EP2108813B1 - Device for cooling or heating a combustion engine - Google Patents

Device for cooling or heating a combustion engine Download PDF

Info

Publication number
EP2108813B1
EP2108813B1 EP09156022A EP09156022A EP2108813B1 EP 2108813 B1 EP2108813 B1 EP 2108813B1 EP 09156022 A EP09156022 A EP 09156022A EP 09156022 A EP09156022 A EP 09156022A EP 2108813 B1 EP2108813 B1 EP 2108813B1
Authority
EP
European Patent Office
Prior art keywords
bypass
preheating
cooling
pump
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09156022A
Other languages
German (de)
French (fr)
Other versions
EP2108813A1 (en
Inventor
Stefan Hintermeir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2108813A1 publication Critical patent/EP2108813A1/en
Application granted granted Critical
Publication of EP2108813B1 publication Critical patent/EP2108813B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • F02N19/10Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines by heating of engine coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/18Heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the invention relates to a device for cooling or heating an internal combustion engine of a vehicle with a heat conductively connected to the engine cooling circuit having a cooling circuit pump, which is arranged for circulating coolant in the cooling circuit, and with a preheating branch, which is arranged parallel to the cooling circuit pump and is connected to the cooling circuit and has a Vormérmheizer and a preheating, the output side communicates with an output side of the cooling circuit pump and the input side with an input side of the cooling circuit pump, wherein in the Vordozensrmzweig a check valve is provided.
  • Such a device is already known from the prior art.
  • Vehicles with large internal combustion engines such as diesel-electric locomotives, can not be started in the cold state of the internal combustion engine.
  • a vehicle has a preheating system for the internal combustion engine, which operates either electrically, but usually operated fuel.
  • the preheating system heats up a cooling liquid circulated by a preheating pump via the internal combustion engine.
  • the cooling liquid which provides for the cooling of the internal combustion engine in later operation, serves as a heat source when cold. If the cooling water in the engine has reached a certain temperature, the preheater is switched off and the internal combustion engine can be started.
  • FIG. 1 shows an internal combustion engine 1 of a railcar, not shown figuratively a rail vehicle, which is cooled during operation of the internal combustion engine 1 via a cooling circuit 2.
  • the refrigeration cycle 2 has a refrigeration cycle pump 3, which circulates cooling fluid through the cooling passages of the cylinder heads and bushings 4, which conducts heat to the engine 1, and an external radiator 5.
  • a switching element such as a thermostat 6.
  • Parallel to the cooling circuit pump 3, a preheating branch 7 is arranged.
  • the preheating branch 7 has a preheating pump 8 and a preheating heater 9, which is followed by a check valve 10 in the pumping direction of the preheating pump.
  • the preheating branch 7 is connected to the cooling circuit 2 via a first preheating branch connection 11 and a second preheating branch connection 12.
  • a preheating circuit is provided by the preheating branch 7 as a parallel circuit to the cooling circuit 2. This means that during operation of the internal combustion engine 1, the cooling circuit pump 3 without the check valve 10 would continuously promote cooling fluid through the inactive preheating branch 7. However, this is rejected by some manufacturers of rail vehicles in the rail sector, so that the directions of circulation of Vormérm Vietnamese and cooling circuit 2 are opposite. In the opposite direction of rotation, it is possible through the check valve 10 to prevent the flow through the Vordozensrmzweiges 7 in engine operation of the vehicle.
  • FIG. 2 shows the device according to FIG. 1 in preheat mode.
  • the cooling circuit pump 3 is turned off.
  • the cooling liquid is therefore circulated solely by the preheating pump 8.
  • the cooling liquid enters the preheat heater 9 and the check valve 10 and The first preheating 11 in the cooling circuit 2.
  • the heat generated by the preheat heater 9 is supplied to the internal combustion engine 1, which is heated by means of its cooling channels in the cylinder heads and in the liners 4.
  • the external cooler 5 is separated from the cooling circuit 2 due to the thermostat 6, so that the cooling liquid flows back directly to the preheating pump 8.
  • FIG. 2 recognizable that due to the parked cooling circuit pump 3 coolant against the pumping direction of the cooling circuit pump 3 flows through it.
  • FIG. 3 shows the device according to FIG. 1 in engine operation.
  • the preheating pump 8 and the preheating heater 9 are turned off.
  • the cooling circuit pump 3 is switched on, which ensures circulation of coolant in the cooling circuit 2, wherein the thermostat 6 provides for a connection of the external cooler 5 with the cooling circuit 2.
  • the heat generated by the internal combustion engine 1 is thus discharged from the cooling liquid to the external cooler 5 and from this, for example, to the atmospheric air flowing through it.
  • Due to the check valve 10 is formed between the first preheating 11 and the check valve 10 in Voreriermzweig 7 a dead zone in which a flow of cooling liquid is prevented.
  • the US 2004/0031452 A1 describes a cooling system of a hybrid vehicle, as used for example in the automotive sector.
  • the hybrid vehicle also has a diesel engine, which is cooled by a cooling circuit.
  • a cooling circuit pump is arranged, which serves for circulation of cooling liquid in the cooling circuit.
  • the cooling circuit leads through a radiator.
  • To preheat the diesel engine is a thermally well insulated Thermoakkumulator provided which removes the cooling circuit heated coolant during operation and stores them. When the vehicle is at a standstill, the liquid in the thermal accumulator cools down much more slowly than the diesel engine.
  • the still heated in the thermal accumulator liquid is fed back into the cooling circuit, which then provides heating of the diesel engine.
  • the diesel engine For longer downtimes, the diesel engine must be started cold.
  • a heating power is also switchable, which leads heated coolant through a heat exchanger, which serves to heat a passenger compartment.
  • the object of the invention is to provide a device of the type mentioned above, which allows a cost-effective removal of heat from the coolant both in advance and in engine operation.
  • the invention solves this problem by a bypass branch with a bypass heat exchanger and a bypass pump, wherein the bypass branch is connected by means of a first bypass connection to the preheating branch and by means of a second bypass connection to the cooling circuit and wherein the bypass connections are arranged to each other so that I in the operation of the device between them sets the lowest possible pressure drop.
  • a bypass branch which has two bypass connections, wherein a first bypass connection is connected to the preheating branch and a second bypass connection opens into the cooling circuit.
  • a Bypass set which is advantageously controlled independently of the preheating and the cooling circuit pump.
  • activation of the bypass pump causes heated liquid from the preheat heater to flow over the bypass branch. Since the bypass tap in the preheating branch is, for example, directly behind the preheating heater, heat is available to an external consumer, which is connected to the bypass heat exchanger, relatively quickly. At the same time it comes to heating of the internal combustion engine. During engine operation, the preheating pump and preheating heater are switched off.
  • the cooling circuit pump circulates the coolant through the engine and the external radiator.
  • stopped bypass pump is formed between the connection of the preheating branch and the check valve, as in the prior art, a dead zone in which a circulation of cooling liquid is suppressed.
  • the cooling fluid By switching on the bypass pump, however, the cooling fluid also flows through the bypass branch during engine operation, so that heat is again provided for one or more external consumers via the bypass heat exchanger.
  • bypass connections are arranged to each other so that adjusts the lowest possible pressure drop between them through the Vormérmzweig and the cooling circuit during operation of the device.
  • the bypass connections are arranged in close proximity to each other. This ensures that no unwanted flow through the bypass branch occurs in both the preheat mode and during engine operation when the bypass pump is switched off.
  • the pressure drop between the bypass ports via the Vormérmzweig and the cooling circuit is substantially lower than the pressure drop across the bypass branch itself.
  • the low pressure drop between the bypass ports outside the bypass branch also has advantages in preheating.
  • bypass circuit Since only a very small pressure loss occurs between the bypass connections, the bypass circuit does not influence the preheating circuit, because no circulation in the bypass occurs when the bypass pump is stationary. Hydrodynamic influences on the circulation system during preheating are essentially eliminated in this way. Also, the flow profile of the cooling circuit is not or insignificantly influenced by the bypass circulation, ie by the flow of cooling fluid through the bypass branch. This feature of the device is desirable both by the manufacturers of the preheaters and in the manufacturers of internal combustion engines, since the theoretical flow calculations of the respective heat or cooling circuits remain virtually unchanged.
  • bypass connections are connected by a freely permeable pipe connection.
  • the freely permeable pipe connection are sections of the preheating branch or of the cooling circuit. According to this embodiment of the invention, it is possible to provide a very small pressure drop between the bypass ports.
  • the preheating branch is connected on the output side of the preheating pump to the first bypass connection as a bypass input, the cooling circuit on the output side of the cooling circuit pump being connected to the second bypass connection as a bypass output.
  • the cooling liquid heated by the preheating unit passes directly into the bypass branch, so that thermal energy, for example in the driver's cab, can be made available particularly quickly.
  • the preheating branch is connected on the input side of the preheating pump to the second bypass connection as a bypass output, the cooling circuit on the input side of the cooling circuit pump being connected to the first bypass connection as a bypass input.
  • the preheating of the preheated cooling fluid first passes into the engine, ensures its heating and only then in the bypass branch. In this way, a faster preheating of the engine is possible.
  • bypass heat exchanger of the bypass pump is connected downstream in the flow direction of the bypass branch.
  • the check valve is expediently arranged on the output side of the preheating pump in the preheating branch.
  • the first bypass connection is expediently a bypass input, which is connected between the check valve and the connection of the preheating branch to the cooling circuit.
  • the cooling circuit can be connected via a controllable valve to a cooler which is set up to cool the cooling liquid circulated in the cooling circuit.
  • the controllable valve is for example a simple thermostat. Deviating from this, however, a controllable check valve is used.
  • FIGS. 1 to 3 have already been described in connection with the prior art.
  • FIG. 4 shows an embodiment of the device 12 according to the invention, in addition to those associated with the FIGS. 1 and 3 components mentioned a bypass branch 13 which is connected to a first bypass port 14 as a bypass input to the preheating branch 7 and opens via a second bypass port 15 as a bypass outlet in the cooling circuit 2.
  • a bypass pump 16 and a bypass heat exchanger 17 are arranged, wherein the bypass heat exchanger 17 of the bypass pump 16 is followed in the pumping direction of the bypass pump 16.
  • the pumping direction of the cooling circuit pump 3, the preheating pump 8 and the bypass pump 16 is indicated in each case by an arrowhead which points into the respective pumping direction.
  • FIG. 5 shows the device according to FIG. 4 in preheat mode.
  • the preheat pump 8 in the preheating the preheat pump 8 is turned on, where is switched off against the cooling circuit pump 3.
  • the preheating pump 8 conveys the cooling liquid via the preheating heater 9, the check valve 10 to the first port 11 of the Vormérmzweiges 7 to the cooling circuit 2.
  • the bypass pump 16 is also switched on, so that cooling liquid heated by the preheating heater 9 is tapped from the bypass branch 13, guided via the bypass heat exchanger 17 and finally reaches the cooling circuit 2.
  • the bypass heat exchanger 17 it is therefore possible to supply external consumers, for example a heater of a driver's cab, with heat.
  • bypass input 14 and the bypass output 15 are connected via a direct connection, which are sections of the preheating branch 7 and the cooling circuit 2, respectively.
  • This direct connection can be flowed through freely. In this way, outside the bypass branch 13, a small pressure drop is provided between the bypass port 14 as a bypass port and the bypass port 15 as a bypass port.
  • the bypass pump 16 is turned off, the pressure drop for the coolant flowing over the bypass branch 13 is substantially greater than when it flows through the direct connection.
  • the circulation of the cooling liquid in the preheating operation is little influenced by the small hydraulic pressure difference between the bypass input 14 and the bypass outlet 15.
  • FIG. 6 shows the device 12 according to FIG. 4 in engine operation.
  • the bypass pump 16 is turned on.
  • cooling liquid is thus conveyed via the bypass branch 13 and thus via the bypass heat exchanger 17.
  • external consumers can be supplied with heat energy from the cooling liquid in engine operation.
  • FIG. 7 shows a further embodiment of the inventive device 12.
  • the bypass input 14 is connected to the cooling circuit 2.
  • the first bypass connection is arranged on the input side of the cooling circuit pump.
  • the bypass outlet 15 is connected to the preheating branch 7 and, on the input side, to the preheating pump 8. According to this arrangement, therefore, the cooling liquid is initially over the internal combustion engine 1, wherein this then reaches the bypass branch 13 in preheating.
  • the bypass heat exchanger 17 of the bypass pump 16 upstream in the direction of circulation.
  • a check valve 18, which can be actuated, for example, from the driver's cab, serves to reliably prevent a circulation of cooling fluid via the bypass branch 13.

