und ein Ein- und/oder Ausschaltsignal abhängig von dem erfassten Strom (IC) ausgibt.
Sensor for switching on and / or off a pump having at least a first (2) and a second (4) electrode, which form an influenceable by the fluid to be conveyed capacity (C), and one with the electrodes (2, 4) electronic circuit (40),
characterized in that the electronic circuit (40) has a voltage supply (24) connected to the first electrode (2), which is designed to deliver short voltage pulses for charging the first electrode (2), and an evaluation circuit (20, 26, 34 ), which is designed such that during a voltage increase during charging and / or a voltage drop during discharge of the electrode (2) detects the current (I C ) between the electrodes (2, 4) and an on and / or off signal depending on the detected current (I C ) outputs.
Sensor nach Anspruch 1, dadurch gekennzeichnet, dass die elektronische Schaltung (46) derart ausgebildet ist, dass beim Laden der Elektrode (2) und/oder beim Entladen der Elektrode (2) der zeitliche Signalverlauf der Spannung (U) zumindest in einem Abschnitt eine vorbestimmte Steigung (dU/dt) aufweist.Sensor according to claim 1, characterized in that the electronic circuit (46) is designed such that during charging of the electrode (2) and / or during discharge of the electrode (2) the temporal waveform of the voltage (U) at least in one section has predetermined slope (dU / dt). Sensor nach Anspruch 2, dadurch gekennzeichnet, dass die vorbestimmte Steigung (dU/dt) steil vorzugsweise steiler als 5V/µs gewählt ist.Sensor according to Claim 2, characterized in that the predetermined gradient (dU / dt) is steep, preferably steeper than 5V / μs. Sensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die elektronische Schaltung (40) derart ausgebildet ist, dass ein sich zyklisch wiederholendes Laden und Entladen der Elektrode (2) mit Erfassung des Stroms (IC) beim Laden und/oder Entladen stattfindet.Sensor according to one of the preceding claims, characterized in that the electronic circuit (40) is designed such that a cyclically repeating charging and discharging the electrode (2) takes place with detection of the current (I C ) during charging and / or discharging. Sensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die elektronische Schaltung (40) derart ausgebildet ist, dass die Elektrode (2) zunächst durch mehrere Spannungspulse der Spannungsversorgung (24) geladen und anschließend entladen wird, wobei die Auswerteschaltung (20, 26, 34) während des Entladens den Strom (IC) erfasst und ein Ein-und/oder Ausschaltsignal abhängig von dem erfassten Strom (IC) ausgibt.Sensor according to one of the preceding claims, characterized in that the electronic circuit (40) is designed such that the electrode (2) is initially charged by a plurality of voltage pulses of the power supply (24) and then discharged, wherein the evaluation circuit (20, 26, 34) detects the current (I C ) during discharging and outputs an on and / or off signal depending on the detected current (I C ). Sensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die elektronische Schaltung (40) derart ausgebildet ist, dass die Auswerteschaltung(20, 26, 34) zusätzlich den elektrischen Widerstand (R) zwischen den beiden Elektroden (2, 4) bestimmt und ein Ein- und/oder Ausschaltsignal abhängig von dem erfassten Strom (IC) und dem Widerstand (R) ausgibt.Sensor according to one of the preceding claims, characterized in that the electronic circuit (40) is designed such that the evaluation circuit (20, 26, 34) additionally determines the electrical resistance (R) between the two electrodes (2, 4) and a On and / or off signal depending on the detected current (I C ) and the resistor (R) outputs. Sensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Spannungsversorgung eine Spannungsquelle (18) mit einem dieser nachgeschalteten Widerstand und einer dieser parallel geschalteten Kapazität aufweist.Sensor according to one of the preceding claims, characterized