Abstract

The device (12) has a cooling circuit (2) connected with an internal combustion engine in a heat conductive manner. The cooling circuit comprises a cooling circuit pump (3) for circulating a coolant in the cooling circuit. A pre-heating branch (7) is arranged parallel to the cooling circuit pump, and is connected with the cooling circuit. A bypass branch (13) comprises a bypass heat exchanger (17) and a bypass pump (16), where the bypass branch is connected with the pre-heating branch by a bypass adapter (14), and is connected with the cooling circuit by another bypass adapter (15).

Description

Die Erfindung betrifft eine Vorrichtung zum Kühlen oder Erwärmen eines Verbrennungsmotors eines Fahrzeuges mit einem Wärme leitend mit dem Verbrennungsmotor verbundenen Kühlkreis, der eine Kühlkreispumpe aufweist, die zum Umwälzen von Kühlflüssigkeit in dem Kühlkreis eingerichtet ist, und mit einem Vorwärmzweig, der parallel zur Kühlkreispumpe angeordnet und mit dem Kühlkreis verbunden ist und über einen Vorwärmheizer sowie eine Vorwärmpumpe verfügt, die ausgangsseitig mit einer Ausgangsseite der Kühlkreispumpe und eingangsseitig mit einer Eingangsseite der Kühlkreispumpe kommuniziert, wobei in dem Vorwärmzweig ein Rückschlagventil vorgesehen ist.The invention relates to a device for cooling or heating an internal combustion engine of a vehicle with a heat conductively connected to the engine cooling circuit having a cooling circuit pump, which is arranged for circulating coolant in the cooling circuit, and with a preheating branch, which is arranged parallel to the cooling circuit pump and is connected to the cooling circuit and has a Vorwärmheizer and a preheating, the output side communicates with an output side of the cooling circuit pump and the input side with an input side of the cooling circuit pump, wherein in the Vorwärmzweig a check valve is provided.

Eine solche Vorrichtung ist aus dem Stand der Technik bereits bekannt. Fahrzeuge mit großen Verbrennungsmotoren, wie beispielsweise dieselelektrische Lokomotiven, können im kalten Zustand des Verbrennungsmotors nicht gestartet werden. Aus diesem Grund weist ein solches Fahrzeug eine Vorwärmanlage für den Verbrennungsmotor auf, die entweder elektrisch, in der Regel jedoch Kraftstoff betrieben, arbeitet. Um die benötigte Wärme zum Aufheizen des Verbrennungsmotors in diesen einzubringen, heizt die Vorwärmanlage eine von einer Vorwärmpumpe über den Verbrennungsmotor umgewälzte Kühlflüssigkeit auf. Die Kühlflüssigkeit, die im späteren Betrieb für die Kühlung des Verbrennungsmotors sorgt, dient im kalten Zustand als Wärmequelle. Hat das Kühlwasser im Motor eine bestimmte Temperatur erreicht, wird das Vorwärmgerät abgeschaltet und der Verbrennungsmotor kann gestartet werden.Such a device is already known from the prior art. Vehicles with large internal combustion engines, such as diesel-electric locomotives, can not be started in the cold state of the internal combustion engine. For this reason, such a vehicle has a preheating system for the internal combustion engine, which operates either electrically, but usually operated fuel. In order to introduce the heat required for heating the internal combustion engine into this, the preheating system heats up a cooling liquid circulated by a preheating pump via the internal combustion engine. The cooling liquid, which provides for the cooling of the internal combustion engine in later operation, serves as a heat source when cold. If the cooling water in the engine has reached a certain temperature, the preheater is switched off and the internal combustion engine can be started.

Figur 1 zeigt einen Verbrennungsmotor 1 eines figürlich nicht dargestellten Triebwagens eines Schienenfahrzeuges, das im Betrieb des Verbrennungsmotors 1 über einen Kühlkreis 2 gekühlt wird. Der Kühlkreis 2 verfügt über eine Kühlkreispumpe 3, welche Kühlflüssigkeit durch die Kühlungskanäle der Zylinderköpfe und Laufbuchsen 4, der Wärme leitend mit dem Verbrennungsmotor 1 verbunden ist, und einen externen Kühler 5 umwälzt. Zum Vorwärmen ist der externe Kühler 5 jedoch durch ein Umschaltelement, wie beispielsweise ein Thermostat 6, vom Kühlkreis 2 abgekoppelt. Parallel zur Kühlkreispumpe 3 ist ein Vorwärmzweig 7 angeordnet. Der Vorwärmzweig 7 verfügt über eine Vorwärmpumpe 8 sowie über einen Vorwärmheizer 9, dem in Pumprichtung der Vorwärmpumpe ein Rückschlagventil 10 nachgeschaltet ist. Der Vorwärmzweig 7 ist über einen ersten Vorwärmzweiganschluss 11 sowie einen zweiten Vorwärmzweiganschluss 12 mit dem Kühlkreis 2 verbunden. FIG. 1 shows an internal combustion engine 1 of a railcar, not shown figuratively a rail vehicle, which is cooled during operation of the internal combustion engine 1 via a cooling circuit 2. The refrigeration cycle 2 has a refrigeration cycle pump 3, which circulates cooling fluid through the cooling passages of the cylinder heads and bushings 4, which conducts heat to the engine 1, and an external radiator 5. For preheating the external cooler 5 is, however, decoupled from the cooling circuit 2 by a switching element, such as a thermostat 6. Parallel to the cooling circuit pump 3, a preheating branch 7 is arranged. The preheating branch 7 has a preheating pump 8 and a preheating heater 9, which is followed by a check valve 10 in the pumping direction of the preheating pump. The preheating branch 7 is connected to the cooling circuit 2 via a first preheating branch connection 11 and a second preheating branch connection 12.

Systemtechnisch ist durch den Vorwärmzweig 7 ein Vorwärmkreis als Parallelkreis zum Kühlkreis 2 bereitgestellt. Das bedeutet, dass beim Betrieb des Verbrennungsmotors 1 die Kühlkreispumpe 3 ohne das Rückschlagventil 10 anhaltend Kühlflüssigkeit durch den inaktiven Vorwärmzweig 7 fördern würde. Dies wird jedoch von einigen Herstellern von Triebfahrzeugen im Schienenbereich abgelehnt, so dass die Umlaufrichtungen von Vorwärmkreis und Kühlkreis 2 entgegengesetzt sind. Bei entgegengesetzter Umlaufrichtung ist es durch das Rückschlagventil 10 möglich, das Durchströmen des Vorwärmzweiges 7 im Motorbetrieb des Fahrzeuges zu verhindern.Systematically, a preheating circuit is provided by the preheating branch 7 as a parallel circuit to the cooling circuit 2. This means that during operation of the internal combustion engine 1, the cooling circuit pump 3 without the check valve 10 would continuously promote cooling fluid through the inactive preheating branch 7. However, this is rejected by some manufacturers of rail vehicles in the rail sector, so that the directions of circulation of Vorwärmkreis and cooling circuit 2 are opposite. In the opposite direction of rotation, it is possible through the check valve 10 to prevent the flow through the Vorwärmzweiges 7 in engine operation of the vehicle.

Figur 2 zeigt die Vorrichtung gemäß Figur 1 im Vorwärmbetrieb. Im Vorwärmbetrieb ist die Kühlkreispumpe 3 abgestellt. Die Kühlflüssigkeit wird daher allein von der Vorwärmpumpe 8 umgewälzt. Von der Vorwärmpumpe 8 gelangt die Kühlflüssigkeit in den Vorwärmheizer 9 und über das Rückschlagventil 10 und den ersten Vorwärmanschluss 11 in den Kühlkreis 2. Die von dem Vorwärmheizer 9 erzeugte Wärme wird dem Verbrennungsmotor 1 zugeführt, der mittels seiner Kühlungskanäle in den Zylinderköpfen und in den Laufbuchsen 4 erwärmt wird. Der externe Kühler 5 ist aufgrund des Thermostats 6 vom Kühlkreis 2 getrennt, so dass die Kühlflüssigkeit direkt zur Vorwärmpumpe 8 zurückströmt. Darüber hinaus ist in Figur 2 erkennbar, dass aufgrund der abgestellten Kühlkreispumpe 3 Kühlflüssigkeit entgegen der Pumprichtung der Kühlkreispumpe 3 durch diese strömt. FIG. 2 shows the device according to FIG. 1 in preheat mode. In Vorwärmbetrieb the cooling circuit pump 3 is turned off. The cooling liquid is therefore circulated solely by the preheating pump 8. From the preheating pump 8, the cooling liquid enters the preheat heater 9 and the check valve 10 and The first preheating 11 in the cooling circuit 2. The heat generated by the preheat heater 9 is supplied to the internal combustion engine 1, which is heated by means of its cooling channels in the cylinder heads and in the liners 4. The external cooler 5 is separated from the cooling circuit 2 due to the thermostat 6, so that the cooling liquid flows back directly to the preheating pump 8. In addition, in FIG. 2 recognizable that due to the parked cooling circuit pump 3 coolant against the pumping direction of the cooling circuit pump 3 flows through it.