in that the voltage supply has a voltage source (18) with a resistor connected downstream thereof and one of these capacitors connected in parallel. Sensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Spannungsversorgung einen Signalgenerator (24) zum Erzeugen einer Lade- und/oder Entladespannung mit definiertem Signalverlauf aufweist.Sensor according to one of the preceding claims, characterized in that the voltage supply comprises a signal generator (24) for generating a charging and / or discharging voltage with a defined signal waveform. Pumpe zum Fördern eines Fluids mit einem elektrischen Antriebsmotor und einer Steuereinrichtung (12) zum Ein- und Ausschalten des Antriebsmotors (M), dadurch gekennzeichnet, dass die Steuereinrichtung (12) zumindest einen Sensor (14, 16, 36) nach einem der vorangehenden Ansprüche zum Ein- und/oder Ausschalten der Pumpe in Abhängigkeit eines Fluidniveaus aufweist.Pump for conveying a fluid with an electric drive motor and a control device (12) for switching on and off of the drive motor (M), characterized in that the control device (12) has at least one sensor (14, 16, 36) according to one of the preceding claims for switching on and / or off the pump as a function of a fluid level. Pumpe nach Anspruch 9, dadurch gekennzeichnet, dass eine der Elektroden (4) von dem Gehäuse der Pumpe gebildet ist und die zweite Elektrode (2) isoliert gegenüber dem Gehäuse angeordnet ist.Pump according to claim 9, characterized in that one of the electrodes (4) is formed by the housing of the pump and the second electrode (2) is arranged insulated from the housing. Pumpe nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Sensor (14, 16, 50) angeordnet ist, um bei einem vorbestimmten Fluidniveau ein Einschaltsignal für den Antriebsmotor zu erzeugen.Pump according to claim 9 or 10, characterized in that the sensor (14, 16, 50) is arranged to generate a switch-on signal for the drive motor at a predetermined fluid level. Pumpe nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass eine Abschaltvorrichtung für die Pumpe vorgesehen ist, welche zumindest ein Erfassungsmittel zum Erfassen zumindest eines elektrischen Parameters des Antriebsmotors (M) aufweist und derart ausgebildet ist, dass auf Grundlage dieses elektrischen Parameters ein Trockenlauf der Pumpe detektierbar ist, und bei detektiertem Trockenlauf ein Abschaltsignal für den Antriebsmotor (M) erzeugt wird.Pump according to one of claims 9 to 11, characterized in that a shut-off device is provided for the pump, which comprises at least one detecting means for detecting at least one electrical parameter of the drive motor (M) and is designed such that on the basis of this electrical parameter, a dry run the pump is detectable, and when a dry run detected a shutdown signal for the drive motor (M) is generated. Pumpe nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass eine Schutzelektrode (42) angeordnet ist, welche die erste Elektrode (2) des Sensors gegenüber elektrischen Bauteilen im Inneren der Pumpe abschirmt.Pump according to one of claims 9 to 12, characterized in that a protective electrode (42) is arranged, which shields the first electrode (2) of the sensor against electrical components in the interior of the pump.
EP08007006A 2008-04-09 2008-04-09 Sensor for turning a pump on or off Active EP2108843B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE502008001581T DE502008001581D1 (en) 2008-04-09 2008-04-09 Sensor for switching on and / or off a pump
EP08007006A EP2108843B1 (en) 2008-04-09 2008-04-09 Sensor for turning a pump on or off
AT08007006T ATE485450T1 (en) 2008-04-09 2008-04-09 SENSOR FOR SWITCHING A PUMP ON AND/OR OFF
CN200980112828.3A CN101990603B (en) 2008-04-09 2009-03-13 For starting or close the sensor of pump
US12/936,933 US8610309B2 (en) 2008-04-09 2009-03-13 Sensor for switching a pump on and/or off
PCT/EP2009/001826 WO2009124635A1 (en) 2008-04-09 2009-03-13 Sensor for switching a pump on and/or off