Figur 3 zeigt die Vorrichtung gemäß Figur 1 im Motorbetrieb. Im Motorbetrieb sind die Vorwärmpumpe 8 sowie der Vorwärmheizer 9 abgestellt. Im Gegensatz dazu ist die Kühlkreispumpe 3 eingeschaltet, die für ein Umwälzen von Kühlflüssigkeit im Kühlkreis 2 sorgt, wobei das Thermostat 6 für eine Verbindung des externen Kühlers 5 mit dem Kühlkreis 2 sorgt. Die vom Verbrennungsmotor 1 erzeugte Wärme wird somit von der Kühlflüssigkeit zum externen Kühler 5 und von diesem beispielsweise an die diesen durchströmende Atmosphärenluft abgegeben. Die so abgekühlte Kühlflüssigkeit gelangt wieder zur Kühlkreispumpe 3. Aufgrund des Rückschlagventils 10 entsteht zwischen dem ersten Vorwärmanschluss 11 und dem Rückschlagventil 10 im Vorwärmzweig 7 ein Todbereich, in dem eine Strömung von Kühlflüssigkeit verhindert ist. FIG. 3 shows the device according to FIG. 1 in engine operation. During engine operation, the preheating pump 8 and the preheating heater 9 are turned off. In contrast, the cooling circuit pump 3 is switched on, which ensures circulation of coolant in the cooling circuit 2, wherein the thermostat 6 provides for a connection of the external cooler 5 with the cooling circuit 2. The heat generated by the internal combustion engine 1 is thus discharged from the cooling liquid to the external cooler 5 and from this, for example, to the atmospheric air flowing through it. Due to the check valve 10 is formed between the first preheating 11 and the check valve 10 in Vorwärmzweig 7 a dead zone in which a flow of cooling liquid is prevented.

Abgestellten Diesellokomotiven mit einem Verbrennungsmotor gemäß den Figuren 1 bis 3 steht als Energieversorgung üblicherweise nur eine Bordnetzbatterie mit in der Regel 24 V zur Verfügung. Die Bordnetzbatterie speist das Vorwärmgerät, also in Vorwärmpumpe 8 und Vorwärmheizer 9. Die Heizung des Führerstandes wird hingegen üblicherweise mit 110 V betrieben. Vor einem Start des Verbrennungsmotors ist die Erzeugung einer Versorgungsspannung von 110 V jedoch nicht möglich, so dass ein Beheizen des Führerstandes im Vorwärmbetrieb in der Regel entfällt.Parked diesel locomotives with an internal combustion engine in accordance with the FIGS. 1 to 3 As a power supply is usually only an on-board battery with usually 24 V available. The electrical system battery feeds the preheater, ie in preheat pump 8 and preheat heater 9. The heater of the cab, however, is usually operated with 110 V. However, it is not possible to generate a supply voltage of 110 V before starting the internal combustion engine that a heating of the cab in Vorwärmbetrieb usually omitted.

Aufgrund der fortwährend steigenden Energiekosten wird darüber hinaus von vielen Betreibern von Schienenfahrzeugen mehr und mehr die Forderung gestellt, die aus dem Kühlkreis 2 abfallende Wärme abzugreifen, um diese zu anderen Zwecken, beispielsweise zum Heizen des Führerstandes, einzusetzen.Due to the ever-increasing energy costs, moreover, the demand is made more and more by many operators of rail vehicles to tap the heat falling from the cooling circuit 2 in order to use it for other purposes, for example for heating the driver's cab.

Daraus ergibt sich, dass sowohl im Vorwärm- als auch im Motorbetrieb der Kühlflüssigkeit Wärme entnommen werden soll. Dies ist jedoch deswegen schwierig, weil die Umwälzrichtungen im Vorwärmzweig 7 je nach Betriebsart unterschiedlich sind oder der Durchfluss von Kühlflüssigkeit durch den Vorwärmzweig durch ein Rückschlagventil verhindert ist. Das Anordnen eines zusätzlichen Wärmetauschers zum Beheizen des Führerstandes im Vorwärmzweig 7 würde zwar das Beheizen des Führerstandes auch im Vorwärmbetrieb ermöglichen. Zur Wärmeentnahme im Motorbetrieb wäre jedoch ein zusätzlicher Wärmetauscher im Kühlkreis 2 erforderlich. Ein einfacher Bypass mit Wärmetauscher im Kühlkreis 2 würde im Vorwärmbetrieb nur sehr spärlich mit erwärmter Kühlflüssigkeit durchflossen werden. Ein Aufheizen eines Führerstandes im Vorwärmbetrieb wäre auf diese Art und Weise nicht möglich.It follows that heat is to be removed both in the preheating and in the engine operation of the cooling liquid. However, this is difficult because the Umwälzrichtungen in Vorwärmzweig 7 are different depending on the mode or the flow of coolant through the preheating branch is prevented by a check valve. The arrangement of an additional heat exchanger for heating the cab in Vorwärmzweig 7 would indeed allow the heating of the cab even in Vorwärmbetrieb. For heat extraction during engine operation, however, an additional heat exchanger in the cooling circuit 2 would be required. A simple bypass with heat exchanger in the cooling circuit 2 would be traversed in preheating only very scant with heated coolant. A heating of a cab in Vorwärmbetrieb would not be possible in this way.

Die US 2004/0031452 A1 beschreibt ein Kühlsystem eines Hybridfahrzeugs, wie es beispielsweise im Automobilbereich zur Anwendung gelangt. Das Hybridfahrzeug weist neben einem Elektromotor und einem Generator auch noch einen Dieselmotor auf, der über einen Kühlkreis gekühlt wird. In dem besagten Kühlkreis ist eine Kühlkreispumpe angeordnet, die zum Umwälzen von Kühlflüssigkeit in dem Kühlkreislauf dient. Bei Normalbetrieb führt der Kühlkreislauf über einen Motorkühler. Zum Vorwärmen des Dieselmotors ist ein thermisch gut isolierter Thermoakkumulator vorgesehen, der bei laufendem Betrieb dem Kühlkreislauf erwärmte Kühlflüssigkeit entnimmt und diese speichert. Bei Stillstand des Fahrzeugs kühlt sich die Flüssigkeit im Thermoakkumulator wesentlich langsamer ab als der Dieselmotor. Zum Vorwärmen des Dieselmotors wird die in dem Thermoakkumulator immer noch erwärmte Flüssigkeit wieder zurück in den Kühlkreislauf gespeist, die dann für eine Erwärmung des Dieselmotors sorgt. Bei längeren Stillstandszeiten muss der Dieselmotor jedoch kalt gestartet werden. Bei Normalbetrieb ist ferner eine Heizleistung zuschaltbar, welche erwärmte Kühlflüssigkeit über einen Wärmetauscher führt, der zum Erwärmen einer Fahrgastzelle dient.The US 2004/0031452 A1 describes a cooling system of a hybrid vehicle, as used for example in the automotive sector. In addition to an electric motor and a generator, the hybrid vehicle also has a diesel engine, which is cooled by a cooling circuit. In the said cooling circuit, a cooling circuit pump is arranged, which serves for circulation of cooling liquid in the cooling circuit. In normal operation, the cooling circuit leads through a radiator. To preheat the diesel engine is a thermally well insulated Thermoakkumulator provided which removes the cooling circuit heated coolant during operation and stores them. When the vehicle is at a standstill, the liquid in the thermal accumulator cools down much more slowly than the diesel engine. For preheating the diesel engine, the still heated in the thermal accumulator liquid is fed back into the cooling circuit, which then provides heating of the diesel engine. For longer downtimes, the diesel engine must be started cold. In normal operation, a heating power is also switchable, which leads heated coolant through a heat exchanger, which serves to heat a passenger compartment.

Weitere Kühlsysteme sind in den Druckschriften US 4,591,691 und DE 10 2006 017 246 A1 beschrieben.Other cooling systems are in the publications US 4,591,691 and DE 10 2006 017 246 A1 described.

Aufgabe der Erfindung ist es, eine Vorrichtung der eingangs genannten Art bereitzustellen, die eine kostengünstige Entnahme von Wärme aus der Kühlflüssigkeit sowohl im Vorwärmals auch im Motorbetrieb ermöglicht.The object of the invention is to provide a device of the type mentioned above, which allows a cost-effective removal of heat from the coolant both in advance and in engine operation.

Die Erfindung löst diese Aufgabe durch einen Bypasszweig mit einem Bypasswärmetauscher und einer Bypasspumpe, wobei der Bypasszweig mittels eines ersten Bypassanschlusses mit dem Vorwärmzweig und mittels eines zweiten Bypassanschlusses mit dem Kühlkreis verbunden ist und wobei die Bypassanschlüsse so zueinander angeordnet sind, dass ich im Betrieb der Vorrichtung zwischen ihnen ein möglichst geringer Druckabfall einstellt.The invention solves this problem by a bypass branch with a bypass heat exchanger and a bypass pump, wherein the bypass branch is connected by means of a first bypass connection to the preheating branch and by means of a second bypass connection to the cooling circuit and wherein the bypass connections are arranged to each other so that I in the operation of the device between them sets the lowest possible pressure drop.

Erfindungsgemäß ist ein Bypasszweig bereitgestellt, der zwei Bypassanschlüsse aufweist, wobei ein erster Bypassanschluss mit dem Vorwärmzweig verbunden ist und ein zweiter Bypassanschluss in den Kühlkreis mündet. In den Bypasszweig ist eine Bypasspumpe gesetzt, die vorteilhafterweise unabhängig von der Vorwärmpumpe und der Kühlkreispumpe ansteuerbar ist. Im Vorwärmbetrieb führt die Aktivierung der Bypasspumpe dazu, dass vom Vorwärmheizer erwärmte Flüssigkeit über den Bypasszweig strömt. Da sich der Bypassabgriff im Vorwärmzweig beispielsweise direkt hinter dem Vorwärmheizer befindet, steht einem externen Verbraucher, der mit dem Bypasswärmetauscher verbunden ist, relativ schnell Wärme zur Verfügung. Gleichzeitig kommt es zur Erwärmung des Verbrennungsmotors. Im Motorbetrieb sind Vorwärmpumpe und Vorwärmheizer abgestellt. Die Kühlkreispumpe wälzt die Kühlflüssigkeit über den Verbrennungsmotor und den externen Kühler um. Bei abgestellter Bypasspumpe entsteht zwischen dem Anschluss des Vorwärmzweiges und dem Rückschlagventil, wie beim Stand der Technik, ein Todgebiet, in dem ein Umwälzen von Kühlflüssigkeit unterbunden ist. Durch Anschalten der Bypasspumpe durchströmt jedoch die Kühlflüssigkeit auch im Motorbetrieb den Bypasszweig, so dass über den Bypasswärmetauscher wieder Wärme für einen oder mehrere externe Verbraucher bereitgestellt ist.According to the invention, a bypass branch is provided, which has two bypass connections, wherein a first bypass connection is connected to the preheating branch and a second bypass connection opens into the cooling circuit. In the bypass branch is a Bypass set, which is advantageously controlled independently of the preheating and the cooling circuit pump. In preheat mode, activation of the bypass pump causes heated liquid from the preheat heater to flow over the bypass branch. Since the bypass tap in the preheating branch is, for example, directly behind the preheating heater, heat is available to an external consumer, which is connected to the bypass heat exchanger, relatively quickly. At the same time it comes to heating of the internal combustion engine. During engine operation, the preheating pump and preheating heater are switched off. The cooling circuit pump circulates the coolant through the engine and the external radiator. When stopped bypass pump is formed between the connection of the preheating branch and the check valve, as in the prior art, a dead zone in which a circulation of cooling liquid is suppressed. By switching on the bypass pump, however, the cooling fluid also flows through the bypass branch during engine operation, so that heat is again provided for one or more external consumers via the bypass heat exchanger.

Aus der erfindungsgemäßen Schaltung ergibt sich noch ein weiterer Vorteil, da die Bereitstellung von Wärme für externe Verbraucher durch einfaches Einschalten der Bypasspumpe eingeleitet werden kann. Sollte während des Vorwärmbetriebes des Fahrzeugs eine mangelhafte Batterieleistung im Bordnetzkreis festgestellt werden, kann durch einfaches Abstellen der Bypasspumpe die Wärmeversorgung von externen Verbrauchern unterbunden und auf diese Art und Weise die Energie der Batterie geschont werden, so dass der Verbrennungsmotor trotz des schwachen Ladezustandes der Batterie noch gestartet werden kann. Auch bei Ausfall der Bypasspumpe ist die Vorwärmung des Verbrennungsmotors sichergestellt.From the circuit according to the invention, there is still a further advantage, since the provision of heat for external consumers can be initiated by simply switching on the bypass pump. If during the preheat operation of the vehicle a deficient battery power in the electrical system circuit can be determined by simply switching off the bypass pump, the heat supply can be prevented by external consumers and thus spared the energy of the battery, so that the engine still despite the low state of charge of the battery can be started. Even in case of failure of the bypass pump, the preheating of the engine is ensured.

Erfindungsgemäß sind die Bypassanschlüsse so zueinander angeordnet, dass sich im Betrieb der Vorrichtung zwischen ihnen über den Vorwärmzweig und dem Kühlkreis ein möglichst geringer Druckabfall einstellt. Gemäß dieser bevorzugten Ausgestaltung der Erfindung sind die Bypassanschlüsse in unmittelbarer Nähe zueinander angeordnet. Dadurch ist sicher gestellt, dass sich sowohl im Vorwärmbetrieb als auch im Motorbetrieb keine ungewollte Strömung durch den Bypasszweig einstellt, wenn die Bypasspumpe ausgeschaltet ist. Mit anderen Worten ist gemäß dieser Ausgestaltung der Druckabfall zwischen den Bypassanschlüssen über den Vorwärmzweig und den Kühlkreis wesentlich geringer als der Druckabfall über den Bypasszweig selbst. Der geringe Druckabfall zwischen den Bypassanschlüssen außerhalb des Bypasszweiges weist auch Vorteile im Vorwärmbetrieb auf. Da zwischen den Bypassanschlüssen ein nur sehr geringer Druckverlust auftritt, wird der Vorwärmkreis durch den Bypass nicht beeinflusst, weil sich bei stehender Bypasspumpe keine Zirkulation im Bypass ausbildet. Hydrodynamische Einflüsse auf das Zirkulationssystem bei der Vorwärmung werden auf diese Art und Weise im Wesentlichen ausgeschlossen. Auch der Strömungsverlauf des Kühlkreises ist durch die Bypasszirkulation, also durch das Strömen von Kühlflüssigkeit über den Bypasszweig, nicht oder unwesentlich beeinflusst. Diese Eigenschaft der Vorrichtung ist sowohl von den Herstellern der Vorwärmgeräte als auch bei den Herstellern der Verbrennungsmotoren erwünscht, da die theoretischen Strömungsberechnungen der jeweiligen Wärme- beziehungsweise Kühlkreisläufe nahezu unverändert gültig bleiben.According to the bypass connections are arranged to each other so that adjusts the lowest possible pressure drop between them through the Vorwärmzweig and the cooling circuit during operation of the device. According to this preferred embodiment of the invention, the bypass connections are arranged in close proximity to each other. This ensures that no unwanted flow through the bypass branch occurs in both the preheat mode and during engine operation when the bypass pump is switched off. In other words, according to this embodiment, the pressure drop between the bypass ports via the Vorwärmzweig and the cooling circuit is substantially lower than the pressure drop across the bypass branch itself. The low pressure drop between the bypass ports outside the bypass branch also has advantages in preheating. Since only a very small pressure loss occurs between the bypass connections, the bypass circuit does not influence the preheating circuit, because no circulation in the bypass occurs when the bypass pump is stationary. Hydrodynamic influences on the circulation system during preheating are essentially eliminated in this way. Also, the flow profile of the cooling circuit is not or insignificantly influenced by the bypass circulation, ie by the flow of cooling fluid through the bypass branch. This feature of the device is desirable both by the manufacturers of the preheaters and in the manufacturers of internal combustion engines, since the theoretical flow calculations of the respective heat or cooling circuits remain virtually unchanged.

Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung sind die Bypassanschlüsse durch eine frei durchströmbare Rohrverbindung verbunden. Die frei durchströmbare Rohrverbindung sind Abschnitte des Vorwärmzweiges beziehungsweise des Kühlkreises. Gemäß dieser Ausgestaltung der Erfindung ist das Bereitstellen eines sehr geringen Druckabfalls zwischen den Bypassanschlüssen ermöglicht.According to an expedient further development, the bypass connections are connected by a freely permeable pipe connection. The freely permeable pipe connection are sections of the preheating branch or of the cooling circuit. According to this embodiment of the invention, it is possible to provide a very small pressure drop between the bypass ports.

Gemäß einer bevorzugten Ausgestaltung ist der Vorwärmzweig ausgangsseitig der Vorwärmpumpe mit dem ersten Bypassanschluss als Bypasseingang verbunden, wobei der Kühlkreis ausgangsseitig der Kühlkreispumpe mit dem zweiten Bypassanschluss als Bypassausgang verbunden ist. Gemäß dieser vorteilhaften Weiterentwicklung gelangt das von der Vorwärmeinheit erwärmte Kühlflüssigkeit direkt in den Bypasszweig, so dass besonders schnell Wärmeenergie, beispielsweise im Führerstand, bereitgestellt werden kann.According to a preferred embodiment, the preheating branch is connected on the output side of the preheating pump to the first bypass connection as a bypass input, the cooling circuit on the output side of the cooling circuit pump being connected to the second bypass connection as a bypass output. According to this advantageous further development, the cooling liquid heated by the preheating unit passes directly into the bypass branch, so that thermal energy, for example in the driver's cab, can be made available particularly quickly.

Gemäß einer davon abweichenden Ausgestaltung der Erfindung ist der Vorwärmzweig eingangsseitig der Vorwärmpumpe mit dem zweiten Bypassanschluss als Bypassausgang verbunden, wobei der Kühlkreis eingangsseitig der Kühlkreispumpe mit dem ersten Bypassanschluss als Bypasseingang verbunden ist. Gemäß dieser Ausgestaltung gelangt die von der Vorwärmeinheit vorgewärmte Kühlflüssigkeit zunächst in den Verbrennungsmotor, sorgt für dessen Erwärmung und gerät erst anschließend in den Bypasszweig. Auf diese Art und Weise ist eine schnellere Vorwärmung des Verbrennungsmotors ermöglicht.According to a different embodiment of the invention, the preheating branch is connected on the input side of the preheating pump to the second bypass connection as a bypass output, the cooling circuit on the input side of the cooling circuit pump being connected to the first bypass connection as a bypass input. According to this embodiment, the preheating of the preheated cooling fluid first passes into the engine, ensures its heating and only then in the bypass branch. In this way, a faster preheating of the engine is possible.

Zweckmäßigerweise ist der Bypasswärmetauscher der Bypasspumpe in Strömungsrichtung des Bypasszweiges nachgeschaltet.Advantageously, the bypass heat exchanger of the bypass pump is connected downstream in the flow direction of the bypass branch.

Zweckmäßigerweise ist das Rückschlagventil ausgangsseitig der Vorwärmpumpe im Vorwärmzweig angeordnet.The check valve is expediently arranged on the output side of the preheating pump in the preheating branch.

Zweckmäßigerweise ist der erste Bypassanschluss ein Bypasseingang, der zwischen dem Rückschlagventil und dem Anschluss des Vorwärmzweiges an den Kühlkreis angeschlossen ist.The first bypass connection is expediently a bypass input, which is connected between the check valve and the connection of the preheating branch to the cooling circuit.

Vorteilhafterweise ist der Kühlkreis über ein steuerbares Ventil mit einem Kühler verbindbar, der zum Kühlen der in dem Kühlkreis umgewälzten Kühlflüssigkeit eingerichtet ist. Das steuerbare Ventil ist beispielsweise ein einfaches Thermostat. Abweichend hiervon ist jedoch auch ein ansteuerbares Sperrventil verwendbar.Advantageously, the cooling circuit can be connected via a controllable valve to a cooler which is set up to cool the cooling liquid circulated in the cooling circuit. The controllable valve is for example a simple thermostat. Deviating from this, however, a controllable check valve is used.

Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirkende Bauteile verweisen und wobei

Figur 1
eine Vorrichtung gemäß dem Stand der Technik
Figur 2
die Vorrichtung gemäß Figur 1 im Vorwärmbe- trieb,
Figur 3
die Vorrichtung gemäß Figur 1 im Motorbetrieb,
Figur 4
ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung,
Figur 5
die Vorrichtung gemäß Figur 4 im Vorwärmbe- trieb,
Figur 6
die Vorrichtung gemäß Figur 4 im Motorbetrieb und
Figur 7
ein weiteres Ausführungsbeispiel der erfin- dungsgemäßen Vorrichtung zeigen.
Further expedient embodiments and advantages of the invention are the subject of the following description of embodiments of the invention with reference to the figures of the drawing, wherein like reference numerals refer to like-acting components and wherein
FIG. 1
a device according to the prior art
FIG. 2
the device according to FIG. 1 in preheating mode,
FIG. 3
the device according to FIG. 1 in engine operation,
FIG. 4
an embodiment of the device according to the invention,
FIG. 5
the device according to FIG. 4 in preheating mode,
FIG. 6
the device according to FIG. 4 in engine operation and
FIG. 7
show a further embodiment of the inventive device.

Die Figuren 1 bis 3 wurden bereits im Zusammenhang mit dem Stand der Technik beschrieben.The FIGS. 1 to 3 have already been described in connection with the prior art.

Figur 4 zeigt ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 12, die neben den im Zusammenhang mit den Figuren 1 und 3 genannten Bestandteilen einen Bypasszweig 13 aufweist, der mit einem ersten Bypassanschluss 14 als Bypasseingang mit dem Vorwärmzweig 7 verbunden ist und über einen zweiten Bypassanschluss 15 als Bypassausgang in den Kühlkreis 2 mündet. In dem Bypasszweig 13 sind eine Bypasspumpe 16 sowie ein Bypasswärmetauscher 17 angeordnet, wobei der Bypasswärmetauscher 17 der Bypasspumpe 16 in Pumprichtung der Bypasspumpe 16 nachgeschaltet ist. Die Pumprichtung der Kühlkreispumpe 3, der Vorwärmpumpe 8 und der Bypasspumpe 16 ist jeweils mit einer Pfeilspitze angedeutet, die in die jeweilige Pumprichtung zeigt. FIG. 4 shows an embodiment of the device 12 according to the invention, in addition to those associated with the FIGS. 1 and 3 components mentioned a bypass branch 13 which is connected to a first bypass port 14 as a bypass input to the preheating branch 7 and opens via a second bypass port 15 as a bypass outlet in the cooling circuit 2. In the bypass branch 13, a bypass pump 16 and a bypass heat exchanger 17 are arranged, wherein the bypass heat exchanger 17 of the bypass pump 16 is followed in the pumping direction of the bypass pump 16. The pumping direction of the cooling circuit pump 3, the preheating pump 8 and the bypass pump 16 is indicated in each case by an arrowhead which points into the respective pumping direction.