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08007006A EP2108843B1 (en) 2008-04-09 2008-04-09 Sensor for turning a pump on or off

Publications (2)

Publication Number Publication Date
EP2108843A1 true EP2108843A1 (en) 2009-10-14
EP2108843B1 EP2108843B1 (en) 2010-10-20

Family

ID=39714000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08007006A Active EP2108843B1 (en) 2008-04-09 2008-04-09 Sensor for turning a pump on or off

Country Status (6)

Country Link
US (1) US8610309B2 (en)
EP (1) EP2108843B1 (en)
CN (1) CN101990603B (en)
AT (1) ATE485450T1 (en)
DE (1) DE502008001581D1 (en)
WO (1) WO2009124635A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2895039B1 (en) * 2012-09-11 2019-05-08 The Richards Corporation Coffee maker water heater
CN105143679B (en) 2013-03-19 2018-07-06 流量控制有限责任公司 The low profile pump that can be installed in various constructions
GB2531291B (en) * 2014-10-14 2019-12-04 Aspen Pumps Ltd Liquid level detector
US10378544B2 (en) 2015-04-09 2019-08-13 Brian Rosser Rejniak Apparatus, systems and methods for protecting pumps
WO2017087802A1 (en) * 2015-11-20 2017-05-26 Baker Hughes Incorporated Systems and methods for detecting pump-off conditions and controlling a motor to prevent fluid pound
US11162496B2 (en) 2016-11-11 2021-11-02 Wayne/Scott Fetzer Company Pump with external electrical components and related methods
CN108019347A (en) * 2017-11-08 2018-05-11 中国航空工业集团公司金城南京机电液压工程研究中心 A kind of multifunction pump with condition monitoring and regulatory function
USD872245S1 (en) 2018-02-28 2020-01-07 S. C. Johnson & Son, Inc. Dispenser
USD880670S1 (en) 2018-02-28 2020-04-07 S. C. Johnson & Son, Inc. Overcap
USD881365S1 (en) 2018-02-28 2020-04-14 S. C. Johnson & Son, Inc. Dispenser
USD872847S1 (en) 2018-02-28 2020-01-14 S. C. Johnson & Son, Inc. Dispenser
USD852938S1 (en) 2018-05-07 2019-07-02 S. C. Johnson & Son, Inc. Dispenser
USD853548S1 (en) 2018-05-07 2019-07-09 S. C. Johnson & Son, Inc. Dispenser
EP4004374B1 (en) * 2019-07-26 2023-06-21 Husqvarna Ab Fluid pump
DE102022132634A1 (en) 2022-12-08 2024-06-13 Seepex Gmbh Pump and method for monitoring a pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437811A (en) * 1980-06-30 1984-03-20 Ebara Corporation Submersible pump with alternate pump operation control means
EP1138951A1 (en) * 2000-03-31 2001-10-04 Pompes Salmson Submersible pump with capacitive level detection
US20060039802A1 (en) * 2004-08-18 2006-02-23 Richal Corporation Submersible pump controller
JP2006070729A (en) * 2004-08-31 2006-03-16 Shin Meiwa Ind Co Ltd Submersible pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1129290B1 (en) 1999-09-03 2011-10-19 Fenwal, Inc. Systems and methods for control of pumps
NZ527384A (en) * 2001-02-07 2005-05-27 Gerenraich Family Trust Control system with capacitive sensor to provide a signal responsive to a rate of change in capacitance
US7107837B2 (en) * 2002-01-22 2006-09-19 Baxter International Inc. Capacitance fluid volume measurement
WO2004015351A1 (en) * 2002-08-07 2004-02-19 Deka Products Limited Partnership Method and apparatus for phase change enhancement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437811A (en) * 1980-06-30 1984-03-20 Ebara Corporation Submersible pump with alternate pump operation control means
EP1138951A1 (en) * 2000-03-31 2001-10-04 Pompes Salmson Submersible pump with capacitive level detection
US20060039802A1 (en) * 2004-08-18 2006-02-23 Richal Corporation Submersible pump controller
JP2006070729A (en) * 2004-08-31 2006-03-16 Shin Meiwa Ind Co Ltd Submersible pump

Also Published As

Publication number Publication date
DE502008001581D1 (en) 2010-12-02
CN101990603A (en) 2011-03-23
ATE485450T1 (en) 2010-11-15
EP2108843B1 (en) 2010-10-20
WO2009124635A1 (en) 2009-10-15
US20110027104A1 (en) 2011-02-03
CN101990603B (en) 2015-09-30
US8610309B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
EP2108843B1 (en) Sensor for turning a pump on or off
EP2278713B1 (en) Capacitative sensor assembly with a sensor electrode, a shielding electrode and a background electrode
EP3152530B1 (en) Method and device for monitoring the level of a medium in a container
EP2994725B1 (en) Method and apparatus for monitoring of at least one specific property of a fluid medium for a level measurement
DE102008035635B4 (en) Device for capacitive measurement of a fill level or a level of a medium
DE102017215889A1 (en) Voltage sensing device
EP2828973B1 (en) Capacitive sensor arrangement for switching a door opening in a motor vehicle and associated method
DE102013102055A1 (en) Method and device for monitoring a predetermined level of a medium in a container
DE68911758T2 (en) Touch switch utilizing the properties of a liquid crystal.
DE102008027921B4 (en) Admittance measuring device for a level sensor
EP2642663B1 (en) Sensor and method for detecting an object
EP2091764B1 (en) Arrangement for detecting a wheel movement
DE102012012865A1 (en) Capacitive sensor for a collision protection device
EP2108963A2 (en) Device for detecting a rotation of a rotary element
DE102018113253A1 (en) arrangement
DE102015005963A1 (en) State recognition of a central locking via current detection
DE102018007284B4 (en) Pulse generator
EP3829065A1 (en) Capacitive sensor device and method for detecting an object getting closer
AT514649B1 (en) Method and device for monitoring the transport of solid free-flowing heating material, such as wood chips or pellets
DE102018211024A1 (en) Method and sensor device for detecting an approach to two capacitive sensor electrodes
EP3457569B1 (en) Evaluation arrangement for a capacitive sensor device
WO2004008084A1 (en) Method for measuring the level of a fluid in a container and corresponding level sensor comprising at least one capacitive sensor element
DE19601691C1 (en) Capacitive measurement device for level of dielectric liquid in a container
EP1429125A1 (en) Capacitive material sensor
DE102014100580A1 (en) Device for the contactless actuation of a sliding door of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008001581

Country of ref document: DE

Date of ref document: 20101202

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101020

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110131

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

26N No opposition filed

Effective date: 20110721

BERE Be: lapsed

Owner name: GRUNDFOS MANAGEMENT A/S

Effective date: 20110430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001581

Country of ref document: DE

Effective date: 20110721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 485450

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130409

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008001581

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240418

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240424

Year of fee payment: 17

Ref country code: FR

Payment date: 20240426

Year of fee payment: 17