Figur 5 zeigt die Vorrichtung gemäß Figur 4 im Vorwärmbetrieb. Wie bereits im Zusammenhang mit Figur 2 beschrieben wurde, ist im Vorwärmbetrieb die Vorwärmpumpe 8 eingeschaltet, wohin gegen die Kühlkreispumpe 3 ausgeschaltet ist. Die Vorwärmpumpe 8 fördert die Kühlflüssigkeit über den Vorwärmheizer 9, das Rückschlagventil 10 zum ersten Anschluss 11 des Vorwärmzweiges 7 an den Kühlkreis 2. In dem in Figur 5 gezeigten Ausführungsbeispiel ist die Bypasspumpe 16 ebenfalls eingeschaltet, so dass von dem Vorwärmheizer 9 erwärmte Kühlflüssigkeit von dem Bypasszweig 13 abgegriffen, über den Bypasswärmetauscher 17 geführt wird und schließlich in den Kühlkreis 2 gelangt. Mit Hilfe des Bypasswärmetauschers 17 ist es daher möglich externe Verbraucher, beispielsweise ein Heizgerät eines Führerstandes, mit Wärme zu versorgen. Der Bypasseingang 14 und der Bypassausgang 15 sind dabei über eine direkte Verbindung, die Abschnitte des Vorwärmzweiges 7 beziehungsweise des Kühlkreises 2 sind, miteinander verbunden. Diese direkte Verbindung ist frei durchströmbar. Auf diese Art und Weise ist außerhalb des Bypasszweiges 13 ein geringer Druckabfall zwischen dem Bypassanschluss 14 als Bypasseingang und dem Bypassanschluss 15 als Bypassausgang bereitgestellt. Bei abgestellter Bypasspumpe 16 ist der Druckabfall für die über den Bypasszweig 13 fließende Kühlflüssigkeit wesentlich größer, als wenn diese durch die direkte Verbindung fließt. Durch einfaches Ausschalten der Bypasspumpe 16 ist somit ein Unterbinden der Wärmeversorgung des Bypasswärmetauschers 17 möglich. Darüber hinaus wird durch den geringen hydraulischen Druckunterschied zwischen dem Bypasseingang 14 und dem Bypassausgang 15 die Zirkulation der Kühlflüssigkeit im Vorwärmbetrieb wenig beeinflusst. FIG. 5 shows the device according to FIG. 4 in preheat mode. As already related to FIG. 2 has been described, in the preheating the preheat pump 8 is turned on, where is switched off against the cooling circuit pump 3. The preheating pump 8 conveys the cooling liquid via the preheating heater 9, the check valve 10 to the first port 11 of the Vorwärmzweiges 7 to the cooling circuit 2. In the in FIG. 5 In the embodiment shown, the bypass pump 16 is also switched on, so that cooling liquid heated by the preheating heater 9 is tapped from the bypass branch 13, guided via the bypass heat exchanger 17 and finally reaches the cooling circuit 2. With the help of the bypass heat exchanger 17, it is therefore possible to supply external consumers, for example a heater of a driver's cab, with heat. Of the Bypass input 14 and the bypass output 15 are connected via a direct connection, which are sections of the preheating branch 7 and the cooling circuit 2, respectively. This direct connection can be flowed through freely. In this way, outside the bypass branch 13, a small pressure drop is provided between the bypass port 14 as a bypass port and the bypass port 15 as a bypass port. When the bypass pump 16 is turned off, the pressure drop for the coolant flowing over the bypass branch 13 is substantially greater than when it flows through the direct connection. By simply switching off the bypass pump 16 thus inhibiting the heat supply of the bypass heat exchanger 17 is possible. In addition, the circulation of the cooling liquid in the preheating operation is little influenced by the small hydraulic pressure difference between the bypass input 14 and the bypass outlet 15.

Figur 6 zeigt die Vorrichtung 12 gemäß Figur 4 im Motorbetrieb. Die Bypasspumpe 16 ist eingeschaltet. In dem Todbereich zwischen dem Rückschlagventil 10 und dem ersten Vorwärmzweiganschluss 11 wird somit Kühlflüssigkeit über den Bypasszweig 13 und somit über den Bypasswärmeaustauscher 17 gefördert. Somit können auch im Motorbetrieb externe Verbraucher mit Wärmeenergie aus der Kühlflüssigkeit versorgt werden. FIG. 6 shows the device 12 according to FIG. 4 in engine operation. The bypass pump 16 is turned on. In the dead zone between the check valve 10 and the first preheat branch connection 11, cooling liquid is thus conveyed via the bypass branch 13 and thus via the bypass heat exchanger 17. Thus, external consumers can be supplied with heat energy from the cooling liquid in engine operation.

Figur 7 zeigt ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 12. Im Gegensatz zu dem in Figur 4 gezeigten Ausführungsbeispiel ist der Bypasseingang 14 mit dem Kühlkreis 2 verbunden. Mit anderen Worten ist der erste Bypassanschluss eingangsseitig der Kühlkreispumpe angeordnet. Der Bypassausgang 15 ist hingegen mit dem Vorwärmzweig 7 und zwar eingangsseitig der Vorwärmpumpe 8 verbunden. Gemäß dieser Anordnung wird somit die Kühlflüssigkeit zunächst über den Verbrennungsmotor 1 geführt, wobei diese im Vorwärmbetrieb anschließend den Bypasszweig 13 erreicht. Darüber hinaus ist in dem gezeigten Ausführungsbeispiel der Erfindung der Bypasswärmetauscher 17 der Bypasspumpe 16 in Umwälzrichtung vorgeschaltet. Ein Sperrventil 18, das beispielsweise vom Führerstand aus angesteuert werden kann, dient zum sicheren Unterbinden einer Kühlflüssigkeitszirkulation über den Bypasszweig 13. FIG. 7 shows a further embodiment of the inventive device 12. In contrast to the in FIG. 4 In the embodiment shown, the bypass input 14 is connected to the cooling circuit 2. In other words, the first bypass connection is arranged on the input side of the cooling circuit pump. By contrast, the bypass outlet 15 is connected to the preheating branch 7 and, on the input side, to the preheating pump 8. According to this arrangement, therefore, the cooling liquid is initially over the internal combustion engine 1, wherein this then reaches the bypass branch 13 in preheating. In addition, in the illustrated embodiment of the invention, the bypass heat exchanger 17 of the bypass pump 16 upstream in the direction of circulation. A check valve 18, which can be actuated, for example, from the driver's cab, serves to reliably prevent a circulation of cooling fluid via the bypass branch 13.

Claims (8)

  1. Device (12) for cooling or heating an internal combustion engine (1) of a vehicle, with a cooling circuit (2) which is connected heat-conductively to the internal combustion engine (1) and has a cooling-circuit pump (3) which is set up for the circulation of cooling liquid in the cooling circuit (2), and with a preheating branch (7) which is arranged parallel to the cooling-circuit pump (3), is connected to the cooling circuit (2) and has a preheating heater (9) and a preheating pump (8) which communicates on the outlet side with an outlet side of the cooling-circuit pump (3) and on the inlet side with an inlet side of the cooling-circuit pump (3), a non-return valve (10) being provided in the preheating branch (7), characterized by a bypass branch (13) with a bypass heat exchanger (17) and with a bypass pump (16), the bypass branch (13) being connected to the preheating branch (7) by means of a first bypass connection (14) and to the cooling circuit (2) by means of a second bypass connection (15), and the bypass connections (14, 15) being arranged with respect to one another such that, when the device (12) is in operation, as small a pressure drop as possible is established between them via the preheating branch (7) and the cooling circuit (2).
  2. Device (12) according to Claim 1, characterized in that the bypass connections (14, 15) are connected by means of a free-throughflow connection which is formed by sections of the cooling circuit (2) and of the preheating branch (7).
  3. Device (12) according to one of the preceding claims, characterized in that the preheating branch (7) is connected on the outlet side of the preheating pump (8) to the first bypass connection (14) as a bypass inlet, the cooling circuit (2) being connected on the outlet side of the cooling-circuit pump (3) to the second bypass connection (15) as a bypass outlet.
  4. Device (12) according to either one of Claims 1 and 2, characterized in that the preheating branch (7) is connected on the inlet side of the preheating pump (8) to the first bypass connection (14) as a bypass inlet, the cooling circuit (2) being connected on the inlet side of the cooling-circuit pump (3) to the second bypass connection (15) as a bypass outlet.
  5. Device (12) according to one of the preceding claims, characterized in that the bypass heat exchanger (17) follows the bypass pump (16) in the direction of flow of the bypass branch (13).
  6. Device (12) according to one of the preceding claims, characterized in that the non-return valve (10) is arranged on the outlet side of the preheating pump (8) in the preheating branch (7).
  7. Device (12) according to Claim 6, characterized in that the first bypass connection (14) is a bypass inlet which is arranged between the non-return valve (10) and the connection (11) of the preheating branch (7) to the cooling circuit (2).
  8. Device (12) according to one of the preceding claims, characterized in that the cooling circuit (2) is connectable via a controllable valve (6) to a radiator (5) which is set up for cooling the cooling liquid circulated in the cooling circuit (2).
EP09156022A 2008-04-08 2009-03-24 Device for cooling or heating a combustion engine Active EP2108813B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008018532A DE102008018532A1 (en) 2008-04-08 2008-04-08 Device for cooling or heating an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2108813A1 EP2108813A1 (en) 2009-10-14
EP2108813B1 true EP2108813B1 (en) 2011-10-26

Family

ID=40810266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09156022A Active EP2108813B1 (en) 2008-04-08 2009-03-24 Device for cooling or heating a combustion engine

Country Status (3)

Country Link
EP (1) EP2108813B1 (en)
AT (1) ATE530747T1 (en)
DE (1) DE102008018532A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2459093C1 (en) * 2011-04-06 2012-08-20 Олег Константинович Безюков Internal combustion engine cooling system
DE102014110633A1 (en) 2014-07-28 2016-01-28 Elwa Elektro-Wärme, München A. Hilpoltsteiner Gmbh & Co. Kg Heating device for preheating an operating medium of an internal combustion engine and modular system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189653A1 (en) 2015-05-26 2016-12-01 日立建機株式会社 Construction machine provided with preheating unit and method for preheating said machine
CN107313850B (en) * 2017-08-23 2019-09-24 安徽江淮汽车集团股份有限公司 A kind of engine temperature regulating system and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591691A (en) 1984-10-29 1986-05-27 Badali Edward A Auxiliary electric heating system for internal combustion engine powered vehicles
DE3730598A1 (en) * 1987-09-11 1989-03-23 Eberspaecher J HEAT CARRIER CIRCUIT FOR VEHICLE HEATING WITH A MOTOR-INDEPENDENT HEATING UNIT
DE4435693A1 (en) * 1994-10-06 1996-04-11 Behr Gmbh & Co Additional heating arrangement
DE19730678A1 (en) * 1997-07-17 1999-01-21 Volkswagen Ag Hybrid vehicle drive component cooling and interior heating arrangement
JP3757892B2 (en) 2002-04-03 2006-03-22 トヨタ自動車株式会社 Hot water storage system for hybrid vehicles
DE102006017246A1 (en) 2005-04-18 2006-10-19 Denso Corp., Kariya Waste heat recovery system for a motor vehicle engine
DE102005029918B4 (en) * 2005-04-29 2010-05-06 Mtu Friedrichshafen Gmbh Cooling system for a supercharged internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2459093C1 (en) * 2011-04-06 2012-08-20 Олег Константинович Безюков Internal combustion engine cooling system
DE102014110633A1 (en) 2014-07-28 2016-01-28 Elwa Elektro-Wärme, München A. Hilpoltsteiner Gmbh & Co. Kg Heating device for preheating an operating medium of an internal combustion engine and modular system

Also Published As

Publication number Publication date
ATE530747T1 (en) 2011-11-15
DE102008018532A1 (en) 2009-10-15
EP2108813A1 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
EP3454401B1 (en) Motor vehicle with a cooling system
DE112007001140B4 (en) Vehicle cooling system with directed flows
EP1913243B1 (en) Cooling system for a vehicle, and method for the operation of a cooling system
EP2582957B1 (en) Internal combustion engine comprising a coolant collector for shut-down cooling and/or warm-up cooling
EP1108572B1 (en) Heat exchange system for the heating of a vehicle with hybrid propulsion
DE10134678A1 (en) Arrangement for cooling and heating motor vehicle, has at least one bypass line with bypass valve associated with and arranged in parallel with at least one auxiliary radiator segment
DE102011053591A1 (en) Apparatus for recovering and cooling waste heat for an engine
DD149920A5 (en) HEATING DEVICE
EP0634565A1 (en) Method for improving the cold stant behaviour of internal combustion engines
DE102014201717A1 (en) Internal combustion engine with liquid-cooled cylinder head and cylinder block and method for controlling the cooling of such an internal combustion engine
DE102008064015A1 (en) Waste heat recovery device for utilization of waste heat of internal combustion engine of motor vehicle, has working fluid circuit connected with coolant heat exchanger, and coolant circuit fluid coupled with engine cooling circuit
EP2108813B1 (en) Device for cooling or heating a combustion engine
DE102017108400A1 (en) Temperieranordnung for an electrical energy storage
DE102009058575A1 (en) Cooling circuit of an internal combustion engine and a working method for operating a cooling circuit
DE102012200391A1 (en) Refrigerant circuit for e.g. diesel combustion engine of e.g. passenger car, has electrical coolant pump that conveys coolant directly to coolant return line through crankcase and/or cylinder head
EP1348096B1 (en) Device and method for cooling
WO2002052132A1 (en) Cooling system for a motor vehicle
DE102012023823A1 (en) Vehicle air conditioning
EP1923548A2 (en) Combustion engine with turbo charger cooling system active after ignition switch-off
DE102013203476A1 (en) Liquid-cooled internal combustion engine e.g. diesel engine, for motor vehicle, has common pump provided upstream to supply openings for conveying coolant to supply openings, and closing element present between pump and one supply opening
DE102013211701A1 (en) A vehicle heating system and method of heating the interior of a vehicle with a vehicle heating system
DE102018213086B4 (en) Split cooling system for internal combustion engine
DE102005020958A1 (en) Cooling circuit for an internal combustion engine
DE102022109112A1 (en) Temperature control device for a motor vehicle and motor vehicle
DE19750721A1 (en) Engine coolant circuit for IC engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100412

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009001716

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02N0017060000

Ipc: F01P0005100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 5/10 20060101AFI20110218BHEP

Ipc: F01P 7/16 20060101ALI20110218BHEP

Ipc: F02N 19/10 20100101ALI20110218BHEP

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009001716

Country of ref document: DE

Effective date: 20111229

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111026

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120331

26N No opposition filed

Effective date: 20120727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009001716

Country of ref document: DE

Effective date: 20120727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090324

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009001716

Country of ref document: DE

Owner name: SIEMENS MOBILITY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS MOBILITY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 530747

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS MOBILITY GMBH, DE

Effective date: 20190506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190603

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230317

Year of fee payment: 15

Ref country code: AT

Payment date: 20230207

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230519

Year of fee payment: 15